KR20090040089A - Piezoelectric material and method of manufacturing the same - Google Patents

Piezoelectric material and method of manufacturing the same Download PDF

Info

Publication number
KR20090040089A
KR20090040089A KR1020070105690A KR20070105690A KR20090040089A KR 20090040089 A KR20090040089 A KR 20090040089A KR 1020070105690 A KR1020070105690 A KR 1020070105690A KR 20070105690 A KR20070105690 A KR 20070105690A KR 20090040089 A KR20090040089 A KR 20090040089A
Authority
KR
South Korea
Prior art keywords
powder
piezoelectric
piezoelectric material
sintering
hours
Prior art date
Application number
KR1020070105690A
Other languages
Korean (ko)
Other versions
KR100896966B1 (en
Inventor
박인길
노태형
남산
박휘열
이형규
강형원
정현철
Original Assignee
주식회사 이노칩테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노칩테크놀로지 filed Critical 주식회사 이노칩테크놀로지
Priority to KR1020070105690A priority Critical patent/KR100896966B1/en
Publication of KR20090040089A publication Critical patent/KR20090040089A/en
Application granted granted Critical
Publication of KR100896966B1 publication Critical patent/KR100896966B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures

Abstract

An NKN-based piezoelectric material is provided to show low-temperature sintering properties in order to mass-produce the NKN-based piezoelectric material and prevent volatilization of Na2O so as to improve piezoelectric characteristics. A method for manufacturing a NKN-based piezoelectric material comprises the following steps of: mixing raw materials powder to prepare a mixture(S100, S200); calcining the mixture to prepare first powder(S300); adding additives to the prepared first powder to prepare second powder(S400); and pressure-molding the second powder and sintering the powder at a temperature range of 700-1000°C(S500, S600). The raw materials powder contains K2CO3, Na2CO3, Nb2O5, BaCO3 and TiO2. The additives are oxide containing CuO or ZnO. The second powder is prepared by wet-mixing the first powder and the additives for 50-100 hours and drying the powder.

Description

압전 재료 및 그 제조 방법{Piezoelectric material and method of manufacturing the same}Piezoelectric material and method of manufacturing the same

본 발명은 압전 재료 및 그 제조 방법에 관한 것으로, 특히 환경 오염 물질인 납 성분을 이용하지 않고 낮은 소결 온도에서 제조할 수 있으며, 압전 특성을 향상시킬 수 있는 압전 재료 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric material and a method for manufacturing the same, and more particularly, to a piezoelectric material and a method for manufacturing the same, which can be produced at a low sintering temperature without using a lead component, which is an environmental pollutant.

압전 물질이란 그에 가해지는 기계적 에너지와 전기적 에너지를 서로 간에 변환시킬 수 있는 특성을 지닌 재료를 말하며, 압전 효과는 전기기계 결합계수(kp)를 사용하여 가해준 전기적 에너지에 대한 기계적 에너지로 변환된 값으로 정의된다. 따라서, 우수한 전기기계 결합계수를 가진 압전 재료는 전기기계 에너지간의 선형적 변환이 가능하므로 기계적 변환량의 정확한 제어가 가능하며, 역으로 외부의 진동 신호를 정확하게 선형적인 전기 신호로 받을 수 있다. 또한, 이러한 변환이 재료 자체의 특성으로 인해 나타나므로 구조가 간단해지는 장점이 있다.A piezoelectric material is a material that can convert mechanical energy and electrical energy applied to each other, and the piezoelectric effect is a value converted from mechanical energy to electrical energy applied using an electromechanical coupling coefficient (kp). Is defined. Therefore, the piezoelectric material having an excellent electromechanical coupling coefficient can linearly convert between electromechanical energies, thereby enabling accurate control of the amount of mechanical conversion, and conversely, external vibration signals can be accurately received as linear electric signals. In addition, this conversion is due to the properties of the material itself has the advantage of simplifying the structure.

이러한 압전 재료는 초음파 기기, 영상기기, 음향기기, 통신기기, 센서 등 광범위한 분야에 이용되는 초음파 진동자, 전기기계 초음파 트랜스듀서(Transducer), 액츄에이터(Actuator) 부품들의 재료로 널리 사용되고 있다.Such piezoelectric materials are widely used as materials for ultrasonic vibrators, electromechanical ultrasonic transducers, and actuator components used in a wide range of fields such as ultrasonic devices, imaging devices, audio devices, communication devices, and sensors.

종래에는 높은 압전 특성으로 인해 Pb(Zr,Ti)O3(PZT) 계열의 재료가 대부분의 압전 재료로 활용되었다. 그러나, PZT 계열의 재료는 독성이 강한 납(Pb)을 포함하고, 소결(Sintering) 과정에서 휘발성이 강해 심각한 환경 오염을 일으키고 있다. 이와 같이, 납 성분은 이미 오래 전부터 큰 문제점으로 인식되어 왔으며, 유럽(EU), 미국 등에서는 전기전자 제품에서 위험 물질인 납 성분을 포함하는 중금속 물질(카드늄, 수은, 브롬계 난연제 등)의 사용을 금지하고 있다. 비록 전자 세라믹스 부품에서는 납 성분을 예외 사항으로 두었지만 대체 가능한 물질이 개발되면서 전자 세라믹스 부품에서도 납 성분의 사용을 금지하게 되었다.Conventionally, Pb (Zr, Ti) O 3 (PZT) -based materials have been used as most piezoelectric materials due to their high piezoelectric properties. However, PZT-based materials contain toxic lead (Pb) and are volatile during sintering, causing serious environmental pollution. As such, lead has long been recognized as a major problem, and in the EU and the US, heavy metal materials containing cadmium, which are dangerous substances in electrical and electronic products, such as cadmium, mercury, bromine-based flame retardants, etc. Is forbidden. Although lead is an exception for electronic ceramic parts, the development of alternative materials has banned the use of lead in electronic ceramic parts.

이와 같이, 납 성분이 환경에 미치는 영향 때문에 비연계열 압전 재료에 대한 개발이 전세계적으로 활발히 진행되고 있다. 대표적인 비연계열 압전 재료로는 비스무스(Bi) 계열 페로브스카이트(perovskite) 재료와 (Na0.5K0.5)NbO3(NKN) 계열 압전 재료가 활발히 연구진행 중이다.As described above, the development of non-linked piezoelectric materials due to the effect of lead on the environment is being actively conducted worldwide. Bismuth (Bi) -based perovskite materials and (Na 0.5 K 0.5 ) NbO 3 (NKN) -based piezoelectric materials are being actively studied.

