KR20090021798A - Preaparation of mesoporosity in activated carbons using fe-exchange - Google Patents

Preaparation of mesoporosity in activated carbons using fe-exchange Download PDF

Info

Publication number
KR20090021798A
KR20090021798A KR1020070086626A KR20070086626A KR20090021798A KR 20090021798 A KR20090021798 A KR 20090021798A KR 1020070086626 A KR1020070086626 A KR 1020070086626A KR 20070086626 A KR20070086626 A KR 20070086626A KR 20090021798 A KR20090021798 A KR 20090021798A
Authority
KR
South Korea
Prior art keywords
activated carbon
ion exchange
mesopoa
hours
drying
Prior art date
Application number
KR1020070086626A
Other languages
Korean (ko)
Other versions
KR100885191B1 (en
Inventor
이종대
장진석
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020070086626A priority Critical patent/KR100885191B1/en
Publication of KR20090021798A publication Critical patent/KR20090021798A/en
Application granted granted Critical
Publication of KR100885191B1 publication Critical patent/KR100885191B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

A method for manufacturing a measopore in activated carbons using a Fe-exchange method is provided to manufacture the activated carbons having the same size with a mesopore. A method for manufacturing a measopore in activated carbons using a Fe-exchange method comprises the followings steps of: reforming a surface of the activated carbons oxidized with a nitric acid; exchanging an ion of Fe to the reformed surface of the activated carbons; and performing a thermal treatment of the activated carbons exchanged with the Fe ion.

Description

철촉매 이온교환법을 이용하는 메조포아 활성탄 제조방법{Preaparation of mesoporosity in activated carbons using Fe-exchange}Preparation method of mesopoa activated carbon using iron catalyst ion exchange method {Preaparation of mesoporosity in activated carbons using Fe-exchange}

본 발명은 메조포아(Mesoporosity) 활성탄 제조방법에 관한 것으로서, 보다 상세하게는 철을 촉매로 하여 이온교환법을 이용하는 메조포아 활성탄 제조방법에 관한 것이다.The present invention relates to a method for producing mesoporosity activated carbon, and more particularly, to a method for producing mesopoa activated carbon using an ion exchange method using iron as a catalyst.

메조포러스(mesoporous) 카본은 촉매지지체, 전지전극, EDLC전극, 용액 중 거대 물질 흡착 등을 포함한 다양한 분야에 응용될 수 있는 잠재성 때문에 많은 연구가 시도되어 왔다. 그러나 보통 제조된 활성탄은 마이크로포아(micropore)가 90% 이상 존재하고 메조포아(mesopore)나 마크로포아(macropore)는 제한적이어서 응용 분야에 한계가 있어 왔다.Mesoporous (mesoporous) carbon has been studied a lot because of the potential for a variety of applications, including catalyst support, battery electrode, EDLC electrode, the adsorption of large substances in solution. However, the activated carbon is usually present in more than 90% of micropore (mesopore) and macropore (macropore) has a limited application field.

또한, 메조포러스 카본의 제조방법에는 여러 가지 방법이 있는데, 그 중 촉매 활성화법(catalytic activation)은 공정이 간단하고 촉매로 보통 전이 금속을 사용하기 때문에 경제적인 방법으로 알려져 왔다. 그런데 여기서 활성탄 표면에 전이 금속의 완전한 확산을 위해서는 이온교환을 하여야 하고, 따라서 전이 금속을 이온교환시키기 위한 활성탄(Activated carbon)의 표면 개질에 관한 연구는 그 산 업적 중요성으로 인해 오래전부터 많은 관심을 받아왔다. 그런 연구 중 활성탄 표면에 질산, 오존, 암모늄 페록시디설페이트(ammonium perocydisulfate), 포스포러스 펜트옥사이드(phosphorous prntoxide), 포타슘 디크로메이트(potassium dichromate), 플라즈마 등을 사용하여 산화제 처리를 하면 표면에 산성, 염기성, 중성 등의 산소 복합체가 생성된다고 보고 된 바 있다. 이 중에서 산성 표면 산소 복합체를 도입하는 방법은 각 종 산화제 수용액으로 활성탄을 처리하는 것이다. 이렇게 하여 활성탄 표면에 산성복합체가 도입되면 활성탄은 더욱 친수성이 되고, 영하전점(zero point charge)의 pH가 감소하며, 표면 음전하 밀도가 증가하게 된다. 또한, 상기와 같은 산화제 처리는 활성탄의 화학적 성질뿐 만 아니라 표면적과 세공구조 등에도 변화를 가져와 촉매나 흡착제 등으로 사용될 때 큰 영향을 미치게 된다.In addition, there are various methods for producing mesoporous carbon, among which catalytic activation is known as an economical method because the process is simple and a transition metal is usually used as a catalyst. However, in order to fully diffuse the transition metal on the surface of the activated carbon, ion exchange has to be performed. Therefore, research on the surface modification of activated carbon for ion exchange of the transition metal has received much attention for a long time because of its industrial importance. come. In such studies, oxidizing the surface of activated carbon with nitrate, ozone, ammonium perocydisulfate, phosphorous prntoxide, potassium dichromate, plasma, etc. It has been reported that oxygen complexes such as and neutral are formed. Among these, a method of introducing an acidic surface oxygen complex is treating activated carbon with an aqueous solution of various oxidants. In this way, when the acid complex is introduced on the surface of the activated carbon, the activated carbon becomes more hydrophilic, the pH of the zero point charge decreases, and the surface negative charge density increases. In addition, the oxidant treatment as described above not only changes the chemical properties of activated carbon, but also changes the surface area and pore structure, and has a great influence when used as a catalyst or an adsorbent.

