KR20090076492A - Manufacturing thereof and methode of mesoporous tio2 aggerate supported metal oxide for catalystic combustion containing a platinum group element - Google Patents

Manufacturing thereof and methode of mesoporous tio2 aggerate supported metal oxide for catalystic combustion containing a platinum group element Download PDF

Info

Publication number
KR20090076492A
KR20090076492A KR1020080002472A KR20080002472A KR20090076492A KR 20090076492 A KR20090076492 A KR 20090076492A KR 1020080002472 A KR1020080002472 A KR 1020080002472A KR 20080002472 A KR20080002472 A KR 20080002472A KR 20090076492 A KR20090076492 A KR 20090076492A
Authority
KR
South Korea
Prior art keywords
aggregate
tio
catalyst
supported
platinum group
Prior art date
Application number
KR1020080002472A
Other languages
Korean (ko)
Other versions
KR100938716B1 (en
Inventor
김창근
Original Assignee
창성엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창성엔지니어링 주식회사 filed Critical 창성엔지니어링 주식회사
Priority to KR1020080002472A priority Critical patent/KR100938716B1/en
Publication of KR20090076492A publication Critical patent/KR20090076492A/en
Application granted granted Critical
Publication of KR100938716B1 publication Critical patent/KR100938716B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

A combustion catalyst having a platinum group element supported on a metal oxide-impregnated mesoporous TiO2 aggregate support and a method for preparing the combustion catalyst are provided, wherein the combustion catalyst has durability by supporting a platinum group element on a metal oxide-supported mesoporous TiO2 aggregate as a support. A method for preparing a combustion catalyst having a platinum group element supported on a metal oxide-impregnated mesoporous TiO2 aggregate support comprises: a first step of preparing (PEO)116(PPO)75(PEO)11 as a template, Ti(OCH(CH3)2)4 as a precursor and 2,4-pentanedione as a reaction inhibitor such that a molar ratio of (PEO)116(PPO)75(PEO)116 to Ti(OCH(CH3)2)4 is 1:20 to 40; a second step of preparing Ti(OCH(CH3)2)4 and CH3COCH2COCH3 at a molar ratio of 1:1 to 10; and a third step of producing a TiO2 aggregate having mesopores produced by the second step.

Description

금속 산화물이 함침된 메조기공 이산화티타늄 집합체 담체에 백금족 금속이 담지된 연소용 촉매 및 그 제조방법{MANUFACTURING THEREOF AND METHODE OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT}Catalyst for impregnating mesoporous titanium dioxide aggregate on metal oxide impregnated carrier and manufacturing method thereof

본 발명은 연소용 촉매에 관한 것으로, 특히 금속 산화물을 담지한 메조기공 TiO2 집합체를 담체로 하여 백금족 금속을 담지함으로써 내구성을 가지는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for combustion. In particular, a platinum group metal is supported on a mesoporous TiO2 aggregate carrier impregnated with a metal oxide having durability by supporting a platinum group metal on which a mesoporous TiO 2 aggregate supporting a metal oxide is supported. It relates to a catalyst and a method for producing the same.

일반적으로 다양한 산업현장에서 발생하는 휘발성유기화합물(Volatile Organic Compounds, 이하 'VOCs'라 함)를 처리하기 위해서는 대개 직접연소법, 촉매연소법, 흡착법 등이 있다. 이중 가장 많이 사용되는 직접연소법은 800 ~ 900℃ 고온에서 화합물을 분해하지만 질소산화물와 같은 부산물이 생성되어 인체에 악영향을 끼치고, 초기 투자비용 높으며, 비교적 운전비용이 많이 들고, 황화합물이나 할로겐 화합물 처리시 부식성이 강한 가스를 형성하기 때문에 후처리 장치가 필요 하나, 연소용 촉매에 의한 촉매산화법은 에너지 사용관점과 장치 비용면에서 가장 유용한 기술로 평가받고 있으며 직접연소법의 대안으로 운영하고 있다.In general, in order to treat volatile organic compounds (VOCs) generated in various industrial sites, there are a direct combustion method, a catalytic combustion method, and an adsorption method. The most common direct combustion method decomposes the compound at 800 ~ 900 ℃ high temperature, but by-products such as nitrogen oxides are generated, which adversely affects the human body, has a high initial investment cost, relatively high operating costs, and corrosiveness when treating sulfur or halogen compounds. Since a strong gas is formed, a post-treatment device is required, but catalytic oxidation using a catalyst for combustion is considered as the most useful technology in terms of energy use and equipment cost, and is operated as an alternative to the direct combustion method.

촉매연소법은 백금, 팔라듐, 루테늄을 촉매활성 물질로 담지하여 250 ~ 400℃에서 운전하여 VOCs를 CO2와 H2O로 전환되는 기술로 운전비용절감으로 경제적이고, 직접연소법에 비해 총 이산화탄소배출량을 줄일 수 있으며, SOx와 NOx를 무시할 수준으로 저감 할 수 있어 유해물질의 분해효율이 높고, 적용범위가 넓고 간단한 시스템에 의해 설비확장이 용이하다.Catalytic combustion is a technology that converts VOCs into CO 2 and H 2 O by loading platinum, palladium and ruthenium as catalytically active materials and operating at 250 ~ 400 ℃. It can reduce and reduce SOx and NOx to negligible level, so the decomposition efficiency of harmful substances is high, and the scope of application is wide and the system is easy by simple system.

상기와 같은 백금족 금속들은 활성이 우수하고 특히 탄화수소 산화반응에서 높은 활성을 갖고 낮은 온도에서 활성이 쉽게 저하되지 않는다. 하지만 백금족 금속을 골고루 분산시키기 위해서 고도의 기술이 필요하다. 또한 촉매연소법의 반응온도는 250 ~ 300℃이며, 경우에 따라서 1000℃까지 이르는 경우 백금족성분의 응집 및 활성성능저하가 발생한다. Such platinum group metals have excellent activity, in particular, have high activity in hydrocarbon oxidation and do not readily degrade at low temperatures. However, advanced techniques are required to evenly distribute platinum group metals. In addition, the reaction temperature of the catalytic combustion method is 250 ~ 300 ℃, when in some cases up to 1000 ℃ the aggregation of the platinum group components and deterioration of the active performance occurs.

또한 촉매연소법에서 촉매지지체(substrates)는 압력손실을 최소화하면서 VOCs와 고체 촉매의 접촉효율을 크게 하고 성형성과 기계적 강도 내열성을 가지는 벌집 기둥(honeycomb monoliths)형상이 주로 사용되고, 담체가 Honeycomb monolith에 얇게 코팅되어 표면적을 향상시키고, 안정하고 균일하게 촉매가 코팅되도록 하는 역할을 한다.In the catalytic combustion method, the catalyst supports are mainly used in the form of honeycomb monoliths, which have high contact efficiency between VOCs and solid catalysts, minimize formability, and have moldability and mechanical strength and heat resistance. It serves to improve the surface area and to ensure that the catalyst is coated stably and uniformly.

