KR20090056179A - Multi-reactor system for the production of biodiesel - Google Patents

Multi-reactor system for the production of biodiesel Download PDF

Info

Publication number
KR20090056179A
KR20090056179A KR1020070123217A KR20070123217A KR20090056179A KR 20090056179 A KR20090056179 A KR 20090056179A KR 1020070123217 A KR1020070123217 A KR 1020070123217A KR 20070123217 A KR20070123217 A KR 20070123217A KR 20090056179 A KR20090056179 A KR 20090056179A
Authority
KR
South Korea
Prior art keywords
reactor
circulation
reaction
biodiesel
outlet
Prior art date
Application number
KR1020070123217A
Other languages
Korean (ko)
Other versions
KR100948292B1 (en
Inventor
채문성
이정훈
Original Assignee
제이씨케미칼(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이씨케미칼(주) filed Critical 제이씨케미칼(주)
Priority to KR1020070123217A priority Critical patent/KR100948292B1/en
Publication of KR20090056179A publication Critical patent/KR20090056179A/en
Application granted granted Critical
Publication of KR100948292B1 publication Critical patent/KR100948292B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

A multi-stage reactor system for manufacturing biodiesel is provided, which performs the removal of the glycerol and promotion of the reaction. A multi-stage reactor system for manufacturing biodiesel is constituted as follows. The ratio of the length of the diameter of the reaction bath(1) or the side area and height is 1:2~10. The blocking plate(2) is formed from the reaction bath inside lower-part to 5~80% height of the reaction bath. The circulation outlet port(4) for the reactant circulation is installed on the top of the reaction bath. The circulation inlet port(6) for the reactant circulation is installed at the lower-part of one side section classified by the blocking plate. The circulation outlet port and circulation inlet port are connected by the external circulation pipe and circulating pump(5). An inlet(11) for pouring the material is installed at the circulation inlet side. The biodiesel outlet(10) is installed in the top or bottom of the reaction bath. The glycerol outlet(7) is installed at the opposite side section of the circulation inlet port.

Description

바이오디젤 제조용 다단 반응기 시스템{Multi-Reactor System for the Production of Biodiesel}Multi-Reactor System for the Production of Biodiesel

본 발명은 유지류와 알콜이 촉매하에서 에스테르화반응하여 바이오디젤과 글리세롤을 생성하는 바이오디젤 제조장치에 관한 것으로서, 보다 상세하게는 에스테르화반응과 글리세롤의 분리가 동시에 이루어질 수 있도록 하는 바이오디젤 제조용 다단 반응기에 관한 것이다.The present invention relates to a biodiesel production apparatus for producing biodiesel and glycerol by esterification of an oil and alcohol under a catalyst, and more particularly, a multi-stage reactor for biodiesel production which allows simultaneous esterification and separation of glycerol. It is about.

전 지구적인 화석에너지의 고갈과, 화석에너지 사용에 따른 환경오염 문제를 해결하기 위해 다양한 대체에너지가 제안되고 있다. 특히 1)기존 화석에너지의 사용장치를 그대로 사용할 수 있고, 2) 디젤유와 물성이 유사하며, 3) 경제적인 비용 측면에서도 우수하고, 4) 대기오염을 방지할 수 있는 대체 연료로서 바이오디젤에 대한 다각적인 연구가 이루어지고 있다. 바이오디젤은 식물성 기름, 동물성 지방과 같은 유지 또는 재생가능한 폐식용를 산 촉매 또는 알카리 촉매 존재 하에서 알콜과 반응시켜 생성되는 에스테르화 기름이다. 바이오디젤유는 차량의 연료에 사 용하는 경유와 물성이 유사하여, 경유와 혼합하고 압축하여 사용하거나 또는 경유를 대체하여 디젤엔진에 사용할 수 있다. 이에 따라 다양한 바오이디젤 생산방법이 제시되고 있다.Various alternative energy has been proposed to solve the problem of global depletion of fossil energy and environmental pollution caused by the use of fossil energy. In particular, 1) existing fossil energy can be used as it is, 2) properties similar to diesel oil, 3) excellent in terms of economic cost, and 4) biodiesel as an alternative fuel to prevent air pollution. Multifaceted research is being done. Biodiesel is an esterified oil produced by the reaction of an oily or renewable waste food such as vegetable oil, animal fat, with an alcohol in the presence of an acid catalyst or an alkali catalyst. Biodiesel oil has similar properties to diesel fuel used in vehicle fuels. Biodiesel oil can be used in diesel engines by mixing and compressing diesel fuel. Accordingly, various methods for producing BaOdiesel have been proposed.

바이오디젤 제조공정의 반응 부산물인 글리세롤은 통상 도 1에 도시된 바와 같은, 반응기와 층분리기가 조합된 반응시스템에 의해 분리된다. 즉, 반응기 내의 유지, 알코올, 지방산 에스테르 및 글리세롤을 포함하는 반응 혼합물은 반응 도중에 정량펌프를 통하여 일정량씩 층분리기로 이송되어 글리세롤이 분리되고, 글리세롤이 제거된 반응혼합물이 반응기로 재공급되어 반응에 다시 참여하게 된다. 보통 반응기 상부에 교반기 모터를, 측면에 배플(baffle)을 부착하여 와류를 형성시켜 교반을 돕는다. 분리기는 원심분리기, 유분리기, 비중 차를 이용한 정치형 분리기 등이 활용된다. 일반적으로 이들 반응기와 분리기로 된 시스템은 독립적, 유기적으로 작동된다. 즉 반응기에서 반응을 진행한 후 분리기에서 물질분리가 이루어지거나 반응→분리→반응→분리 등과 같이 반복하여 원하는 반응을 진행하는 것이 상용화된 방법이다. 물론 이송은 펌프를 이용하여 이송하게 된다. 이와 같은 장치를 통하여 기본적으로 화학 평형반응인 에스테르 교환반응은 생성물쪽으로 화학평형이 이동되게 되며, 이에 따라, 지방산에스테르의 수율이 다소 향상된다. Glycerol, a reaction by-product of the biodiesel manufacturing process, is usually separated by a reaction system combined with a reactor and a bed separator, as shown in FIG. That is, the reaction mixture comprising the fats and oils, alcohol, fatty acid esters and glycerol in the reactor is transferred to the bed separator by a fixed amount through the metering pump during the reaction to separate the glycerol, and the reaction mixture from which the glycerol is removed is fed back to the reactor to react with the reaction. You will participate again. Agitator motors are usually attached to the top of the reactor, and baffles are attached to the sides to form a vortex to aid stirring. Centrifuge, oil separator, stationary separator using specific gravity difference is used. In general, systems of these reactors and separators operate independently and organically. In other words, after the reaction is carried out in the reactor, the material separation is performed in the separator or the reaction is repeatedly carried out such as reaction → separation → reaction → separation. Of course, the transfer is performed using a pump. Through such an apparatus, the chemical equilibrium reaction, which is basically a chemical equilibrium reaction, is shifted to the product equilibrium, whereby the yield of fatty acid ester is slightly improved.