활성탄 연구자들 중 서덜랜드(Sutherland)등은 카본블랙의 표면을 유동층 반응 내에서 오존으로 산화 처리 하여, 표면의 산소 복합체 증가량은 카본블랙 단위 표면적 당 사용된 오존의 양에 비례하며, 이때 증가된 표면 산소 복합체는 주로 -COOH라고 하였다. 또한 카스틸라(Castilla)등은 활성탄 표면을 산화제인 질산, 과산화수소 및 암모늄 페록시디설페이트 등으로 처리하는 실험을 행하여 활성탄 표면의 산소 복합체 증가량은 질산으로 처리한 경우가 가장 크지만, 암모늄 페록시디설페이트로 처리한 경우에는 질산보다 더 강한 산성 산소 복합체를 형성시킨다고 보고하였다. 또한 그리글레비쯔(Gryglewicz)등은 Ca, Fe 이온을 교환하여 메조포러스카본을 제조하였는데 이때 Ca, Fe 이온은 더 발달된 다공성(porosity)를 갖는 활성 탄을 갖게 한다고 보고한 바도 있다.Sutherland et al., Of activated carbon researchers, oxidize the surface of carbon black to ozone in a fluidized bed reaction, so that the amount of oxygen complex on the surface is proportional to the amount of ozone used per unit of carbon black surface area. The complex was mainly referred to as -COOH. In addition, Castilla et al. Conducted an experiment in which the surface of activated carbon was treated with oxidizing agents such as nitric acid, hydrogen peroxide and ammonium peroxydisulfate. When treated, it is reported to form an acidic oxygen complex that is stronger than nitric acid. In addition, Gryglewicz et al. Produced mesoporous carbon by exchanging Ca and Fe ions, and reported that Ca and Fe ions have activated carbon having more developed porosity.

그러나 상기 연구들에서는 그 구체적 제조방법 등은 개시하지 못하고 실험실적 실험수준에만 그쳐 산업에 응용하기는 어려웠다.However, in the above studies, the specific manufacturing method is not disclosed and it is difficult to apply to the industry only at the laboratory experimental level.

본 발명은 따라서 질산으로 활성탄 표면을 개질하고 Fe이온교환을 통하여 포아볼륨(pore volum)과 포아사이즈(pore size)를 메조포아로 하여, 전기화학적인 안정성을 높여서 전기전도성이 우수한 전극 재료는 물론 전해커패시터 촉매지지체, 거대물질흡착제 등으로 사용할 수 있는, 철촉매 이온교환법을 이용하는 메조포아 활성탄제조 방법을 제공함에 그 목적이 있다.Therefore, the present invention modifies the surface of activated carbon with nitric acid and changes the pore volum and pore size to mesoporous through the exchange of Fe ions, thereby increasing the electrochemical stability and the electrode material having excellent electrical conductivity as well as an electrolytic capacitor. An object of the present invention is to provide a method for producing mesopoa activated carbon using an iron catalyst ion exchange method, which can be used as a catalyst support, a macromolecule adsorbent, or the like.

상기한 바와 같은 본 발명의 목적을 달성하기 위하여 본 발명은,In order to achieve the object of the present invention as described above,

철촉매 이온교환법을 이용한 메조포아 활성탄 제조방법으로서, 활성탄을 질산 산화처리 하여 활성탄의 표면을 개질하는 단계(S1), 상기 표면 개질된 활성탄에 Fe이온을 교환시키는 단계(S2), 그리고 상기 Fe이온교환 된 활성탄을 열처리하는 단계(S3)를 포함하는 메조포아 활성탄 제조방법을 제공한다.A method for preparing mesopoa activated carbon using an iron catalyst ion exchange method, the method comprising the steps of modifying the surface of activated carbon by nitric acid oxidation of activated carbon (S1), exchanging Fe ions with the surface modified activated carbon (S2), and the Fe ions. It provides a method for producing mesopoa activated carbon comprising the step (S3) of the heat exchanged activated carbon.

상기에서, 상기 단계(S1)에서의 활성탄 표면 개질은 활성탄 20g당 질산 6.0~9.0몰(mol) 500ml를 혼합하여 끓는 온도에서 6~20시간 행함이 바람직하고, 상기 단계(S2)에서의 Fe이온교환은 1~5% Fe이온교환이 바람직하며, 상기 Fe이온교환 은 질산철을 사용할 수 있고, 예를 들어, Fe(NO3)3 · 9H2O나 Fe(NO3)3 · 6H2O등 모든 질산철을 사용할 수 있다. 상기에서의 질산 몰수는 야자각 활성탄 등은 콜등의 활성탄보다 경도가 강하여 쉽게 표면의 개질이 어렵기 때문에 6.0몰을 하한 값으로 하고, 9.0몰 이상에서는 활성탄 표면이 개질보다는 크랙 등의 발생으로 기공들이 깨질 수가 있으므로 상한 값은 9.0몰로 한다. 또한 Fe이온교환 시 1%이하에서는 활성탄 표면에 충분한 이온교환이 되지 않아서 촉매작용 효과가 어렵고 5%이상에서는 활성탄 표면에 일부만 이온교환 되고 나머지는 활성탄 표면에 로딩(loading)되어 로딩 된 Fe는 촉매작용을 하지 않으므로 무의미해서 상기와 같은 범위로 한다.In the above, the surface modification of activated carbon in step (S1) is preferably carried out for 6 to 20 hours at a boiling temperature by mixing 500 ml of 6.0 to 9.0 mol (mol) nitric acid per 20 g of activated carbon, Fe ion exchange in the step (S2) Silver 1 ~ 5% Fe ion exchange is preferred, the Fe ion exchange may be used iron nitrate, for example, Fe (NO 3 ) 3 · 9H 2 O or Fe (NO 3 ) 3 · 6H 2 O, etc. All iron nitrates can be used. The number of moles of nitric acid is 6.0 mol as the lower limit, since the hardness of coconut shell activated carbon is stronger than activated carbon such as kohl. Therefore, the porosity of the activated carbon surface is higher than 9.0 mol due to the occurrence of cracks rather than modification. The upper limit is 9.0 mol because it may be broken. In addition, when Fe ion exchange is less than 1%, the catalytic effect is difficult due to insufficient ion exchange on the surface of activated carbon, and at least 5%, only part of the surface is activated on the surface of activated carbon, and the remaining Fe is loaded on the surface of activated carbon to catalyze loading. Since it does not mean to be in the same range as above.

