KR20090115197A - Cobalt-containing film-forming material and method for forming cobalt silicide film using the material - Google Patents

Cobalt-containing film-forming material and method for forming cobalt silicide film using the material Download PDF

Info

Publication number
KR20090115197A
KR20090115197A KR1020097018337A KR20097018337A KR20090115197A KR 20090115197 A KR20090115197 A KR 20090115197A KR 1020097018337 A KR1020097018337 A KR 1020097018337A KR 20097018337 A KR20097018337 A KR 20097018337A KR 20090115197 A KR20090115197 A KR 20090115197A
Authority
KR
South Korea
Prior art keywords
cobalt
containing film
forming material
group
film forming
Prior art date
Application number
KR1020097018337A
Other languages
Korean (ko)
Inventor
쇼이찌로 와까바야시
다까미쯔 고바야시
Original Assignee
쇼와 덴코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쇼와 덴코 가부시키가이샤 filed Critical 쇼와 덴코 가부시키가이샤
Publication of KR20090115197A publication Critical patent/KR20090115197A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Abstract

Disclosed is a stable cobalt-containing film-forming material having a low melting point and a high vapor pressure, which can be handled as a liquid and easily synthesized commercially. This cobalt-containing film-forming material enables to easily form a good cobalt-containing film, preferably a good cobalt silicide film by a CVD (chemical vapor deposition) method. Specifically disclosed is a cobalt-containing film-forming material characterized by having a structure represented by the following formula (1). Co(R1aC5H(5-a))(R2 bC5H(5-b)) (1).

Description

코발트 함유막 형성 재료, 및 상기 재료를 이용한 코발트 실리사이드막의 제조 방법 {COBALT-CONTAINING FILM-FORMING MATERIAL AND METHOD FOR FORMING COBALT SILICIDE FILM USING THE MATERIAL} Cobalt-containing film forming material, and manufacturing method of cobalt silicide film using the material {COBALT-CONTAINING FILM-FORMING MATERIAL AND METHOD FOR FORMING COBALT SILICIDE FILM USING THE MATERIAL}

본 발명은, CVD(화학 기상 흡착)법에 의해 코발트 함유막을 형성하기 위한 재료, 바람직하게는 CVD법에 의해 코발트 실리사이드막을 형성하기 위한, 코발트 함유막 형성 재료, 및 상기 재료를 이용한 코발트 실리사이드막의 제조 방법에 관한 것이다.The present invention provides a material for forming a cobalt-containing film by CVD (Chemical Vapor Sorption), preferably a cobalt-containing film-forming material for forming a cobalt silicide film by CVD, and a cobalt silicide film using the material. It is about a method.

현재, 반도체 디바이스에 있어서의 기술의 진보는 현저하며, 한층 더 고속 동작을 가능하게 하기 위하여, 고도화와 미세화가 급속하게 행해지고, 그를 위한 재료 개발이 활발하게 행해지고 있다.At present, advances in technology in semiconductor devices are remarkable, and in order to enable higher-speed operation, advancement and miniaturization are rapidly performed, and material development for them is being actively performed.

배선 재료에는 저저항 재료가 차례로 도입되어, 게이트 전극이나 소스, 드레인의 확산층 상에 실리사이드막을 형성함으로써, 한층 더한 저저항화가 행해지고 있다. 여기서 사용되는 실리사이드막으로서, 티탄 실리사이드막보다도 저저항인 코발트 실리사이드막의 도입이 검토되고 있다.A low resistance material is sequentially introduced into the wiring material, and further reduction in resistance is achieved by forming a silicide film on the diffusion layers of the gate electrode, the source, and the drain. As the silicide film used here, introduction of a cobalt silicide film having a lower resistance than a titanium silicide film has been studied.

이 코발트 실리사이드막의 형성은, 이제까지 스퍼터링법에 의해 행해져 왔다. 그러나, 스퍼터링법은, 반도체 소자에의 물리적인 손상이 우려됨과 함께, 균 일 성막성에의 대응이 곤란해지고 있는 것 등으로 인해, 최근, CVD법에 의한 검토가 행해져 오고 있다.Formation of this cobalt silicide film | membrane has been performed by the sputtering method so far. However, the sputtering method has been recently examined by the CVD method due to the concern of physical damage to the semiconductor element and the difficulty in coping with uniform film formation.

CVD법은, 막 형성 재료를 휘발시켜 가스 상태로 흘리고, 반응기 내에서 화학 반응을 이용하여, 실리콘 기판 상에 막을 퇴적시키는 방법이다. CVD법은 감압하에서의 성막에 의해, 저온에서의 성막을 행할 수 있지만, 이용하는 막 형성 재료의 차이에 의해, 성막할 때의 조건이 크게 다르다. 이 때 이용하는 막 형성 재료에 요구되는 특성으로서, 높은 증기압을 갖는 것, 취급의 점에서 액체가 바람직한 것 등을 들 수 있다.The CVD method is a method of volatilizing a film forming material and flowing it in a gaseous state, and depositing a film on a silicon substrate using a chemical reaction in a reactor. Although the CVD method can form a film at low temperature by film-forming under reduced pressure, the conditions at the time of film-forming differ greatly by the difference in the film formation material used. As a characteristic required for the film formation material used at this time, what has a high vapor pressure, what a liquid is preferable from a handling point, etc. are mentioned.

이제까지 제안되어 있는 막 형성 재료용의 화합물로서, 비스(아세틸아세토네이토) 코발트가 있다. 그러나, 비스(아세틸아세토네이토) 코발트는 융점이 173℃로 높아, 액체 상태에서의 취급이 실질적으로 곤란하였다. 그리고 증기압이 낮기 때문에, 성막 속도가 느려, 생산상의 작업 처리량이 향상되지 않는다고 하는 과제를 안고 있었다.As a compound for film formation materials proposed so far, bis (acetylacetonato) cobalt is mentioned. However, bis (acetylacetonato) cobalt has a high melting point of 173 ° C, which makes it difficult to handle in a liquid state. And since the vapor pressure was low, the film-forming rate was slow and the production throughput did not improve.

또한, 액체로서 취급 가능한 화합물로서, 코발토센에 알킬기를 도입한 비스(알킬시클로펜타디에닐) 코발트(특허 문헌 1), 코발트 시클로펜타디에닐디카르보닐(비특허 문헌 1)이 보고되어 있다.Moreover, bis (alkylcyclopentadienyl) cobalt (patent document 1) and cobalt cyclopentadienyl dicarbonyl (nonpatent literature 1) which introduce | transduced an alkyl group into cobaltocene are reported as a compound which can be handled as a liquid. .

비스(알킬시클로펜타디에닐) 코발트에 있어서는, 착체의 배위자가 2량화하기 쉽기 때문에, 그 제조 공정에서의 취급에 주의를 요하며, 2량화하였을 때에는 열 분해를 행할 필요가 있는 등, 공업적으로 생산해 가는 측면에서는 합성 및 보관의 점에서 과제가 있다. 또한, 코발트 시클로펜타디에닐디카르보닐은, 안정성이 낮 아, 분해하기 쉽다고 하는 결점이 있다. 또한, 카르보닐기는 구성 요소의 산소 원자가 막 중에 혼입하여, 막의 저항이 상승한다고 하는 과제가 있다.In bis (alkylcyclopentadienyl) cobalt, since the ligand of the complex tends to be dimerized, care must be taken in the manufacturing process, and when dimerized, thermal decomposition is necessary. In terms of production, there are problems in terms of synthesis and storage. In addition, cobalt cyclopentadienyldicarbonyl has a disadvantage of low stability and easy decomposition. Moreover, the carbonyl group has the subject that the oxygen atom of a component mixes in a film | membrane, and the resistance of a film | membrane rises.

그 때문에, CVD법에 의한 코발트 함유막 형성을 보다 용이하게 행하기 위해서는, 융점이 낮아 액체로서의 취급이 가능하고, 또한 높은 증기압을 갖는 것에 추가하여, 또한 공업적으로 합성이 용이하고 안정된 재료의 개발인 것이 요망되고 있다.Therefore, in order to more easily form a cobalt-containing film by the CVD method, it is possible to handle as a liquid with a low melting point, and to develop a material that is easy to synthesize and industrially stable in addition to having a high vapor pressure. It is desired to be.