NKN 계열의 압전 재료는 RTGG법(Reactive Template Grain Growth Method)으로 제작된 (NaK)NbO3-LiNbTaSbO3가 PZT와 유사한 압전 특성을 보이다는 내용이 보고된 바 있다. 즉, 이는 전기기계 결합상수가 0.61이고, 압전 상수가 416pC/N으로 종래의 PZT와 유사한 압전 특성을 보인다. 게다가 이 조성의 경우 일반적인 세라믹스법으로 제작하여도 압전 상수가 300pC/N의 매우 높은 압전 특성을 보여 현재 관심 이 집중되고 있다.It has been reported that NKN-based piezoelectric materials exhibit piezoelectric properties similar to those of PZT with (NaK) NbO 3 -LiNbTaSbO 3 fabricated by the RTGG method (Reactive Template Grain Growth Method). That is, the electromechanical coupling constant is 0.61 and the piezoelectric constant is 416 pC / N, which shows piezoelectric characteristics similar to those of the conventional PZT. In addition, this composition shows a very high piezoelectric property of 300pC / N even when manufactured by a general ceramic method, which is attracting attention.

그 밖에도 현재 PZT와 유사한 압전 특성을 보이는 다양한 NKN 계열 압전 재료가 제안되었으며, 그 연구가 활발히 진행되어 PZT를 대체할 수 있는 가장 유력한 재료로 부상되어 있다.In addition, various NKN-based piezoelectric materials with similar piezoelectric properties as PZT have been proposed, and research has been actively conducted to emerge as the most potent material to replace PZT.

그러나, 현재까지 개발된 NKN 계열 압전 재료는 CIP(Cold Isostatic Pressing)로 제작된 시편으로 분석되거나, 1000℃를 넘는 고온에서 소결되었다. 고온 소결의 경우 압전 성형체에 전극 물질을 도포하여 소결하는 경우 전극 물질로서 녹는점이 높은 백금(Pt) 또는 백금(Pt)과 은(Ag)의 합금을 이용해야 한다. 그런데, 백금(Pt)은 고가의 금속 물질이기 때문에 이를 이용하면 양산 공정에서 생산성을 저하시키게 된다. 또한, 고온 소결 공정에 의해 NKN 계열 압전 재료가 함유하는 Na2O이 휘발되어 NKN계열 압전 재료의 압전 특성을 저하시키게 된다.However, NKN-based piezoelectric materials developed to date have been analyzed with specimens made of cold isostatic pressing (CIP) or sintered at high temperatures over 1000 ° C. In the case of high temperature sintering, when the electrode material is applied to the piezoelectric molded body and sintered, platinum (Pt) or an alloy of platinum (Pt) and silver (Ag) having a high melting point should be used as the electrode material. However, since platinum (Pt) is an expensive metal material, using it reduces productivity in a mass production process. In addition, Na 2 O contained in the NKN-based piezoelectric material is volatilized by the high temperature sintering process to reduce the piezoelectric properties of the NKN-based piezoelectric material.

본 발명은 납을 이용하지 않는 NKN 계열의 압전 재료 및 그 제조 방법을 제공한다.The present invention provides an NKN-based piezoelectric material and a method for producing the same, which do not use lead.

본 발명은 저온 소결이 가능하여 양산 적용시 생산성을 향상시킬 수 있으며, Na2O의 휘발을 방지하여 압전 특성을 향상시킬 수 있는 NKN 계열의 압전 재료 및 그 제조 방법을 제공한다.The present invention provides a NKN-based piezoelectric material and a method of manufacturing the same, which can improve productivity when mass production is possible due to low temperature sintering, and prevent volatilization of Na 2 O to improve piezoelectric properties.

본 발명의 일 양태에 따른 압전 재료는 (Na0.5K0.5)Nb3-BaTiO3에 x mol%(0%<x≤20%)의 첨가제가 첨가되어 소결 온도가 700 내지 1000℃이며, 첨가제는 CuO 또는 ZnO를 포함하는 산화물이다.In the piezoelectric material according to the exemplary embodiment of the present invention, x mol% (0% <x ≦ 20%) of an additive is added to (Na 0.5 K 0.5 ) Nb 3 -BaTiO 3 to have a sintering temperature of 700 to 1000 ° C. It is an oxide containing CuO or ZnO.

본 발명의 다른 양태에 따른 압전 재료의 제조 방법은 원료 분말을 혼합하여 혼합물을 제조하는 단계; 상기 혼합물을 하소하여 제 1 분말을 제조하는 단계; 상기 제 1 분말에 첨가제를 첨가 및 혼합하여 제 2 분말을 제조하는 단계; 및 상기 제 2 분말을 가압 성형한 후 700 내지 1000℃의 온도에서 소결하여 압전 재료를 제조하는 단계를 포함한다.Method for producing a piezoelectric material according to another aspect of the present invention comprises the steps of mixing the raw powder to produce a mixture; Calcining the mixture to prepare a first powder; Preparing a second powder by adding and mixing an additive to the first powder; And pressing-molding the second powder and sintering at a temperature of 700 to 1000 ° C. to produce a piezoelectric material.

상기 원료 분말들은 K2CO3, Na2CO3, Nb2O5, BaCO3, TiO2를 포함하고, 상기 첨가제는 CuO 또는 ZnO를 포함하는 산화물이다.The raw powders include K 2 CO 3 , Na 2 CO 3 , Nb 2 O 5 , BaCO 3 , TiO 2 , and the additive is an oxide comprising CuO or ZnO.

상기 제 2 분말은 상기 제 1 분말과 상기 첨가제를 50 내지 100시간 동안 습식 혼합한 후 건조하여 제조하고, 습식 혼합은 복수회 반복 실시한다.The second powder is prepared by wet mixing the first powder and the additive for 50 to 100 hours and then drying, and the wet mixing is repeatedly performed a plurality of times.

상기 소결은 1시간 내지 25시간동안 실시한다.The sintering is carried out for 1 to 25 hours.