그런데, 상기와 같은 촉매연소법은 고온에서의 소결현상과 Cl과 같은 촉매독이 존재할 경우 활성이 급격히 감소하는 현상으로 현장적용이 한정적이기 때문에 널리 보급되지 못하고 있고, 담체로 가장 널리 사용되는 감마 알루미나(γ-alumina, γ-Al2O3)는 900℃ 이상의 온도에서 α-Al2O3상으로 변하여 표면적이 감소 되어 기공 폐쇄, 활성점의 소멸 등을 가져오기 때문에 CeO2, Ce2O등을 첨가하거나 ZrO3 또는 TiO2와 같은 내열성 물질을 사용하고 있으며 소결되어 활성을 잃어버린다는 문제점이 있었다.However, the catalytic combustion method is a phenomenon in which the activity decreases rapidly in the presence of a catalyst poison such as sintering at high temperature and Cl, which is not widely used because of its limited field application, and is most widely used as a support for gamma alumina (γ). -alumina, γ-Al 2 O 3 ) is changed to α-Al 2 O 3 phase at a temperature above 900 ° C, and the surface area is reduced, resulting in pore closure and disappearance of the active site, thus adding CeO 2 , Ce 2 O, etc. Or a heat resistant material such as ZrO 3 or TiO 2 is used and there is a problem that the activity is lost by sintering.

따라서, 상기와 같은 VOCs처리를 위한 연소용 촉매는 활성물질인 백금족 금속 및 금속산화물을 미립상태로 분산하여 담지가 가능하고, 운전중 소결로 활성물질이 서로 응집하여 촉매활성이 저하되는 것을 방지할 수 있는 담체를 개발하여 내구성과 촉매활성을 지속시키는 것이 중요하다.Therefore, the combustion catalyst for treating VOCs can be supported by dispersing platinum group metals and metal oxides, which are active materials, in a particulate state, and preventing the active materials of the sintering furnace from agglomerating and degrading catalytic activity. It is important to develop a carrier which can sustain durability and catalytic activity.

이에 본 발명은 상기와 같은 종래 기술에서의 문제점을 해결하기 위하여 발명된 것으로, 고온에서도 백금족 금속의 소결을 억제할 수 있고, 촉매활성물질의 분산도를 향상시킬 수 있는 메조기공 TiO2 집합체를 담체로 사용하며 연소용 촉매의 활성을 증가시키기 위한 촉매활성물질의 담지하여 고내구성, 고활성을 가지는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매 및 그 제조방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been invented to solve the problems in the prior art as described above, and supports mesoporous TiO 2 aggregates capable of suppressing sintering of the platinum group metal even at high temperatures and improving the dispersion degree of the catalytically active material. It provides a catalyst for the combustion of platinum group metal supported on the mesoporous TiO2 aggregate carrier impregnated with metal oxide having high durability and high activity by supporting the catalytically active material to increase the activity of the combustion catalyst. Has its purpose.

상기와 같은 목적을 달성하기위한 본 발명은 메조기공 TiO2 집합체에 금속산화물 및 백금족 금속 촉매활성물질을 미립 분산하여 담지되는 것을 특징으로 하는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매를 제공한다.The present invention for achieving the above object is a metal oxide-impregnated mesoporous TiO2 aggregate support, characterized in that the metal oxide and platinum group metal catalyst active material is supported on the mesoporous TiO2 aggregate is supported by a platinum group metal It provides a catalyst for combustion.

본 발명의 또 다른 특징은 구조 유도체인 (PEO)116(PPO)75(PEO)11과 전구체인 Ti(OCH(CH3)2)4와, 반응억제제인 2,4-pentanedione을 포함하며,상기 (PEO)116(PPO)75(PEO)116 와 Ti(OCH(CH3)2)4를 1 : 20 ~ 40의 몰비로 구비하는 제1 단계와;Another feature of the present invention includes a structural derivative (PEO) 116 (PPO) 75 (PEO) 11 and precursor Ti (OCH (CH 3 ) 2 ) 4 and the reaction inhibitor 2,4-pentanedione, (PEO) 116 (PPO) 75 (PEO) 116 and Ti (OCH (CH 3 ) 2 ) 4 having a molar ratio of 1:20 to 40;

상기 제1단계에 의한 Ti(OCH(CH3)2)4와 상기 CH3COCH2COCH3를 1 : 1 ~ 10의 몰 비로 구비하는 제2 단계와; A second step of providing Ti (OCH (CH 3 ) 2 ) 4 and the CH 3 COCH 2 COCH 3 according to the first step in a molar ratio of 1: 1 to 10;

상기 제2단계에 의해 생성된 메조기공을 가지는 TiO2 집합체를 산출하는 제3 단계를 포함하여 이루어지는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매 및 그 제조방법을 제공한다.It provides a catalyst for combustion in which a platinum group metal is supported on a mesoporous TiO2 aggregate carrier impregnated with a metal oxide comprising a third step of calculating a TiO 2 aggregate having mesopores generated by the second step. do.

상기한 바와 같이 본 발명에 의하면 비표면적이 높은 메조기공 TiO2 집합체는 촉매활성물질을 일정 함량으로 균일하게 미립 분산하여 담지하고, 허니컴 지지체에 코팅하여 휘발성 유기화합물과 반응할 수 있는 면적이 최대화시키고, 활성촉매와 담체 성분들이 기능을 극대화한다.As described above, according to the present invention, the mesoporous TiO 2 aggregate having a high specific surface area is uniformly dispersed and supported by a predetermined amount of catalytically active material, and is coated on a honeycomb support to maximize the area that can react with volatile organic compounds. The active catalyst and carrier components maximize the function.

그에 따라, 상기와 같은 본 발명은 촉매의 제거효율, 반응온도, 공간 속도 등이 향상되고, 고온연소에서도 열화에 의한 귀금속 성분의 응집을 억제하여 연소용 촉매를 제공하며, 고내구성, 고효율 촉매로 기존 촉매연소온도에 비하여 낮은 조건에서 유해물질을 효과적으로 제거하는 효과가 있다. Accordingly, the present invention as described above improves the catalyst removal efficiency, reaction temperature, space velocity and the like, and provides a combustion catalyst by suppressing the aggregation of noble metal components due to deterioration even at high temperature combustion. Compared with the existing catalytic combustion temperature, it is effective to remove harmful substances at low conditions.