[특허 문헌 1] 일본 특허 공개 제2003-328130호 공보[Patent Document 1] Japanese Unexamined Patent Publication No. 2003-328130

[비특허 문헌 1] Japanese Journal of Applied Physics, 2003, vol. 42, 3350-3353[Non-Patent Document 1] Japanese Journal of Applied Physics, 2003, vol. 42, 3350-3353

<발명이 해결하고자 하는 과제>Problems to be Solved by the Invention

본 발명은, 상기한 바와 같은 종래 기술에 수반하는 문제를 해결하고자 하는 것으로서, 융점이 낮아 액체로서의 취급이 가능하며, 또한 높은 증기압을 갖고, 나아가 공업적으로 합성이 용이하고 안정된, CVD법에 의한 코발트 함유막 형성에, 바람직하게는 CVD법에 의한 코발트 실리사이드막 형성에 적합한, 코발트 함유막 형성 재료를 제공하는 데에 있다.SUMMARY OF THE INVENTION The present invention is intended to solve the problems associated with the prior art as described above, and has a low melting point, which enables handling as a liquid, has a high vapor pressure, and is easy to synthesize and stable industrially. It is to provide a cobalt containing film formation material suitable for cobalt containing film formation, Preferably it is suitable for cobalt silicide film formation by CVD method.

또한 본 발명의 다른 목적은, 상기 코발트 함유막 형성 재료를 이용한 코발트 실리사이드막의 제조 방법을 제공하는 데에 있다.Another object of the present invention is to provide a method for producing a cobalt silicide film using the cobalt-containing film forming material.

<과제를 해결하기 위한 수단>Means for solving the problem

상기 과제에 대한 검토를 행한 결과, 하기 화학식 1의 구조로 표시되는 코발트 함유막 형성 재료가, 융점이 낮아 액체로서의 취급이 가능하고, 또한 높은 증기압을 가지며, 나아가 공업적으로 합성이 용이하고 안정된, CVD법에 의한 코발트 함유막 형성에, 바람직하게는 코발트 실리사이드막 형성에 적합한 막 형성 재료인 것을 발견하였다.As a result of studying the above problem, the cobalt-containing film forming material represented by the structure of the following formula (1) has a low melting point, can be handled as a liquid, has a high vapor pressure, and is easy to synthesize industrially and is stable. It was found that the cobalt-containing film is formed by CVD, and is preferably a film forming material suitable for forming a cobalt silicide film.

즉, 본 발명은 이하의 1. 내지 9.에 관한 것이다.That is, the present invention relates to the following 1. to 9.

1. 하기 화학식 1의 구조로 표시되는 것을 특징으로 하는 코발트 함유막 형성 재료.1. A cobalt-containing film forming material, characterized by the structure represented by the following formula (1).

Co(R1 aC5H(5-a))(R2 bC5H(5-b))Co (R 1 a C 5 H (5-a) ) (R 2 b C 5 H (5-b) )

여기서, R1, R2는 각각 독립적으로 수소 원자, 하기 화학식 2 및 하기 화학식 3으로 이루어지는 군에서 선택되는 어느 1종의 기이되, 단 R1, R2가 모두 수소 원자인 것을 제외하고, a 및 b는 0<a+b≤4를 만족시키는 정수이다.Here, R 1 , R 2 are each independently a hydrogen atom, any one group selected from the group consisting of the following formula (2) and formula (3), except that R 1 , R 2 are all hydrogen atoms, a And b is an integer satisfying 0 <a + b ≦ 4.

Figure 112009053969465-PCT00001
Figure 112009053969465-PCT00001

여기서, R3, R4, R5는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 2의 알킬기이다.Here, R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms.

Figure 112009053969465-PCT00002
Figure 112009053969465-PCT00002

여기서, R6, R7, R8은 각각 독립적으로 할로겐기, 탄소수 1 내지 3의 알킬기 및 탄소수 1 내지 3의 할로겐화 알킬기로 이루어지는 군에서 선택되는 어느 1종의 기이되, 단 R6, R7, R8이 모두 탄소수 1 내지 3의 알킬기인 것을 제외한다.Here, R 6 , R 7 , R 8 are each independently any one group selected from the group consisting of a halogen group, an alkyl group having 1 to 3 carbon atoms and a halogenated alkyl group having 1 to 3 carbon atoms, provided that R 6 , R 7 , Except that R 8 are all alkyl groups having 1 to 3 carbon atoms.

2. 상기 화학식 2에 있어서, R3, R4, R5가 모두 메틸기인 것을 특징으로 하는 상기 1.에 기재된 코발트 함유막 형성 재료.2. The cobalt-containing film forming material according to item 1, wherein R 3 , R 4 , and R 5 are all methyl groups.

3. 상기 화학식 3에 있어서, R6, R7, R8이 각각 독립적으로 플루오로기 또는 트리플루오로메틸기 중 어느 하나로 표시되는 기인 것을 특징으로 하는 상기 1.에 기재된 코발트 함유막 형성 재료.3. The cobalt-containing film forming material according to item 1, wherein R 6 , R 7 and R 8 are each independently a group represented by any one of a fluoro group and a trifluoromethyl group.

4. 상기 코발트 함유막 형성 재료가, 비스(트리메틸실릴시클로펜타디에닐) 코발트인 것을 특징으로 하는 상기 1.에 기재된 코발트 함유막 형성 재료.4. Said cobalt containing film formation material is bis (trimethylsilylcyclopentadienyl) cobalt, The cobalt containing film formation material as described in said 1. characterized by the above-mentioned.

5. 상기 코발트 함유막 형성 재료가, 비스(트리플루오로메틸시클로펜타디에닐) 코발트인 것을 특징으로 하는 상기 1.에 기재된 코발트 함유막 형성 재료.5. Said cobalt containing film formation material is bis (trifluoromethylcyclopentadienyl) cobalt, The cobalt containing film formation material as described in said 1. characterized by the above-mentioned.

6. 상기 코발트 함유막 형성 재료가, CVD(화학 기상 흡착)법을 이용하여 코발트 함유막을 형성하기 위한 재료인 것을 특징으로 하는, 상기 1. 내지 5. 중 어느 하나에 기재된 코발트 함유막 형성 재료.6. Said cobalt containing film formation material is material for forming cobalt containing film using CVD (chemical vapor adsorption) method, The cobalt containing film formation material in any one of said 1.-5.

7. 상기 코발트 함유막이 코발트 실리사이드막인 것을 특징으로 하는 상기 6.에 기재된 코발트 함유막 형성 재료.7. The cobalt-containing film forming material according to item 6, wherein the cobalt-containing film is a cobalt silicide film.

8. CVD(화학 기상 흡착)법을 이용하여, 상기 1. 내지 4. 중 어느 하나에 기재된 코발트 함유막 형성 재료로부터 코발트 실리사이드막을 형성하는 제조 방법에 있어서, 실리콘원으로서, 상기 화학식 2로 표시되는 구조 중의 규소를 이용하는 것을 특징으로 하는 코발트 실리사이드막의 제조 방법.8. A manufacturing method for forming a cobalt silicide film from the cobalt-containing film forming material according to any one of 1. to 4. using CVD (Chemical Vapor Sorption), wherein as a silicon source, Silicon in a structure is used, The manufacturing method of the cobalt silicide film | membrane characterized by the above-mentioned.

9. 상기 코발트 함유막 형성 재료가, 비스(트리메틸실릴시클로펜타디에닐) 코발트인 것을 특징으로 하는 상기 8.에 기재된 코발트 실리사이드막의 제조 방법.9. Said cobalt containing film formation material is bis (trimethylsilylcyclopentadienyl) cobalt, The manufacturing method of the cobalt silicide film | membrane of said 8. characterized by the above-mentioned.

<발명의 효과>Effect of the Invention

본 발명에 의하면, 융점이 낮아 액체로서의 취급이 가능하고, 또한 높은 증기압을 가지며, 나아가 공업적으로 합성이 용이하고 안정된, CVD법에 의한 코발트 함유막 형성에, 바람직하게는 CVD법에 의한 코발트 실리사이드막 형성에 적합한, 코발트 함유막 형성 재료가 제공된다.According to the present invention, the cobalt-containing film formed by the CVD method, preferably the cobalt silicide formed by the CVD method, can be handled as a liquid having a low melting point, has a high vapor pressure, and is easy to synthesize industrially and is stable. A cobalt containing film forming material suitable for film formation is provided.