본 발명에 따른 압전 재료는 (Na0.5K0.5)Nb3-BaTiO3에 CuO, ZnO 등의 산화물을 첨가함으로써 소결 온도를 950℃까지 낮출 수 있을 뿐만 아니라 압전 특성이 향상된 압전 재료를 제조할 수 있다.In the piezoelectric material according to the present invention, by adding oxides such as CuO and ZnO to (Na 0.5 K 0.5 ) Nb 3 -BaTiO 3 , the sintering temperature may be lowered to 950 ° C. and piezoelectric materials having improved piezoelectric properties may be manufactured. .

또한, 소결 온도를 950℃까지 낮출 수 있기 때문에 성형체에 전극 물질을 도포하여 소결하는 경우 녹는점이 961℃이고 백금보다 상대적으로 저렴한 은(Ag)을 전극 물질로 이용할 수 있어 생산성을 향상시키고 생산 단가를 낮출 수 있다.In addition, since the sintering temperature can be lowered to 950 ° C, when the electrode material is applied to the molded body and sintered, the melting point is 961 ° C and silver (Ag), which is relatively cheaper than platinum, can be used as the electrode material to improve productivity and reduce production costs. Can be lowered.

그리고, 본 발명에 따른 압전 재료를 이용하여 전자부품 등의 각종 제품을 제조하는 경우 환경 오염 물질이 발생하지 않기 때문에 환경 오염을 방지할 수 있다.In addition, when manufacturing various products such as electronic components using the piezoelectric material according to the present invention, since environmental pollutants do not occur, environmental pollution can be prevented.

이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하 도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention; However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided to inform you completely.

도 1은 본 발명에 따른 압전 재료 제조 방법을 설명하기 위한 공정 흐름도이다.1 is a process flowchart for explaining a piezoelectric material manufacturing method according to the present invention.

도 1을 참조하면, 원료 분말을 마련한다(S100). 원료 분말은 제조하고자 하는 압전 재료에 따라 선택할 수 있는데, 예를들어 (Na0.5K0.5)NbO3-BaTiO3를 제조하기 위해 K2CO3, Na2CO3, Nb2O5, BaCO3, TiO2 등의 원료 분말을 마련한다. 또한, 제조하고자 하는 압전 재료의 조성에 따라 원료 분말들의 무게를 측정하여 마련한다.Referring to Figure 1, to prepare a raw material powder (S100). The raw material powder can be selected according to the piezoelectric material to be prepared. For example, to prepare (Na 0.5 K 0.5 ) NbO 3 -BaTiO 3 , K 2 CO 3 , Na 2 CO 3 , Nb 2 O 5 , BaCO 3 , to provide a raw powder such as TiO 2. In addition, the weight of the raw material powders is prepared according to the composition of the piezoelectric material to be prepared.

그리고, 상기 원료 분말들을 예를들어 나일론 자아(Nylon Jar)에 넣고 15시간∼30시간 동안 습식 혼합한다(S200). 습식 혼합은 지르코니아 볼(zirconia ball)과 휘발성 용매를 사용하여 혼합한다. 지르코니아 볼과 함께 습식 혼합함으로써 원료 분말들이 분쇄되면서 혼합된다. 여기서, 휘발성 용매로는 알콜 용매를 이용할 수 있으며, 무수 에탄올을 이용하는 것이 바람직하다.Then, for example, the raw powders are put in a nylon ego (Nylon Jar) and wet mixed for 15 hours to 30 hours (S200). Wet mixing is performed using zirconia balls and volatile solvents. The raw powders are mixed by grinding by wet mixing with zirconia balls. Here, alcohol solvent can be used as a volatile solvent, It is preferable to use anhydrous ethanol.

다음으로 혼합물을 건조시켜 휘발성 용매를 휘발시킨 후 하소(calcination)하여 제 1 분말을 형성한다(S300). 하소 공정은 700℃∼1000℃에서 1시간∼5시간 동안 실시한다. 여기서, 제 1 분말은 마련된 원료 분말과 원료 분말의 비율에 따라 예를들어 NKN 계열의 압전 재료중에서 가장 우수한 압전 특성을 갖는 0.95(Na0.5K0.5)NbO3-0.05BaTiO3(이하, 0.95NKN-0.05BT라 함)로 제조할 수 있다.Next, the mixture is dried to volatilize the volatile solvent and then calcined to form a first powder (S300). The calcination process is carried out at 700 ° C. to 1000 ° C. for 1 hour to 5 hours. Here, the first powder is 0.95 (Na 0.5 K 0.5 ) NbO 3 -0.05 BaTiO 3 (hereinafter referred to as 0.95 NKN-) having the best piezoelectric properties among the NKN-based piezoelectric materials according to the ratio of the prepared raw powder to the raw powder. 0.05BT).

0.95NKN-0.05BT 분말에 첨가제를 첨가하여 습식 혼합한다(S400). 첨가제로는 CuO, ZnO 등의 산화물을 이용하며, 산화물이 0.95NKN-0.05BT 분말에 대하여 x mol%의 조성비로 첨가되도록 한다. 여기서, x는 0%<x≤20%일 수 있다. 또한, 습식 혼합은 50시간∼100시간 동안 실시하며, 습식 혼합된 혼합물을 건조하여 제 2 분말을 제조한다. 여기서, 상기 습식 혼합 공정을 다수 번 실시함으로써 제 2 분말의 분말 사이즈를 최소화시킬 수 있다.0.95NKN-0.05BT by adding an additive to the powder is wet mixed (S400). As an additive, an oxide such as CuO or ZnO is used, and the oxide is added at a composition ratio of x mol% based on 0.95NKN-0.05BT powder. Here, x may be 0% <x≤20%. In addition, wet mixing is performed for 50 hours to 100 hours, and the wet mixed mixture is dried to prepare a second powder. Here, the powder size of the second powder may be minimized by performing the wet mixing process a plurality of times.

다음으로, 예를들어 100 메쉬(mesh)의 여과기를 이용하여 제 2 분말을 여과시킨 후 제 2 분말을 가압 및 성형하여(S500) 소정의 형상을 갖는 성형체를 형성한다.Next, for example, the second powder is filtered using a 100 mesh filter, and the second powder is pressurized and molded (S500) to form a molded article having a predetermined shape.