그러나 이러한 종래 글리세롤 분리방법은, 별도의 분리장치를 설치해야 하기 때문에 시설비 및 관리비가 추가로 소요될 뿐만 아니라 공정이 하나 더 추가됨으로써 관리에도 어려움이 있는 것이 현실이다. 또한 종래 에스테르화반응을 하나의 반응조에서 수행함으로써 반응효율이 낮은 문제점이 있다.However, such a conventional glycerol separation method, because it is necessary to install a separate separation device, not only the facility cost and management cost additionally, but also one more process is difficult to manage the reality. In addition, there is a problem that the reaction efficiency is low by performing the conventional esterification reaction in one reactor.

본 발명은, 바이오디젤 제조공정에 있어서, 정반응의 촉진 및 반응 부산물인 글리세롤의 제거가 동시에 이루어질 수 있는 다단 반응기를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a multi-stage reactor in which biodiesel production process can simultaneously promote acceleration of reaction and removal of glycerol as a reaction by-product.

전술한 목적을 달성하기 위한 본 발명은, 바이오디젤 제조를 위한 다단 반응기 시스템에 있어서, ① 반응조의 직경(반응조가 원통형 또는 그에 준하는 경우) 또는 변의 평균길이(반응조가 사각기둥 또는 그에 준하는 경우)와 높이의 비가 1:(2~10)이며,, ② 반응조 내부 하면으로부터 반응조의 5~80% 높이까지 차단판이 형성되어 있고, ③ 상기 반응조의 상부에는 반응물순환용 순환유출구가, 상기 차단판으로 구분되는 일측구역의 하면에는 반응물순환용 순환유입구가 각각 설치되고, 상기 순환유출구와 순환유입구는 외부순환관 및 순환펌프에 의해 연결되며, ④ 상기 순환유입구측에 원료투입구가, 상기 반응조의 하부 또는 상부에 바이오디젤 배출구가, 상기 순환유입구의 반대편 구역에 글리세롤 배출구가 각각 설치된 반응기를 다단으로 연속시킨 것을 특징으로 하는 다단 반응기 시스템에 관한 것이다. 다시 설명하면, 본 발명에서 사용되는 각 단위반응기는 차단판이 설치된 반응조, 순 환유출구/순환유입구/외부순환관/순환펌프, 원료투입구, 바이오디젤 배출구 및 글리세롤 배출구를 포함하는 장치이며, 본 발명은 상기 반응기가 복수개 다단으로 연속된 것이다. 상기 순환펌프는 반응용액 자체의 순환을 목적으로 하는 것이므로 반응액의 특성(점도 등)에 적합한 것을 선택할 수 있다. The present invention for achieving the above object, in the multi-stage reactor system for producing biodiesel, ① the diameter of the reaction vessel (when the reaction vessel is cylindrical or equivalent) or the average length of the sides (if the reaction vessel is a square column or equivalent) and The ratio of the height is 1: (2 to 10), ② the blocking plate is formed from the lower surface of the reaction vessel to the height of 5 to 80% of the reaction vessel, ③ the circulation outlet for reactant circulation is divided into the blocking plate at the upper portion of the reaction vessel. The lower surface of one side of the reaction zone is provided with a circulation inlet for reactant circulation, respectively, the circulation outlet and the circulation inlet are connected by an external circulation pipe and a circulation pump, ④ the raw material inlet on the circulation inlet side, the lower or upper portion of the reaction tank The biodiesel outlet is a series of reactors in which the glycerol outlets are respectively provided at the opposite side of the circulation inlet. A multistage reactor system is featured. In other words, each unit reactor used in the present invention is a device including a reactor equipped with a blocking plate, circulation outlet / circulation inlet / external circulation / circulation pump, raw material inlet, biodiesel outlet and glycerol outlet, The reactor is continuous in plural stages. Since the circulation pump is intended for the circulation of the reaction solution itself, it may be selected to be suitable for the characteristics (viscosity, etc.) of the reaction solution.

본 발명에 의한 다단 반응기 시스템에 의하면, 전단의 반응기에서 생성된 바이오디젤이 후단의 반응기로 도입되는데, 이를 위하여 전단에 설치된 반응기의 바이오디젤 배출구가 후단에 설치된 반응기의 원료투입구와 연결되어 되도록 하는 것이 바람직하다. According to the multi-stage reactor system according to the present invention, the biodiesel produced in the front stage reactor is introduced into the rear stage reactor, so that the biodiesel outlet of the reactor installed at the front end is connected to the raw material inlet of the reactor installed at the rear stage. desirable.

또한 본 발명에 의한 다단 반응기 시스템에 의하면, 후단의 반응기에서 생성된 글리세롤이 최선단의 반응기로 역도입되는데, 이를 위하여 후단에 설치된 반응기의 글리세롤 배출구가 최선단에 설치된 반응기의 원료투입구와 연결되도록 하는 것이 좋다.In addition, according to the multi-stage reactor system according to the present invention, the glycerol produced in the reactor of the rear stage is back-introduced into the reactor of the first stage, so that the glycerol outlet of the reactor installed in the rear stage is connected to the raw material inlet of the reactor installed at the top stage It is good.

이하 설명의 편의를 위해 본 발명에 의한 다단 반응기 시스템을 구성하는 각각의 반응기를 '단위' 반응기로, 첫 번째 위치의 단위반응기를 최선단 반응기 또는 제1반응기로, 이후의 단위반응기를 후단 반응기 또는 제2, 제3... 반응기로 칭한다. 또한 상기 각 단위 반응기에서 차단판으로 구분되는 두 구역 중 순환유입구가 설치된 구역을 순환구역, 글리세롤 배출구가 설치된 구역을 침전구역이라 칭한다. 반응기의 단수(연속설치 숫자)는 시스템의 사양, 운전조건, 의도하는 전환률 등에 따라 다양하게 선택할 수 있을 것이다.For convenience of description below, each reactor constituting the multi-stage reactor system according to the present invention is a 'unit' reactor, a unit reactor in the first position as the first stage reactor or the first reactor, and subsequent unit reactors in the rear stage reactor or 2nd, 3rd ... reactor. Also referred to as the section is installed, the circulation inlet port of the two areas that are separated from each reactor unit with the blocking plate circulation zone, the precipitation zone is installed glycerol outlet zone. The number of stages (continuous installation number) of the reactor may vary depending on the specifications of the system, the operating conditions and the intended conversion rate.