즉, 이 코발트 함유막 형성 재료를 이용함으로써, CVD법에 의해 코발트 함유막, 바람직하게는 코발트 실리사이드막을 용이하게 형성할 수 있다.In other words, by using this cobalt-containing film forming material, a cobalt-containing film, preferably a cobalt silicide film, can be easily formed by the CVD method.

도 1은, CVD 장치의 모식도이다. 얻어진 코발트막 함유 형성 재료를 원료 용기에 넣어, 용기를 가열하고, 캐리어 가스를 흘려, 반응 용기에 도입한다. 또한, 적시에 반응 가스를 반응 용기에 도입하고, 반응 용기 내의 기판 상에서 박막을 형성한다. 이 때, 계 내는 감압되고, 반응 용기 내에 설치한 기판을 가열한다. 1 is a schematic diagram of a CVD apparatus. The obtained cobalt film-containing forming material is placed in a raw material container, the container is heated, a carrier gas is flowed into the reaction container. In addition, timely reaction gas is introduced into the reaction vessel to form a thin film on the substrate in the reaction vessel. At this time, the inside of the system is reduced in pressure, and the substrate provided in the reaction vessel is heated.

<발명을 실시하기 위한 최선의 형태> Best Mode for Carrying Out the Invention

이하, 본 발명의 코발트 함유막 형성 재료에 대하여, 상세하게 설명한다.Hereinafter, the cobalt containing film formation material of this invention is demonstrated in detail.

본 발명의 코발트 함유막 형성 재료는, 상기 화학식 1로 표시되는 구조를 갖는다.The cobalt containing film formation material of this invention has a structure represented by the said General formula (1).

여기서, 상기 화학식 1의 R1, R2는 각각 독립적으로 수소 원자, 상기 화학식 2 및 상기 화학식 3으로 이루어지는 군에서 선택되는 어느 1종의 기이다. 단, R1, R2가 모두 수소 원자인 것을 제외한다. a 및 b는, 0<a+b≤4를 만족시키는 정수이다.Herein, R 1 and R 2 in Formula 1 are each independently a hydrogen atom, any one group selected from the group consisting of Formula 2 and Formula 3. However, except that R 1 and R 2 are all hydrogen atoms. a and b are integers which satisfy | fills 0 <a + b <= 4.

또한, R1, R2가 모두 수소 원자인 것을 제외하고, a=b=1, 즉 a+b=2일 때, 이 조건을 만족시키는 코발트 함유막 형성 재료의 합성은 가장 용이하게 행할 수 있다. 또한, a+b=1일 때, 이 조건을 만족시키는 코발트 함유막 형성 재료의 합성은, 난이도가 높지만, CVD법에 의한 코발트 함유막을 형성하기 위한 요구 물성을 보다 높게 달성할 수 있다. 그 때문에, R1, R2가 모두 수소 원자인 것을 제외하고, a, b가 0<a+b≤2를 만족시키는 정수일 때, 보다 바람직한 코발트 함유막 형성 재료로 된다.In addition, when a = b = 1, ie, a + b = 2, except that both R 1 and R 2 are hydrogen atoms, the synthesis of the cobalt-containing film forming material that satisfies this condition can be most easily performed. . In addition, when a + b = 1, the synthesis of the cobalt-containing film forming material that satisfies this condition is high in difficulty, but can achieve higher required physical properties for forming the cobalt-containing film by the CVD method. Thus, R 1, R 2 are both, except that a hydrogen atom, a, b is an integer in time, the more preferred film forming cobalt-containing materials to satisfy 0 <a + b≤2.

상기 화학식 2의 R3, R4, R5는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 2의 알킬기 중 어느 하나이고, 탄소수 1 내지 2의 알킬기가 바람직하다. 탄소 수 1 내지 2의 알킬기로서는 메틸기, 에틸기를 들 수 있다. 더욱 바람직하게는, 코발트 함유막 형성 재료의 합성이 용이하고, 또한 분자량이 가장 작아지므로 메틸기이다.R 3 , R 4 and R 5 in Formula 2 are each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and an alkyl group having 1 to 2 carbon atoms is preferable. Examples of the alkyl group having 1 to 2 carbon atoms include methyl group and ethyl group. More preferably, since the synthesis | combination of a cobalt containing film formation material becomes easy and molecular weight becomes smallest, it is a methyl group.

상기 화학식 3의 R6, R7, R8은 각각 독립적으로 할로겐기, 탄소수 1 내지 3의 알킬기 및 탄소수 1 내지 3의 할로겐화 알킬기로 이루어지는 군에서 선택되는 어느 1종의 기이다. 단, R6, R7, R8이 모두 탄소수 1 내지 3의 알킬기인 것은 제외된다.R 6 , R 7 , and R 8 in Formula 3 may each independently be any one group selected from the group consisting of a halogen group, an alkyl group having 1 to 3 carbon atoms, and a halogenated alkyl group having 1 to 3 carbon atoms. However, it is excluded that R 6 , R 7 and R 8 are all alkyl groups having 1 to 3 carbon atoms.

할로겐기로서는, 플루오로기, 클로로기, 브로모기를, 탄소수 1 내지 3의 알킬기로서는 메틸기, 에틸기, 프로필기를 들 수 있다. 탄소수 1 내지 3의 할로겐화 알킬기로서는, 트리플루오로메틸기, 트리클로로메틸기, 트리브로모메틸기, 펜타플루오로에틸기, 펜타클로로메틸기, 펜타브로모메틸기, 헵타플루오로프로필기, 헵타클로로프로필기, 헵타브로모프로필기가 예시된다. 이들 중에서, 바람직하게는 플루오로기, 메틸기 또는 트리플루오로메틸기이다. 더욱 바람직하게는 플루오로기이다.As a halogen group, a fluoro group, a chloro group, a bromo group, and a C1-C3 alkyl group can mention a methyl group, an ethyl group, and a propyl group. Examples of the halogenated alkyl group having 1 to 3 carbon atoms include trifluoromethyl group, trichloromethyl group, tribromomethyl group, pentafluoroethyl group, pentachloromethyl group, pentabromomethyl group, heptafluoropropyl group, heptachloropropyl group, and heptab Lomopropyl group is illustrated. Among these, Preferably, they are a fluoro group, a methyl group, or a trifluoromethyl group. More preferably, it is a fluoro group.

탄소수 1 내지 3의 알킬기로서는, 메틸기, 에틸기, n-프로필기, 이소-프로필기를 들 수 있다.Examples of the alkyl group having 1 to 3 carbon atoms include methyl group, ethyl group, n-propyl group, and iso-propyl group.

본 발명에 관한 코발트 화합물로서는, (시클로펜타디에닐)(트리메틸실릴시클로펜타디에닐) 코발트, (시클로펜타디에닐)(에틸디메틸실릴시클로펜타디에닐) 코발트, (시클로펜타디에닐)(디에틸메틸실릴시클로펜타디에닐) 코발트, (시클로펜타디에닐)(트리에틸실릴시클로펜타디에닐) 코발트, (시클로펜타디에닐)(트리플루오로메 틸시클로펜타디에닐) 코발트, (시클로펜타디에닐)(트리클로로메틸시클로펜타디에닐) 코발트, (시클로펜타디에닐)(트리브로모메틸시클로펜타디에닐) 코발트, (시클로펜타디에닐)(1,1-디플루오로에틸시클로펜타디에닐) 코발트, (시클로펜타디에닐)(1,1-디플루오로프로필시클로펜타디에닐) 코발트, (시클로펜타디에닐)(1,1-디플루오로부틸시클로펜타디에닐) 코발트, (시클로펜타디에닐)(펜타플루오로에틸시클로펜타디에닐) 코발트, (시클로펜타디에닐)(헵타플루오로프로필시클로펜타디에닐) 코발트, (시클로펜타디에닐)(노나플루오로노르말부틸시클로펜타디에닐) 코발트,Cobalt compounds according to the present invention include (cyclopentadienyl) (trimethylsilylcyclopentadienyl) cobalt, (cyclopentadienyl) (ethyldimethylsilylcyclopentadienyl) cobalt, (cyclopentadienyl) (diethyl Methylsilylcyclopentadienyl) cobalt, (cyclopentadienyl) (triethylsilylcyclopentadienyl) cobalt, (cyclopentadienyl) (trifluoromethylcyclopentadienyl) cobalt, (cyclopentadienyl) (Trichloromethylcyclopentadienyl) cobalt, (cyclopentadienyl) (tribromomethylcyclopentadienyl) cobalt, (cyclopentadienyl) (1,1-difluoroethylcyclopentadienyl) cobalt (Cyclopentadienyl) (1,1-difluoropropylcyclopentadienyl) cobalt, (cyclopentadienyl) (1,1-difluorobutylcyclopentadienyl) cobalt, (cyclopentadienyl (Pentafluoroethylcyclopentadienyl) cobalt (Cyclopentadienyl) (heptafluoropropylcyclopentadienyl) cobalt, (cyclopentadienyl) (nonnafluoronormalbutylcyclopentadienyl) cobalt,