이하, 첨부된 도면 및 실시 예를 통해 본 발명의 실시 예를 구체적으로 살펴보면 다음과 같다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings and embodiments.

본 발명의 실시 예에 따른 연소용 촉매는 도 1 내지 도 5에 도시된 바와같이 지지체로 Cordierite monoliths honeycomb(150×150×50mm, 100cell/in2)를 사용하였으며, 담체인 메조기공 TiO2 집합체에 촉매활성 성분의 전구체를 함침법에 의하여 제조한다.We used the Cordierite monoliths honeycomb (150 × 150 × 50mm, 100cell / in 2) to a support as a catalyst for the combustion according to the embodiment of the present invention shown in Figs. 1 to 5, the carrier is mesoporous TiO 2 aggregates A precursor of the catalytically active component is prepared by the impregnation method.

담지된 촉매활성물질인 금속산화물은 담체 기준으로 0.1wt% ~ 10wt% 내이고, 백금족 금속은 담체 기준으로 0.3wt% ~ 6wt% 내이고, 완성된 합성 다성분계 집합체 촉매를 Ball milling 후 지지체에 코팅한다. 상기의 방법으로 지지체 부피당 촉매량이 165g/liter가 될 수 있도록 습윤코팅과 건조, 소성의 과정을 반복한다. Metal oxide, the supported catalytic active material, is within 0.1wt% ~ 10wt% based on the carrier, and platinum group metal is within 0.3wt% ~ 6wt% based on the carrier, and coating the finished synthetic multicomponent aggregate catalyst on the support after ball milling do. By the above method, the process of wet coating, drying, and baking is repeated so that the amount of catalyst per support volume can be 165 g / liter.

상기와 같은 목적을 달성하기 위한 본 발명의 실시 예에 따른 연소용 촉매는 다음에 개시되는 화학식 1인 구조 집합체로 중성계면활성제 Pluronic F108과, 다음에 개시되는 화학식 2인 전구체로 티타늄(IV)이소프로폭시드(Titanium(IV) isopropoxide)를 이용한다.The catalyst for combustion according to the embodiment of the present invention for achieving the above object is a neutral aggregate Pluronic F108 as a structural aggregate represented by the following formula (1) and titanium (IV) isopropyl as a precursor represented by the following formula (2) Propoxide (Titanium (IV) isopropoxide) is used.

이에 따른 제조방법은 탈이온수 100 중량부에 대해 8 ~ 20 중량부의 화학식 1인 구조유도체 Pluronic F108을 탈이온수에 용해시켜며 구조유도체와 전구체는 1 : 20 ~ 40의 몰비로 교반한다.The manufacturing method according to the present invention dissolves 8-20 parts by weight of the structural derivative Pluronic F108 represented by Chemical Formula 1 in deionized water with respect to 100 parts by weight of deionized water, and the structural derivative and the precursor are stirred at a molar ratio of 1: 20-40.

또한, 상기의 화학식 2인 전구체와 화학식 3인 반응억제제는 1 : 1 ~ 10의 몰비로 교반하여 혼합용액을 제조하고 중성계면활성제를 이용한 메조기공 TiO2 집합체 제조방법을 제공한다.In addition, the precursor of Formula 2 and the reaction inhibitor of Formula 3 to prepare a mixed solution by stirring in a molar ratio of 1: 1 to 10 and provides a method for producing mesoporous TiO 2 aggregate using a neutral surfactant.

용해된 구조유도체에 전구체와 반응억제제 혼합용액의 첨가가 끝나면 밀폐용기에 담아 55℃에서 2시간, 95 ∼ 120℃ 오븐에 10시간 이상 반응한다. 반응이 완료되면 탈이온수을 이용하여 세척하고 진공동결건조 후 250 ~ 300℃의 온도에서 3 시간 동안 하소시키고, 400 ~ 450℃의 온도에서 3시간 동안 소성시킨다. 다음에 개시된 화학식 4인 망간산화물과 화학식 5인 백금 성분을 함침법에 의하여 담지한다.After the addition of the precursor and reaction inhibitor mixture solution to the dissolved structural derivatives, the solution is placed in a sealed container and reacted at 55 ° C. for 2 hours and at 95-120 ° C. for 10 hours or more. After the reaction was completed, washed with deionized water, dried in vacuum freeze drying for 3 hours at a temperature of 250 ~ 300 ℃, and calcined for 3 hours at a temperature of 400 ~ 450 ℃. Next, the manganese oxide represented by the formula (4) and the platinum component represented by the formula (5) are supported by the impregnation method.

이후, 담지시킨 후 70℃의 온도에서 10시간 동안 건조시키고, 이후, 250 ~ 350℃의 온도에서 2시간 내지 3시간 동안 하소시키고, 이후, 400 ~ 500℃의 온도에서 2시간 동안 공기조건에서 소성하여 메조기공 TiO2 집합체를 제조한다.Thereafter, it was dried and then dried for 10 hours at a temperature of 70 ℃, and then calcined for 2 hours to 3 hours at a temperature of 250 ~ 350 ℃, then calcined in air conditions for 2 hours at a temperature of 400 ~ 500 ℃ To prepare mesoporous TiO 2 aggregates.

(PEO)116(PPO)75(PEO)116 (PEO) 116 (PPO) 75 (PEO) 116

Ti(OCH(CH3)2)4 Ti (OCH (CH 3 ) 2 ) 4

CH3COCH2COCH3 CH 3 COCH 2 COCH 3

Mn(NO3)2·6H2OMn (NO 3 ) 2 · 6H 2 O

H2PtCl6·6H2OH 2 PtCl 6 · 6H 2 O

기존에는 보통 유해물질 제거 촉매의 담체물질로 알루미나(γ-Al2O3)를 먼저 지지체에 코팅시킨 다음 촉매활성 성분을 한층 코팅시키는 방법이었으나, 이와 같은 방법은 지지체에 분산시키는데 어려움이 많고 고가의 실리카 졸을 사용하기 때 문에 제조단가의 면에서도 비경제적이었다.Conventionally, alumina (γ-Al 2 O 3 ) was first coated on a support as a carrier material of a catalyst for removing harmful substances, and then a catalytically active component was further coated. However, such a method is difficult and expensive to disperse on a support. The use of silica sol was uneconomical in terms of manufacturing cost.