또한, 상기 Fe이온교환은 실온에서 15~25시간 행하는 것이 바람직한데, 15시간 이하에서는 질산철에서의 Fe이온 해리가 어려워 완전 이온교환이 일어나지 않고, 25시간 이상에서는 질산철에서 해리된 Fe이온이 활성탄 표면에 완전히 이온교환 되어 더 이상 이온교환이 일어나지 않기 때문이다.In addition, the Fe ion exchange is preferably carried out at room temperature for 15 to 25 hours, but Fe ion dissociation in iron nitrate is difficult at 15 hours or less, so that no full ion exchange occurs, and at least 25 hours, Fe ions dissociated from iron nitrate This is because the surface of activated carbon is completely ion exchanged and no further ion exchange occurs.

또한, 단계(S3)에서의 열처리는 800~1000℃의 온도에서 1~3시간 행함이 바람직하고, 상기 단계(S1) 다음에는 활성탄을 세척 후 건조하는 단계(SS1)를 더 행할 수 도 있다. 상기에서 열처리 온도가 800℃이하이면 예를 들어 Fe(NO3)3 · 9H2O가 충분히 분해 되지 않고 1000℃ 이상에서는 활성탄 자체가 수축으로 인해 기공들이 축소되는 현상을 나타내므로 바람직하지 않아 상기 온도 범위로 하고, 열처리 시간은 1시간 이하에서는 촉매 반응 효과가 없고, 3시간 이후에서도 촉매 반응이 모두 진행되어 효과가 없기 때문에 상기범위로 한다.In addition, the heat treatment in step (S3) is preferably carried out for 1 to 3 hours at a temperature of 800 ~ 1000 ℃, after the step (S1) may be further carried out step (SS1) of washing and drying the activated carbon. If the heat treatment temperature is below 800 ° C, for example, Fe (NO 3 ) 3 · 9H 2 O is not sufficiently decomposed, and at 1000 ° C or higher, the activated carbon itself exhibits a phenomenon of shrinking pores due to shrinkage. The heat treatment time is in the above range because there is no catalytic reaction effect at 1 hour or less and the catalytic reaction proceeds even after 3 hours.

상기에서의 건조는 80~110℃의 온도에서 10~15시간 행함이 바람직한데, 건조온도가 낮으면 건조가 되지 않고 건조온도가 110℃를 넘어가면 활성탄에 연소를 가져올 수 있기 때문이며, 건조시간도 위와 같은 이유로 10~15시간하며, 또한 상기 Fe이온교환 후에는 수세 후 건조하는 단계(SS2)를 더 포함할 수도 있으며, 상기 건조는 상기와 같은 이유로 80~110℃의 온도에서 10~15시간 행함이 바람직하고, 상기 열처리 후에는 탈철단계(SS3)를 더 포함할 수도 있는데, 상기 탈철은 증류수로 300~400℃에서 20~40분간 행함이 바람직한데 300℃이하에서는 탈철 효과가 없으며 400℃를 넘어가면 이미 탈철 후 이므로 더 이상의 효과를 기대하기 어렵기 때문에, 상기와 같은 이유로 탈철 시간도 한정하며, 상기 탈철 후에는 염산 사용 후 이므로 활성탄에 존재하는 수분을 완전 제거하기 위해 상기와 같은 이유로 80~110℃로 10~15시간 건조함이 바람직하다.The drying in the above is preferably performed for 10 to 15 hours at a temperature of 80 ~ 110 ℃, because if the drying temperature is low, it will not be dried, but if the drying temperature exceeds 110 ℃ can cause combustion in activated carbon, the drying time is also For the same reason 10-15 hours, and after the Fe ion exchange may further comprise the step of washing after washing (SS2), the drying is preferably performed for 10 to 15 hours at a temperature of 80 ~ 110 ℃ for the same reason. And, after the heat treatment may further include a degassing step (SS3), the de-ironing is preferably carried out for 20 to 40 minutes at 300 ~ 400 ℃ with distilled water, but below 300 ℃ there is no de-ironing effect is over 400 ℃ Since it is difficult to expect any further effect, it is also limited to the decarburization time for the same reason as above. It is preferred that 10-15 hours drying in 80 ~ 110 ℃ reason, such as to the group.