그리고, 제 2 분말의 성형체를 700℃∼1000℃에서 1시간∼25시간 동안 소결(Sintering)하여 압전 재료를 제조한다(S600). 이때, 성형체에 전극 물질을 도포한 후 소결할 수도 있는데, 소결 온도가 낮기 때문에 녹는점이 낮은 전극 물질, 예를들어 은(Ag) 등을 전극 물질로 이용할 수 있다.Then, the molded body of the second powder is sintered at 700 ° C. to 1000 ° C. for 1 to 25 hours to produce a piezoelectric material (S600). At this time, the electrode material may be applied to the molded body and then sintered. However, since the sintering temperature is low, an electrode material having a low melting point, such as silver (Ag), may be used as the electrode material.

상기와 같은 공정으로 제조된 압전 재료는 가장 우수한 압전 특성을 갖는 0.95NKN-0.05BT 분말에 첨가제로서 CuO, ZnO 등의 산화물을 첨가함으로써 소결 시간을 증가시키고, 그에 따라 1000℃ 이하의 저온 소결을 가능하게 한다.The piezoelectric material manufactured by the above process increases the sintering time by adding oxides such as CuO and ZnO as additives to 0.95NKN-0.05BT powder having the best piezoelectric properties, thereby allowing low-temperature sintering below 1000 ° C. Let's do it.

또한, 상기 산화물 첨가제의 첨가량에 따른 액상의 형성으로 소결성 향상 및 미세 구조 변화를 통해 압전 상수를 증가시킬 수 있다.In addition, the piezoelectric constant may be increased by improving the sinterability and changing the microstructure by forming a liquid phase according to the amount of the oxide additive added.

다음은 본 발명의 이해를 돕기 위한 실시 예를 제시한다. 하기의 실시 예들 은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시 예에 한정되는 것은 아니다.The following presents an embodiment for better understanding of the present invention. The following examples are provided only to more easily understand the present invention, but the present invention is not limited to the following examples.

실시 예 Example

원료 분말로 순도 99.9%의 K2CO3, Na2CO3, Nb2O5, BaCO3, TiO2, CuO을 마련한다. 원료 분말들을 0.95NKN-0.05BT 조성으로 20g 합성하기 위하여 K2CO3, Na2CO3, Nb2O5, BaCO3, TiO2을 각각 3.751g, 2.8767g, 14.4286g, 1.1276g, 0.4565g의 무게로 나일론 자아에서 지르코니아 볼과 함께 24시간 동안 무수 에탄올 용매를 사용하여 분쇄 및 습식 혼합한다.K 2 CO 3 , Na 2 CO 3 , Nb 2 O 5 , BaCO 3 , TiO 2 , and CuO having a purity of 99.9% are prepared as raw material powders. K 2 CO 3 , Na 2 CO 3 , Nb 2 O 5 , BaCO 3 , TiO 2 , 3.751g, 2.8767g, 14.4286g, 1.1276g, 0.4565g, respectively, in order to synthesize 20g of raw powders with 0.95NKN-0.05BT composition. Grind and wet mix using anhydrous ethanol solvent for 24 hours with zirconia balls in nylon ego at a weight of 100 g.

상기 습식 혼합된 혼합물을 건조하여 무수 에탄올 용매를 휘발시키고, 800℃에서 2시간 CO2를 제거한 후 950℃에서 3시간 동안 하소하여 0.95NKN-0.05BT 조성의 상으로 합성된 제 1 분말을 제조한다.The wet mixed mixture was dried to evaporate anhydrous ethanol solvent, 2 hours of CO 2 was removed at 800 ° C., and then calcined at 950 ° C. for 3 hours to prepare a first powder synthesized in a phase of 0.95NKN-0.05BT composition. .

상기 제 1 분말에 대하여 x mol%(0<x≤20)의 몰비를 갖도록 CuO를 첨가하고, 72시간 동안 무수 에탄올 용매를 사용하여 습식 혼합한 후 건조하여 복수의 제 2 분말을 제조한다. 여기서, 제 1 분말에 대하여 CuO가 예를들어 1.0mol%의 몰비를 갖도록 하기 위해서는 0.0909g의 무게로 CuO를 첨가한다.CuO is added to have a molar ratio of x mol% (0 <x ≦ 20) with respect to the first powder, wet mixed using anhydrous ethanol solvent for 72 hours, and then dried to prepare a plurality of second powders. Here, CuO is added at a weight of 0.0909 g so that CuO has a molar ratio of, for example, 1.0 mol% with respect to the first powder.

상기 제 2 분말을 직경 18㎜, 높이 1.5㎜의 실린더 형상의 성형체로 가압 성형한다. 이후, 제 2 분말 성형체를 900℃∼1000℃에서 2시간 동안 소결하여 본 발명에 따른 압전 재료를 제조한다.The second powder is press-molded into a cylindrical shaped body having a diameter of 18 mm and a height of 1.5 mm. Thereafter, the second powder compact is sintered at 900 ° C to 1000 ° C for 2 hours to prepare a piezoelectric material according to the present invention.

상기 소결 공정을 거친 압전 재료를 연마하여 직경 1.5㎜, 높이 1.0㎜의 시료를 만들고, 전물 물질을 도포한 후에 실리콘 오일 속에서 120℃의 온도로 4KV/㎜의 DC 바이어스를 1시간 동안 인가한 후 24시간 지난 후에 상기 압전 재료의 특성을 측정하였다.After grinding the piezoelectric material subjected to the sintering process, a sample having a diameter of 1.5 mm and a height of 1.0 mm was made, and after applying the whole material, a DC bias of 4 KV / mm was applied at a temperature of 120 ° C. in silicon oil for 1 hour. After 24 hours the properties of the piezoelectric material were measured.

조성 분석Composition analysis

0.95NKN-0.05BT+ x mol% CuO의 x의 변화량에 따라 상기 압전 재료의 특성이 변화될 수 있다. 따라서, 상기 압전 재료 조성의 변화에 따라 변화되는 압전 특성을 관찰하기 위해 조성 분석을 실시한다.The characteristics of the piezoelectric material may be changed depending on the amount of change in x of 0.95NKN-0.05BT + x mol% CuO. Therefore, composition analysis is performed to observe the piezoelectric characteristics that change with the change of the piezoelectric material composition.

도 2는 본 발명에 따른 압전 재료의 CuO 첨가량에 따른 특성 변화를 도시한 그래프로서, A는 상대 밀도, B는 압전 상수, C는 결합 계수, D는 유전율을 각각 나타낸다.FIG. 2 is a graph showing the change in characteristics according to CuO addition amount of the piezoelectric material according to the present invention, where A is a relative density, B is a piezoelectric constant, C is a bonding coefficient, and D is a dielectric constant.