이러한 단점을 해소시키기 위해 본 발명에서 귀금속 촉매를 구성하는 담체로 메조기공 TiO2 집합체를 사용하였다. 비표면적이 200∼280㎡/g으로 높으며 기공크기가 균일한 다공성이며 고체표면에 가스의 확산저항, 활성 표면적의 크기가 우수하고 촉매활성물질을 균일하게 담지 시킨다. 또한 700℃이상의 고온에서도 열적 안정성을 가지며 비표면적이 감소가 현저하지 않고, 촉매활성물질의 응집을 방지하여 분산도를 향상시키고, Ti가 할로겐화 유기화합물의 영향을 받지 않아 내피독성이 가진다.Mesoporous TiO 2 as a carrier constituting the noble metal catalyst in the present invention to solve this disadvantage Aggregates were used. It has a high specific surface area of 200 ~ 280㎡ / g, uniform pore size, excellent diffusion resistance of gas and size of active surface area on the solid surface, and uniformly carrying catalytically active material. In addition, it has thermal stability even at a high temperature of more than 700 ℃, the specific surface area is not remarkably reduced, prevents the aggregation of the catalytically active material to improve the dispersibility, and Ti is not affected by the halogenated organic compound has endothelial toxicity.

그러므로 메조기공 TiO2 집합체는 담지된 촉매활성물질과 강한 상호작용으로 금속산화물과 응집을 억제하므로 종래의 알루미나 담체를 사용한 경우에 비해, 촉매의 활성저하를 방지할 수 있다.Therefore, since the mesoporous TiO 2 aggregates inhibit the aggregation of metal oxides with strong interaction with the supported catalytically active material, it is possible to prevent deactivation of the catalyst as compared with the case of using the conventional alumina carrier.

본 발명에서 TiO2 집합체를 고온에서 소결과 활성저하를 억제하기 위하여 금속 산화물을 첨가하며 이중 망간산화물은 CO, HC산화물 및 NOx의 선택적 환원반응에 우수한 활성을 띄고 삼원촉매의 활성을 증진시켜주는 산소저장 화합물의 역할을 하며 산소 흡착 및 탈착거동이 매우 우수하여 담체에 담지하며, 촉매연소 반응에서 높은 활성을 가지며 낮은 온도에서 활성이 쉽게 저하되지 않고, 500℃이하 온도에서도 황 피독 현상이 적은 백금족 금속을 담지함으로서 활성 및 내구성 뛰어난 VOCs의 최적의 제거 촉매를 제조한다.In the present invention, in order to suppress the sintering and deactivation of the TiO 2 aggregate at high temperature, a metal oxide is added, and the double manganese oxide exhibits excellent activity in the selective reduction of CO, HC oxide and NOx and enhances the activity of the three-way catalyst. Platinum group metal, which acts as a storage compound and has excellent oxygen adsorption and desorption behavior, is supported on a carrier, has high activity in catalytic combustion reaction, does not easily degrade at low temperatures, and has low sulfur poisoning even at temperatures below 500 ° C. By supporting the preparation of the optimum removal catalyst of VOCs with excellent activity and durability.

본 발명의 촉매 제조를 위해서는 상기와 같은 TiO2 집합체에 Mg2 +, Cu2 +, Mn2 +, Co2+ , Sn2 +등의 금속산화물들 중의 하나 이상을 담지시키고, 그 담지량은 메조기공 TiO2 집합체에 대하여 바람직하게 1 내지 10 중량%이 되도록 하며, 백금족 금속을 구성하는 촉매는 백금과 팔라듐을 선택하여 1종을 사용하며, 그 담지량은 메조기공 TiO2 집합체에 대하여 바람직하게 0.3 내지 3 중량%이 되도록 한다. 이는 촉매의 사용량이 0.3 중량% 미만이면 제조된 촉매 활성도 낮아 유해물질의 전화율이 낮아지고, 반면에 촉매의 사용량이 3 중량%를 초과하면 활성은 좋으나 촉매의 제조원가가 높아져서 비경제적이다.To the catalyst prepared according to the present invention and carrying the one or more of the metal oxides such as Mg 2 +, Cu 2 +, Mn 2 +, Co 2+, Sn 2 + TiO 2 in the aggregate as described above, the loading amount is mesopores The amount of the TiO 2 aggregate is preferably 1 to 10% by weight, and the catalyst constituting the platinum group metal is one selected from platinum and palladium, and the amount thereof is preferably 0.3 to 3 based on the mesoporous TiO 2 aggregate. To weight percent. If the amount of the catalyst used is less than 0.3% by weight, the prepared catalyst activity is also low, and the conversion rate of harmful substances is low. On the other hand, when the amount of the catalyst is used more than 3% by weight, the activity is good, but the production cost of the catalyst is uneconomical.

다성분계 메조기공 TiO2 집합체는 점성이 낮아 지지체에 코팅 시킨 후 유해물질로 인하여 지지체로부터 박리현상이 발생되므로 촉매슬러지 코팅용액 제조시 무기 바인더를 사용하여 억제하며 무기 바인더는 담체 기준으로 5 내지 10 중량%를 사용하며 촉매지지체에 다성분계 메조기공 TiO2를 코팅한다. 제조된 지지체 부피당 촉매의 코팅량은 16 ~ 165g/L이고, 촉매활성물질은 0.7g ~ 9g/L의 범위 내에서 변동할 수 있다.Since the multicomponent mesoporous TiO 2 aggregate is low in viscosity and peeled from the support due to harmful substances after coating on the support, the catalyst sludge coating solution is suppressed using an inorganic binder. % Is used to coat the multicomponent mesoporous TiO 2 on the catalyst support. The coating amount of the catalyst per volume of the prepared support is 16 ~ 165g / L, the catalytically active material may vary within the range of 0.7g ~ 9g / L.

상기한 바와 같은 본 발명은 다음의 실시예의 의거하여 구체적으로 설명하지만, 본 발명이 다음의 실시예에 의해 한정되는 것은 아니다.The present invention as described above is described in detail based on the following examples, but the present invention is not limited by the following examples.

본 발명의 실시예의 담체용 메조기공 TiO2 집합체 합성은 다음과 같다. Synthesis of mesoporous TiO 2 aggregate for a carrier of an embodiment of the present invention is as follows.

밀폐가 가능한 100mL 용기에 구도유도체인 Puronic F108 14g을 탈이온수에 용해시키며 용액의 pH는 황산을 이용하여 조절하고 구형 마이셀(micelle)로 구성된 콜로이드용액을 40℃ 온도에서 교반한다In a sealed 100 mL container, 14 g of Puronic F108, a conducting derivative, is dissolved in deionized water. The pH of the solution is adjusted using sulfuric acid, and the colloidal solution composed of spherical micelles is stirred at a temperature of 40 ° C.

이 용액에 5.88g의 티타늄(IV)이소프로폭시드와 2.07g 아세틸아세톤을 혼합시킨 전구체 용액을 적하(dropping)하여 혼합하고 일정시간동안 교반하면 마이셀(micelle)의 친수성 부위에 티타늄 입자가 결합하여 메조기공 TiO2 집합체가 가수열반응에 의하여 합성된다.5.88 g of titanium (IV) isopropoxide and 2.07 g of acetylacetone were mixed with the precursor solution by dropping and stirring for a predetermined time. Titanium particles bound to the hydrophilic portion of micelles. Mesoporous TiO 2 aggregates are synthesized by hydrothermal reaction.