본 발명에 의하면 통상의 활성탄을 표면 개질하고 Fe이온을 교환시킨 다음 열처리 하는 간단한 공정으로 전극 재료는 물론 촉매지지체, 거대물질 흡착제 등으로 활용할 수 있는 메조포아 크기의 활성탄으로 손쉽게 만들 수 있어서 상기 활용분야는 물론 메조포아 활성탄을 활용할 수 있는 활성탄 응용 분야에 용이하게 사용할 수 있게 한다.According to the present invention, a simple process of surface-modifying conventional activated carbon, exchanging Fe ions, and then heat-treating it can be easily made into mesoporous-sized activated carbon that can be used as an electrode material as well as a catalyst support and a macro adsorbent. Of course, it makes it easy to use in activated carbon applications that can utilize mesopoa activated carbon.

이하에서는 바람직한 일실시예와 첨부도면을 참조하여 본 발명을 보다 상세히 설명한다. 이하에서는 실시 예는 본 발명을 설명하기 위한 한 예이지 본 발명이 이에 한정되는 것은 아니다.Hereinafter, with reference to the preferred embodiment and the accompanying drawings will be described the present invention in more detail. Hereinafter, the embodiments are only examples for describing the present invention, but the present invention is not limited thereto.

본 발명에서는 발명의 실시를 통해 설명하고자 통상의 활성탄을 사용하였다. 먼저 활성탄 표면을 개질하기 위해 질산 6~9몰(mol)을 사용하였는데, 상기 범위에서 질산과 증류수비를 약 1:1로 하여, 활성탄 표면을 개질시키면 가장 적합한 활성탄 표면개질이 이루어진다고 판단되어 위와 같이 하여 사용하였다.In the present invention, a conventional activated carbon was used to explain through practice of the invention. First, 6-9 mol (mol) of nitric acid was used to modify the surface of activated carbon, and the ratio of nitric acid and distillation was about 1: 1 in the above range. When the surface of activated carbon was modified, it was determined that the most suitable activated carbon surface was modified. It was used together.

상기 질산 농도의 500ml와 활성탄 20g을 3구 플라스크에 넣고 보일링(Boiling) 온도 약 95℃에서 6, 8, 10, 24시간 동안 활성탄 표면을 개질시켰다. 질산처리만 하면 활성탄 표면에 산성 복합체 -COOH가 생성되어 포아 블록킹(pore blocking) 현상을 일으킨다.500 ml of the nitric acid concentration and 20 g of activated carbon were placed in a three-necked flask, and the surface of the activated carbon was modified at a boiling temperature of about 95 ° C. for 6, 8, 10, and 24 hours. Nitric acid treatment alone produces acidic complexes -COOH on the surface of the activated carbon, resulting in pore blocking.

그 다음 개질이 완료된 활성탄을 탈이온수를 사용해 질산이 제거되는 pH7이 되도록 충분히 세척한 후 95~105℃로 세팅된 오븐 속에서 약 12~13시간 건조 시켜 수분을 완전히 제거하였다.Then, the modified activated carbon was sufficiently washed to have pH7 to remove nitric acid using deionized water, and then dried in an oven set at 95 to 105 ° C. for about 12 to 13 hours to completely remove moisture.

그 후, Fe이온을 교환시키기 위해 본 실시예에서는 Fe(NO3)3 · 9H2O(98%, Aldrich)를 사용하여 용액과 활성탄을 실온에서 약 22~23시간 교반 후 pH 7이 되도록 수세 하였고, 수분 제거를 위해 95~105℃로 세팅된 오븐에서 약12~13시간 이상 건조시켰다. 상기에서 이온교환을 위해 1~5% 범위의 Fe를 이온교환 시키는 것은 최종적으로 활성탄 표면에 이온 교환된 양이 약 1%이상으로 고르게 활성탄 표면에 분산되어질 수 있게 하기 위함이고, 여기서 Fe는 -COOFe 분리되면서 촉매 작용을 하게 된다. 즉 상기에서의 Fe(NO3)3 · 9H2O는 수중에서 Fe이온으로 해리되어서 활성 탄 표면에 이온교환하게 된다.Thereafter, in order to exchange Fe ions, the solution and activated carbon were stirred at room temperature for about 22 to 23 hours using Fe (NO 3 ) 3 · 9H 2 O (98%, Aldrich) and washed with water to pH 7. And it was dried for about 12-13 hours or more in an oven set at 95 ~ 105 ℃ for water removal. The ion exchange of Fe in the range of 1 to 5% for ion exchange is to ensure that the amount of ion exchanged on the surface of activated carbon is evenly distributed on the surface of activated carbon even more than about 1%, where Fe is -COOFe. As it separates, it catalyzes. That is, Fe (NO 3 ) 3 9H 2 O is dissociated into Fe ions in water and ion-exchanged on the surface of activated carbon.

그 다음 활성탄을 열처리 하는데, Fe가 활성탄 표면과 촉매 반응을 진행시키기 위해 870~950℃로 세팅된 오븐에서 약 1.5~2시간 열처리 하였다.Then, the activated carbon was heat-treated, and Fe was heat-treated for about 1.5 to 2 hours in an oven set at 870 to 950 ° C. to advance the catalytic reaction with the surface of the activated carbon.