도 2의 곡선 A로 나타낸 압전 재료의 상대 밀도(시편의 밀도/이론 밀도)는 CuO 첨가량이 1mol%일 때, 95%로 최대값을 나타내었으며, CuO 첨가량이 1mol% 이상일 때 95% 근방의 상대 밀도를 나타내었다. 상대 밀도는 시편의 소결 유무를 판단하는 척도로 이용될 수 있으며, 일반적으로 상대 밀도가 높을수록 압전 특성이 향상된다.The relative density (density / theoretical density) of the piezoelectric material represented by curve A of FIG. 2 showed a maximum value of 95% when the amount of added CuO was 1 mol%, and a relative value near 95% when the amount of added CuO was 1 mol% or more. Density is shown. The relative density may be used as a measure for determining whether the specimen is sintered. In general, the higher the relative density, the better the piezoelectric characteristics.

또한, 곡선 B로 나타낸 압전 재료의 압전 상수는 CuO 첨가량이 1mol%일 때, 230pC/N을 나타내었으며, 첨가량이 증가할수록 압전 상수는 점차 감소하게 된다. 일반적인 소결 방법에 의해 제조된 종래의 비연계 압전 세라믹스는 1060℃ 정도의 고온에서만 소결이 가능하며, 이 온도에서는 Na2O의 휘발에 따른 폴링의 어려움 및 특성 값 감소가 많이 나타나게 되어 재현에 많은 어려움을 가지고 있다. 그러나, 본 발명에서는 Na2O의 휘발이 심각하지 않은 950℃의 저온에서 소결이 가능하며, 저온 소결된 시편에서도 압전 상수가 230pC/N 정도의 우수한 압전 특성 값을 나타내었다. 일반적으로 200pC/N 이상의 압전 특성 값을 가지는 압전 재료를 멀티 레이어로 제작하면, 다양한 압전 재료로서 사용할 수 있으므로 본 발명에 따른 압전 재료는 실제 압전 장치에서 다양하게 응용될 수 있다.In addition, the piezoelectric constant of the piezoelectric material indicated by the curve B showed 230pC / N when the amount of CuO added was 1 mol%, and the piezoelectric constant gradually decreased as the amount added increased. Conventional non-connected piezoelectric ceramics manufactured by the general sintering method can be sintered only at a high temperature of about 1060 ° C. At this temperature, it is difficult to reproduce due to the difficulty of polling due to the volatilization of Na 2 O and the reduction of characteristic values. Have However, in the present invention, it is possible to sinter at a low temperature of 950 ° C. in which volatilization of Na 2 O is not severe, and the piezoelectric constant of the low temperature sintered specimen has an excellent piezoelectric property value of about 230pC / N. In general, when a piezoelectric material having a piezoelectric characteristic value of 200 pC / N or more is manufactured in a multi-layer, it can be used as various piezoelectric materials, and thus the piezoelectric material according to the present invention can be used in various piezoelectric devices.

그리고, 곡선 C로 나타낸 압전 재료의 전기기계 결합 계수(Kp)는 CuO 첨가량이 1mol%일 때, 0.37 정도로 측정되었으며, 첨가량이 증가할수록 결합 계수는 점차 감소하게 된다. 압전 재료의 전기기계 결합 계수는 기계적 에너지와 전기적 에너지간의 상호 변환 효율을 나타낸다.In addition, the electromechanical coupling coefficient Kp of the piezoelectric material indicated by the curve C was measured at about 0.37 when the amount of CuO added was 1 mol%, and the coupling coefficient gradually decreased as the amount added increased. The electromechanical coupling coefficient of the piezoelectric material indicates the mutual conversion efficiency between mechanical energy and electrical energy.

한편, 곡선 D로 나타낸 압전 재료의 유전율은 CuO 첨가량이 1mol%일 때, 1150의 유전율이 측정되었으며, 첨가량이 증가할수록 유전율은 1100∼1200 정도로 측정되었다. 유전률은 압전 재료의 분극이 잘 일어날 수 있게 하는 요소로서 분극이 잘 일어나면 압전 상수가 증가하게 된다.On the other hand, the dielectric constant of the piezoelectric material indicated by the curve D was measured to have a dielectric constant of 1150 when the amount of CuO added was 1 mol%, and the dielectric constant was measured at about 1100 to 1200 as the amount added increased. The dielectric constant is a factor that enables the polarization of the piezoelectric material to occur well. When the polarization occurs well, the piezoelectric constant increases.

도 2에 도시된 바와 같이 CuO의 몰비가 0.1mol% 이상일 경우 압전 재료의 특성을 갖게 된다. 그러나, CuO의 몰비가 1∼10mol%일 경우 우수한 특성을 나타내며, 그중에서 CuO의 몰비가 1mol%일 경우 가장 우수한 특성을 보이게 된다. 물론, CuO의 몰비가 10∼20mol%일 경우에도 상대 밀도 및 유전율은 우수한 특성을 나타내고, 압전 상수 및 결합 계수가 낮아지지만 압전 재료로서의 특성은 유지하게 된다. 그런데, CuO의 몰비가 20mol% 이상일 경우에는 첨가량이 너무 커 압전 재료로서의 특성을 유지하지 못할 수 있다. 따라서, 본 발명에 따른 압전 재료는 xmol%(0<x≤20)의 첨가제를 첨가하여 제조한다.As shown in FIG. 2, when the molar ratio of CuO is 0.1 mol% or more, the piezoelectric material has properties. However, when the molar ratio of CuO is 1 to 10 mol%, excellent properties are shown, and when the molar ratio of CuO is 1 mol%, the most excellent properties are shown. Of course, even when the molar ratio of CuO is 10 to 20 mol%, the relative density and dielectric constant exhibit excellent characteristics, and the piezoelectric constant and the coupling coefficient are lowered, but the characteristics as the piezoelectric material are maintained. However, when the molar ratio of CuO is 20 mol% or more, the addition amount may be too large to maintain the characteristics as a piezoelectric material. Therefore, the piezoelectric material according to the present invention is prepared by adding an additive of xmol% (0 <x≤20).