90℃ 온도에서 10시간동안 준안정화 상태를 거친 후 세척하고 슬러리상의 TiO2 집합체를 진공동결건조하여 회수 후 250 ~ 300℃의 온도에서 3시간 동안 하소시키고, 400 ~ 450℃의 온도에서 3시간 동안 소성시킨다.After 10 hours of metastabilization at 90 ° C., the mixture was washed and vacuum-dried to dry the slurry TiO 2 aggregates. Fire.

촉매활성물질 함침법은 다음과 같다.Catalytic active material impregnation method is as follows.

상기 제조된 메조기공 TiO2 집합체 1g를 메탄올(Methanol) 100mL에 녹인 후 하기 표 1 과 같이 촉매활성물질을 이용하여 다성분계 촉매를 제조한다. 상기 제조된 메조기공 TiO2 집합체에 촉매활성물질인 H2PtCl6·6H2O를 담체기준으로 3중량% 이며, Mn(NO3)2·6H2O를 담체기준으로 10중량% 사용하여 담체의 기공과 표면에 충분히 들어갈 수 있도록 교반 후 수은램프를 2시간 조사한 후 rotary vacuum evaporator를 이용하여 메탄올이 모두 증발될 때까지 감압 증류하여 촉매분말을 얻는다. 이 후, 70℃의 온도에서 10시간 동안 건조하고, 250 ~ 350℃의 온도에서 2시간 내지 3시간 동안 하소하며, 이후, 400 ~ 500℃의 온도에서 2시간 동안 공기조건에서 소성하여 다성분계 메조기공 TiO2 집합체 촉매를 제조한다. The prepared mesoporous TiO 2 After dissolving 1 g of aggregate in 100 mL of methanol, a multicomponent catalyst was prepared using a catalytically active material as shown in Table 1 below. The prepared mesoporous TiO 2 aggregate was 3 wt% based on H 2 PtCl 6 · 6H 2 O as a catalyst active material, and 10 wt% based on Mn (NO 3 ) 2 · 6H 2 O as carrier. After stirring, the mercury lamp was irradiated for 2 hours and then distilled under reduced pressure until all methanol was evaporated using a rotary vacuum evaporator to obtain catalyst powder. Thereafter, dried at a temperature of 70 ℃ for 10 hours, calcined for 2 hours to 3 hours at a temperature of 250 ~ 350 ℃, and then calcined in air conditions for 2 hours at a temperature of 400 ~ 500 ℃ to multi-component meso A pore TiO 2 aggregate catalyst is prepared.

성 분ingredient 형 태shape PtPt H2PtCl6·6H2OH 2 PtCl 6 · 6H 2 O PdPd PdCl2 PdCl 2 RuRu RuCl3·NH2ORuCl 3 NH 2 O CoCo Co(NO3)2·6H2OCo (NO 3 ) 2 6H 2 O MnMn Mn(NO3)2·6H2OMn (NO 3 ) 2 · 6H 2 O CuCu Co(NO3)2·3H2OCo (NO 3 ) 2 · 3H 2 O SnSn SnCl2·H2OSnCl 2 H 2 O

촉매슬러리 코팅용액은 다성분계 메조기공 TiO2 촉매를 이소프로필알콜을 넣고 12시간 ball mill 후 무기바인더는 이소프로필알콜과 동일량을 넣어 제조한다.The catalyst slurry coating solution is prepared by adding an isopropyl alcohol to a multicomponent mesoporous TiO 2 catalyst and adding an isopropyl alcohol after 12 hours of ball milling.

본 발명의 실시 예에 따른 모노리스 허니컴(monoliths honycomb) 촉매(catalyst)의 제조방법은 다음과 같다.Method for producing a monoliths honycomb catalyst (catalyst) according to an embodiment of the present invention is as follows.

150℃에서 2시간 전처리한 모노리스 허니컴 지지체를 상기에 제조된 촉매슬러리 코팅용액이 지지체 부피당 촉매가 16 ~ 165g/L이고, 귀금속은 0.7g ~ 9g/L 될 때까지 습윤코팅-건조-소성을 반복하며 코팅시 허니컴 지지체 cell의 눈막힘을 방지하기 위하여 압축공기를 이용하여 불어준다. 코팅된 지지체는 80℃에서 12시간동안 건조시키고, 250℃에서 1시간 하소하고, 450℃ 3시간동안 소성하여 모노리스 허니컴 촉매를 제조한다.The monolith honeycomb support pretreated at 150 ° C. for 2 hours was repeatedly subjected to wet coating-drying-firing until the catalyst slurry coating solution prepared above was 16 to 165 g / L of catalyst per support volume and 0.7 g to 9 g / L of precious metal. In order to prevent clogging of the honeycomb support cell during the coating, blow it using compressed air. The coated support was dried at 80 ° C. for 12 hours, calcined at 250 ° C. for 1 hour, and calcined at 450 ° C. for 3 hours to prepare a monolith honeycomb catalyst.

도 1은 본 발명에 따른 실시 예에서 얻어진 메조기공 TiO2 집합체 자체의 SEM 분석사진을 나타내는 도면이고, 도 2는 본 발명에 따른 실시 예에서 얻어진 금속산화물이 조합된 메조기공 TiO2 집합체에 귀금속이 담지된 SEM 분석사진이다.1 is a mesoporous TiO 2 obtained in an embodiment according to the present invention Figure 2 shows a SEM analysis picture of the aggregate itself, Figure 2 is a SEM analysis picture in which the precious metal is supported on the mesoporous TiO 2 aggregate combined metal oxide obtained in the embodiment according to the present invention.

도 1은 메조기공 TiO2 합성된 것을 나타내는 것으로, 분말시료에 Pt(백금)코팅을 실시하였고, 촉매활성성분이 담지된 메조기공 TiO2 집합체는 주사 전자 현미경(Scanning Electron Microscope, SEM)으로 표면을 분석하였다.FIG. 1 shows that mesoporous TiO 2 was synthesized. Pt (platinum) coating was performed on a powder sample, and the mesoporous TiO 2 aggregate on which a catalytically active component was loaded was prepared by scanning electron microscopy (SEM). Analyzed.

도 2는 본 발명에 따른 실시 예에서 얻어진 금속산화물이 조합된 메조기공 TiO2 집합체에 귀금속이 담지된 SEM 분석사진이며 분말시료에 Pt(백금)코팅을 실시하지 않고 분석하였다.FIG. 2 is a SEM analysis photograph of a precious metal loaded on a mesoporous TiO 2 aggregate in which a metal oxide is obtained in an embodiment according to the present invention, and was analyzed without Pt (platinum) coating on a powder sample.