열처리가 끝난 활성탄은 HCl(35%)과 증류수로 330~370℃로 세팅된 오븐에서 약 28~33분간 가열하면서 탈철 과정을 거친 후 마찬 가지로 95~105℃의 온도로 세팅된 오븐에서 12~13시간 건조 시켰다. 상기에서 HCl은 활성탄 표면에 잔류되어 있는 Fe를 석출시키기 위해 사용하는 것이며, 이때 HCl을 희석하지 않고 단독으로 사용하는 경우 위험하고 활성탄에서 Fe의 석출시 활성탄이 변형될 수도 있으므로 증류수와 혼합하여 사용하는데 HCl : 증류수의 희석비를 1:3으로 하여 사용한다. After the heat treatment, activated carbon was heated in an oven set at 330 ~ 370 ℃ with HCl (35%) and distilled water for about 28 ~ 33 minutes, and then degassed. It was dried for 13 hours. In the above, HCl is used to precipitate Fe remaining on the surface of activated carbon.In this case, when used alone without diluting HCl, it is dangerous, and activated carbon may be deformed when precipitation of Fe from activated carbon. The dilution ratio of HCl: distilled water is used as 1: 3.

상기와 같이 본 발명에 의해, 질산으로 표면 개질 처리하고 Fe이온교환 하여 열처리한 활성탄을 BET, SEM 및 EDS를 사용하여 표면 개질, 활성탄의 표면적, 포아볼륨(pore volume), 평균 포아사이즈(mean pore size), 메조포아 분율(mesopore fraction), 표면조성 변화 등을 조사하였다.According to the present invention, the surface-modified activated carbon treated with surface modification with nitric acid and heat-treated by Fe ion exchange using BET, SEM and EDS, the surface modified, surface area of activated carbon, pore volume, mean pore size, mesopore fraction, and surface composition change were investigated.

하기 표 1은 표면 개질한 활성탄의 포아구조에 대한 파라메타(parameter)를 나타내었다. 표에서 AC는 활성탄(Activated Carbon)을 뜻한다. 표면적은 멀티(multi)BET를 사용하고, 포아볼륨은 DFT식을 사용하여 계산한 값이다.Table 1 below shows parameters for the pore structure of surface modified activated carbon. In the table, AC stands for Activated Carbon. The surface area is multiBET and the pore volume is calculated using the DFT equation.

ACAC SBET (m2/g)S BET (m 2 / g) Smic (m2/g)S mic (m 2 / g) Smes (m2/g)S mes (m 2 / g) Vmic (m2/g)V mic (m 2 / g) Vmes (m2/g)V mes (m 2 / g) Vtotal (m2/g)V total (m 2 / g) Mesopore fraction(%)Mesopore fraction (%) Mean pore size(nm)Mean pore size (nm) RawRaw 15281528 13561356 172172 0.5460.546 0.11710.1171 0.66310.6631 17.6617.66 18.3918.39 6hr-HNO3 6hr-HNO 3 834834 737.5737.5 96.596.5 0.29760.2976 0.06630.0663 0.36390.3639 18.2218.22 18.618.6 6hr-HNO3-Fe-heat6hr-HNO 3 -Fe-heat 937.7937.7 613.7613.7 324324 0.23920.2392 0.37110.3711 0.61030.6103 60.8060.80 28.7828.78 8hr-HNO3 8hr-HNO 3 10551055 916916 140140 0.35340.3534 0.11550.1155 0.46890.4689 24.6324.63 19.5419.54 8hr-HNO3-Fe-heat8hr-HNO 3 -Fe-heat 683.1683.1 358358 325.1325.1 0.13910.1391 0.3910.391 0.53010.5301 73.7673.76 35.2835.28 10hr-HNO3-Fe-heat10hr-HNO 3 -Fe-heat 612.6612.6 190.4190.4 422.2422.2 0.08550.0855 0.52860.5286 0.61410.6141 86.086.0 44.144.1 24hr-HNO3 24hr-HNO 3 281.8281.8 240.3240.3 41.541.5 0.0880.088 0.04530.0453 0.13330.1333 33.9833.98 21.1121.11 24hr-HNO3-Fe-heat24hr-HNO 3 -Fe-heat 331.9331.9 112.5112.5 219.4219.4 0.08950.0895 0.22550.2255 0.31500.3150 71.5871.58 45.7345.73

표 1. 표면 개질 활성탄의 포아구조 파라메터Table 1. Pore Structure Parameters of Surface Modified Activated Carbon

도 1은 시간에 따른 질산처리와 Fe이온교환 실험의 등온(isotherm)곡선을 나타낸 것이다.Figure 1 shows the isotherm curve of the nitric acid treatment and Fe ion exchange experiment over time.

상기 표 1과 도 1을 참조하면, 질산처리만한 활성탄과 Fe이온교환을 한 활성탄은 포아 볼륨에서 많은 차이가 나는 것을 알 수 있는데, 질산 처리로 인해 활성탄 표면에 -COOH가 많이 생성되어 있기 때문에 포아 블로킹(pore blocking)으로 작아지고, Fe이온교환 후 열처리한 활성탄은 -COOFe가 떨어져 나가면서 촉매 작용으로 인해 큰 포아를 생성하도록 한 것으로 판단된다. 또한, 질산처리 시간이 6, 8시간 보다 10시간 행할 때 메조포아 프랙션(fraction)이 86.07%로 포로시티(porosity)를 갖는 것으로 나타났고 24시간 행하는 경우에는 포아가 무너지는 경향을 나타냈다.Referring to Table 1 and FIG. 1, it can be seen that the activated carbon subjected to nitrate treatment and the activated carbon subjected to Fe ion exchange have a large difference in pore volume. Since a large amount of -COOH is generated on the surface of the activated carbon due to nitric acid treatment, It is believed that activated carbon, which is reduced by blocking of pores and heat treated after Fe ion exchange, produces large pores due to catalysis as -COOFe is released. In addition, when the nitric acid treatment time was performed for 10 hours rather than 6 and 8 hours, the mesoporous fraction was found to have porosity of 86.07%, and the pore collapsed after 24 hours.