소결 온도 Sintering temperature

압전 재료는 소결 온도에 따라 그 압전 특성이 변화될 수 있다. 즉, 소결은 물질의 특성을 결정할 수 있는 중요한 요인이 될 수 있으며, 소결 온도에 따라 물질의 결정 상이 결정될 수 있기 때문에 소결 온도에 의해서 압전 재료의 물질 특성이 변화될 수 있다. 따라서, 상기 조성 분석에서 특성이 우수하게 측정된 CuO량이 1%일 때, 즉 0.95NKN-0.05BT + 1 mol% CuO 조성의 압전 재료에서 소결 온도의 변화에 따른 압전 특성을 측정하였다.The piezoelectric material may change its piezoelectric properties depending on the sintering temperature. That is, sintering may be an important factor for determining the properties of the material, and since the crystal phase of the material may be determined according to the sintering temperature, the material properties of the piezoelectric material may be changed by the sintering temperature. Therefore, when the amount of CuO having excellent properties measured in the composition analysis was 1%, that is, the piezoelectric properties of the piezoelectric material having a composition of 0.95NKN-0.05BT + 1 mol% CuO were measured according to the change of the sintering temperature.

[표 1]은 본 발명에 따른 압전 재료의 소결 온도에 따른 압전 특성의 변화량을 나타낸 것이다.Table 1 shows the amount of change in the piezoelectric properties according to the sintering temperature of the piezoelectric material according to the present invention.

소결온도/시간Sintering Temperature / Time 925℃/10시간925 ℃ / 10 hours 950℃/10시간950 ℃ / 10 hours 975℃/10시간975 ℃ / 10 hours 상대 밀도(%)Relative Density (%) 8282 94.594.5 90.290.2 압전 상수(pC/N)Piezoelectric Constant (pC / N) 200200 230230 135135 결합 계수(%)Coupling Factor (%) 29.829.8 37.037.0 20.220.2 유전율(ε3 T0)Permittivity (ε 3 T / ε 0 ) 751751 11501150 927927

[표 1]에 나타낸 바와 같이 소결 온도가 950℃일 때, 상대 밀도가 94.5%로 측정되었고, 압전 상수가 230pC/N으로 측정되었다. 또한, 소결 온도가 950℃일 때 전기기계 결합 계수가 0.37로 측정되었으며, 유전률이 1150으로 측정되었다. 즉, 본 발명에 따른 압전 재료는 0.95NKN-0.05BT + 1mol% CuO일 때, 소결 온도 950℃에서 가장 최적화된 압전 특성을 보이는 것으로 측정되었다.As shown in Table 1, when the sintering temperature was 950 ° C, the relative density was measured at 94.5%, and the piezoelectric constant was measured at 230pC / N. In addition, when the sintering temperature is 950 ℃ the electromechanical coupling coefficient was measured as 0.37, the dielectric constant was measured as 1150. That is, the piezoelectric material according to the present invention was measured to exhibit the most optimized piezoelectric characteristics at the sintering temperature of 950 ° C. when 0.95NKN-0.05BT + 1 mol% CuO.

따라서, 소결이 가능한 700℃ 이상에서 압전 재료를 소결할 수 있으며, 925∼975℃의 소결 온도에서 우수한 압전 특성을 나타내고, 950℃에서 가장 우수한 압전 특성을 나타낸다. 그러나, 1000℃ 이상의 고온 소결의 경우에도 본 발명에 따른 압전 재료는 압전 특성을 유지하겠지만, 이 온도는 일반적인 소결 온도이므로 본 발명은 700∼1000℃의 온도에서 소결한다.Therefore, the piezoelectric material can be sintered at 700 ° C. or higher capable of sintering, exhibits excellent piezoelectric properties at a sintering temperature of 925 to 975 ° C., and exhibits excellent piezoelectric properties at 950 ° C. FIG. However, even in the case of high temperature sintering of 1000 ° C or higher, the piezoelectric material according to the present invention will maintain piezoelectric properties, but since the temperature is a general sintering temperature, the present invention sinters at a temperature of 700 to 1000 ° C.

소결 시간 Sintering time

또한, 본 발명에 따른 압전 재료는 소결 시간에 따라 그 압전 특성이 변화될 수 있다. 즉, 소결 시간은 물질의 특성을 결정할 수 있는 중요한 요인이 될 수 있으며, 소결 시간에 따라 물질의 소결이 이루어질 수 있기 때문에 소결 시간에 의해서 압전 재료의 물질 특징이 변화될 수 있다.In addition, the piezoelectric material according to the present invention may change its piezoelectric properties according to the sintering time. That is, the sintering time may be an important factor for determining the properties of the material, and the material characteristics of the piezoelectric material may be changed by the sintering time because the sintering of the material may be performed according to the sintering time.

따라서, 상기 조성 분석에서 특성이 우수하게 측정된 CuO량이 1%일 때와, 소결 온도가 950℃일 때, 0.95NKN-0.05BT + 1 mol% CuO 조성의 압전 재료를 950℃의 소결 온도에서 소결 시간의 변화를 주어 압전 특성을 측정하였다.Therefore, when the amount of CuO excellently measured in the composition analysis is 1% and when the sintering temperature is 950 ° C, the piezoelectric material of 0.95NKN-0.05BT + 1 mol% CuO composition is sintered at the sintering temperature of 950 ° C. The piezoelectric properties were measured by changing the time.

도 3은 본 발명에 따른 압전 재료의 소결 시간에 따른 압전 특성의 변화를 도시한 그래프로서, A는 상대 밀도, B는 압전 상수, C는 결합 계수, D는 유전율을 각각 나타낸다.3 is a graph showing the change in piezoelectric properties according to the sintering time of the piezoelectric material according to the present invention, where A is a relative density, B is a piezoelectric constant, C is a bonding coefficient, and D is a dielectric constant.

도 3의 곡선 A로 나타낸 바와 같이 소결 시간이 길어질수록 상대 밀도가 증가하며, 10시간에서 94.5%의 상대 밀도가 측정되었고, 10시간 이후에는 상대 밀도의 변화가 거의 없다.As shown by curve A of FIG. 3, as the sintering time increases, the relative density increases, and a relative density of 94.5% is measured at 10 hours, and there is almost no change in the relative density after 10 hours.