촉매연소활성 측정을 다음과 같이 실시하였다.Catalytic combustion activity was measured as follows.

VOCs의 분해효율에 따른 촉매연소활성을 측정하기 위한 촉매연소장치에 크기가 150×150×50mm이고 100CPSI인 모노리스 허니컴를 사용한다.A monolith honeycomb with a size of 150 × 150 × 50mm and 100 CPSI is used for the catalytic combustion device for measuring catalytic combustion activity according to the decomposition efficiency of VOCs.

촉매연소장치 내부는 VOCs의 누출을 방지할 수 있도록 밀봉하였고 내부 온도를 적정온도로 유지시켜줄 수 있도록 세라크울(cerakwool) 패드를 사용하여 단열하였다. The inside of the catalytic combustion device was sealed to prevent leakage of VOCs and insulated using a cerakwool pad to maintain the internal temperature at an appropriate temperature.

VOCs유발물질 공급 장치는 액체상태인 VOCs(톨루엔, 벤젠, 자일렌)을 항온조를 사용하여 기화시키고 공기와 혼합하여 정량 공급한다.The VOCs-induced material supply unit vaporizes liquid VOCs (toluene, benzene, xylene) using a thermostat and mixes them with air to provide a fixed amount.

촉매연소장치는 최적의 실험변수를 확인하기 위하여 반응혼합가스(O2, VOCs유발물질)농도에 따른 부하량, 공기의 예열온도, 공간속도를 변수로 설정하여 실험을 수행하고 처리효율 및 성능 평가를 위하여 유입물질의 전환율을 계산하여 촉매활성을 평가한다.In order to confirm the optimum experimental variables, the catalytic combustion device performs experiments by setting the load, air preheating temperature, and space velocity according to the reaction mixed gas (O 2 , VOCs-inducing substances) concentrations, and evaluates the treatment efficiency and performance. In order to evaluate the catalytic activity, the conversion rate of influent is calculated.

본 발명의 실시 예에 따른 메조기공 TiO2 집합체 촉매의 제조 조건에 따른 톨루엔 전환율은 도 3에 도시된 바와 같다.Toluene conversion according to the preparation conditions of the mesoporous TiO 2 aggregate catalyst according to the embodiment of the present invention is as shown in FIG. 3.

본 발명의 실시 예에 따른 메조기공 TiO2 집합체에서 촉매의 종류와 반응온도에 따른 유해물질의 전환율은 도 4에 도시된 바와 같으며, 집합체의 유해물질 전환율은 다음에 개시된 수학식 1과 같다.In the mesoporous TiO 2 aggregate according to an embodiment of the present invention, the conversion rate of the harmful substances according to the type of catalyst and the reaction temperature is shown in FIG. 4, and the conversion rate of the harmful substances in the aggregate is shown in Equation 1 as described below.

유해물질 전환율(%) = [(공급된 유해물질의 농도 - 촉매층을 통과한 후 유해물질농도)/ 공급된 유해물질의 농도] × 100Hazardous Substance Conversion Rate (%) = [(Concentration of Hazardous Substances Supplied-Hazardous Substances Concentration After Passing through Catalytic Layer) / Concentration of Hazardous Substances Supplied] × 100

본 발명의 실시 예에 따른 연소용 촉매의 담체는 금속산화물과 귀금속을 효율적으로 분산시켜 담지 시킬 수 있도록 기공크기가 5 ∼ 10nm이고, 집합체의 크기가 1000nm인 메조기공 TiO2 집합체를 가수열반응에 의하여 합성하여 기공과 표면적을 극대화시킬 수 있도록 진공동결건조하여 회수한다.The carrier of the catalyst for combustion according to the embodiment of the present invention is a mesoporous TiO 2 aggregate having a pore size of 5 to 10 nm and an aggregate size of 1000 nm to efficiently disperse and support metal oxides and precious metals in a hydrothermal reaction. And recover by vacuum freeze drying to maximize porosity and surface area.

본 발명의 실시 예에 따른 연소용 촉매는 2성분계 또는 3성분계 이상의 다성 분 촉매로서 상기의 메조기공 TiO2 집합체를 담체로 사용하며, 촉매활성물질은 백금족금속에서 백금(Pt), 팔라듐(Pd), 루테늄(Ru) 중 적어도 일 성분을 포함하고, 금속산화물인 마그네슘(Mg), 망간(Mn), 주석(Sn), 크롬(Cr), 세륨(Ce), 코발트(Co), 텅스텐(W), 바나듐(V) 중에서 일 성분 이상의 촉매활성물질을 함침법에 의하여 담체의 기공과 표면에 담지 시킨다.The catalyst for combustion according to an embodiment of the present invention is a mesoporous TiO 2 as a multicomponent catalyst having a two-component or three-component-based catalyst. The aggregate is used as a carrier, and the catalytically active material contains at least one component of platinum (Pt), palladium (Pd), ruthenium (Ru) in the platinum group metal, and magnesium (Mg), manganese (Mn), and tin (metal oxides) At least one catalytically active substance of (Sn), chromium (Cr), cerium (Ce), cobalt (Co), tungsten (W) and vanadium (V) is supported on the pores and the surface of the carrier by impregnation.

본 발명의 실시 예에 따른 연소용 촉매의 5 ~ 10nm의 기공을 가지는 TiO2 집합체는 촉매활성물질을 효율적으로 분산시켜 기공 및 표면에 담지 시킬 수 있으므로 VOCs의 분해 전환율이 높아지고, 기공에 귀금속을 격리함으로서 고열에 의한 촉매활성물질의 상호 융착에 따른 효율 저하를 방지할 수 있다.TiO 2 having pores of 5 to 10 nm of the catalyst for combustion according to the embodiment of the present invention The aggregate can effectively disperse the catalytically active material to support the pores and the surface, thereby increasing the decomposition conversion rate of the VOCs, and isolating precious metals in the pores, thereby preventing the deterioration of efficiency due to the mutual fusion of the catalytically active material due to high heat.