도 2는 시간에 따른 질산처리와 Fe이온교환 후 열처리한 DFT 포아 사이즈 분포도로서 마이크로포아와 메조포아의 크기와 분포를 동시에 보여주는데, 도 1의 곡 선에서와 마찬가지로 10시간일 때 메조포아 분포가 넓은 것으로 보여 가장 좋은 결과를 나타냄을 알 수 있다.2 is a DFT pore size distribution plotted with nitric acid treatment and heat treatment after Fe ion exchange with time, showing the size and distribution of micropore and mesopoie at the same time. As in the curve of FIG. It can be seen that it shows the best results.

도 3은 BJH PSD로 메조포아의 분포와 크기를 나타낸 그래프로서, 도 1 및 도 2에서와 마찬가지로 10시간 처리한 활성탄이 3.5~6.5nm의 넓은 분포를 갖는데 5~6nm의 메조포아가 가장 많이 차지하여 가장 좋은 메조포로시티(mesoporosity)를 보여주었다.FIG. 3 is a graph showing the distribution and size of mesopoie with BJH PSD. As in FIGS. 1 and 2, activated carbon treated for 10 hours has a wide distribution of 3.5-6.5 nm, with 5-6 nm of mesopoa occupying the most. The best mesoporosity.

도 4a, 4b, 4c(cc) 및 4d는 본 발명의 과정을 통해 메조포아의 발달과정을 SEM 이미지로 나타낸 것이다.Figures 4a, 4b, 4c (cc) and 4d shows a SEM image of the development of mesopoa through the process of the present invention.

도면에서, 4a의 처리되지 않은 활성탄의 포아가 질산처리를 하면서 상기한 바와 같이 -COOH가 생성되어 포아블로킹 현상에 의해 4b에서와 같이 작아졌다가 4c에서와 같이 Fe이온교환 및 열처리(4d)를 통해 -COOH가 분리되어 메조포아로 발달하는 것을 알 수 있다. 4cc는 4c의 SEM 이미지로 Fe를 알아보기 어려워 X-선 매핑(mapping)을 통해 Fe이온교환을 확인하기 위한 것으로 점들은 C와 Fe를 나타낸다.In the figure, while the pores of the untreated activated carbon of 4a were subjected to nitric acid treatment, -COOH was produced as described above, and was reduced as in 4b by the pore blocking phenomenon, and the Fe ion exchange and heat treatment 4d was performed as in 4c. It can be seen that -COOH is separated and developed into mesopoa. 4cc is a SEM image of 4c, and it is difficult to recognize Fe, so that the X-ray mapping (ma-pping) to confirm the Fe ion exchange, the dots represent C and Fe.

도 5a, 5b, 5c 및 5d는 각 과정에서의 EDS 이미지 그래프로 도 5a는 처리 전 활성탄, 도 5b는 열처리 후의 활성탄에 대한 것이다. 도면에서, 도 5a의 질산처리 후에는 -COOH가 생성되어 -O의 피크가 나타나는데(O의 피크가 더 강해짐), 이는 질산처리로 인하여 활성탄 표면이 개질되었음을 알 수 있고, 도 5c의 Fe이온교환 후에는 Fe피크가 나타나 활성탄 표면에 Fe이온이 로딩(loading)되었음을 알 수 있고, 세척하고 열처리한 도 5d에서는 -COOFe가 분리되어 -O와 Fe의 피크가 사라지고 C피 크만 나타남을 알 수 있다.5A, 5B, 5C, and 5D are EDS image graphs for each process. FIG. 5A shows activated carbon before treatment, and FIG. 5B shows activated carbon after heat treatment. In the figure, after the nitric acid treatment of FIG. 5A, -COOH is generated, resulting in a peak of -O (the peak of O becomes stronger), which indicates that the surface of activated carbon was modified due to nitric acid treatment, and Fe ion exchange of FIG. After the Fe peak appeared Fe ions were loaded (loaded) on the surface of the activated carbon, and in Fig. 5d washed and heat-treated can be seen that -COOFe is separated and the peaks of -O and Fe disappear and only C peak appears.

상기한 바와 같이 본 발명에 따라 질산으로 표면 개질 시킨 다음 활성탄에 Fe이온교환을 통해 메조포아를 제조할 때 10시간 개질할 때 가장 좋은 결과를 나타냈고 Fe이온교환 하여 Fe를 로딩 시킨 활성탄이 가장 좋은 포로시티를 갖게 함을 알 수 있다.As described above, when the surface modified with nitric acid according to the present invention and then the mesopoa was prepared by Fe ion exchange on activated carbon, the best results were obtained when modified for 10 hours, and activated carbon loaded with Fe by ion exchange was the best. It can be seen that it has a fortitude.

도 1은 본 발명의 시간에 따른 질산처리와 Fe이온교환의 등온곡선.1 is an isothermal curve of nitric acid treatment and Fe ion exchange according to the present invention.