본 발명의 시스템에 적용되는 단위 반응기는 다음과 같은 과정으로 활용된다. 먼저, 상기 원료투입구으로 액상의 원료가 가동부피(working volume)까지 주입된다(이 단계에서부터 반응이 일부 수행될 수도 있다). 이어서 반응액이 [순환유출구→외부순환관/순환펌프→순환유입구→반응조 내부→순환유출구→.....]로 순환되면서 동시에 반응이 진행된다. 반응이 진행되면서 만들어지는 글리세롤 중 일부는 계속 순환되며, 일부는 비중에 의해 각각 순환구역과 침전구역으로 내려앉는다. 순환구역에 내려앉은 글리세롤은 순환유출구에서 분출되는 반응액에 의해 다시 유동되지만, 침전구역으로 내려앉은 글리세롤은 침전하여 축적되어 층을 형성(센서 등으로 확인할 수 있음)하게 된다.The unit reactor applied to the system of the present invention is utilized in the following process. First, a liquid raw material is injected into a working volume to a working volume (the reaction may be partially performed from this step). Subsequently, the reaction solution is circulated to the [circulation outlet → the external circulation tube / circulation pump → the circulation inlet → the inside of the reaction vessel → the circulation outlet → .....] and the reaction proceeds at the same time. Some of the glycerol produced as the reaction proceeds is circulated, and some of them are lowered into the circulation and sedimentation zones by specific gravity. Glycerol that has settled down in the circulation zone is flowed again by the reaction liquid ejected from the circulation outlet, but glycerol that has settled down in the precipitation zone precipitates and accumulates to form a layer (as can be confirmed by a sensor).

본 발명에서, 전단에 설치된 반응기의 바이오디젤 배출구가 후단에 설치된 반응기의 원료투입구와 연결되어 있어 전단의 반응기에서 생성된 바이오디젤이 후단의 반응기로 도입되도록 하는 것이 바람직하다. 한편, 각 반응기의 침전구역에 침전된 글리세롤을 연속적으로 외부로 배출/제거할 수도 있고, 후단에 침전된 글리세롤을 전단에 투입할 수도 있다. 이때, 후단에 설치된 반응기의 글리세롤 배출구가 최선단에 설치된 반응기의 원료투입구와 연결되어 있어, 후단의 반응기에서 생성된 글리세롤이 최선단의 반응기로 도입되고, 최선단에 침전된 글리세롤을 배출/제거하는 것이 바람직하다. In the present invention, it is preferable that the biodiesel outlet of the reactor installed at the front end is connected to the raw material inlet of the reactor installed at the rear end so that the biodiesel generated in the reactor at the front end is introduced into the reactor at the rear end. Meanwhile, the glycerol precipitated in the precipitation zone of each reactor may be continuously discharged / removed to the outside, or the glycerol precipitated at the rear stage may be introduced to the front end. At this time, the glycerol outlet of the reactor installed in the rear stage is connected to the raw material inlet of the reactor installed in the upper stage, the glycerol produced in the reactor of the rear stage is introduced into the reactor of the first stage, to discharge / remove the glycerol precipitated at the top stage It is preferable.

본 발명에 적용되는 단위 반응기의 차단판은 상기 반응조 하부 면적을 (1:9)~(9:1)로 구획하게 된다. 즉, 상기 순환구역과 침전구역의 면적비(따라서 부피비)는 (1:9)~(9:1)가 될 수 있다. 구체적 비율은 반응의 종류와 반응속도, 원하는 최종반응효율 등에 따라 다양하게 정할 수 있다. 범용성을 증가시키기 위해, 상기 차단판은 조작에 의해 이동가능한 형태로 설계될 수도 있을 것이다.The blocking plate of the unit reactor to be applied to the present invention divides the reactor bottom area into (1: 9) to (9: 1). That is, the area ratio (and therefore volume ratio) of the circulation zone and the precipitation zone may be (1: 9) to (9: 1). The specific ratio can be variously determined according to the type and reaction rate of the reaction and the desired final reaction efficiency. In order to increase versatility, the barrier plate may be designed to be movable by operation.

반응 결과물로서 글리세롤은 비중에 의해 침전하는 경향이 있으므로, 반응용액의 상부에 가까울수록 글리세롤의 농도가 낮아지게 된다. 따라서 연속식 반응을 수행하는 경우, 상기 반응물순환용 순환유출구가 상기 바이오디젤 배출구의 하부에 이격되어 설치되는 것이 좋다. As the result of the reaction, glycerol tends to precipitate by specific gravity, so that the closer to the top of the reaction solution, the lower the concentration of glycerol. Therefore, when performing a continuous reaction, it is preferable that the circulating outlet for reactant circulation is spaced below the biodiesel outlet.

본 발명에서 상기 원료투입구은 상기 순환유입구와 일체형이거나, 상기 순환관에 결합된 형태일 수도 있다. In the present invention, the raw material inlet may be integrated with the circulation inlet or may be coupled to the circulation pipe.

본 발명에 의한 상기 반응기를 바이오디젤 제조를 위해 사용할 수 있다. 이때 상기 바이오디젤은 글리세롤이 된다. 하기 실시예는 바이오디젤의 제조에 관해서 수행되었다. 이 경우, 외부순환량은 시간당 가동부피의 1~32배가 되도록 하는 것이 바람직하다.The reactor according to the invention can be used for biodiesel production. In this case, the biodiesel becomes glycerol. The following examples were performed with regard to the preparation of biodiesel. In this case, the external circulation amount is preferably 1 to 32 times the working volume per hour.

본 발명은 종래 알려진 다양한 원료를 활용할 수 있다. 본 발명에서 상기 유지류는 대두유, 옥수수유, 평지유, 아마인유, 해바라기유, 양귀비유, 호두유, 땅콩류, 면실유, 미강유, 동백유, 피마자유, 올리브유, 우지(牛脂), 돈지(豚脂), 양지(羊脂), 어유(魚油), 경유(鯨油), 폐식용유 등 각종의 동식물성 오일류를 단독 또는 적절히 혼합한 것일 수 있다. 또한 본 발명에서 상기 알콜은 메탄올, 에탄 올, 프로판올, 부탄올 중에서 선택된 어느 하나 또는 둘 이상의 혼합물일 수 있다. 또한 본 발명에서는 종래 알려진 다양한 종류의 촉매를 사용할 수 있으며, 촉매의 첨가량은 유지류 중량에 대해 0.3∼2.0중량%인 것이 바람직하다. 하기 실시예에서는 실험의 편의를 위해 대두유, 메탄올 및 촉매로 NaOCH3를 이용하였으나 다른 원료를 사용하더라도 본 발명의 기술적 사상이 적용될 수 있음은 당업자에게 있어 당연할 것이다.The present invention can utilize various conventionally known raw materials. In the present invention, the fats and oils are soybean oil, corn oil, rapeseed oil, linseed oil, sunflower oil, poppy oil, walnut oil, peanuts, cottonseed oil, rice bran oil, camellia oil, castor oil, olive oil, tallow (牛 脂), pork Various animal and vegetable oils, such as sunny, fish oil, light oil, and waste cooking oil, may be used singly or as appropriate. In the present invention, the alcohol may be any one or a mixture of two or more selected from methanol, ethanol, propanol, butanol. In the present invention, various types of catalysts known in the art can be used, and the amount of the catalyst added is preferably 0.3 to 2.0% by weight based on the weight of the fat or oil. In the following examples, NaOCH 3 was used as a soybean oil, methanol, and a catalyst for the convenience of experiments, but it will be obvious to those skilled in the art that the technical spirit of the present invention may be applied even if other raw materials are used.

본 발명에 의한 다단 반응기 시스템을 이용하는 경우, 생성물 중 비중 차가 있는 물질의 반응-동시-분리를 통하여 역반응을 막아 수득률과 생산성을 향상시킴으로써 생산원가 절감, 공간활용성 증대 및 투자비 절감을 기대할 수 있다. When using the multi-stage reactor system according to the present invention, it is possible to expect a reduction in production cost, increased space utilization and reduced investment cost by improving the yield and productivity by preventing the reverse reaction through the reaction-simultaneous-separation of the material having a specific gravity difference in the product.

또한 본 발명에 의한 반응기 시스템을 활용함으로써 보다 경제적으로 바이오디젤을 양산할 수 있어, 에너지 수급 및 환경보호에 지대한 효과를 얻을 수 있게 된다.즉, 본 발명에 의한 반응기 시스템을 활용하여 바이오디젤을 생산하는 경우, 반응과정에서 자연스럽게 글리세롤을 분리할 수 있을 뿐만 아니라 에스테르화반응만으로 고순도(99% 이상)의 바이오디젤을 생산할 수 있다. 이를 통하여 증류공정을 거치지 않아도 양질의 바이오디젤을 생산할 수 있게 되며 증류공정을 거칠지라도 수득률이 높아져 생산원가 절감을 기대할 수 있다. 또한 다른 연속공정에 비하여 단위설비 구축비용의 절감을 기대할 수 있다.In addition, it is possible to mass-produce biodiesel more economically by utilizing the reactor system according to the present invention, thereby obtaining a great effect on energy supply and environmental protection. That is, biodiesel is produced using the reactor system according to the present invention. In this case, the glycerol may be naturally separated in the reaction process, and biodiesel of high purity (more than 99%) may be produced only by esterification. Through this, high-quality biodiesel can be produced without going through a distillation process, and even a distillation process can be expected to yield high production yields. In addition, it can be expected to reduce the cost of building the unit compared to other continuous processes.

이하 첨부된 도면과 사전실험 및 실시예를 참조하여 본 발명을 보다 상세히 설명한다. 그러나 이러한 도면과 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and pre-experiments and examples. However, these drawings and embodiments are only examples for easily explaining the contents and scope of the technical idea of the present invention, and thus the technical scope of the present invention is not limited or changed. In addition, it will be apparent to those skilled in the art that various modifications and changes can be made within the scope of the present invention based on these examples.

도 2와 도 3은 본 발명에 의한 다단반응에 사용되는 단위 반응기의 예를 보여주는 개념도이다. 도 2는 본 발명에 의한 반응기의 순환유출구와 순환유입구가 반응조 내부 공간으로 확장되어 있는 예를, 도 3은 순환유출구와 순환유입구가 반응조의 내면에 설치되어 있는 예를 보여준다. 순환유출구와 순환유입구의 형태나 위치는 반응조 내부에서의 반응액의 유동모형에 따라 임의로 다양하게 취사선택할 수 있음은 당업자에 있어 당연할 것이다. 도 6은 단위 반응기가 복수개 다단으로 연결된 본 발명에 의한 다단 반응기 시스템의 일예를 도시한 것이다.2 and 3 are conceptual views showing an example of a unit reactor used in the multistage reaction according to the present invention. 2 shows an example in which the circulation outlet and the circulation inlet of the reactor according to the present invention are expanded into the inner space of the reactor, and FIG. 3 shows an example in which the circulation outlet and the circulation inlet are installed on the inner surface of the reactor. It will be apparent to those skilled in the art that the shape and location of the circulation outlet and the circulation inlet can be arbitrarily varied according to the flow model of the reaction liquid in the reaction tank. 6 shows an example of a multi-stage reactor system according to the present invention in which a unit reactor is connected in multiple stages.

실시예에 앞서 단위 반응기의 규격과 형태를 확정하기 위한 사전실험을 수행하였다.Prior to the examples, preliminary experiments were carried out to determine the specifications and shapes of the unit reactors.

사전실험 1Pretest 1

개괄적인 사전실험 결과, 본 발명의 다단 반응기 중 각 단위 반응기는, 반응 조의 직경과 높이의 비가 1:(3~5) 정도, 순환구역과 침전구역의 면적비가 1:(1~4) 정도, 차단판의 높이가 반응조 높이의 20~50% 정도일 경우 더욱 우수한 반응효율을 얻을 수 있었다. 또한 내부순환율은, 회분식의 경우 한시간에 6~15회전, 연속식의 경우 원료 투입유량의 1 ~ 20 배인 것이 바람직하였다.As a result of the general preliminary experiment, each unit reactor in the multistage reactor of the present invention has a ratio of the diameter and height of the reaction tank of about 1: (3 to 5), the area ratio of the circulation zone and the precipitation zone of about 1: (1 to 4), When the height of the blocking plate is about 20 to 50% of the height of the reactor, more excellent reaction efficiency was obtained. In addition, it is preferable that the internal circulation rate is 6 to 15 revolutions per hour in the case of a batch type, and 1 to 20 times the flow rate of raw materials in the case of the continuous type.

따라서 하기 실시예에서는 가동부피가 1ℓ이며, 반응조의 직경과 높이의 비가 1:3, 순환구역과 침전구역의 면적비가 1:3, 차단판의 높이가 반응조 높이의 35%인 실험실용 원통형 단위 반응기를 제작하고 이를 다단으로 하여 실험하였다. 이때 각 단위 반응기의 외곽에 물자켓을 설치하여 반응온도가 적절히 유지되도록 하였다.Therefore, in the following examples, the movable volume is 1 L, the ratio of the diameter and height of the reactor is 1: 3, the area ratio of the circulation zone and the precipitation zone is 1: 3, and the height of the barrier plate is 35% of the height of the reactor. Was fabricated and tested in multiple stages. At this time, by installing a material jacket on the periphery of each unit reactor, the reaction temperature was properly maintained.

사전실험 2 : 단위 반응기의 순환구역과 침전구역의 비율 결정Pre-experiment 2: Determination of the ratio between the circulation zone and the precipitation zone of the unit reactor

도면 2와 같은 원주형 1ℓ 용량의 단위 반응기(가로:세로=1:3)에 침전구역의 바닥면적이 10, 30, 50, 70 및 90%가 되도록 차단판의 위치를 변경시키면서 반응을 수행하였다. 이때 차단판의 높이는 반응기 높이의 35%가 되도록 하였다.The reaction was carried out in the columnar 1 L unit reactor (horizontal: length = 1: 3) as shown in FIG. 2 while changing the position of the barrier plate so that the bottom area of the precipitation zone was 10, 30, 50, 70 and 90%. . At this time, the height of the blocking plate was to be 35% of the height of the reactor.

원료반응액은 [대두유 1,000g , 메탄올 200g , NaOCH3(메탄올 70중량% + NaOCH3 30중량%) 10g]의 비율로 준비하였다.The raw material reaction solution was prepared at a ratio of [1000 g of soybean oil, 200 g of methanol, 10 g of NaOCH 3 (70 wt% methanol + 30 wt% NaOCH 3 )].

먼저 상기 반응액 1ℓ를 단위 반응기에 주입하고 온도를 50℃로 승온한 후 순환펌프를 작동하여 자체순환량이 10ℓ/Hr 되도록 하였고, 반응시간은 20분으로 하였다. 반응 종료 후 단위 반응기 상부로부터 반응액을 채취하여, 메틸에스테르 (목적물인 바이오디젤;BD) 함량은 KS M2413 방법, 글리세롤 함량은 KS M 2412 방법에 따라 측정하였다. 반응 결과를 표 1 및 도 4에 나타내었다.First, 1 L of the reaction solution was injected into a unit reactor, and the temperature was raised to 50 ° C., and then a circulation pump was operated so that the self-circulating amount was 10 L / Hr, and the reaction time was 20 minutes. After completion of the reaction, the reaction solution was taken from the upper part of the reactor, and the methyl ester (target biodiesel; BD) content was measured according to the KS M2413 method and the glycerol content according to the KS M 2412 method. The reaction results are shown in Table 1 and FIG. 4 .

Figure 112007086353512-PAT00001
Figure 112007086353512-PAT00001

표 1에서 볼 수 있듯이, 본 발명에 적용되는 단위 반응기에서 침전구역의 넓이가 넓을 수록 BD수득률이 증가함을 확인하였다. 다만 침전구역의 면적이 90% 정도가 되면 순환구역의 면적이 작아져 상대적으로 순환구역 선단속도가 증대되어 글리세롤의 침전량이 줄어드는 현상을 나타내었다. 따라서 반응효율 및 글리세롤의 침전(제거)효과를 동시에 고려하여 침전구역의 면적이 10~90%, 더욱 바람직하게는 50~80%가 되도록 차단판을 위치시키는 것이 바람직함을 알 수 있다. 다만, 차단판의 위치는 차단판의 높이에 따라 달라질 수 있으며, 차단판 높이에 따른 적절한 차단판의 위치는 본 발명의 기술적 사상의 범위 내에서 당업자가 반복실험에 의해 찾아낼 수 있을 것이다.As shown in Table 1, it was confirmed that the BD yield increases as the area of the precipitation zone in the unit reactor applied to the present invention increases. However, when the area of sedimentation zone is about 90%, the area of circulation zone decreases and the tip speed of the circulation zone is relatively increased, resulting in the decrease of glycerol precipitation. Therefore, in consideration of the reaction efficiency and the precipitation (removal) effect of glycerol at the same time it can be seen that it is preferable to place the barrier plate so that the area of the precipitation zone is 10 ~ 90%, more preferably 50 ~ 80%. However, the position of the barrier plate may vary depending on the height of the barrier plate, the position of the appropriate barrier plate according to the height of the barrier plate will be found by those skilled in the art by repeated experiments within the scope of the technical idea of the present invention.

사전실험 3 : 단위 반응기의 외부순환량에 따른 반응실험Pre-experiment 3: Reaction test according to external circulation of unit reactor

침전구역의 면적이 70%가 되도록 차단판을 설치한 점을 제외하고는 사전실험 2와 동일한 원료반응액 및 반응조건에서 32ℓ/Hr 용량의 펌프를 이용하여 외부순환유량을 변경하며 실험을 진행하였다. The experiment was carried out by changing the external circulation flow rate using a 32 L / Hr pump under the same raw material reaction solution and reaction conditions except that the blocking plate was installed so that the area of the sedimentation zone was 70%. .

먼저 상기 반응액 1ℓ를 단위 반응기에 주입하고 온도를 50℃로 승온한 후 순환펌프를 작동하여 자체순환량을 각각 1ℓ/Hr ,2ℓ/Hr … 32ℓ/Hr로 하였고, 반응시간은 20분으로 하였다. 반응 종료 후 단위 반응기 상부로부터 반응액을 채취하여, 메틸에스테르(목적물인 바이오디젤;BD) 함량은 KS M2413 방법, 글리세롤 함량은 KS M 2412 방법에 따라 측정하였다. 이러한 1단 회분식 반응을 10회 반복하여 그 결과를 표 2 및 도 5에 나타내었다.First, 1 liter of the reaction solution was introduced into a unit reactor, and the temperature was raised to 50 ° C., and then a circulation pump was operated to generate 1 L / Hr, 2 L / Hr... It was 32 L / Hr and the reaction time was 20 minutes. After completion of the reaction, the reaction solution was taken from the top of the unit reactor, and the methyl ester (target biodiesel; BD) content was measured according to the KS M2413 method and the glycerol content according to the KS M 2412 method. This one-stage batch reaction was repeated 10 times and the results are shown in Table 2 and FIG. 5.

Figure 112007086353512-PAT00002
Figure 112007086353512-PAT00002

표 1에서 볼 수 있듯이, 본 발명에 의한 반응기를 적절한 유량으로 외부순환시키는 경우 반응개시 20분 이내에 약 90%에 가까운 BD 수득률을 얻을 수 있음을 알 수 있다. 특히 외부순환량이 [8 working volume/Hr]일 때 BD수득률(84%)도 상당히 높고, 글리세롤 침전량(70g)도 많았다. 글리세롤 침전량이 많다는 것은 반응액 중의 글리세롤이 적어 정반응 속도의 감소 정도가 낮음을 의미한다. As can be seen from Table 1, it can be seen that when the reactor according to the present invention is externally circulated at an appropriate flow rate, a BD yield of about 90% can be obtained within 20 minutes from the start of the reaction. Especially, when the external circulation was [8 working volume / Hr], the BD yield was high (84%) and the glycerol precipitation (70g) was also high. A large amount of glycerol precipitates means that there is less glycerol in the reaction solution, so that the rate of decrease in the forward reaction rate is low.

침전된 글리세롤은 글리세롤 배출구를 통해 제거될 수 있다.Precipitated glycerol can be removed through the glycerol outlet.

상기와 같은 단위 반응기의 특성은, 도 1에 도시된 바와 같은 종래 시스템을 이용한 경우에 비해 경제적임을 확인하였다(도시 생략-본 발명자들의 동일자 출원서에 상세히 설명됨).It was confirmed that the characteristics of the unit reactor as described above are economical compared to the case of using the conventional system as shown in FIG. 1 (not shown-described in detail in the applicant's same application).

실시예 1~3 : 다단 반응기를 이용한 연속제조실험Examples 1 to 3: continuous manufacturing experiment using a multi-stage reactor

가동부피가 1ℓ이며, 반응조의 직경과 높이의 비가 1:3, 순환구역과 침전구역의 면적비가 1:3, 차단판의 높이가 반응조 높이의 30%인 실험실용 원통형 단위 반응기인 제1반응기, 제2반응기...를 도 6a 및 도 6b와 같이 연속으로 설치하여 실험하였다. 이때 각 단위 반응기의 외곽에 물자켓을 설치하여 반응온도가 적절히 유지되도록 하였다. 도 6a 및 도 6b에는 배관 상태가 다소 상이한 예를 각각 표시하였으나 기술적 사상은 동일하다. 또한 도 6a 및 도 6b에는 각각 4단의 반응기 시스템이 도시되어 있으나, 필요에 따라 단수를 줄이거나 늘일 수 있음은 당연하다. 실시예 1, 2 및 3은 각각 2단, 3단 및 4단 반응기 시스템에 대한 예시이다.The first reactor, which is a laboratory cylindrical unit reactor having a movable volume of 1 L, a ratio of a diameter and a height of a reaction tank of 1: 3, an area ratio of a circulation zone and a precipitation zone of 1: 3, and a height of a barrier plate of 30% of a height of a reaction tank, The second reactor ... was tested in succession as shown in Figures 6a and 6b. At this time, by installing a material jacket on the periphery of each unit reactor, the reaction temperature was properly maintained. 6A and 6B show examples of somewhat different pipe states, but the technical ideas are the same. In addition, although the reactor system of four stages are respectively shown in FIGS. 6A and 6B, it is obvious that the number of stages can be reduced or extended as necessary. Examples 1, 2 and 3 are examples of two, three and four stage reactor systems, respectively.

먼저, [대두유 1,000 : 메탄올 200 : NaOCH3(메탄올 70중량% + NaOCH3 30중량%) 10(중량비)]로 이루어진 반응액(대두유 1,000g + 메탄올 200g + NaOCH3(메탄올 중량70% + NaOCH3 30중량%) 10g ⇒ 약 1.350ℓ) 1ℓ씩을 최선단 단위반응기(제1반응기)에 주입한 후 온도를 50~65℃로 승온하고 순환펌프를 작동하여 자체순환량을 10ℓ/hr(사전 실험 결과, 반응액 주입유량의 5~15배가 적절하였음)로 하면서 20분간 제1반응기만을 작동하였다. 이어서 상기 반응액을 1.350ℓ/hr의 유속으로 제1반응기의 원료투입구로 연속주입하면서 가동부피를 넘어서는 반응액을 후단 반응기의 원료투입구로 연속주입하였다. 이때 메탄올을 65mℓ/hr의 유속으로 제2반응기의 원료투입구로 동시에 연속주입하였다. 제2반응기에 반응액이 가동부피로 채워지면, 단위 반응기의 순환펌프를 작동하여 자체순환량을 10ℓ/hr로 하면서 연속반응을 개시하였다. 3단 이상인 경우, 메탄올의 추가주입만 하지 않고, 전단의 단위반응기 조작과 동일하게 조작하였다. 최후단 반응기의 바이오디젤 배출구로부터 생성물이 배출되기 시작한지 1시간(시스템이 안정화되는 시간) 경과 후부터, 20분 간격으로 제일 후단의 반응기의 바이오디젤 배출구로부터 샘플을 채취하고 메틸에스테르(목적물인 바이오디젤;BD)의 함량을 측정하고 수득률을 계산하였다. 실시예 1~3의 수득률 결과를 각각 도 7, 8, 9에 도시하였다. 도면에서 '회차'는 샘플링 횟수를 나타낸다. 도에서 볼 수 있듯이, 본 발명에 의한 2단, 3단 및 4단 반응기 시스템에 의한 경우, 바이오디젤 수득률이 각각 약 94.6, 98.5 및 99.7%에 이름을 확인하였다. First, [soybean oil 1,000: methanol 200: NaOCH 3 (methanol 70% by weight + NaOCH 3 30 wt%) 10 (weight ratio)] (soybean oil 1,000 g + methanol 200 g + NaOCH 3 (methanol weight 70% + NaOCH 3) 30 wt%) 10g ⇒ about 1.350ℓ) 1ℓ each 1st stage unit reactor (first reactor), and then the temperature is raised to 50 ~ 65 ℃ and operating the circulation pump 10L / hr (pre-test results, Only the first reactor was operated for 20 minutes with 5-15 times the flow rate of the reaction solution. Subsequently, the reaction liquid was continuously injected into the raw material inlet of the subsequent reactor while the reaction liquid was continuously injected into the raw material inlet of the first reactor at a flow rate of 1.350 L / hr. At this time, methanol was continuously injected simultaneously into the raw material inlet of the second reactor at a flow rate of 65 ml / hr. When the reaction liquid in the second reactor was filled with the movable volume, the circulating pump of the unit reactor was operated to start the continuous reaction with the self-circulating amount being 10 l / hr. In the case of three or more stages, the operation was carried out in the same manner as in the unit reactor operation in the preceding stage, without additional injection of methanol. One hour after the product has been discharged from the biodiesel outlet of the last reactor (the time the system is stabilized), samples are taken from the biodiesel outlet of the reactor of the last reactor every 20 minutes and methyl ester (target biodiesel is used). ;) Content) and the yield was calculated. The yield results of Examples 1-3 are shown in FIGS. 7, 8, and 9, respectively. In the figure, 'turn' indicates the number of sampling. As can be seen in the figure, biodiesel yields were identified at about 94.6, 98.5 and 99.7% for the two, three and four stage reactor systems according to the present invention.

단위 반응기의 글리세롤출구로부터 모두 80~87mℓ/hr의 글리세롤이 분리되었는데, 대부분은 최선단 반응기로부터 분리되었다. 다단 반응기 시스템에서 층분리되는 글리세롤은 각 단위반응기에서 개별적으로 회수될 수도 있고, 후단의 글리세롤을 최선단인 제1반응기로 순환시키고 제1반응기에서만 분리회수될 수도 있다. 도시하지는 않았지만 후자, 즉 후단의 반응기로부터의 글리세롤을 제1반응기로 재투입하고, 전체 생성된 글리세롤을 제1반응기에서 제거하는 경우 반응효율이 다소 증가하는 현상을 나타내었다. 이는 글리세롤 층에 존재하는 촉매가 재활용되기 때문인 것으로 판단된다.80-87 ml / hr of glycerol were separated from the glycerol outlet of the unit reactor, most of which was separated from the reactor. Glycerol which is separated in a multistage reactor system may be recovered separately in each unit reactor, or the glycerol in the rear stage may be circulated to the first reactor which is the best stage and separated and recovered only in the first reactor. Although not shown, the latter, that is, when the glycerol from the latter stage of the reactor is re-injected to the first reactor, and the total glycerol removed from the first reactor showed a phenomenon that the reaction efficiency slightly increased. This is believed to be because the catalyst present in the glycerol layer is recycled.

이상 실시예에서 확인하였듯이, 본 발명에 의한 반응기를 이용할 경우, 종래기술에 비해 월등히 우수한 반응효율을 얻을 수 있었다. 이는 본 발명에 의하는 경우 수득률이 매우 높아 별도의 정제(예컨대, 증류)가 필요없이 고순도의 바이오디젤을 얻을 수 있게 된다.As confirmed in the above embodiment, when using the reactor according to the present invention, it was possible to obtain significantly superior reaction efficiency compared to the prior art. This is very high yield in accordance with the present invention it is possible to obtain a high-purity biodiesel without the need for a separate purification (for example distillation).

본 발명의 예로 든 실시예들과 관련하여 본 발명의 다양한 특징들이 구체적으로 도시 및 설명되어 있지만, 이들 구체적인 장치, 이들의 제조방법은 제한적이 아니라 단지 예로서 든 것일 뿐이며 본 발명은 청구의 범위내에서 완전하게 해석되는 것으로 이해될 수 있을 것이다.While various features of the invention have been shown and described in detail in connection with the illustrative embodiments of the invention, these specific devices, their methods of manufacture, are by way of example only and are intended to be illustrative only and the invention is within the scope of the claims. It will be understood as fully interpreted in.

도 1은 종래기술에 의한 바이오디젤 반응 시스템의 개념도.1 is a conceptual diagram of a biodiesel reaction system according to the prior art.

도 2 및 도 3은 본 발명에 의한 반응기의 예를 보여주는 개념도.2 and 3 is a conceptual diagram showing an example of a reactor according to the present invention.

도 4 및 도 5는 본 발명의 사전시험예에 의한 전환율을 보여주는 도표.4 and 5 are diagrams showing the conversion rate by the pre-test example of the present invention.

도 6a 및 도 6b는 본 발명에 의한 4단의 반응기 시스템의 예를 보여주는 개념도.6A and 6B are conceptual views showing an example of a four stage reactor system according to the present invention.

도 7~9는 실시예 1~3에 의한 반응실험 결과 수득률을 보여주는 도표.7 to 9 are diagrams showing the results of the reaction test results obtained according to Examples 1 to 3.

********** 주요 도면부호의 설명 ******************** Explanation of Major Reference Codes **********

1. 반응조 2. 차단판1. Reactor 2. Block plate

3. 글리세롤의 침전 경로 4. 순환유출구3. Precipitation Route of Glycerol 4. Circulation Outlet

5. 순환펌프 6. 순환유입구5. Circulation pump 6. Circulation inlet

7. 글리세롤 배출 8. 배출펌프7. Glycerol Discharge 8. Discharge Pump

10. 바이오디젤 배출 11. 원료투입구10. Biodiesel discharge 11. Raw material input port

Claims (6)

바이오디젤 제조를 위한 다단 반응기 시스템에 있어서,In a multi-stage reactor system for biodiesel production, 반응조의 직경 또는 변의 길이와 높이의 비가 1:(2~10)이며,The ratio of the diameter or side length and height of the reactor is 1: (2 to 10), 반응조 내부 하면으로부터 반응조의 5~80% 높이까지 차단판이 형성되어 있고,A blocking plate is formed from the lower surface of the reactor to the height of 5 to 80% of the reactor, 상기 반응조의 상부에는 반응물순환용 순환유출구가, 상기 차단판으로 구분되는 일측구역의 하면에는 반응물순환용 순환유입구가 각각 설치되고, 상기 순환유출구와 순환유입구는 외부순환관 및 순환펌프에 의해 연결되며,The upper part of the reaction vessel is a circulation outlet for the circulation of reactants, the circulation inlet for reactant circulation is provided on the lower surface of one side divided by the blocking plate, and the circulation outlet and the circulation inlet are connected by an external circulation pipe and a circulation pump. , 상기 순환유입구측에 원료투입구가, 상기 반응조의 하부(회분식 반응용) 또는 상부(연속식 반응용)에 바이오디젤 배출구가, 상기 순환유입구의 반대편 구역에 글리세롤 배출구가 각각 설치된 반응기를 다단으로 연속시킨 것을 특징으로 하는 다단 반응기 시스템. A multi-stage reactor in which a raw material inlet on the circulation inlet side, a biodiesel outlet on the lower side (for batch reaction) or an upper portion (for continuous reaction), and a glycerol outlet on the opposite side of the circulation inlet are respectively installed. Multi-stage reactor system, characterized in that. 제 1 항에 있어서,The method of claim 1, 전단에 설치된 반응기의 바이오디젤 배출구가 후단에 설치된 반응기의 원료투입구와 연결되어 있어 전단의 반응기에서 생성된 바이오디젤이 후단의 반응기로 도입되도록 하는 것을 특징으로 하는 다단 반응기 시스템.The biodiesel outlet of the reactor installed at the front end is connected to the raw material inlet of the reactor installed at the rear end, so that the biodiesel produced in the reactor of the front end is introduced into the reactor of the rear stage. 제 1 항에 있어서,The method of claim 1, 후단에 설치된 반응기의 글리세롤 배출구가 최선단에 설치된 반응기의 원료투입구와 연결되어 있어, 후단의 반응기에서 생성된 글리세롤이 최선단의 반응기로 도입되도록 하는 것을 특징으로 하는 다단 반응기 시스템.The glycerol outlet of the reactor installed in the rear stage is connected to the raw material inlet of the reactor installed in the upper stage, so that the glycerol produced in the reactor of the rear stage is introduced into the reactor of the first stage. 제 1 항에 있어서,The method of claim 1, 상기 차단판은 상기 반응조 하부 면적을 (1:9)~(9:1)로 구획하는 것을 특징으로 하는 다단 반응기 시스템.The barrier plate is a multi-stage reactor system, characterized in that partitioning the bottom area of the reaction vessel (1: 9) ~ (9: 1). 제 1 항에 있어서,The method of claim 1, 상기 반응물순환용 순환유출구가 상기 바이오디젤 배출구의 하부에 이격되어 설치되는 것을 특징으로 하는 다단 반응기 시스템.The reactor circulation circulation outlet is a multi-stage reactor system, characterized in that spaced below the biodiesel outlet. 제 1 항에 있어서,The method of claim 1, 상기 원료투입구가 상기 순환유입구와 일체형인 것을 특징으로 하는 다단 반응기 시스템.And the raw material inlet is integrated with the circulation inlet.
KR1020070123217A 2007-11-30 2007-11-30 Multi-Reactor System for the Production of Biodiesel KR100948292B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070123217A KR100948292B1 (en) 2007-11-30 2007-11-30 Multi-Reactor System for the Production of Biodiesel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070123217A KR100948292B1 (en) 2007-11-30 2007-11-30 Multi-Reactor System for the Production of Biodiesel

Publications (2)

Publication Number Publication Date
KR20090056179A true KR20090056179A (en) 2009-06-03
KR100948292B1 KR100948292B1 (en) 2010-03-17

Family

ID=40987613

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070123217A KR100948292B1 (en) 2007-11-30 2007-11-30 Multi-Reactor System for the Production of Biodiesel

Country Status (1)

Country Link
KR (1) KR100948292B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128681B1 (en) * 2009-11-27 2012-03-23 제이씨케미칼(주) An Equipment for Distilling Bio-Diesel and A Method for Using the Equipment
KR102122055B1 (en) * 2019-06-28 2020-06-11 이철호 Method for manufacturing biofuel using a reactor for preventing reverse reaction
KR102122057B1 (en) * 2019-06-28 2020-06-11 이철호 Method for manufacturing biofuel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172951B1 (en) 2019-05-27 2020-11-02 무진기공 주식회사 Biodiesel continuous production system and method using biodiesel manufacturing reactor and electric conductivity
KR20230146863A (en) 2022-04-13 2023-10-20 장호섭 Continuous reaction system for biodiesel/biodiesel raw material and bio-heavy oil production using heat exchanger and cavitation reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566106B1 (en) * 2003-03-28 2006-03-30 한국에너지기술연구원 Production method of low alkyl ester
MX2007009954A (en) * 2005-02-17 2007-09-26 Fraunhofer Ges Forschung Liquid bio-fuel mixture and method and device for producing said mixture.
KR101265759B1 (en) * 2006-04-28 2013-05-20 에스케이케미칼주식회사 Method and apparatus for preparing fatty acid alkyl ester using fatty acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128681B1 (en) * 2009-11-27 2012-03-23 제이씨케미칼(주) An Equipment for Distilling Bio-Diesel and A Method for Using the Equipment
KR102122055B1 (en) * 2019-06-28 2020-06-11 이철호 Method for manufacturing biofuel using a reactor for preventing reverse reaction
KR102122057B1 (en) * 2019-06-28 2020-06-11 이철호 Method for manufacturing biofuel

Also Published As

Publication number Publication date
KR100948292B1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US20070232818A1 (en) Transesterification of oil to form biodiesels
CN100513521C (en) Preparation method of biological diesel oil
KR100948292B1 (en) Multi-Reactor System for the Production of Biodiesel
US8097219B2 (en) Integrated reactor and centrifugal separator and uses thereof
CN103242966A (en) Technology process for producing biodiesel and key preparation device
US20090293346A1 (en) Integrated reactor and centrifugal separator and uses thereof
CN101096602B (en) Method for continuous synthesis of biodiesel without catalyst
KR100927858B1 (en) Reverse reaction prevention reactor
CN100523131C (en) Esterification reaction technique of preparing biodiesel by waste oil
CN100375780C (en) Production of biological diesel oil with solid alkali
KR100928463B1 (en) Method and apparatus for manufacturing single stage continuous biodiesel using pseudo multistage CRT reactor and continuous methanol recovery system
CN1900224B (en) Process for preparing biological diesel oil
US20090247785A1 (en) Methods and systems for pretreatment of an oil stream
CN105713734A (en) Device and method for preparing biodiesel through rotary fixed bed fast reaction
CN101805673A (en) Airlifting biodiesel ester exchange reactor
JP5358351B2 (en) Biodiesel fuel production equipment
CN102888283B (en) Multi-frequency ultrasonic radiation overflow groove continuous biodiesel production device
CN202951286U (en) Glycerin water purification tank
KR102172951B1 (en) Biodiesel continuous production system and method using biodiesel manufacturing reactor and electric conductivity
CN207254286U (en) A kind of reactor novel internal structure
CN2918423Y (en) Continuous phase separator for biological diesel oil and glycerin
KR102122057B1 (en) Method for manufacturing biofuel
CN202865206U (en) Multi-frequency ultrasonic radiation overflow launder type continuous biodiesel production equipment
CN204848822U (en) Serialization bio diesel oil device
KR102153430B1 (en) Biodiesel separation tank that detects layer separation using electrical conductivity and acceleration of layer separation using high voltage and low current when manufacturing bio heavy oil and bio diesel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130311

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140310

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150310

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160311

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170110

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200311

Year of fee payment: 11