비스(트리메틸실릴시클로펜타디에닐) 코발트, 비스(에틸디메틸실릴시클로펜타디에닐) 코발트, 비스(디에틸메틸실릴시클로펜타디에닐) 코발트, 비스(트리에틸실릴시클로펜타디에닐) 코발트, 비스(트리플루오로메틸시클로펜타디에닐) 코발트, 비스(트리클로로메틸시클로펜타디에닐) 코발트, 비스(1,1-디플루오로에틸시클로펜타디에닐) 코발트, 비스(1,1-디플루오로프로필시클로펜타디에닐) 코발트, 비스(1,1-디플루오로부틸시클로펜타디에닐) 코발트, 비스(펜타플루오로에틸시클로펜타디에닐) 코발트, 비스(헵타플루오로프로필시클로펜타디에닐) 코발트,Bis (trimethylsilylcyclopentadienyl) cobalt, bis (ethyldimethylsilylcyclopentadienyl) cobalt, bis (diethylmethylsilylcyclopentadienyl) cobalt, bis (triethylsilylcyclopentadienyl) cobalt, bis ( Trifluoromethylcyclopentadienyl) cobalt, bis (trichloromethylcyclopentadienyl) cobalt, bis (1,1-difluoroethylcyclopentadienyl) cobalt, bis (1,1-difluoropropyl Cyclopentadienyl) cobalt, bis (1,1-difluorobutylcyclopentadienyl) cobalt, bis (pentafluoroethylcyclopentadienyl) cobalt, bis (heptafluoropropylcyclopentadienyl) cobalt,

(트리플루오로메틸시클로펜타디에닐)(트리메틸실릴시클로펜타디에닐) 코발트, (1,1-디플루오로에틸시클로펜타디에닐)(트리메틸실릴시클로펜타디에닐) 코발트, (펜타플루오로에틸시클로펜타디에닐)(트리메틸실릴시클로펜타디에닐) 코발트, (트리메틸실릴시클로펜타디에닐)(1,3-디(트리메틸실릴)시클로펜타디에닐) 코발트, 비스(1,3-디(트리메틸실릴)시클로펜타디에닐) 코발트 등이 예시된다.(Trifluoromethylcyclopentadienyl) (trimethylsilylcyclopentadienyl) cobalt, (1,1-difluoroethylcyclopentadienyl) (trimethylsilylcyclopentadienyl) cobalt, (pentafluoroethylcyclo Pentadienyl) (trimethylsilylcyclopentadienyl) cobalt, (trimethylsilylcyclopentadienyl) (1,3-di (trimethylsilyl) cyclopentadienyl) cobalt, bis (1,3-di (trimethylsilyl) Cyclopentadienyl) cobalt and the like.

이들 코발트 화합물 중에서, 비스(트리메틸실릴시클로펜타디에닐) 코발트, 또는 비스(트리플루오로메틸시클로펜타디에닐) 코발트가, 높은 증기압을 갖고, 나아가 공업적으로 합성이 용이하고 안정하기 때문에, CVD법에 의한 코발트 함유막, 그 중에서도 코발트 실리사이드막 형성에 적합한 막 형성 재료로서 바람직하다.Among these cobalt compounds, bis (trimethylsilylcyclopentadienyl) cobalt or bis (trifluoromethylcyclopentadienyl) cobalt has a high vapor pressure, and further, industrial synthesis is easy and stable, and thus, the CVD method It is suitable as a film formation material suitable for cobalt containing film | membrane, among others, formation of a cobalt silicide film | membrane.

또한, 비스(트리메틸실릴시클로펜타디에닐) 코발트는, 구조 내에 규소를 갖기 때문에, 이 규소를, CVD법을 이용한 코발트 실리사이드막 형성을 위한 실리콘원으로서 이용할 수 있기 때문에, 특히 바람직하다.Since bis (trimethylsilylcyclopentadienyl) cobalt has silicon in the structure, the silicon is particularly preferable because it can be used as a silicon source for forming a cobalt silicide film using the CVD method.

본 발명의 코발트 함유막 형성 재료로서는, 1) 융점이 낮은 것, 2) 증기압 1Torr로 되는 온도가 낮은 것, 3) 안정한 것이, CVD법을 이용한 코발트 함유막, 그 중에서도 코발트 실리사이드막 형성을 위해 필요하게 된다. 즉, 1) 융점은, 성막 공정 초기의 환경 온도 이하가 바람직하고, 예를 들면 50℃ 이하가 보다 바람직하며, 2) 증기압 1Torr로 되는 온도로서는, 공업적으로 생산하는 측면에서는 150℃ 이하가 바람직하고, 3) 안정성에 대해서는 60℃, 1.1기압, 1개월에서의 열 중량 분석(TG)으로, 잔사 0.1질량% 이하인 것이 안정성이 높아 바람직한, 코발트 함유막 형성 재료로 된다.As the cobalt-containing film forming material of the present invention, 1) a low melting point, 2) a low temperature at which the vapor pressure is 1 Torr, and 3) a stable one are necessary for forming a cobalt-containing film using the CVD method, and particularly, a cobalt silicide film. Done. That is, 1) melting | fusing point is preferable below the environmental temperature of the initial stage of a film-forming process, for example, 50 degrees C or less is more preferable, and 2) 150 degrees C or less is preferable at the point of industrial production as temperature which becomes a vapor pressure of 1 Torr. 3) About stability, it is a cobalt containing film formation material which is highly preferable because it is 0.1 mass% or less of residue by thermogravimetric analysis (TG) in 60 degreeC, 1.1 atmospheres, and 1 month.

본 발명에 있어서의 코발트 함유막을 형성하는 방법으로서는, CVD법을 이용하지만, 코발트 함유막 형성 재료의 증기를 이용하는 성막 방법이면 CVD법에 한정되는 것이 아니다.Although the CVD method is used as a method of forming a cobalt containing film in this invention, if it is a film-forming method using the vapor of a cobalt containing film formation material, it is not limited to CVD method.

또한, 메탈 실리사이드막의 일반적인 제조 방법은, 금속원으로 되는 금속 화합물과 실리콘원으로 되는 실란 화합물을 반응시켜 만들어진다.Moreover, the general manufacturing method of a metal silicide film is made by making the metal compound used as a metal source, and the silane compound used as a silicon source react.

본 발명의 코발트 실리사이드막의 제조 방법은, 상기 코발트 화합물을 코발 트원으로서 이용하는 것이 필수이다. 실리콘원으로서는, 특별히 제한은 없지만, 예를 들면 SinH(2n+2)(n은 1 내지 3의 정수) 또는 RnSiH(4-n)(n은 1 내지 3의 정수, R은 탄소수 1 내지 3의 알킬기)으로 표시되는 화합물인 것이 바람직하다. 이러한 화합물로서, 실란, 메틸실란, 디메틸실란, 트리메틸실란, 에틸실란, 디에틸실란, 트리에틸실란, 디실란, 트리실란을 사용하는 것이 바람직하다.In the manufacturing method of the cobalt silicide film of this invention, it is essential to use the said cobalt compound as a cobalt source. There is no restriction | limiting in particular as a silicon source, For example, Si n H (2n + 2) (n is an integer of 1-3) or Rn SiH (4-n) (n is an integer of 1-3, R is carbon number) It is preferable that it is a compound represented by the alkyl group of 1-3. As such a compound, it is preferable to use silane, methylsilane, dimethylsilane, trimethylsilane, ethylsilane, diethylsilane, triethylsilane, disilane and trisilane.