도 2는 본 발명의 시간에 따른 질산처리와 Fe이온교환 후 열처리한 다음의 DFT 포아사이즈 분포도.Figure 2 is a DFT pore size distribution after heat treatment after nitric acid treatment and Fe ion exchange according to the time of the present invention.

도 3은 BJH 포아볼륨 분포도.3 is a BJH pore volume distribution.

도 4a, 4b, 4c 및 4d는 본 발명 과정 중의 활성탄 SEM 이미지 사진.4A, 4B, 4C and 4D are photographs of SEM images of activated carbon during the process of the present invention.

도 5a, 5b, 5c 및 5d는 본 발명 과정의 EDS 이미지 그래프.5A, 5B, 5C and 5D are graphs of EDS images of the inventive process.

Claims (13)

철촉매 이온교환법을 이용한 메조포아 활성탄 제조방법으로서, 활성탄을 질산 산화처리 하여 활성탄의 표면을 개질하는 단계(S1),A method for producing mesopoa activated carbon using an iron catalyst ion exchange method, the method comprising: reforming the surface of activated carbon by nitric acid oxidation of activated carbon (S1), 상기 표면 개질된 활성탄에 Fe이온을 교환시키는 단계(S2) 그리고 상기 Fe이온교환 된 활성탄을 열처리하는 단계(S3)를 포함하는, 메조포아 활성탄 제조방법.Exchanging Fe ions on the surface modified activated carbon (S2) and heat treating the Fe ion exchanged activated carbon (S3). 제 1항에 있어서, 상기 단계(S1)에서의 화성탄 표면 개질은 활성탄 20g당 질산 6.0~9.0몰(mol) 500ml를 혼합하여 끓는 온도에서 6~20시간 행하는 것임을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 1, wherein the modified carbon surface in step (S1) is a mesopoa activated carbon production, characterized in that for 6 to 20 hours at a boiling temperature by mixing 500 ml of 6.0 to 9.0 mol (mol) nitric acid per 20 g of activated carbon Way. 제 1항에 있어서, 상기 단계(S2)에서의 Fe이온교환은 1~5% Fe이온교환임을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 1, wherein the Fe ion exchange in step (S2) is characterized in that 1 to 5% Fe ion exchange, mesopoa activated carbon production method. 제 3항에 있어서, 상기 Fe이온교환은 질산철을 사용하는 것임을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 3, wherein the Fe ion exchange is iron nitrate. 제 4항에 있어서, 상기 Fe이온교환은 실온에서 15~25시간 행하는 것임을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 4, wherein the Fe ion exchange is performed at room temperature for 15 to 25 hours. 제 1항에 있어서, 상기 단계(S3)에서의 열처리는 800~1000℃에서 1~3시간 행하는 것임을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 1, characterized in that the heat treatment in step (S3) is performed for 1 to 3 hours at 800 ~ 1000 ℃, mesopoa activated carbon production method. 제 1항에 있어서, 상기 단계(S1) 다음에는 활성탄을 세척 후 건조하는 단계(SS1)를 행하는 것임을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 1, wherein the step (S1) is followed by the step of washing and drying the activated carbon (SS1), mesopoa activated carbon manufacturing method. 제 7항에 있어서, 상기 건조는 80~110℃의 온도에서 10~15시간 행하는 것임을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 7, wherein the drying is performed at a temperature of 80 to 110 ° C. for 10 to 15 hours. 제 5항에 있어서, 상기 Fe이온교환 후에는 수세 후 건조하는 단계(SS2)를 더 포함함을 특징으로 하는, 메조포아 활성탄 제조방법.According to claim 5, The Fe ion exchange after washing with water further comprises the step of drying after washing (SS2), mesopoa activated carbon manufacturing method. 제 9항에 있어서, 상기 건조는 80~110℃의 온도에서 10~15시간 행함을 특징으로 하는, 메조포아 활성탄 제조방법.10. The method of claim 9, wherein the drying is performed at a temperature of 80 to 110 ° C for 10 to 15 hours. 제 1항 또는 제 6항 중 어느 한 항에 있어서, 상기 열처리 후에는 탈철단계(SS3)를 더 행함을 특징으로 하는, 메조포아 활성탄 제조방법.The method according to any one of claims 1 to 6, wherein after the heat treatment, a degassing step (SS3) is further performed. 제 11항에 있어서, 상기 탈철은 증류수로 300~400℃에서 20~40분간 행함을 특징으로 하는, 메조포아 활성탄 제조방법.The method of claim 11, wherein the de-ironing is carried out for 20 to 40 minutes at 300 to 400 ℃ with distilled water, mesopoa activated carbon production method. 제 12항에 있어서, 상기 탈철 후에는 80~110℃로 10~15시간 건조함을 특징으로 하는, 메조포아 활성탄 제조방법.The method according to claim 12, characterized in that after drying, drying for 10 to 15 hours at 80 ~ 110 ℃, mesopoa activated carbon production method.
KR1020070086626A 2007-08-28 2007-08-28 Preaparation of mesoporosity in activated carbons using Fe-exchange KR100885191B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070086626A KR100885191B1 (en) 2007-08-28 2007-08-28 Preaparation of mesoporosity in activated carbons using Fe-exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070086626A KR100885191B1 (en) 2007-08-28 2007-08-28 Preaparation of mesoporosity in activated carbons using Fe-exchange

Publications (2)

Publication Number Publication Date
KR20090021798A true KR20090021798A (en) 2009-03-04
KR100885191B1 KR100885191B1 (en) 2009-03-12