또한, 통상적으로 사용되는 알루미나 담체는 황화합물과 반응하여 황산알루미늄으로 변질 되는 경우가 종종 있으나, 본 발명의 실시 예에 따른 연소용 촉매의 메조기공 TiO2 집합체 담체는 통상의 알루미나 담체와 비교하여, 내 SOX성이 있어 황화합물이 포함되어 있어도 변질 되지 않고, 고온에서도 금속산화물의 응집을 억제하는 효과를 가지므로 촉매의 손실 및 교체문제점 등을 해결하고 다성분계 촉매로서 각 금속들의 산화 활성 상승효과를 기대할 수 있다.In addition, although the commonly used alumina carrier is often transformed into aluminum sulfate by reacting with a sulfur compound, the mesoporous TiO 2 aggregate carrier of the catalyst for combustion according to the embodiment of the present invention is compared with the conventional alumina carrier. Since it has SO X property, it does not deteriorate even if sulfur compound is contained, and it has the effect of suppressing aggregation of metal oxide even at high temperature. Therefore, it is possible to solve the loss and replacement problem of catalyst and to increase the oxidation activity of each metal as a multi-component catalyst. Can be.

이상에서 설명한 본 발명은 상술한 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 종래의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

비표면적이 높은 메조기공 TiO2 집합체는 촉매활성물질을 일정 함량으로 균일하게 미립 분산하여 담지하고, 허니컴 지지체에 코팅하여 휘발성 유기화합물과 반응할 수 있는 면적이 최대화시키고, 활성촉매와 담체 성분들이 기능을 극대화하므로 연소용 촉매분야에 활용하면 매우 유용하다.Mesoporous TiO 2 aggregates with a high specific surface area are uniformly dispersed and supported by a certain amount of catalytically active material, and are coated on a honeycomb support to maximize the area that can react with volatile organic compounds, and the active catalyst and carrier components function. It is very useful when utilized in the field of combustion catalyst.

도 1은 본 발명에 따른 실시 예에서 얻어진 메조기공 TiO2 집합체 자체의 SEM 분석을 나타내는 도면.1 is a mesoporous TiO 2 obtained in an embodiment according to the present invention A diagram showing SEM analysis of the aggregate itself.

도 2는 본 발명에 따른 실시 예에서 얻어진 금속산화물이 조합된 메조기공 TiO2 집합체에 백금족 금속이 담지된 SEM 분석을 나타내는 도면.FIG. 2 is a view showing SEM analysis in which a platinum group metal is supported on a mesoporous TiO 2 aggregate in which a metal oxide obtained in an embodiment according to the present invention is combined. FIG.

도 3는 본 발명에 따른 실시 예에서 얻어진 Mn산화물이 조합된 메조기공 TiO2 집합체에 Pt 담지된 EDX 분석을 나타내는 도면.3 is a diagram showing EDX analysis of Pt supported on mesoporous TiO 2 aggregates combined with Mn oxides obtained in Examples according to the present invention.

도 4는 본 발명에 따른 실시 예에서 얻어진 촉매의 제조 조건에 따른 톨루엔 전환율을 나타내는 도면.4 is a view showing toluene conversion according to the preparation conditions of the catalyst obtained in the embodiment according to the present invention.

도 5는 본 발명에 따른 실시 예에서 얻어진 촉매의 종류와 반응온도에 따른 유해물질 전환율을 나타내는 도면.5 is a view showing the conversion of harmful substances according to the type of catalyst and the reaction temperature obtained in the embodiment according to the present invention.

Claims (6)

메조기공 TiO2 집합체에 금속산화물 및 백금족 금속 촉매활성물질을 미립 Metal oxides and platinum group metal catalytically active materials are incorporated into mesoporous TiO2 aggregates. 분산하여 담지되는 것을 특징으로 하는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매.A catalyst for combustion in which a platinum group metal is supported on a mesoporous TiO 2 aggregate support impregnated with a metal oxide, which is supported by dispersion. 구조 유도체인 (PEO)116(PPO)75(PEO)11과 전구체인 Ti(OCH(CH3)2)4와, 반응억제제인 2,4-pentanedione을 포함하며,상기 (PEO)116(PPO)75(PEO)116 와 Ti(OCH(CH3)2)4를 1 : 20 ~ 40의 몰비로 구비하는 제1 단계와;(PEO) 116 (PPO) 75 (PEO) 11 , which is a structural derivative, Ti (OCH (CH 3 ) 2 ) 4 , which is a precursor, and 2,4-pentanedione, which is a reaction inhibitor, (PEO) 116 (PPO) A first step comprising 75 (PEO) 116 and Ti (OCH (CH 3 ) 2 ) 4 in a molar ratio of 1:20 to 40; 상기 제1단계에 의한 Ti(OCH(CH3)2)4와 상기 CH3COCH2COCH3를 1 : 1 ~ 10의 몰비로 구비하는 제2 단계와; A second step of providing Ti (OCH (CH 3 ) 2 ) 4 and the CH 3 COCH 2 COCH 3 according to the first step in a molar ratio of 1: 1 to 10; 상기 제2단계에 의해 생성된 메조기공을 가지는 TiO2 집합체를 산출하는 제3 단계를 포함하여 이루어지는 것을 특징으로 하는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매의 제조방법.Comprising a third step of calculating the TiO 2 aggregate having mesopores produced by the second step, the catalyst for the combustion in which the platinum group metal is supported on the metal oxide-impregnated mesoporous TiO2 aggregate carrier Way. 제 2 항에 있어서,The method of claim 2, 상기 메조기공은 기공크기가 5 ~ 10nm을 가지도록 형성되는 TiO2 집합체를 포함하는 것을 특징으로 하는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매의 제조방법.The mesopores are a method for producing a catalyst for combustion in which a platinum group metal is supported on a metal oxide-impregnated mesoporous TiO2 aggregate carrier comprising a TiO 2 aggregate formed to have a pore size of 5 to 10 nm. 제 2 항에 있어서,The method of claim 2, 상기 메조기공의 집합체의 크기를 500nm ~ 1000nm로 형성하는 TiO2 집합체를 포함하는 것을 특징으로 하는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매의 제조방법.A method of producing a catalyst for combustion in which a platinum group metal is supported on a metal oxide-impregnated mesoporous TiO2 aggregate carrier, characterized in that it comprises a TiO 2 aggregate which forms the size of the mesoporous aggregate in the range of 500 nm to 1000 nm. 제 2 항에 있어서,The method of claim 2, 상기 TiO2 집합체에 백금(Pt), 팔라듐(Pd), 루테늄(Ru) 백금족 금속 중 하나 이상의 성분이 0.3wt% ~ 6wt% 범위 내에서 담지하는 제4 단계와, 상기 제4 단계후에 집합체에 마그네슘(Mg), 망간(Mn), 코발트(Co), 주석(Sn), 구리(Cu)의 금속산화물 중 하나 이상의 성분이 0.1wt% ~ 10wt% 범위 내에서 담지하는 제5 단계로 이루어지는 TiO2 집합체를 더 포함하는 것을 특징으로 하는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매의 제조방법.A fourth step in which at least one component of platinum (Pt), palladium (Pd), and ruthenium (Ru) platinum group metals is supported in the TiO 2 aggregate within a range of 0.3 wt% to 6 wt%, and magnesium is added to the aggregate after the fourth step. TiO 2 aggregate comprising a fifth step in which at least one component of metal oxides of (Mg), manganese (Mn), cobalt (Co), tin (Sn), and copper (Cu) is supported within the range of 0.1 wt% to 10 wt% Method of producing a catalyst for combustion in which a platinum group metal is supported on a mesoporous TiO 2 aggregate support impregnated with a metal oxide further comprising. 제 5 항에 있어서,The method of claim 5, wherein 상기 제5 단계후에는 메조기공 TiO2 집합체를 촉매활성수용액에 담지하는 제6 단계와,After the fifth step, a sixth step of supporting the mesoporous TiO 2 aggregate in the catalytically active aqueous solution; 상기 제6 단계후에 촉매활성수용액에 담지된 TiO2 집합체를 70℃의 온도에서 10시간 동안 건조하는 제7 단계와,A seventh step of drying the TiO 2 aggregate supported on the catalytically active aqueous solution after the sixth step at a temperature of 70 ° C. for 10 hours, 상기 제7 단계에 의해 건조된 TiO2 집합체를 250℃ 내지 350℃의 온도에서 2시간 내지 3시간 동안 하소하는 제8 단계와,An eighth step of calcining the TiO 2 aggregate dried by the seventh step at a temperature of 250 ° C. to 350 ° C. for 2 to 3 hours, 상기 제8 단계에 의해 하소된 TiO2 집합체를 400℃ 내지 500℃의 온도에서 2시간 동안 소성하는 제9 단계와,A ninth step of calcining the TiO 2 aggregate calcined by the eighth step at a temperature of 400 ° C. to 500 ° C. for 2 hours, 상기 제9 단계후에 TiO2 집합체에 Al2O3, SiO2를 주성분으로 하는 무기바인더를 첨가하여 코팅 슬러리용액을 제조하는 제10 단계를 더 포함하는 것을 특징으로 하는 금속 산화물이 함침된 메조기공 TiO2 집합체 담체에 백금족 금속이 담지된 연소용 촉매의 제조방법.The metal oxide-impregnated mesoporous TiO 2 further comprising a tenth step of preparing a coating slurry solution by adding an inorganic binder having Al 2 O 3 and SiO 2 as a main component to the TiO 2 aggregate after the ninth step. A method for producing a catalyst for combustion in which a platinum group metal is supported on an aggregate carrier.
KR1020080002472A 2008-01-09 2008-01-09 MANUFACTURING METHOD OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT KR100938716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080002472A KR100938716B1 (en) 2008-01-09 2008-01-09 MANUFACTURING METHOD OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080002472A KR100938716B1 (en) 2008-01-09 2008-01-09 MANUFACTURING METHOD OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT

Publications (2)

Publication Number Publication Date
KR20090076492A true KR20090076492A (en) 2009-07-13
KR100938716B1 KR100938716B1 (en) 2010-01-26

Family

ID=41333594

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080002472A KR100938716B1 (en) 2008-01-09 2008-01-09 MANUFACTURING METHOD OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT

Country Status (1)

Country Link
KR (1) KR100938716B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274723A (en) * 2011-06-13 2011-12-14 华北电力大学 Mesoporous TiO2 carrier based SCR flue gas denitration catalyst and preparation method thereof
KR20160037152A (en) * 2016-03-24 2016-04-05 삼성전자주식회사 Mesoporous complex catalyst and process for preparing the same
CN115624973A (en) * 2022-09-20 2023-01-20 中国船舶重工集团公司第七一八研究所 Sulfur poisoning resistant monolithic catalyst and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412647B1 (en) 2021-07-19 2022-06-24 주식회사 성광이엔텍 Method for manufacturing high-temperature combustion catalyst for burner using impregnation method and high-temperature combustion catalyst prepared thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320850A (en) * 2001-04-25 2002-11-05 Toyota Motor Corp Catalyst and device for cleaning exhaust gas by using the catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274723A (en) * 2011-06-13 2011-12-14 华北电力大学 Mesoporous TiO2 carrier based SCR flue gas denitration catalyst and preparation method thereof
KR20160037152A (en) * 2016-03-24 2016-04-05 삼성전자주식회사 Mesoporous complex catalyst and process for preparing the same
CN115624973A (en) * 2022-09-20 2023-01-20 中国船舶重工集团公司第七一八研究所 Sulfur poisoning resistant monolithic catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
KR100938716B1 (en) 2010-01-26

Similar Documents

Publication Publication Date Title
JP3753582B2 (en) Mesoporous oxide molecular sieve for nitrogen oxide absorption in oxidizing exhaust
US7838461B2 (en) Catalyst for exhaust gas purification
CN102909020B (en) Sulfur-resistant catalytic-combustion catalyst and preparation method thereof
JP2013523419A (en) ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices of redox-active cations for low temperature, hydrothermal and toxic resistant SCR catalysts
EP1832345A1 (en) Catalyst for exhaust gas purification
US9522391B2 (en) Co-selective methanation catalyst
KR102320340B1 (en) Low temperature DeNOx catalyst containing hierarchically structured porous TiO2 catalyst support and method for preparing the same
US20190262771A1 (en) Low-Temperature Oxidation Catalyst With Particularly Marked Hydrophobic Properties ForThe Oxidation Of Organic Pollutants
KR100938716B1 (en) MANUFACTURING METHOD OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT
JP4063807B2 (en) Exhaust gas purification catalyst
JP4989545B2 (en) Nitrogen oxide catalytic reduction catalyst
JP2006305406A (en) CATALYST FOR REMOVING NOx IN EXHAUST GAS
CN108136372A (en) Honeycomb-shaped oxidizing catalyst of monolithic and preparation method thereof
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2010142688A (en) Catalyst for selective catalytic reduction of nitrogen oxide
JP5116377B2 (en) Exhaust NOx purification method
JP2006297348A (en) Catalyst for clarifying exhaust gas
JP4749093B2 (en) NOx purification catalyst carrier
JP2008279352A (en) Catalyst for removing nitrogen oxide discharged from lean burn automobile
JP5503155B2 (en) Carbon monoxide removal filter
JP2009219980A (en) Catalyst for removing nitrogen oxide and its manufacturing method
JP5112966B2 (en) Lean burn exhaust gas purification catalyst
KR100621946B1 (en) A method for improving dispersity of noble catalyst with h2o2 and catalyst compositions thereby
JP4712406B2 (en) NOx purification catalyst
JP5036300B2 (en) Automobile exhaust NOx purification catalyst and exhaust NOx purification method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140117

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150115

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170118

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180118

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190110

Year of fee payment: 10

R401 Registration of restoration