또한, 상기 화학식 2로 표시되는 구조를 갖는 코발트 함유막 형성 재료에 있어서는, 코발트 화합물의 구조 내의 규소를 실리콘원으로서 이용하여, 코발트 실리사이드막을 형성할 수 있다. 단, 다른 실리콘원을 병용하여, 코발트 실리사이드막을 형성하는 것도 가능하다. 병용되는 실리콘원으로서는, SinH(2n+2)(n은 1 내지 3의 정수) 또는 RnSiH(4-n)(n은 1 내지 3의 정수, R은 탄소수 1 내지 3의 알킬기)으로 표시되는 화합물이 바람직하다. 이러한 화합물로서, 실란, 메틸실란, 디메틸실란, 트리메틸실란, 에틸실란, 디에틸실란, 트리에틸실란, 디실란, 트리실란이 바람직하게 예시된다.In the cobalt-containing film forming material having the structure represented by the formula (2), a cobalt silicide film can be formed using silicon in the structure of the cobalt compound as a silicon source. However, it is also possible to form a cobalt silicide film by using another silicon source together. As a silicon source used together, Si n H (2n + 2) (n is an integer of 1 to 3) or R n SiH (4-n) (n is an integer of 1 to 3, R is an alkyl group having 1 to 3 carbon atoms) The compound represented by is preferable. As such a compound, silane, methylsilane, dimethylsilane, trimethylsilane, ethylsilane, diethylsilane, triethylsilane, disilane and trisilane are preferably exemplified.

코발트 실리사이드막의 성막 방법으로서는, 코발트원을 분해하는 각종 CVD법을 이용할 수 있다. 즉, 각종 CVD법으로서, 코발트원을, 열적으로 분해하는 열적 CVD법, 열 및 광에 의해 분해하는 광 CVD법, 플라즈마로 활성화하여 광 분해하는 플라즈마 CVD법, 레이저로 활성화하여 광 분해하는 레이저 보조 CVD법, 이온 빔으로 활성화하여 광 분해하는 이온 빔 보조 CVD법 등을 들 수 있으며, 코발트 실리사이드막의 성막에 이용할 수 있다.As a film formation method of a cobalt silicide film, various CVD methods which decompose a cobalt source can be used. That is, as various CVD methods, a thermal CVD method for thermally decomposing a cobalt source, an optical CVD method for decomposing by heat and light, a plasma CVD method for activating and decomposing with plasma, and laser assisting for photodegradation with a laser The CVD method, the ion beam assisted CVD method which activates and decomposes | disassembles with an ion beam, etc. are mentioned, It can use for the film-forming of a cobalt silicide film.

코발트 실리사이드막을 성막할 때의 반응 압력으로서는, 0.01 내지 760Torr가 바람직하고, 보다 바람직하게는 0.1 내지 760Torr, 더욱 바람직하게는 1 내지 760Torr이다. 또한, 반응 온도로서는, 50 내지 800℃가 바람직하고, 더욱 바람직하게는 100 내지 500℃이다.As a reaction pressure at the time of forming a cobalt silicide film, 0.01-760 Torr is preferable, More preferably, it is 0.1-760 Torr, More preferably, it is 1-760 Torr. Moreover, as reaction temperature, 50-800 degreeC is preferable, More preferably, it is 100-500 degreeC.

이하, 본 발명을 실시예에 의해 상세하게 설명하지만 본 발명은 이것에 한정되는 것은 아니다.Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.

[합성예 1]Synthesis Example 1

질소 치환한 3000mL 플라스크 내에서, 시클로펜타디에닐나트륨의 테트라히드로푸란 용액(2.0mol/L, 800mL)을 잘 건조한 테트라히드로푸란(1L)에 용해하고, 0℃로 냉각하였다. 여기에 트리메틸실릴 클로라이드(180g)를 질소 기류하에서 1시간에 걸쳐 적하한 후, 0℃에서 2시간 더 교반하였다. 그 후, 여과에 의해 염을 제거하고, 여과액을 증류함으로써 트리메틸실릴시클로펜타디엔(70g)을 얻었다.In a nitrogen-substituted 3000 mL flask, a tetrahydrofuran solution (2.0 mol / L, 800 mL) of cyclopentadienyl sodium was dissolved in well-dried tetrahydrofuran (1 L) and cooled to 0 ° C. Trimethylsilyl chloride (180g) was dripped here over 1 hour under nitrogen stream, and it stirred at 0 degreeC for 2 hours further. Thereafter, the salt was removed by filtration, and the filtrate was distilled off to obtain trimethylsilylcyclopentadiene (70 g).

질소 치환한 1000mL 플라스크 내에서, 트리메틸실릴시클로펜타디엔(86g)을 잘 건조한 테트라히드로푸란(500mL)에 용해하고, 0℃로 냉각하였다. 여기에 n-부틸리튬의 헥산 용액(2.6mol/L, 250mL)을 2시간에 걸쳐 적하한 후, 1시간 교반하면서 실온까지 승온하여, 트리메틸실릴시클로펜타디에닐나트륨의 테트라히드로푸란 용액을 얻었다.In a nitrogen-substituted 1000 mL flask, trimethylsilylcyclopentadiene (86 g) was dissolved in dry tetrahydrofuran (500 mL) and cooled to 0 ° C. The hexane solution (2.6 mol / L, 250 mL) of n-butyllithium was dripped here over 2 hours, and it heated up to room temperature, stirring for 1 hour, and obtained the tetrahydrofuran solution of the trimethylsilyl cyclopentadienyl sodium.

이와는 별도로, 질소 치환한 2000mL 플라스크 내에서, 염화코발트(II) 40g을 잘 건조한 테트라히드로푸란(250mL)에 현탁시켰다. 이 용액에, 먼저 제조한 트리 메틸실릴시클로펜타디에닐나트륨의 테트라히드로푸란 용액을 1시간에 걸쳐 적하하고, 그 후 1시간 환류시켰다. 2시간에 걸쳐 실온으로 냉각하고, 실온에서 10시간 교반한 후, 증류에 의해 용매를 증류 제거하였다. 잘 건조한 헥산(150mL)을 첨가하여 염을 석출시킨 후, 질소 분위기하에서 여과함으로써 제거하고, 여과액을 증류함으로써, 비스(트리메틸실릴시클로펜타디에닐) 코발트(45.7g)를 얻었다(수율 44%). 또한, 얻어진 화합물의 동정은, NMR 장치 및 질량 분석계를 이용하여 행하였다. 또한, 비스(트리메틸실릴시클로펜타디에닐) 코발트의 구조를 하기 화학식 4로 표시하였다.Separately, 40 g of cobalt (II) chloride was suspended in well-dried tetrahydrofuran (250 mL) in a 2000 mL flask substituted with nitrogen. To this solution, a tetrahydrofuran solution of trimethylsilylcyclopentadienyl sodium prepared earlier was added dropwise over 1 hour, and then refluxed for 1 hour. After cooling to room temperature over 2 hours and stirring at room temperature for 10 hours, the solvent was distilled off by distillation. The well-dried hexane (150 mL) was added to precipitate a salt, and then the filtrate was removed by filtration under a nitrogen atmosphere. The filtrate was distilled off to obtain bis (trimethylsilylcyclopentadienyl) cobalt (45.7 g) (yield 44%). . In addition, identification of the obtained compound was performed using the NMR apparatus and a mass spectrometer. In addition, the structure of bis (trimethylsilylcyclopentadienyl) cobalt is represented by the following formula (4).

Figure 112009053969465-PCT00003
Figure 112009053969465-PCT00003

[평가예 1][Evaluation Example 1]

상기 합성예 1에서 얻어진 비스(트리메틸실릴시클로펜타디에닐) 코발트의 융점은 20℃이었다. 그리고, 시차열 열 중량 동시 측정 장치를 이용한 증발 속도를 측정하고, 안트완의 식으로부터 증기압을 산출하였다(이 때, 확산 상수를 구함에 있어서, 길리랜드(Gilliland)의 식에 있어서의, 코발트의 비점 분자 용적을 원자 부피의 3배로 가정하였음). 그 결과, 증기압 1Torr로 되는 온도가 108℃이었다. 또한, 500℃까지 가열하였을 때의 휘발률은 99.9%이었다. 또한, 60℃, 1.1기압, 1개월에서의 열 중량 분석(TG)에서는 잔사 0.1질량% 이하이었다.The melting point of bis (trimethylsilylcyclopentadienyl) cobalt obtained in Synthesis Example 1 was 20 ° C. Then, the evaporation rate was measured using a differential thermal thermogravimetric measuring device, and the vapor pressure was calculated from the equation of Antoine (at this time, in obtaining the diffusion constant, the cobalt concentration in the equation of Gilliland was calculated. Boiling point molecular volume was assumed to be three times the atomic volume). As a result, the temperature which becomes a vapor pressure of 1 Torr was 108 degreeC. In addition, the volatilization rate at the time of heating to 500 degreeC was 99.9%. Moreover, it was 0.1 mass% or less of residue by thermogravimetric analysis (TG) in 60 degreeC, 1.1 atmospheres, and 1 month.

비교 화합물로서, 비스(에틸시클로펜타디에닐) 코발트의 증기압, 휘발률의 측정을 상기의 비스(트리메틸실릴시클로펜타디에닐) 코발트와 마찬가지의 방법으로 행하였다. 그 결과, 비스(에틸시클로펜타디에닐) 코발트는, 융점 0℃ 이하, 증기압 1Torr로 되는 온도가 93℃이었다. 또한, 500℃까지 가열하였을 때의 휘발률은 98.8%이었다.As a comparative compound, the vapor pressure and volatilization rate of bis (ethylcyclopentadienyl) cobalt were measured by the same method as the above-mentioned bis (trimethylsilylcyclopentadienyl) cobalt. As a result, bis (ethylcyclopentadienyl) cobalt had a melting point of 0 ° C or lower and a vapor pressure of 1 Torr of 93 ° C. In addition, the volatilization rate at the time of heating to 500 degreeC was 98.8%.

이상의 결과로부터, 비스(트리메틸실릴시클로펜타디에닐) 코발트는, 비스(에틸시클로펜타디에닐) 코발트보다 낮은 증기압을 나타내었지만, 휘발률 99.9%로 분자량은 크지만 휘발성이 우수하고, 잔사가 작기 때문에 안정성도 양호하였다.From the above results, although bis (trimethylsilylcyclopentadienyl) cobalt showed a lower vapor pressure than bis (ethylcyclopentadienyl) cobalt, the volatilization rate was 99.9%, but the molecular weight was large, but it was excellent in volatility and the residue was small. The stability was also good.

이로부터, 비스(트리메틸실릴시클로펜타디에닐) 코발트는, CVD법에 의해 코발트 함유막을 형성하기 위한 막 형성 재료로서 적합한 것을 알 수 있다.From this, it is understood that bis (trimethylsilylcyclopentadienyl) cobalt is suitable as a film forming material for forming a cobalt-containing film by the CVD method.

[실시예 1]Example 1

도 1에 도시한 장치를 이용하여, 합성예 1에서 얻어진 비스(트리메틸실릴시클로펜타디에닐) 코발트의 열적 CVD법에 의한 코발트 실리사이드막 형성을 행하였다.Cobalt silicide film formation was performed by thermal CVD of bis (trimethylsilylcyclopentadienyl) cobalt obtained in Synthesis Example 1 using the apparatus shown in FIG.

비스(트리메틸실릴시클로펜타디에닐) 코발트를 원료 용기에 넣고, 용기를 30℃로 가열하고, 캐리어 가스로서 수소 가스를 400㎖/분의 유량으로 흘려, 반응 용기에 도입하였다. 이 때, 계 내는 10 내지 20Torr로 감압되고, 반응 용기 내에 설치한 기판은 600℃로 가열되어 있다.Bis (trimethylsilylcyclopentadienyl) cobalt was placed in a raw material container, the container was heated to 30 ° C, hydrogen gas was flowed at a flow rate of 400 ml / min as a carrier gas, and introduced into the reaction container. At this time, the inside of the system is reduced to 10 to 20 Torr, and the substrate provided in the reaction vessel is heated to 600 ° C.

X선 광 전자 분석 장치(XPS)를 이용하여, 이 막의 조성을 조사하면, 코발트 및 규소의 존재가 확인되었다. 또한, 그 막 두께를 측정한 바 1㎛이었다. 또한, X선 회절 장치를 이용한 측정으로부터, 이 막이 코발트 실리사이드막인 것이 확인되었다.When the composition of this film was examined using an X-ray photoelectron analyzer (XPS), the presence of cobalt and silicon was confirmed. Moreover, when the film thickness was measured, it was 1 micrometer. Moreover, it was confirmed from the measurement using an X-ray diffraction apparatus that this film is a cobalt silicide film.

[합성예 2]Synthesis Example 2

질소 치환한 300mL 플라스크 내에서, 2-시클로펜텐-1-온(8.4g)과 트리플루오로메틸트리메틸실란(16.4g)을 잘 건조한 테트라히드로푸란(100mL)에 용해하고, 0℃로 냉각하였다. 여기에 질소 기류하에서 불화세슘(0.3g)을 첨가한 후, 동일 온도에서 3시간 교반하였다. 건조한 헥산(100mL)을 첨가하여 여과한 후, 증류에 의해 용매를 증류 제거하였다. 이 반응 혼합물에 대하여, 테트라히드로푸란(70mL)을 첨가하여 용해하고, 1N 염산(5g)을 첨가하여, 실온에서 3시간 교반하였다. 그 후, 물을 첨가하고, 헥산으로 추출하고, 증류함으로써, 1-트리플루오로메틸-2-시클로펜텐-1-올(12g)을 얻었다.In a nitrogen-replaced 300 mL flask, 2-cyclopenten-l-one (8.4 g) and trifluoromethyltrimethylsilane (16.4 g) were dissolved in well-dried tetrahydrofuran (100 mL) and cooled to 0 ° C. Cesium fluoride (0.3 g) was added under nitrogen stream, and it stirred at the same temperature for 3 hours. Dry hexane (100 mL) was added and filtered, and then the solvent was distilled off by distillation. To this reaction mixture, tetrahydrofuran (70 mL) was added to dissolve, 1N hydrochloric acid (5 g) was added, and stirred at room temperature for 3 hours. Thereafter, water was added, extraction was performed with hexane, and distillation was performed to obtain 1-trifluoromethyl-2-cyclopenten-1-ol (12 g).

질소 치환한 300mL 플라스크 내에서, 1-트리플루오로메틸-2-시클로펜텐-1-올(12g)을 잘 건조한 톨루엔(200mL)에 용해하고, 파라톨루엔술폰산 일수화물(0.9g)을 첨가하여, 2시간 환류시켰다. 그 후, 실온으로 냉각하고, 물로 세정한 후, 증류에 의해 트리플루오로메틸시클로펜타디엔(3.1g)을 얻었다.In a 300 mL flask substituted with nitrogen, 1-trifluoromethyl-2-cyclopenten-l-ol (12 g) was dissolved in dry toluene (200 mL), paratoluene sulfonic acid monohydrate (0.9 g) was added, It was refluxed for 2 hours. After cooling to room temperature and washing with water, trifluoromethylcyclopentadiene (3.1 g) was obtained by distillation.

질소 치환한 300mL 플라스크 내에서, 트리플루오로메틸시클로펜타디엔(22g)을 잘 건조한 테트라히드로푸란(150mL)에 용해하고, 0℃로 냉각하였다. 여기에 n-부틸리튬의 헥산 용액(2.6mol/L, 63mL)을 30분에 걸쳐 적하한 후, 1시간 교반하면서 실온까지 승온하여, 트리플루오로메틸시클로펜타디에닐나트륨의 테트라히드로푸 란 용액을 얻었다.In a 300 mL flask substituted with nitrogen, trifluoromethylcyclopentadiene (22 g) was dissolved in well-dried tetrahydrofuran (150 mL) and cooled to 0 ° C. The hexane solution (2.6 mol / L, 63 mL) of n-butyllithium was dripped here over 30 minutes, Then, it heated up to room temperature, stirring for 1 hour, and the tetrahydrofuran solution of trifluoromethylcyclopentadienyl sodium. Got.

이와는 별도로, 질소 치환한 1000mL 플라스크 내에서, 염화코발트(II) 10g을 잘 건조한 테트라히드로푸란(200mL)에 현탁시켰다. 이 용액에, 먼저 제조한 트리플루오로메틸시클로펜타디에닐나트륨의 테트라히드로푸란 용액을 1시간에 걸쳐 적하하고, 그 후 2시간 환류시켰다. 2시간에 걸쳐 실온으로 냉각하고, 실온에서 12시간 교반한 후, 증류에 의해 용매를 증류 제거하였다. 잘 건조한 헥산(150mL)을 첨가하여 염을 석출시킨 후, 질소 분위기하에서 여과함으로써 제거하고, 여과액을 증류함으로써, 비스(트리플루오로메틸시클로펜타디에닐) 코발트(6.6g)를 얻었다(수율 25%). 또한, 얻어진 화합물의 동정은, NMR 장치 및 질량 분석계를 이용하여 행하였다. 또한, 비스(트리플루오로메틸시클로펜타디에닐) 코발트의 구조를 하기 화학식 5로 표시하였다.Separately, 10 g of cobalt (II) chloride was suspended in well-dried tetrahydrofuran (200 mL) in a 1000 mL flask substituted with nitrogen. To this solution was first added dropwise a tetrahydrofuran solution of trifluoromethylcyclopentadienyl sodium prepared over 1 hour, and then refluxed for 2 hours. After cooling to room temperature over 2 hours and stirring at room temperature for 12 hours, the solvent was distilled off by distillation. The well-dried hexane (150 mL) was added to precipitate the salt, which was then removed by filtration under a nitrogen atmosphere, and the filtrate was distilled off to obtain bis (trifluoromethylcyclopentadienyl) cobalt (6.6 g) (yield 25). %). In addition, identification of the obtained compound was performed using the NMR apparatus and a mass spectrometer. In addition, the structure of bis (trifluoromethylcyclopentadienyl) cobalt is represented by the following formula (5).

Figure 112009053969465-PCT00004
Figure 112009053969465-PCT00004

[평가예 2][Evaluation Example 2]

상기 합성예 2에서 얻어진 비스(트리플루오로메틸시클로펜타디에닐) 코발트의 융점은 40℃이었다. 합성예 1과 마찬가지로, 시차열 열 중량 동시 측정 장치를 이용한 증발 속도를 측정하고, 안트완의 식으로부터 증기압을 산출하였다(이 때, 확산 상수를 구함에 있어서, 길리랜드의 식에 있어서의, 코발트의 비점 분자 용적을 원자 부피의 3배로 가정하였음). 그 결과, 증기압 1Torr로 되는 온도가 120℃이었다. 또한, 500℃까지 가열하였을 때의 휘발률은 99.6%이었다.The melting point of bis (trifluoromethylcyclopentadienyl) cobalt obtained in Synthesis Example 2 was 40 ° C. In the same manner as in Synthesis example 1, the evaporation rate was measured using a differential thermal thermogravimetry device, and the vapor pressure was calculated from the equation of Antoine (at this time, in obtaining the diffusion constant, cobalt in the equation of Gililand). The boiling point molecular volume of is assumed to be three times the atomic volume. As a result, the temperature at which the vapor pressure was 1 Torr was 120 ° C. In addition, the volatilization rate at the time of heating to 500 degreeC was 99.6%.

이상의 결과로부터, 비스(트리플루오로메틸시클로펜타디에닐) 코발트도, 분자량은 크지만 휘발성이 우수하고, 안정성이 높은 것이었다.From the above results, bis (trifluoromethylcyclopentadienyl) cobalt was also high in molecular weight but excellent in volatility and high in stability.

이로부터, CVD법에 의해 코발트 함유막을 형성하기 위한 막 형성 재료로서 적합한 것을 알 수 있다.From this, it turns out that it is suitable as a film formation material for forming a cobalt containing film by CVD method.

[실시예 2]Example 2

도 1에 도시한 장치를 이용하여, 합성예 2에서 얻어진 비스(트리플루오로메틸시클로펜타디에닐) 코발트의 CVD법에 의한 코발트 실리사이드막 형성을 행하였다.Cobalt silicide film formation was performed by the CVD method of bis (trifluoromethylcyclopentadienyl) cobalt obtained in Synthesis Example 2 using the apparatus shown in FIG.

비스(트리플루오로메틸시클로펜타디에닐) 코발트를 원료 용기에 넣고, 용기를 50℃로 가열하고, 캐리어 가스로서 수소 가스를 200㎖/분의 유량으로 흘려, 반응 용기에 도입하였다. 또한, 반응 가스로서 SiH4를 40㎖/분의 유량으로 흘려, 반응 용기에 도입하고, 기판 상에 박막을 형성하였다. 이 때, 계 내는 10 내지 20Torr로 감압되고, 반응 용기 내에 설치한 기판은 600℃로 가열되어 있다.Bis (trifluoromethylcyclopentadienyl) cobalt was placed in a raw material container, the container was heated to 50 ° C, hydrogen gas was flowed at a flow rate of 200 ml / min as a carrier gas, and introduced into the reaction container. Further, SiH 4 was flowed at a flow rate of 40 ml / min as the reaction gas, introduced into the reaction vessel, and a thin film was formed on the substrate. At this time, the inside of the system is reduced to 10 to 20 Torr, and the substrate provided in the reaction vessel is heated to 600 ° C.

X선 광 전자 분석 장치(XPS)를 이용하여, 이 막의 조성을 조사하였더니, 코발트 및 규소의 존재가 확인되었다. 또한, 그 막 두께를 측정한 바 1㎛이었다. 또한, X선 회절 장치를 이용한 측정으로부터, 이 막이 코발트 실리사이드막인 것이 확인되었다.The composition of this film was examined using an X-ray photoelectron analyzer (XPS) to confirm the presence of cobalt and silicon. Moreover, when the film thickness was measured, it was 1 micrometer. Moreover, it was confirmed from the measurement using an X-ray diffraction apparatus that this film is a cobalt silicide film.

Claims (9)

하기 화학식 1의 구조로 표시되는 것을 특징으로 하는 코발트 함유막 형성 재료.A cobalt-containing film forming material characterized by the structure represented by the following formula (1). <화학식 1><Formula 1> Co(R1 aC5H(5-a))(R2 bC5H(5-b))Co (R 1 a C 5 H (5-a) ) (R 2 b C 5 H (5-b) ) 여기서, R1, R2는 각각 독립적으로 수소 원자, 하기 화학식 2 및 하기 화학식 3으로 이루어지는 군에서 선택되는 어느 1종의 기이되, 단 R1, R2가 모두 수소 원자인 것을 제외하고, a 및 b는 0<a+b≤4를 만족시키는 정수이다.Here, R 1 , R 2 are each independently a hydrogen atom, any one group selected from the group consisting of the following formula (2) and formula (3), except that R 1 , R 2 are all hydrogen atoms, a And b is an integer satisfying 0 <a + b ≦ 4. <화학식 2><Formula 2>
Figure 112009053969465-PCT00005
Figure 112009053969465-PCT00005
여기서, R3, R4, R5는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 2의 알킬기이다.Here, R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms. <화학식 3><Formula 3>
Figure 112009053969465-PCT00006
Figure 112009053969465-PCT00006
여기서, R6, R7, R8은 각각 독립적으로 할로겐기, 탄소수 1 내지 3의 알킬기 및 탄소수 1 내지 3의 할로겐화 알킬기로 이루어지는 군에서 선택되는 어느 1종의 기이되, 단 R6, R7, R8이 모두 탄소수 1 내지 3의 알킬기인 것을 제외한다.Here, R 6 , R 7 , R 8 are each independently any one group selected from the group consisting of a halogen group, an alkyl group having 1 to 3 carbon atoms and a halogenated alkyl group having 1 to 3 carbon atoms, provided that R 6 , R 7 , Except that R 8 are all alkyl groups having 1 to 3 carbon atoms.
제1항에 있어서, 상기 화학식 2에 있어서, R3, R4, R5가 모두 메틸기인 것을 특징으로 하는 코발트 함유막 형성 재료.The cobalt-containing film forming material according to claim 1, wherein in Formula 2, R 3 , R 4 , and R 5 are all methyl groups. 제1항에 있어서, 상기 화학식 3에 있어서, R6, R7, R8이 각각 독립적으로 플루오로기 또는 트리플루오로메틸기 중 어느 하나로 표시되는 기인 것을 특징으로 하는 코발트 함유막 형성 재료.The cobalt-containing film forming material according to claim 1, wherein in Formula 3, R 6 , R 7 , and R 8 are each independently represented by any one of a fluoro group and a trifluoromethyl group. 제1항에 있어서, 상기 코발트 함유막 형성 재료가, 비스(트리메틸실릴시클로펜타디에닐) 코발트인 것을 특징으로 하는 코발트 함유막 형성 재료.The cobalt-containing film forming material according to claim 1, wherein the cobalt-containing film forming material is bis (trimethylsilylcyclopentadienyl) cobalt. 제1항에 있어서, 상기 코발트 함유막 형성 재료가, 비스(트리플루오로메틸시클로펜타디에닐) 코발트인 것을 특징으로 하는 코발트 함유막 형성 재료.The cobalt-containing film forming material according to claim 1, wherein the cobalt-containing film forming material is bis (trifluoromethylcyclopentadienyl) cobalt. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 코발트 함유막 형성 재료 가, CVD(화학 기상 흡착)법을 이용하여 코발트 함유막을 형성하기 위한 재료인 것을 특징으로 하는 코발트 함유막 형성 재료.The cobalt-containing film forming material according to any one of claims 1 to 5, wherein the cobalt-containing film forming material is a material for forming a cobalt-containing film by using a CVD (chemical vapor adsorption) method. 제6항에 있어서, 상기 코발트 함유막이 코발트 실리사이드막인 것을 특징으로 하는 코발트 함유막 형성 재료.The cobalt-containing film forming material according to claim 6, wherein the cobalt-containing film is a cobalt silicide film. CVD(화학 기상 흡착)법을 이용하여, 제1항 내지 제4항 중 어느 한 항에 기재된 코발트 함유막 형성 재료로부터 코발트 실리사이드막을 형성하는 제조 방법이며,It is a manufacturing method which forms a cobalt silicide film from the cobalt containing film formation material in any one of Claims 1-4 using the CVD (chemical vapor adsorption) method, 실리콘원으로서, 상기 화학식 2로 표시되는 구조 중의 규소를 이용하는 것을 특징으로 하는 코발트 실리사이드막의 제조 방법.As a silicon source, silicon in the structure represented by the said Formula (2) is used, The manufacturing method of the cobalt silicide film | membrane characterized by the above-mentioned. 제8항에 있어서, 상기 코발트 함유막 형성 재료가, 비스(트리메틸실릴시클로펜타디에닐) 코발트인 것을 특징으로 하는 코발트 실리사이드막의 제조 방법.The method for producing a cobalt silicide film according to claim 8, wherein the cobalt-containing film forming material is bis (trimethylsilylcyclopentadienyl) cobalt.
KR1020097018337A 2007-03-12 2008-03-07 Cobalt-containing film-forming material and method for forming cobalt silicide film using the material KR20090115197A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2007-062146 2007-03-12
JP2007062146 2007-03-12

Publications (1)

Publication Number Publication Date
KR20090115197A true KR20090115197A (en) 2009-11-04

Family

ID=39759438

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097018337A KR20090115197A (en) 2007-03-12 2008-03-07 Cobalt-containing film-forming material and method for forming cobalt silicide film using the material

Country Status (5)

Country Link
JP (1) JPWO2008111499A1 (en)
KR (1) KR20090115197A (en)
CN (1) CN101578390A (en)
TW (1) TW200902748A (en)
WO (1) WO2008111499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384395B1 (en) * 2009-12-25 2014-04-10 제이에스알 가부시끼가이샤 Method for forming crystalline cobalt silicide film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503618A (en) 2010-11-02 2016-04-20 宇部兴产株式会社 (Amide amino alkane) metal compound, method of manufacturing metal-containing thin film using said metal compound
JP2013213269A (en) * 2012-04-04 2013-10-17 Tokyo Electron Ltd Film forming method and storage medium
JP6584150B2 (en) * 2014-06-09 2019-10-02 東ソー株式会社 Cobalt complex and method for producing the same, cobalt-containing thin film and method for producing the same
JP6436826B2 (en) * 2015-03-25 2018-12-12 東ソー株式会社 Cobalt complex and method for producing the same, cobalt-containing thin film and method for producing the same
WO2015190420A1 (en) * 2014-06-09 2015-12-17 東ソー株式会社 Cobalt complex and method for producing same, and cobalt-containing thin-film and method for producing same
JP6537365B2 (en) * 2015-06-22 2019-07-03 東ソー株式会社 Substituted cyclopentadienyl cobalt complex and method for producing the same, cobalt-containing thin film and method for producing the same
JP6808281B2 (en) * 2015-12-16 2021-01-06 東ソー株式会社 Substituted cyclopentadienyl cobalt complex and its production method, cobalt-containing thin film and its production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE115648T1 (en) * 1990-07-27 1994-12-15 Kali Chemie Ag PROCESS FOR DEPOSITIONING A COPPER-CONTAINING LAYER II.
JP2004059544A (en) * 2002-07-31 2004-02-26 Tosoh Corp Substituted cyclopentadienyl copper complex and method for producing the same
JP2005060814A (en) * 2002-12-03 2005-03-10 Jsr Corp Ruthenium compound, and method of forming metallic ruthenium film
US6989457B2 (en) * 2003-01-16 2006-01-24 Advanced Technology Materials, Inc. Chemical vapor deposition precursors for deposition of tantalum-based materials
JP4501379B2 (en) * 2003-09-02 2010-07-14 Jsr株式会社 Method for forming ruthenium-silicon mixed film
JP2006037123A (en) * 2004-07-22 2006-02-09 Toyoshima Seisakusho:Kk Cvd raw material for thin film, and thin film obtained by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384395B1 (en) * 2009-12-25 2014-04-10 제이에스알 가부시끼가이샤 Method for forming crystalline cobalt silicide film

Also Published As

Publication number Publication date
JPWO2008111499A1 (en) 2010-06-24
WO2008111499A1 (en) 2008-09-18
TW200902748A (en) 2009-01-16
CN101578390A (en) 2009-11-11

Similar Documents

Publication Publication Date Title
KR20090115197A (en) Cobalt-containing film-forming material and method for forming cobalt silicide film using the material
Valet et al. Synthesis of homoleptic gallium alkoxide complexes and the chemical vapor deposition of gallium oxide films
JP4388021B2 (en) Organometallic complex and deposition method using the same
US9240319B2 (en) Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
KR101787204B1 (en) Organic metal precursor compound for atomic layer deposition and ald deposition using the same
TW201211301A (en) Organoruthenium compound for chemical deposition and chemical deposition process using the organoruthenium compound
JP2018536771A (en) Method for producing metal film
TWI682051B (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
Malandrino et al. A novel diamine adduct of zinc bis (2-thenoyl-trifluoroacetonate) as a promising precursor for MOCVD of zinc oxide films
Basharat et al. Synthesis of group 13 sesquialkoxides and their application as precursors to crystalline oxide films
Darr et al. Synthesis and properties of polyether adducts of hexafluoropentanedionatosilver (I)
Rische et al. New tungsten (VI) guanidinato complexes: Synthesis, characterization, and application in metal− organic chemical vapor deposition of tungsten nitride thin films
WO2009081797A1 (en) Material for formation of nickel-containing film, and method for production thereof
Zmolek et al. Photopolymerization of liquid carbon disulfide produces nanoscale polythiene films
Tao et al. Lewis‐Base Stabilized N‐Silver (I) Succinimide Complexes: Synthesis, Crystal Structures and Their Use as CVD‐Precursors
KR100965270B1 (en) Gallium complexes with donor-functionalized ligands and process for preparing thereof
WO2019201692A1 (en) Aluminum precursor and process for the generation of metal-containing films
WO2010032673A1 (en) Nickel-containing film‑formation material, and nickel-containing film‑fabrication method
Tao et al. Organophosphine/phosphite‐stabilized silver (I) complexes bearing N‐acetylbenzamide ligand: synthesis, characterization and potential application in metal organic chemical vapor deposition
KR102445367B1 (en) Hapto-3-pentadienyl cobalt or nickel precursor and its use in thin film deposition process
Jiménez et al. Synthesis and structure of a hafnium silylamide complex and the chemical vapor deposition of HfxSi1− xO2 films
Zhao et al. The syntheses, characterization, thermal properties of asymmetrical La β-diketonate and their application as ALD precursor for La2O3 films
KR100554524B1 (en) Precursors for tantalum nitride and preparing method thereof
JP6144161B2 (en) Silicon nitride film raw material and silicon nitride film obtained from the raw material
Charvot Organic selenium compounds and their modern applications

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application