또한, 곡선 B로 나타낸 바와 같이 소결 시간이 길어질수록 압전 상수는 점차 증가하고, 10시간에서 230pC/N의 압전 상수가 측정되었고, 10시간 이후에는 압전 상수의 변화가 거의 없다.In addition, as shown by the curve B, the piezoelectric constant gradually increased as the sintering time increased, and the piezoelectric constant of 230 pC / N was measured at 10 hours, and there was little change in the piezoelectric constant after 10 hours.

그리고, 곡선 C로 나타낸 바와 같이 소결 시간이 길어질수록 전기기계 결합 계수는 점차 증가하며, 10시간에서 0.37의 전기기계 결합 계수가 측정되었고, 10시간 이후에는 전기기계 결합 계수의 변화가 거의 없다.And, as shown by the curve C, as the sintering time increases, the electromechanical coupling coefficient gradually increases, and an electromechanical coupling coefficient of 0.37 is measured at 10 hours, and there is almost no change in the electromechanical coupling coefficient after 10 hours.

한편, 곡선 D로 나타낸 바와 같이 소결 시간이 길어질수록 유전율은 증가하며, 소결 시간이 8∼10시간일 때, 유전률이 1150으로 측정되었고, 10시간 이후에는 유전율의 변화가 거의 없다.On the other hand, as shown by the curve D, as the sintering time increases, the dielectric constant increases, and when the sintering time is 8 to 10 hours, the dielectric constant is measured as 1150 and after 10 hours, there is almost no change in the dielectric constant.

이와 같이, 본 발명에 따른 압전 재료는 0.95NKN-0.05BT + 1mol% CuO이고, 950℃의 소결 온도에서 10시간 동안 소결하였을 때, 최적화된 압전 특성을 보이는 것으로 측정되었다.As such, the piezoelectric material according to the present invention was 0.95 NKN-0.05BT + 1 mol% CuO, and when sintered at a sintering temperature of 950 ° C. for 10 hours, the piezoelectric material was measured to exhibit optimized piezoelectric properties.

따라서, 본 발명에 따른 압전 재료는 1시간 이상의 소결 시간에서 소결된다. 그런데, 소결 시간이 2시간부터 10시간 까지 압전 특성이 향상되며, 10시간 이후에는 압전 특성이 유지된다. 따라서, 가장 우수한 압전 특성을 나타내는 10시간 이상 동안 소결하는 것이 바람직하다. 그런데, 25시간 이상은 압전 특성의 변화없이 너무 오랜시간 소결하기 때문에 소결 효율이 낮아지므로 25시간 이상 소결하는 것은 바람직하지 않다. 따라서, 본 발명에 따른 압전 재료는 1시간 이상 25시간 이하동안 소결한다.Therefore, the piezoelectric material according to the present invention is sintered at a sintering time of 1 hour or more. By the way, the piezoelectric property is improved from 2 hours to 10 hours, and the piezoelectric property is maintained after 10 hours. Therefore, it is preferable to sinter for at least 10 hours showing the best piezoelectric properties. However, since the sintering efficiency is lowered for 25 hours or longer without changing the piezoelectric properties, the sintering efficiency is lowered. Therefore, the piezoelectric material according to the present invention is sintered for 1 hour to 25 hours.

본 발명에 따른 압전 재료는 NKN 계열에 BT나 CT를 혼합하기 때문에 공정을 용이하게 실시할 수 있고, CuO 등의 산화물을 첨가하여 소결 온도를 950℃까지 낮출 수 있을 뿐만 아니라 압전 특성이 향상된 압전 재료를 얻을 수 있다.The piezoelectric material according to the present invention can be easily processed because BT or CT is mixed with the NKN series, and the sintering temperature can be lowered to 950 ° C by adding an oxide such as CuO, and the piezoelectric material having improved piezoelectric properties. Can be obtained.

또한, 본 발명에 따른 압전 재료를 이용할 경우 환경 오염 물질을 사용하지 않는 비연계열 압전체를 형성할 수 있다.In addition, when using the piezoelectric material according to the present invention, it is possible to form a non-connected piezoelectric material which does not use environmental pollutants.

이상 첨부된 도면 및 표를 참조하여 본 발명의 실시 예들을 설명하였으나, 본 발명은 상기 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings and the table, the present invention is not limited to the above embodiments and can be manufactured in various forms, and the general knowledge in the technical field to which the present invention belongs. Those skilled in the art will appreciate that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

도 1은 본 발명에 따른 압전 재료의 제조 방법을 도시한 공정 흐름도.1 is a process flow diagram illustrating a method of manufacturing a piezoelectric material according to the present invention.

도 2는 본 발명에 따른 압전 재료의 CuO 첨가량에 따른 압전 특성의 변화를 도시한 그래프.2 is a graph showing the change in piezoelectric properties according to the CuO addition amount of the piezoelectric material according to the present invention.

도 3은 본 발명에 따른 압전 재료의 소결 시간에 따른 압전 특성의 변화를 도시한 그래프.3 is a graph showing a change in piezoelectric properties according to the sintering time of the piezoelectric material according to the present invention.

Claims (8)

NKN-BT에 x mol%(0%<x≤20%)의 첨가제가 첨가되어 소결 온도가 700 내지 1000℃인 압전 재료.X mol% (0% <x ≦ 20%) of additives added to NKN-BT to have a sintering temperature of 700 to 1000 캜. 제 1 항에 있어서, 상기 첨가제는 CuO 또는 ZnO를 포함하는 산화물인 압전 재료.The piezoelectric material of claim 1, wherein the additive is an oxide comprising CuO or ZnO. 원료 분말을 혼합하여 혼합물을 제조하는 단계;Mixing the raw powder to prepare a mixture; 상기 혼합물을 하소하여 제 1 분말을 제조하는 단계;Calcining the mixture to prepare a first powder; 상기 제 1 분말에 첨가제를 첨가 및 혼합하여 제 2 분말을 제조하는 단계; 및Preparing a second powder by adding and mixing an additive to the first powder; And 상기 제 2 분말을 가압 성형한 후 700 내지 1000℃의 온도에서 소결하여 압전 재료를 제조하는 단계를 포함하는 압전 재료의 제조 방법.And forming a piezoelectric material by sintering at a temperature of 700 to 1000 ° C. after pressure molding the second powder. 제 3 항에 있어서, 상기 원료 분말들은 K2CO3, Na2CO3, Nb2O5, BaCO3, TiO2를 포함하는 압전 재료의 제조 방법.The method of claim 3, wherein the raw material powders include K 2 CO 3 , Na 2 CO 3 , Nb 2 O 5 , BaCO 3 , and TiO 2 . 제 3 항에 있어서, 상기 첨가제는 CuO 또는 ZnO를 포함하는 산화물인 압전 재료의 제조 방법.4. The method of claim 3, wherein the additive is an oxide comprising CuO or ZnO. 제 3 항에 있어서, 상기 제 2 분말은 상기 제 1 분말과 상기 첨가제를 50 내지 100시간 동안 습식 혼합한 후 건조하여 제조하는 압전 재료의 제조 방법.The method of claim 3, wherein the second powder is manufactured by wet mixing the first powder and the additive for 50 to 100 hours and then drying the powder. 제 6 항에 있어서, 상기 습식 혼합은 복수회 반복 실시하는 압전 재료의 제조 방법.The piezoelectric material manufacturing method according to claim 6, wherein the wet mixing is repeated a plurality of times. 제 3 항에 있어서, 상기 소결은 1시간 내지 25시간동안 실시하는 압전 재료의 제조 방법.The method of claim 3, wherein the sintering is performed for 1 to 25 hours.
KR1020070105690A 2007-10-19 2007-10-19 Piezoelectric material and method of manufacturing the same KR100896966B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070105690A KR100896966B1 (en) 2007-10-19 2007-10-19 Piezoelectric material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070105690A KR100896966B1 (en) 2007-10-19 2007-10-19 Piezoelectric material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20090040089A true KR20090040089A (en) 2009-04-23
KR100896966B1 KR100896966B1 (en) 2009-05-14

Family

ID=40763685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070105690A KR100896966B1 (en) 2007-10-19 2007-10-19 Piezoelectric material and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR100896966B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236893B1 (en) * 2011-07-13 2013-02-25 한국기계연구원 Single crystal and fabrication process of (Na,K)NbO3 based Pb-free piezoelectric materials using solid state synthesis
WO2015163685A1 (en) * 2014-04-23 2015-10-29 고려대학교 산학협력단 Lead-free piezoelectric material for vehicle knock sensor, method for manufacturing same, and vehicle knock sensor comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043041B1 (en) 2008-09-19 2011-06-21 (재)울산테크노파크 Composition of lead-free piezoelectric ceramics for Ultrasonic vibrator
KR101123722B1 (en) 2009-07-17 2012-03-15 한국세라믹기술원 Pb-free PIEZOELECTRIC CERAMICS AND METHOD OF MANUFACTURING THE SAME

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7101491B2 (en) * 2002-07-16 2006-09-05 Denso Corporation Piezoelectric ceramic composition and method of production of same, piezoelectric element, and dielectric element
JP4480967B2 (en) * 2003-01-23 2010-06-16 株式会社デンソー Piezoelectric ceramic composition, piezoelectric element, and dielectric element
KR20050104668A (en) * 2004-04-29 2005-11-03 류주현 Pb-free piezoelectric ceramics and the manufacturing method thereof
KR100673079B1 (en) 2005-11-30 2007-01-22 충주대학교 산학협력단 (na,k,li)nbo3 system pb-free piezoelectric ceramics with bi2o3 addition and the method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236893B1 (en) * 2011-07-13 2013-02-25 한국기계연구원 Single crystal and fabrication process of (Na,K)NbO3 based Pb-free piezoelectric materials using solid state synthesis
WO2015163685A1 (en) * 2014-04-23 2015-10-29 고려대학교 산학협력단 Lead-free piezoelectric material for vehicle knock sensor, method for manufacturing same, and vehicle knock sensor comprising same
KR20150122418A (en) * 2014-04-23 2015-11-02 고려대학교 산학협력단 Pb-FREE PIEZOELECTRICITY FOR AN AUTOMOBILE KNOCKING SENSOR, METHOD OF MANUFACTURING THE SAME AND AUTOMOBILE KNOCKING SENSOR INCLUDING THE SAME

Also Published As

Publication number Publication date
KR100896966B1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
US6884364B2 (en) Lead-free piezoelectric ceramic composition wherin Cu is contained in (KxA1-x)y(Nb1-zBz)O3perovskite compound, and process of preparing the same
KR100821542B1 (en) Piezoelectric porcelain and method for production thereof
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
JP2008150247A (en) Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
KR101260675B1 (en) Method for preparation of piezoelectric element for low sintering and piezoelectric element using the same
JP2009221096A (en) Piezoelectric/electrostrictive ceramic composition
CN104844202B (en) A kind of niobium nickel lead titanate piezoelectric ceramics of manganese lead antimonate doping
KR100896966B1 (en) Piezoelectric material and method of manufacturing the same
KR101079228B1 (en) Piezoelectric material and method of manufacturing the same
KR101310450B1 (en) Lead-free piezoelectric ceramic composition with high mechanical quality
KR101091192B1 (en) Composition and fabrication method of lead-free piezoelectric ceramics for low temperature firing
KR20100026660A (en) Piezoelectric material and method of manufacturing the same
KR100801477B1 (en) Lead free ceramics and the manufacturing method thereof
KR101866845B1 (en) Lead-free piezoelectric ceramic composition with excellent electric field-induced strain property and preparation method of the same
KR100663971B1 (en) Nio-doped pnn-pzt piezoelectric ceramics and method for producing the same
JP2000272963A (en) Piezoelectric ceramic composition
KR100885621B1 (en) Composition and Process of Piezoelectric Materials
KR100563364B1 (en) Lead-free piezoelectric ceramics and preparation thereof
KR20100135536A (en) Piezoelectric material and method of manufacturing the same
KR20180003277A (en) Producing method of lead-free piezoelectric ceramics with high strains
KR20220169975A (en) Textured lead-free piezoelectric ceramic composition and preparation method of the same
JP2000264727A (en) Piezoelectric ceramics
KR102023888B1 (en) Preparing method of lead-free piezoelectric ceramics for low temperature sintering with excellent electric field induced strain property
KR101239275B1 (en) Low temperature sintering piezoelectric ceramic composition, manufacturing method thereof, and piezoelectric ceramic device using the same ceramic composition
KR101806207B1 (en) Ternary lead-free piezoelectric ceramics with high strains and low temperature sintering and preparing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130507

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170428

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 11