Family

ID=40691779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070086626A KR100885191B1 (en) 2007-08-28 2007-08-28 Preaparation of mesoporosity in activated carbons using Fe-exchange

Country Status (1)

Country Link
KR (1) KR100885191B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340864B1 (en) * 2012-03-28 2013-12-12 비나텍주식회사 Active carbon-transition metal oxide for electrode active material and manufacturing method of the same
KR20160114883A (en) * 2015-03-25 2016-10-06 한국과학기술연구원 carbon materials coated by iron oxide as adsorbent for removing heavy metal ions in wastewater
CN108191005A (en) * 2018-02-01 2018-06-22 桐乡市易清环保科技有限公司 A kind of Modified Iron charcoal electrolysis micro nano structure preparation method and sewage water treatment method
CN108262042A (en) * 2016-12-30 2018-07-10 海门市源美美术图案设计有限公司 A kind of modified activated carbon and the catalytic degradation effect to dyestuff

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038253B1 (en) * 2009-07-13 2011-05-31 충북대학교 산학협력단 A method of mesopore of active carbon fiber for supercapacitor electrode
RU2451547C2 (en) * 2010-08-31 2012-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of producing porous carbon support
KR102198796B1 (en) 2018-11-22 2021-01-06 군산대학교산학협력단 Preparation method of activated carbon using reducing atmosphere

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950003164A (en) * 1993-07-14 1995-02-16 조말수 Method for preparing activated carbon for wastewater treatment containing cadmium
KR100744984B1 (en) * 1999-11-16 2007-08-02 혼다 기켄 고교 가부시키가이샤 Electrode for electric double-layer capacitor and method for producing it
KR100582092B1 (en) * 2004-06-25 2006-05-22 한국에너지기술연구원 The method of activated carbon catalysts for Phenol synthesis and the Synthetic method of Phenol through its catalysts
KR100558895B1 (en) * 2004-08-05 2006-03-10 한국항공우주연구원 Adsorbents for organic sulfur compounds, Method for manufacturing them and Method for desulfurizing of town gas using them

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101340864B1 (en) * 2012-03-28 2013-12-12 비나텍주식회사 Active carbon-transition metal oxide for electrode active material and manufacturing method of the same
KR20160114883A (en) * 2015-03-25 2016-10-06 한국과학기술연구원 carbon materials coated by iron oxide as adsorbent for removing heavy metal ions in wastewater
CN108262042A (en) * 2016-12-30 2018-07-10 海门市源美美术图案设计有限公司 A kind of modified activated carbon and the catalytic degradation effect to dyestuff
CN108191005A (en) * 2018-02-01 2018-06-22 桐乡市易清环保科技有限公司 A kind of Modified Iron charcoal electrolysis micro nano structure preparation method and sewage water treatment method
CN108191005B (en) * 2018-02-01 2021-12-28 桐乡市易清环保科技有限公司 Preparation method of modified iron-carbon electrolysis micro-nano structure and sewage treatment method

Also Published As

Publication number Publication date
KR100885191B1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
KR100885191B1 (en) Preaparation of mesoporosity in activated carbons using Fe-exchange
Khalil et al. Decomposition of H2O2 on activated carbon obtained from olive stones
Perazzolo et al. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide
KR102119921B1 (en) Production method of Pt alloy catalyst using protective coating of carbon layer and ozone
Berenguer et al. Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon
Shao et al. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction
Hou et al. Deactivation and regeneration of carbon nanotubes and nitrogen-doped carbon nanotubes in catalytic peroxymonosulfate activation for phenol degradation: variation of surface functionalities
KR101932428B1 (en) Material for reduction electrode and Method for fabricating the same and Electro-Fenton system using the same
KR20130091482A (en) Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound
Hulicova-Jurcakova et al. Specific anion and cation capacitance in porous carbon blacks
Fragal et al. From ionic liquid-modified cellulose nanowhiskers to highly active metal-free nanostructured carbon catalysts for the hydrazine oxidation reaction
Meng et al. Laminar membranes assembled by ultrathin cobalt-copper oxide nanosheets for nanoconfined catalytic degradation of contaminants
KR20190093960A (en) Method for manufacturing activated carbon
EP3589403B1 (en) Process for preparing a supported catalytic material, and supported catalytic material
KR101038253B1 (en) A method of mesopore of active carbon fiber for supercapacitor electrode
Yang et al. Confining Pt nanoparticles in porous carbon structures for achieving durable electrochemical performance
KR20160114883A (en) carbon materials coated by iron oxide as adsorbent for removing heavy metal ions in wastewater
Wassner et al. Spherical Core–Shell Titanium (Oxy) nitride@ Nitrided Carbon Composites as Catalysts for the Oxygen Reduction Reaction: Synthesis and Electrocatalytic Performance
Sun et al. Dual defect regulation of BiOCl halogen layer enables photocatalytic O2 activation into singlet oxygen for refractory aromatic pollutant removal
Jia et al. Preparation of carbon supported platinum catalysts: role of π sites on carbon support surface
JP2004210583A (en) Method for production of new mesoporous carbon structure
KR100963197B1 (en) Method for Dechlorinating Organic Chlorine-Containing Compounds using Zero-Valent Iron Aerogels
Puziy et al. One-pot preparation of functionalized nanostructured carbons
Contescu et al. Selection of water-dispersible carbon black for fabrication of uranium oxicarbide microspheres
CN112044437B (en) Coralline Fe-based/carbon composite catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130206

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee