KR20080103191A - Method for preparing organic/inorganic composite electrolyte membrane and electrode comprising metal(iv)-hydrogenphosphate - Google Patents

Method for preparing organic/inorganic composite electrolyte membrane and electrode comprising metal(iv)-hydrogenphosphate Download PDF

Info

Publication number
KR20080103191A
KR20080103191A KR1020070050184A KR20070050184A KR20080103191A KR 20080103191 A KR20080103191 A KR 20080103191A KR 1020070050184 A KR1020070050184 A KR 1020070050184A KR 20070050184 A KR20070050184 A KR 20070050184A KR 20080103191 A KR20080103191 A KR 20080103191A
Authority
KR
South Korea
Prior art keywords
metal
group
polymer
hydrogen ion
ion exchange
Prior art date
Application number
KR1020070050184A
Other languages
Korean (ko)
Other versions
KR101018226B1 (en
Inventor
원정혜
신정규
이봉근
장재혁
최성호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020070050184A priority Critical patent/KR101018226B1/en
Publication of KR20080103191A publication Critical patent/KR20080103191A/en
Application granted granted Critical
Publication of KR101018226B1 publication Critical patent/KR101018226B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A method for manufacturing organic/inorganic composite electrolyte membrane and electrode comprising metal(IV)-hydrogen phosphate is provided to realize improved performance in a wet condition at a low cost, without the gelation between a hydrogen ion exchanger of the metal (IV) and polymer. An organic/inorganic composite electrolyte membrane comprises a polymer containing a hydrogen ion exchanger and metal (IV) - hydrogen phosphate (M(IV)(HPO4)2). The organic/inorganic composite electrolyte membrane is prepared by molding a membrane with a mixed solution consisting a polymer having a hydrogen ion exchanger and metal (IV) precursor solution and treating it with a phosphoric acid.

Description

금속(Ⅳ)-인산수소를 포함하는 유기/무기 복합 전해질막 및 전극의 제조방법 {METHOD FOR PREPARING ORGANIC/INORGANIC COMPOSITE ELECTROLYTE MEMBRANE AND ELECTRODE COMPRISING METAL(Ⅳ)-HYDROGENPHOSPHATE}METHOD FOR PREPARING ORGANIC / INORGANIC COMPOSITE ELECTROLYTE MEMBRANE AND ELECTRODE COMPRISING METAL (IV) -HYDROGENPHOSPHATE}

도 1은 실시예 3의 유기/무기 복합 전해질막과 비교예 1 및 비교예 2의 유기 전해질막을 각각 구비한 연료전지를 사용하여 저가습 조건(상대습도 40%, 셀 온도 70℃)하에서의 성능을 비교한 그래프이다.FIG. 1 shows the performance under low-humidity conditions (relative humidity 40%, cell temperature 70 ° C.) using a fuel cell including the organic / inorganic composite electrolyte membrane of Example 3 and the organic electrolyte membranes of Comparative Examples 1 and 2, respectively. It is a graph comparing.

본 발명은 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)를 포함하는 유기/무기 복합 전해질막의 제조방법; 상기 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)를 포함하는 전극의 제조방법에 관한 것이다.The present invention provides a method for producing an organic / inorganic composite electrolyte membrane containing metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ); A method for producing an electrode containing the metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ).

최근 휴대용 전자기기 및 무선통신기기의 급격한 보급으로 인해, 휴대용 전원 공급원인 배터리로서의 연료전지 개발, 무공해 자동차용 연료전지 및 청정 에너지원으로서 발전용 연료전지의 개발에 많은 관심과 연구가 진행되고 있다.Recently, due to the rapid spread of portable electronic devices and wireless communication devices, a lot of interest and research has been progressed in the development of a fuel cell as a battery as a portable power supply source, a fuel cell for a pollution-free automobile and a fuel cell for power generation as a clean energy source.

연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너 지 변환 장치이다. 즉, 연료전지는 연료가스(수소, 메탄올, 또는 기타 유기물)와 산화제(산소 또는 공기)를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식으로서, 높은 에너지 효율성과 오염물의 배출이 적은 친환경적인 특징으로 인하여 차세대 에너지원으로 연구 개발되고 있다. A fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy. In other words, the fuel cell is a power generation method that uses fuel gas (hydrogen, methanol, or other organic material) and oxidizing agent (oxygen or air), and generates electric power by using electrons generated during the redox reaction. It is being researched and developed as the next generation energy source due to the eco-friendly features with low emission of pollutants and pollutants.

수소를 연료로 하는 저가습 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC)의 경우, 넓은 온도 범위에서 작동이 가능하므로 냉각 장치 및 밀봉 부품 간소화, 저가습 수소를 연료로 사용하므로 가습기 사용 최소화, 그리고 빠른 구동 등의 장점으로 차량용 및 가정용 전원 장치로 각광을 받고 있다. 또한 다른 형태의 연료전지에 비하여 전류밀도가 큰 고출력 연료전지로서 넓은 범위의 온도에서 작동되고 구조가 간단하며 빠른 시동과 응답 특성이 있다.For low humidity polymer electrolyte fuel cell using hydrogen as a fuel (P olymer E lectrolyte M embrane F uel C ell, PEMFC), capable of operating over a wide temperature range because the use of simplified cooling system and the sealing parts, a low humidified hydrogen to the fuel Therefore, it has been spotlighted as a vehicle and home power supply because of the advantages of using a humidifier and fast driving. In addition, it is a high output fuel cell with a higher current density than other types of fuel cells. It operates at a wide range of temperatures, has a simple structure, and has fast startup and response characteristics.

이러한 연료전지는 애노드(anode)와 캐소드(cathode) 사이에 수소 이온 교환막이 개재(介在)되어 있는 막전극 접합체(MEA, Membrane Electrode Assembly)와 발생된 전기를 집전하고 연료를 공급하는 분리판(bipolar plate)의 연속적인 복합체로 구성된다. 애노드(anode)에서는 연료인 수소 또는 메탄올이 공급되어 전극 촉매 상에서 반응하여 수소 이온 (H+, 양성자)을 발생시키며, 캐소드(cathode)에서는 수소 이온 교환막을 통과한 수소 이온과 산소가 결합하여 순수한 물을 생성한다.Such a fuel cell has a membrane electrode assembly (MEA) having a hydrogen ion exchange membrane interposed between an anode and a cathode, and a bipolar plate that collects and supplies fuel for electricity generated. It consists of a continuous composite of plates. At the anode, hydrogen or methanol, which is a fuel, is supplied and reacts on the electrode catalyst to generate hydrogen ions (H +, protons). At the cathode, hydrogen ions and oxygen that pass through the hydrogen ion exchange membrane combine to form pure water. Create

애노드(anode)와 캐소드(cathode)는 각각 반응물들의 산화/환원 반응이 일어나는 촉매층과 상기 촉매층을 지지해 주는 지지층(또는 기체확산층이라 함)으로 이루어져 있다. 지지층으로는 다공성 탄소지(carbon paper)나 탄소천(carbon cloth)이 널리 쓰인다. 지지층은 촉매층을 지지해 주는 역할 외에도 반응물을 촉매층으로 확산시켜 주는 기체확산층 역할, 촉매층에서 발생한 전류를 분리판으로 이동시켜 주는 집전체 역할, 생성된 물이 촉매층 밖으로 유출되게 하는 통로 역할, 수소 이온 교환막에 적당한 수분이 존재하도록 하는 역할도 수행한다.The anode and the cathode each consist of a catalyst layer in which oxidation / reduction reactions of reactants occur and a support layer (or gas diffusion layer) supporting the catalyst layer. Porous carbon paper or carbon cloth is widely used as a support layer. In addition to supporting the catalyst layer, the support layer serves as a gas diffusion layer for diffusing the reactants into the catalyst layer, a current collector for moving currents generated from the catalyst layer to the separator plate, a role for passage of the generated water out of the catalyst layer, and a hydrogen ion exchange membrane. It also plays a role in ensuring that adequate moisture is present.

수소 이온 교환막은 고분자 전해질로 된 고분자 전해질막을 사용하며 두께는 보통 20 내지 300㎛이다. 대표적인 고분자 전해질막으로는 나피온 막이 알려져 있다. 기존 나피온 막 등의 설폰화된 고분자 전해질막은 가습이 충분한 상태에서 높은 전도도 및 연료전지의 성능을 보여주는 반면, 막에 포함되는 수분의 감소에 따라 급격한 수소 이온 전도성 저하가 수반되어 저가습 상태에서는 확연한 성능 저하가 초래되고 있다. 따라서, 고온(100℃ 이상)에서의 사용은 엄격한 물 관리를 필요로 하고, 복잡한 시스템을 필요로 한다.The hydrogen ion exchange membrane uses a polymer electrolyte membrane made of a polymer electrolyte, and its thickness is usually 20 to 300 µm. As a representative polymer electrolyte membrane, a Nafion membrane is known. While sulfonated polymer electrolyte membranes, such as conventional Nafion membranes, exhibit high conductivity and fuel cell performance under sufficient humidification, they are more pronounced in low-humidity conditions due to a drastic decrease in conductivity of hydrogen ions as the moisture in the membrane decreases. The performance degradation is caused. Therefore, use at high temperatures (above 100 ° C.) requires strict water management and requires complex systems.

현재 전술한 문제점을 보완하기 위해, 높은 수소이온 전도성과 흡습성을 보이는 무기 전도성 물질(Proton Conducting Filler)을 유기 고분자에 첨가하는 다양한 종류의 유기/무기 복합 전해질 막의 연구가 진행되고 있다.Currently, researches on various types of organic / inorganic composite electrolyte membranes in which an inorganic conductive material (Proton Conducting Filler) showing high hydrogen ion conductivity and hygroscopicity are added to an organic polymer to supplement the above-mentioned problems.

P. Costamagna (Electrochimica Acta 2002, Vol 47, 1023 )와 US 특허 5,919,583에 따르면, Nafion 115에 Zirconium Phosphate를 첨가한 유/무기 복합 전해질 막을 제조하였다. 상기 문헌에서 제조된 복합 전해질 막의 경우, 끊인 메탄올 수용액에 Nafion 115 전해질 막을 넣어 고분자 사슬을 벌려 준 후 (Swelling), 전해질 막을 1M의 Zirconium Chloride 용액에 담궈, Ziroconium Ion (Zr4+)을 전해질 막에 넣은 후, 인산 처리를 통해 제조된다. 그러나 이 방법을 통해 제조된 유/무기 복합 전해질 막의 경우, 높은 분산성을 기대하기는 어렵다.According to P. Costamagna (Electrochimica Acta 2002, Vol 47, 1023) and US Pat. No. 5,919,583, an organic / inorganic composite electrolyte membrane in which Zirconium Phosphate was added to Nafion 115 was prepared. In the case of the composite electrolyte membrane prepared in the above document, the Nafion 115 electrolyte membrane was added to the separated methanol aqueous solution to open the polymer chain (Swelling), and the electrolyte membrane was immersed in 1M Zirconium Chloride solution, and Ziroconium Ion (Zr 4+ ) was added to the electrolyte membrane. After loading, it is prepared through phosphoric acid treatment. However, in the case of the organic / inorganic composite electrolyte membrane prepared through this method, it is difficult to expect high dispersibility.

T. Okubo (Journal of Material Science 1995, Vol. 30, 749) 에 따르면, zirconia tetra-n-butoxide 를 이용하여 가수분해 반응을 통해 졸-겔법으로 제조하는 방법을 제시하였다. 그러나, 이를 유기 고분자 내에서 적용할 경우, 무기물 입자의 응집 (agglomeration) 이 야기되며, 무기물 입자 크기 조절이 어려워, 유기 고분자 내 Zirconium Phosphate의 높은 분산성을 기대하기 어렵다.According to T. Okubo (Journal of Material Science 1995, Vol. 30, 749), a sol-gel method was prepared by hydrolysis using zirconia tetra- n- butoxide. However, when it is applied in the organic polymer, agglomeration of the inorganic particles is caused, it is difficult to control the inorganic particle size, it is difficult to expect high dispersibility of Zirconium Phosphate in the organic polymer.

G. M, Anilkumar (Electrochemistry Communications 2006, Vol. 8, 133 )에 따르면, zirconium butoxide에 1N HNO3를 가수분해 촉매로 넣어 Acetyl Actone을 배위시켜 Zirconia 전구체 입자를 제조한 후, 이를 유기 고분자에 첨가하는 방법을 제시하였다. 그러나 이 방법의 경우 유기 고분자의 술폰기와 Zirconia 전구체 입자와의 반응을 통해 겔화 (Gelation)가 되어, 전해질 막 제조가 불가능하다.According to G. M, Anilkumar (Electrochemistry Communications 2006, Vol. 8, 133), Zirconia precursor particles were prepared by coordinating Acetyl Actone with 1N HNO 3 as a hydrolysis catalyst in zirconium butoxide, and then adding it to an organic polymer. The method is presented. However, this method is a gelation (Gelation) through the reaction of the sulfonic group and the Zirconia precursor particles of the organic polymer, it is impossible to produce an electrolyte membrane.

그러나, 유기 고분자에 무기 전도성 물질을 분산하는데 위와 같이 여러 방법이 제시되어 있으나, 높은 분산성을 충족하는 데는 상당한 어려움이 따른다.However, although several methods have been proposed for dispersing an inorganic conductive material in an organic polymer, it is difficult to satisfy high dispersibility.

본 발명은 금속(Ⅳ)과 고분자의 수소이온 교환기 사이의 겔화(gelation) 없이, 수소이온 교환기를 갖는 고분자 및 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)를 포함하는 유기/무기 복합 전해질막, 및 전극을 제조할 수 있는 방법을 제공하는 것을 목적으로 한다.The present invention relates to an organic compound comprising a polymer having a hydrogen ion exchange group and a metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ) without gelation between the metal (IV) and the hydrogen ion exchange group of the polymer. An object of the present invention is to provide an inorganic composite electrolyte membrane and a method for producing an electrode.

또한, 본 발명은 상기 방법에 의해 제조된 복합 전해질막 및/또는 전극을 포 함하는 막전극 접합체, 및 상기 막전극 접합체를 구비하는 연료전지를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a membrane electrode assembly including a composite electrolyte membrane and / or an electrode produced by the above method, and a fuel cell including the membrane electrode assembly.

본 발명은 수소이온 교환기를 갖는 고분자; 및 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)를 포함하는 유기/무기 복합 전해질막의 제조방법으로서, The present invention is a polymer having a hydrogen ion exchange group; And a metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ).

암모늄화된 수소이온 교환기를 갖는 고분자와 금속(Ⅳ) 전구체 용액의 복합 용액으로 막을 성형한 후, 인산 처리하여 제조되는 것이 특징인 유기/무기 복합 전해질막의 제조방법을 제공한다.The present invention provides a method for producing an organic / inorganic composite electrolyte membrane, which is formed by forming a membrane into a complex solution of a polymer having an ammoniumated hydrogen ion exchange group and a metal (IV) precursor solution, followed by phosphoric acid treatment.

또한, 본 발명은 기체 확산층의 일면 또는 양면 상에 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)가 포함된 촉매층이 형성된 전극의 제조방법으로서,In addition, the present invention is a method of manufacturing an electrode formed with a catalyst layer containing a metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ) on one or both sides of the gas diffusion layer,

촉매, 유기 고분자, 용매 및 금속(Ⅳ) 전구체 용액을 포함하는 혼합용액을 가스 확산층에 도포 및 건조시킨 후, 인산 처리하여 제조되는 것이 특징인 전극의 제조방법을 제공한다.Provided is a method for producing an electrode characterized in that the mixed solution comprising a catalyst, an organic polymer, a solvent and a metal (IV) precursor solution is applied to a gas diffusion layer and dried, followed by phosphoric acid treatment.

이하, 본 발명을 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

<유기/무기 복합 전해질막>Organic / Inorganic Composite Electrolyte Membrane

본 발명에 따른 유기/무기 복합 전해질막의 제조방법은, 고분자의 수소이온 교환기(예를 들면, 술폰산기)와 금속(Ⅳ) 전구체 용액 간의 겔화(gelation)를 막기 위해, 암모늄화된 수소이온 교환기를 갖는 고분자, 즉 고분자의 수소이온 교환기가 암모늄 형태로 보호된(protected)된 것을 사용한 것이 특징이다.In the method for producing an organic / inorganic composite electrolyte membrane according to the present invention, an ammoniumated hydrogen ion exchanger is used to prevent gelation between a polymer hydrogen ion exchanger (eg, sulfonic acid group) and a metal (IV) precursor solution. It is characterized by using a polymer having a protected, that is, the hydrogen ion exchange group of the polymer in the form of ammonium.

따라서, 암모늄화된 수소이온 교환기를 갖는 고분자와 금속(Ⅳ) 전구체 용액의 복합 용액으로 막을 성형한 후, 인산 처리하여 유기/무기 복합 전해질막을 제조할 수 있는데, 인산 처리에 의해 상기 암모늄화된 수소이온 교환기는 수소이온 교환기로 전환되며 상기 금속(Ⅳ) 전구체는 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)로 전환될 수 있다. 이때, 인산 처리는 인산 용액에 성형된 전해질막을 넣어 이루어질 수 있다. 그리고, 인산 처리 과정에는 최종적으로 세척과정이 포함될 수 있다.Accordingly, the organic / inorganic composite electrolyte membrane may be prepared by forming a membrane into a complex solution of a polymer having an ammoniumated hydrogen ion exchange group and a metal (IV) precursor solution, followed by phosphoric acid treatment. An ion exchanger is converted to a hydrogen ion exchanger and the metal (IV) precursor can be converted to metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ). At this time, the phosphoric acid treatment may be made by putting a molded electrolyte membrane in the phosphoric acid solution. In addition, the phosphate treatment may finally include a washing process.

이와 같은 과정에 의해 제조되는 전해질막에서, 상기 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)는 상기 수소이온 교환기를 갖는 고분자 매트릭스에 분산되어 있을 수 있다.In the electrolyte membrane prepared by the above process, the metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ) may be dispersed in a polymer matrix having the hydrogen ion exchange group.

본 발명에 따른 전해질막의 제조방법에서, 상기 암모늄화된 수소이온 교환기를 갖는 고분자는 수소이온 교환기를 갖는 고분자와 아민을 혼합하여 제조될 수 있다. 상기 아민은 수소이온 교환기(예를 들면, 술폰산기)와 암모늄을 형성할 수 있는 것이라면 특별히 제한되지 않는다. 이의 예로는 트리에틸아민, 트리메틸아민, 트리프로필아민, 트리부틸아민 등이 있으나, 이에 한정되지 않으며, 이들 아민은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. In the method for preparing an electrolyte membrane according to the present invention, the polymer having an ammoniumated hydrogen ion exchange group may be prepared by mixing a polymer having an hydrogen ion exchange group and an amine. The amine is not particularly limited as long as it can form ammonium with a hydrogen ion exchange group (eg, sulfonic acid group). Examples thereof include triethylamine, trimethylamine, tripropylamine, tributylamine, and the like, but are not limited thereto, and these amines may be used alone or in combination of two or more thereof.

또한, 상기 금속(Ⅳ) 전구체 용액은 금속(Ⅳ) 알콕사이드 또는 금속(Ⅳ) 염; 금속과 배위결합하는 리간드; 및 산(acid)을 혼합하여 제조될 수 있다. In addition, the metal (IV) precursor solution may be a metal (IV) alkoxide or metal (IV) salt; Ligands that coordinate with metals; And it can be prepared by mixing acid (acid).

상기 금속(Ⅳ) 전구체 용액은 알코올 및/또는 물의 존재 하에 제조될 수도 있다. 상기 알코올은 특별한 제한은 없으나, 상기 금속 알콕사이드의 알콕시와 동 종의 것을 사용하는 것이 바람직하다. The metal (IV) precursor solution may be prepared in the presence of alcohol and / or water. The alcohol is not particularly limited, but it is preferable to use the same kind as the alkoxy of the metal alkoxide.

또한, 상기 금속과 배위결합하는 리간드는 금속과 σ-결합 및/또는 π-결합할 수 있는 리간드로 알려진 통상의 화합물을 사용할 수 있다. 상기 리간드의 비제한적인 예로는 아세톤, 아세틸 아세톤 등이 있으나, 특별히 한정하지는 않는다. 또한, 상기 산(acid)은 염산, 인산, 황산 등을 사용할 수 있으나, 이에 한정하지는 않는다. In addition, as the ligand for coordinating with the metal, conventional compounds known as ligands capable of σ-bonding and / or π-bonding with metal can be used. Non-limiting examples of the ligand include acetone, acetyl acetone and the like, but is not particularly limited. In addition, the acid may be hydrochloric acid, phosphoric acid, sulfuric acid, etc., but is not limited thereto.

상기 금속(Ⅳ) 알콕사이드 및 금속(Ⅳ) 염은 ⅣA족 금속 및 ⅣB족 금속에서 선택되는 금속의 알콕사이드 및 금속의 염이면 특별히 한정되지 않는다.The metal (IV) alkoxide and metal (IV) salt are not particularly limited as long as they are salts of alkoxides and metals of metals selected from Group IVA metals and Group IVB metals.

상기 암모늄화된 수소이온 교환기를 갖는 고분자에서, 상기 수소이온 교환기는 설폰산기, 인산기, 히드록시기, 및 카르복실산기로 이루어진 군에서 선택된 1종 이상의 작용기일 수 있다.In the polymer having an ammoniumated hydrogen ion exchange group, the hydrogen ion exchange group may be at least one functional group selected from the group consisting of sulfonic acid groups, phosphoric acid groups, hydroxy groups, and carboxylic acid groups.

또한, 상기 고분자는 통상 전해질막용 고분자로 사용하고 있는 것이면 특별히 제한하지 않는다. 이러한 유기 고분자의 비제한적인 예로는 폴리아릴렌에테르(polyaryleneether, PAE), 폴리에테르에테르케톤 (polyetheretherketone, PEEK), 폴리에테르에테르술폰 (polyetherethersulfone, PEES), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 나피온(Nafion), 폴리아졸(polyazole), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리페닐렌 옥사이드(polyphenylene oxide), 폴리페닐렌 설파이드(polyphenylene sulfide), 폴리술폰, 폴리카보네이트, 폴리스티렌, 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리퀴녹살린, (포스페이티드) 폴 리포스파젠, 또는 폴리벤즈이미다졸 등이 있으며, 이들은 단독으로 또는 2종 이상으로 혼합하여 사용될 수 있다.In addition, the polymer is not particularly limited as long as it is usually used as a polymer for electrolyte membranes. Non-limiting examples of such organic polymers are polyaryleneether (PAE), polyetheretherketone (PEEK), polyetherethersulfone (polyetherethersulfone, PEES), polytetrafluoroethylene (PTFE), poly Polyvinylidenefluoride (PVDF), Nafion, polyazole, polyvinylalcohol (PVA), polyphenylene oxide, polyphenylene sulfide, polyphenyl Sulfones, polycarbonates, polystyrenes, polyimides, polyamides, polyquinoxalines, (phosphated) polyphosphazenes, or polybenzimidazoles; Can be used in combination.

따라서, 본 발명에서 상기 수소이온 교환기를 갖는 고분자는 상기 예시된 고분자들로 이루어진 군에서 선택되는 고분자에 상기 예시된 수소이온 교환기들로 이루어진 군에서 선택되는 수소이온 교환기가 결합된 것이 바람직하다.Therefore, in the present invention, the polymer having the hydrogen ion exchange group is preferably combined with a hydrogen ion exchange group selected from the group consisting of the hydrogen ion exchange groups exemplified above to a polymer selected from the group consisting of the polymers exemplified above.

본 발명의 전해질막 제조방법에서, 상기 금속(Ⅳ)은 Ti, Zr, Hf, Rf 등의 ⅣA족 금속, Si, Ge, Sn, Pb 등의 ⅣB족 금속에서 선택될 수 있으며, 경우에 따라서는 이들의 둘 또는 그 이상으로 조합으로 포함될 수 있다. 그 중에서도 특히 Zr이 바람직하다.In the method of preparing an electrolyte membrane of the present invention, the metal (IV) may be selected from Group IVA metals such as Ti, Zr, Hf, and Rf, and Group IVB metals such as Si, Ge, Sn, and Pb, and in some cases, It may be included in a combination of two or more of these. Especially, Zr is preferable.

본 발명의 전해질막 제조방법에서, 상기 금속(Ⅳ) 전구체 용액의 사용량은 막을 이루면서 높은 수소이온 전도도를 나타낼 수 있는 범위라면 특별히 제한되는 것은 아니며, 예를 들어, 상기 암모늄화된 수소이온 교환기를 갖는 고분자 100 중량부 대비 0.1 내지 1000 중량부, 바람직하게는 1 내지 100 중량부로 포함될 수 있다.In the method of preparing an electrolyte membrane of the present invention, the amount of the metal (IV) precursor solution is not particularly limited as long as it is a range capable of exhibiting high hydrogen ion conductivity while forming a membrane, for example, having the ammoniumated hydrogen ion exchange group. 0.1 to 1000 parts by weight, preferably 1 to 100 parts by weight, based on 100 parts by weight of the polymer.

본 발명의 전해질막 제조방법은, 전술한 구성 성분 이외에, 당 업계에 알려진 통상적인 기타 성분, 첨가제 등을 포함하여 진행될 수 있다. Electrolytic membrane production method of the present invention, in addition to the above-described components, it may be carried out including other components, additives and the like conventionally known in the art.

특히, 암모늄화된 수소이온 교환기를 갖는 고분자와 금속(Ⅳ) 전구체 용액의 복합 용액은 상기 고분자를 용해시키는 용매를 추가적으로 포함할 수 있다.In particular, the complex solution of the polymer having an ammonium hydrogen ion exchange group and the metal (IV) precursor solution may further include a solvent for dissolving the polymer.

상기 고분자를 용해시키는 용매는, 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서, 사용하고자 하는 고분자와 용해도 지수가 유사하며, 끓는 점(boiling point)이 낮은 것이 바람직하다. 그러나, 이에 제한되지 않으며, 당 업계에 알려진 통상적인 용매를 사용할 수 있다. 상기 고분자를 용해시키는 용매의 비제한적인 예로는 N,N-디메틸아세트아미드(N,N-dimethylacetamide, DMAc), N-메틸피롤리돈 (N-methylpyrrolidone, NMP), 디메틸술폭시드(dimethylsulfoxide, DMSO), 또는 N,N-디메틸포름아미드 (N,N-dimethylformamide, DMF), 인산, 폴리인산 등이 있다.The solvent for dissolving the polymer, the solubility index is similar to the polymer to be used in order to facilitate uniform mixing and subsequent solvent removal, it is preferable that the boiling point (boiling point) is low. However, the present invention is not limited thereto, and conventional solvents known in the art may be used. Non-limiting examples of solvents for dissolving the polymer include N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO) ), Or N, N-dimethylformamide (N, N-dimethylformamide, DMF), phosphoric acid, polyphosphoric acid, and the like.

상기 복합 용액을 사용하여 막을 성형하는 것은, 상기 복합 용액을 기재(substrate)상에 코팅 및 건조한 후, 기재로부터 막을 분리하여 진행될 수 있다. 상기 기재의 비제한적인 예로는 유리판, 고분자 필름, 스테인리스 판 등이 있다.Molding the membrane using the composite solution may be performed by coating and drying the composite solution on a substrate and then separating the membrane from the substrate. Non-limiting examples of the substrate include glass plates, polymer films, stainless steel plates and the like.

상기 복합 용액을 기재상에 코팅하는 방법은 당 업계에 알려진 통상적인 코팅 방법을 사용할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅, 닥터 블레이드 또는 이들의 혼합 방식 등 다양한 방식을 이용할 수 있다.The method of coating the composite solution on a substrate may use a conventional coating method known in the art, for example, dip coating, die coating, roll coating, comma coating , A doctor blade, or a mixture thereof can be used.

<전극><Electrode>

본 발명에 따른 전극의 제조방법은 촉매, 유기 고분자, 용매 및 금속(Ⅳ) 전구체 용액을 포함하는 혼합용액을 가스 확산층에 도포 및 건조시킨 후, 인산 처리하여 제조되는 것이 특징이다. 이와 같은 방법에 의해, 기체 확산층의 일면 또는 양면 상에 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)가 포함된 촉매층이 형성된 전극이 제조될 수 있다. The electrode manufacturing method according to the present invention is characterized in that the mixed solution containing a catalyst, an organic polymer, a solvent and a metal (IV) precursor solution is applied to the gas diffusion layer and dried, followed by phosphoric acid treatment. By such a method, an electrode having a catalyst layer including metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ) formed on one or both surfaces of the gas diffusion layer may be manufactured.

이때, 인산 처리는 예를 들면, 인산 용액에 상기 건조과정을 통해 형성된 전극을 넣고, 세척하여 진행될 수 있다. In this case, the phosphoric acid treatment may be performed by, for example, putting the electrode formed through the drying process in a phosphoric acid solution and washing.

상기 금속(Ⅳ) 전구체 용액은 앞서 기재한 유기/무기 복합 전해질막의 제조방법에서 기재한 것과 동일한 방법으로 제조될 수 있다.The metal (IV) precursor solution may be prepared by the same method as described in the method of preparing the organic / inorganic composite electrolyte membrane described above.

상기 유기 고분자는 촉매와 금속(Ⅳ)-인산수소를 기체 확산층 상에 고정 및 연결하는 바인더 성분으로서 사용될 수 있다. 이때, 상기 유기 고분자는 암모늄화된 수소이온 교환기를 갖는 유기 고분자일 수 있으며, 상기 수소이온 교환기는 설폰산기, 인산기, 히드록시기, 및 카르복실산기로 이루어진 군에서 선택된 1종 이상의 작용기일 수 있다. 상기 암모늄화된 수소이온 교환기를 갖는 유기 고분자는 앞서 유기/무기 복합 전해질막의 제조방법 중에서 기재한 것과 동일한 방법으로 제조될 수 있다. The organic polymer may be used as a binder component for fixing and connecting the catalyst and the metal (IV) -hydrogen phosphate on the gas diffusion layer. In this case, the organic polymer may be an organic polymer having an ammoniumated hydrogen ion exchange group, and the hydrogen ion exchange group may be at least one functional group selected from the group consisting of sulfonic acid groups, phosphoric acid groups, hydroxyl groups, and carboxylic acid groups. The organic polymer having an ammoniumated hydrogen ion exchange group may be prepared by the same method as described above in the method of preparing an organic / inorganic composite electrolyte membrane.

또한, 상기 암모늄화된 수소이온 교환기를 갖는 유기 고분자는 상기 혼합용액에 포함되어 가스 확산층에 도포 및 건조된 후, 인산 처리 과정을 통하여 수소이온 교환기를 갖는 유기 고분자로 전환될 수 있다. In addition, the organic polymer having an ammoniumated hydrogen ion exchanger may be included in the mixed solution, coated and dried in a gas diffusion layer, and then converted into an organic polymer having a hydrogen ion exchanger through phosphoric acid treatment.

상기 유기 고분자의 비제한적인 예로는 폴리아릴렌에테르(polyaryleneether, PAE), 폴리에테르에테르케톤 (polyetheretherketone, PEEK), 폴리에테르에테르술폰 (polyetherethersulfone, PEES), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 나피온(Nafion), 폴리아졸(polyazole), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리페닐렌 옥사이드(polyphenylene oxide), 폴리 페닐렌 설파이드(polyphenylene sulfide), 폴리술폰, 폴리카보네이트, 폴리스티렌, 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리퀴녹살린, (포스페이티드) 폴리포스파젠 및 폴리벤즈이미다졸 등이 있으며, 이들은 단독으로 또는 2종 이상으로 혼합하여 사용될 수 있다.Non-limiting examples of the organic polymer is polyaryleneether (PAE), polyetheretherketone (PEEK), polyetherethersulfone (polyetherethersulfone, PEES), polytetrafluoroethylene (PTFE), poly Polyvinylidenefluoride (PVDF), Nafion, polyazole, polyvinylalcohol (PVA), polyphenylene oxide, polyphenylene sulfide, polyphenylene sulfide Sulfones, polycarbonates, polystyrenes, polyimides, polyamides, polyquinoxalines, (phosphated) polyphosphazenes and polybenzimidazoles, and the like, alone or in combination of two or more thereof. Can be used.

따라서, 상기 수소이온 교환기를 갖는 유기 고분자는 상기 예시된 고분자들로 이루어진 군에서 선택되는 고분자에 상기 예시된 수소이온 교환기들로 이루어진 군에서 선택되는 수소이온 교환기가 결합된 것이 바람직하다.Accordingly, the organic polymer having the hydrogen ion exchange group is preferably a hydrogen ion exchange group selected from the group consisting of the hydrogen ion exchange groups as exemplified by the polymer selected from the group consisting of the above polymers.

본 발명에 따른 전극의 제조방법에서, 상기 금속(Ⅳ)은 Ti, Zr, Hf, Rf 등의 ⅣA족 금속, Si, Ge, Sn, Pb 등의 ⅣB족 금속에서 선택될 수 있으며, 경우에 따라서는 이들의 둘 또는 그 이상으로 조합으로 포함될 수 있다. 그 중에서도 특히 Zr이 바람직하다.In the method of manufacturing an electrode according to the present invention, the metal (IV) may be selected from Group IVA metals such as Ti, Zr, Hf, and Rf, and Group IVB metals such as Si, Ge, Sn, and Pb, and in some cases, May be included in a combination of two or more thereof. Especially, Zr is preferable.

본 발명에 따른 전극의 제조방법에서, 상기 금속(Ⅳ) 전구체 용액의 사용량은, 기체 확산층에 대한 도포로 인해 전극을 형성할 수 있고, 높은 수소이온 전도도를 나타낼 수 있는 범위라면 특별히 제한되는 것은 아니며, 예를 들어, 상기 유기 고분자 100 중량부 대비 0.1 내지 1000 중량부, 바람직하게는 1 내지 100 중량부로 포함될 수 있다.In the manufacturing method of the electrode according to the present invention, the amount of the metal (IV) precursor solution is not particularly limited as long as it can form an electrode due to the coating on the gas diffusion layer and can exhibit high hydrogen ion conductivity. For example, the organic polymer may be included in an amount of 0.1 to 1000 parts by weight, preferably 1 to 100 parts by weight, based on 100 parts by weight of the organic polymer.

또한, 촉매, 유기 고분자, 용매 및 금속(Ⅳ) 전구체 용액을 포함하는 상기 혼합용액을 기체 확산층 위에 도포하는 방법으로는 프린팅(printing), 분무(spray), 롤링(rolling) 또는 브러싱(brushing) 등의 방법이 있으나, 이에 한정하지는 않는다.In addition, a method of applying the mixed solution including the catalyst, the organic polymer, the solvent, and the metal (IV) precursor solution onto the gas diffusion layer may include printing, spraying, rolling, or brushing. There is a method of, but is not limited thereto.

상기 기체 확산층은 일반적으로 도전성 및 80% 이상의 다공도를 갖는 기재라면 특별한 제한이 없으며, 일례로 다공성 탄소지(carbon paper)나 탄소천(carbon cloth) 등이 있다. The gas diffusion layer is not particularly limited as long as it is a substrate having conductivity and porosity of 80% or more, and examples thereof include porous carbon paper or carbon cloth.

전극 중 캐소드 촉매층에 사용되는 촉매는 귀금속계 촉매 분말, 예컨대 Pt, W, Ru, Mo, Pd 또는 이들의 조합을 전도성 탄소분말의 표면에 고르게 담지시킨 형태를 사용할 수 있으며, 촉매의 비표면적을 증가시켜 반응효율을 향상시키기 위해서 카본블랙, 탄소나노튜브(carbon nanotube), 탄소 나노혼(carbon nanohorn) 등의 매우 미분된 형태의 탄소분말을 사용할 수 있다. 또한, 애노드의 촉매층에 사용되는 촉매는 일반적으로 백금 또는 Pt/Ru 와 같은 백금계 합금의 분말을 사용할 수 있다. 그러나 이에 제한되는 것은 아니다.The catalyst used in the cathode catalyst layer of the electrode may be in the form of a noble metal catalyst powder, such as Pt, W, Ru, Mo, Pd or a combination thereof evenly supported on the surface of the conductive carbon powder, increasing the specific surface area of the catalyst In order to improve the reaction efficiency, carbon powder in a very finely divided form, such as carbon black, carbon nanotubes, and carbon nanohorns, may be used. In addition, the catalyst used in the catalyst layer of the anode may generally use a powder of platinum or a platinum-based alloy such as Pt / Ru. However, it is not limited thereto.

또한, 상기 용매는 촉매 분산을 증진시키기 위해 사용하는 것으로서, 이의 비제한적인 예로는 물, 부탄올, 이소프로필알콜(isopropyl alcohol, IPA), 메탄올, 에탄올, n-프로판올, n-부틸 아세테이트, 에틸렌 글리콜 등이 있고, 이들 용매를 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.In addition, the solvent is used to enhance the catalyst dispersion, non-limiting examples thereof are water, butanol, isopropyl alcohol (IPA), methanol, ethanol, n-propanol, n-butyl acetate, ethylene glycol Etc., and these solvent can be used individually or in mixture of 2 or more types.

<막전극 접합체 및 연료전지><Membrane Electrode Assembly and Fuel Cell>

본 발명의 막전극 접합체(MEA)는 캐소드; 애노드; 및 상기 캐소드와 애노드 사이에 위치하는 전해질막을 포함하는 것으로서, The membrane electrode assembly (MEA) of the present invention is a cathode; Anode; And an electrolyte membrane positioned between the cathode and the anode,

(i) 상기 전해질막은 본 발명에 따른 상기 유기/무기 복합 전해질막; 또는 (ii) 상기 캐소드, 또는 애노드, 또는 이들 모두는 본 발명에 따른 상기 전극; 또는 상기 (i)과 (ii) 모두인 것이 특징인 막전극 접합체이다.(i) the electrolyte membrane comprises the organic / inorganic composite electrolyte membrane according to the present invention; Or (ii) the cathode, or anode, or both, according to the present invention; Or a membrane electrode assembly characterized in that both of (i) and (ii).

막전극 접합체(MEA)는 연료와 공기의 전기화학 촉매 반응이 일어나는 전극(캐소드와 애노드)과 수소 이온의 전달이 일어나는 고분자 막의 접합체를 의미하는 것으로서, 전극(캐소드와 애노드)과 전해질막이 접착된 단일의 일체형 유니트(unit)이다. 본 발명은 이러한 전해질막과 전극 중의 적어도 하나에 상기 금속(Ⅳ)-인산수소가 포함되어 있음으로써, 저가습 조건에서 작동 특성이 우수한 막전극 접합체를 구성한다.A membrane electrode assembly (MEA) refers to a junction of electrodes (cathodes and anodes) in which an electrochemical catalytic reaction between fuel and air occurs and a polymer membrane in which hydrogen ions are transferred. It is an integrated unit of. In the present invention, the metal (IV) -hydrogen phosphate is contained in at least one of the electrolyte membrane and the electrode, thereby constituting a membrane electrode assembly having excellent operating characteristics under low humidity conditions.

본 발명의 막전극 접합체는 애노드의 촉매층과 캐소드의 촉매층이 전해질 막에 접촉하도록 하는 형태로서, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로, 상기 캐소드; 애노드; 및 상기 캐소드와 애노드 사이에 위치하는 전해질막을 밀착시킨 상태에서 100 내지 400℃로 열압착하여 제조될 수 있다.The membrane electrode assembly of the present invention is in a form such that the catalyst layer of the anode and the catalyst layer of the cathode contact the electrolyte membrane, and can be prepared according to conventional methods known in the art. In one example, the cathode; Anode; And it may be prepared by thermal compression at 100 to 400 ℃ in the state in which the electrolyte membrane located between the cathode and the anode in close contact.

또한, 본 발명은 상기 막전극 접합체(MEA)를 포함하는 연료전지를 제공한다. 본 발명의 연료전지는 상기 막전극 접합체(MEA)를 사용하여 당 분야에 알려진 통상적인 방법에 따라 연료전지를 제조할 수 있다. 예를 들면, 상기에서 제조된 막전극 접합체(MEA)와 바이폴라 플레이트(bipolar plate)로 구성하여 제조될 수 있다.In addition, the present invention provides a fuel cell including the membrane electrode assembly (MEA). The fuel cell of the present invention can manufacture a fuel cell according to a conventional method known in the art using the membrane electrode assembly (MEA). For example, it may be prepared by configuring a membrane electrode assembly (MEA) and a bipolar plate (bipolar plate) prepared above.

상기 연료전지는 고분자 전해질 연료전지, 직접 액체 연료전지, 직접 메탄올 연료전지, 직접 개미산 연료전지, 직접 에탄올 연료전지, 또는 직접 디메틸에테르 연료전지 등이 가능하다. The fuel cell may be a polymer electrolyte fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a direct formic acid fuel cell, a direct ethanol fuel cell, or a direct dimethyl ether fuel cell.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, described in detail through preferred embodiments to help understand the present invention. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.

[실시예]EXAMPLE

실시예 1: 지르코늄(Ⅳ) 전구체 용액 제조Example 1 Preparation of Zirconium (IV) Precursor Solution

에틸 알코올 10 g에 Zr(O(CH2)3CH3)4와 아세틸 아세톤 및 물을 Zr(O(CH2)3CH3)4: 아세틸 아세톤: 물 = 1: 1: 4의 몰(mole)비로 넣어 교반 한 후, 35 % 염산 1ml를 첨가하고 24시간 교반하여 지르코늄 전구체 용액을 제조하였다.Mole of Zr (O (CH 2 ) 3 CH 3 ) 4 with acetyl acetone and water in Zr (O (CH 2 ) 3 CH 3 ) 4 : Acetyl acetone: water = 1: 1: 4 in 10 g of ethyl alcohol After stirring in a ratio, 1 ml of 35% hydrochloric acid was added and stirred for 24 hours to prepare a zirconium precursor solution.

실시예 2: 폴리에테르 에테르 케톤 / 지르코늄 전구체[polyether ether ketone / Zirconium Precusor]의 복합재 용액 (40~60 wt%) 제조Example 2: Preparation of a Composite Solution (40-60 wt%) of a Polyether Ether Ketone / Zirconium Precusor

Dimethylacetamide에 녹인 술폰화된 폴리에테르 에테르 케톤 8 g에 IEC(-SO3H mequiv./g) 대비 1.25배 과량의 Triethylamine을 첨가하여 술폰산기가 Triethylammonium 형태로 보호된 폴리에테르 에테르 케톤을 제조하였다. 여기에 상기 실시예 1을 통해 제조한 지르코늄 전구체 용액 3.2 g을 첨가하여 상온에서 3 시간 교반하여 술폰산기가 Triethylammonium 형태로 보호된 폴리에테르 에테르 케톤 / 지르코늄 전구체의 복합재 용액을 제조하였다.To the sulfonated polyether ether ketone dissolved in dimethylacetamide, 1.25-fold excess of Triethylamine was added to IEC (-SO 3 H mequiv./g) to prepare a polyether ether ketone having a sulfonic acid group protected in the form of Triethylammonium. 3.2 g of the zirconium precursor solution prepared in Example 1 was added thereto, followed by stirring at room temperature for 3 hours to prepare a composite solution of polyether ether ketone / zirconium precursor in which sulfonic acid group was protected in the form of Triethylammonium.

실시예 3: 술폰화된 폴리에테르 에테르 케톤 / 지르코늄 인산수소를 포함하는 유기/무기 복합 전해질막(시편 1) 제조Example 3 Preparation of Organic / Inorganic Composite Electrolyte Membrane (Sample 1) Containing Sulfonated Polyether Ether Ketone / Zirconium Hydrogen Phosphate

상기 실시예 2에서 제조된 술폰산기가 Triethylammonium 형태로 보호된 폴리에테르 에테르 케톤 / 지르코늄 전구체의 복합재 용액을 용액 붓기 방법으로 필름을 제조하였다. 필름 제조를 위해 지지체로 사용되는 유리판 위에 용액을 부은 후, 닥터 블레이드를 이용하여 일정 두께로 용액을 도포하였다. 상기 도포된 유리판을 수평을 맞춘 80 ℃ 의 항온 항습기에 8 시간 정도 보관하여 용액이 넓게 펴지게 한 뒤, 형성된 복합 전해질막을 지지체로부터 분리하였다. 분리된 복합 전해질막을 2 M의 인산에 넣고 80 ℃에서 6 시간 동안 교반한 뒤 증류수로 세척하여 술폰화된 폴리에테르 에테르 케톤 / 지르코늄 인산수소를 포함하는 유/무기 복합 전해질막(시편 1)을 제조하였다. The film of the composite solution of the polyether ether ketone / zirconium precursor in which the sulfonic acid group prepared in Example 2 was protected in the form of Triethylammonium was prepared by solution pouring. The solution was poured onto a glass plate used as a support for film production, and then the solution was applied to a predetermined thickness using a doctor blade. The coated glass plate was kept in a constant temperature and humidity chamber at 80 ° C. for about 8 hours to widen the solution, and then the formed composite electrolyte membrane was separated from the support. The separated composite electrolyte membrane was placed in 2 M phosphoric acid and stirred at 80 ° C. for 6 hours, followed by washing with distilled water to prepare an organic / inorganic composite electrolyte membrane (Sample 1) containing sulfonated polyether ether ketone / zirconium hydrogen phosphate. It was.

실시예 4: 지르코늄 인산수소 함유 전극 제조Example 4 Preparation of Zirconium Hydrogen Phosphate-Containing Electrode

상기 실시예 1에서 제조된 지르코늄 전구체 용액을 촉매(Pt/C), 증류수, 상기 실시예 2에서 제조된 술폰산기가 Triethylammonium 형태로 보호된 폴리에테르 에테르 케톤 전해질 용액(5%), IPA(Isopropylalcohol) 등을 Pt/C: H2O: 5% Ionomer solution: 지르코늄 인산수소: IPA = 1: 3: 6: 1: 100 의 중량 비율로 함께 섞어 교반한 후, carbon cloth의 기체 확산층(Gas Diffusion Layer, GDL)에 도포한 후, 인산 처리하여 전극을 제조하였다. The zirconium precursor solution prepared in Example 1 is a catalyst (Pt / C), distilled water, a polyether ether ketone electrolyte solution (5%) in which the sulfonic acid group prepared in Example 2 is protected in the form of Triethylammonium, IPA (Isopropylalcohol), and the like. Pt / C: H 2 O: 5% Ionomer solution: Zirconium hydrogen phosphate: IPA = 1: 3: 6: 1: After mixing and stirring together in a weight ratio of, the gas diffusion layer of carbon cloth ( G as D iffusion L ayer, GDL), followed by phosphoric acid treatment to prepare an electrode.

실시예 5: 막전극 접합체의 제조Example 5 Preparation of Membrane Electrode Assembly

촉매(Pt/C), 증류수, 술폰화된 폴리에테르 에테르 케톤 전해질 용액(5%), 및 IPA(Isopropylalcohol)를 Pt/C: H2O: 5% Ionomer solution: IPA = 1: 3: 6: 100의 중량 비율로 함께 섞어 교반한 후, carbon cloth의 기체 확산층(Gas Diffusion Layer, GDL)에 도포한 후, 건조하여 전극을 제조하였다.The catalyst (Pt / C), distilled water, sulfonated polyether ether ketone electrolyte solution (5%), and IPA (Isopropylalcohol) were added with Pt / C: H 2 O: 5% Ionomer solution: IPA = 1: 3: 6: after stirring to mix together in a weight ratio of 100, it was applied to a gas diffusion layer (G as D iffusion L ayer, GDL) of the carbon cloth, and dried to prepare an electrode.

상기 제조된 전극과 상기 실시예 3에서 제조된 전해질막을 접합하여 막전극 접합체(MEA)를 제조하였다.A membrane electrode assembly (MEA) was manufactured by bonding the prepared electrode and the electrolyte membrane prepared in Example 3.

비교예 1: Nafion 전해질막(시편 2)을 사용한 막전극 접합체 제조Comparative Example 1: Preparation of membrane electrode assembly using Nafion electrolyte membrane (Sample 2)

Dupont 사의 Nafion 112 막을 사용하였고, 이를 실시예 5에서 제조한 전극과 접합하여 막전극 접합체를 제조하였다.A Nafion 112 membrane manufactured by Dupont was used, and the membrane electrode assembly was prepared by bonding the membrane to the electrode prepared in Example 5.

비교예 2: 술폰화된 폴리에테르 에테르 케톤 전해질막(시편 3) 및 막전극 접합체 제조Comparative Example 2: Preparation of sulfonated polyether ether ketone electrolyte membrane (Sample 3) and membrane electrode assembly

상기 실시예 2에서 제조된 술폰산기가 보호된 폴리에테르 에테르 케톤 / 지르코늄 전구체의 복합재 용액 대신 술폰화된 폴리에테르 에테르 케톤을 사용한 것을 제외하고는, 실시예 3와 동일한 방법으로 순수 유기 고분자 전해질막(시편 2)을 제조하였다.A pure organic polymer electrolyte membrane (sample) was prepared in the same manner as in Example 3, except that sulfonated polyether ether ketone was used instead of the composite solution of the sulfonate group protected polyether ether ketone / zirconium precursor prepared in Example 2. 2) was prepared.

또한, 상기 술폰화된 폴리에테르 에테르 케톤 전해질막과 실시예 5에서 제조한 전극을 접합하여 막전극 접합체를 제조하였다.In addition, the sulfonated polyether ether ketone electrolyte membrane was bonded to the electrode prepared in Example 5 to prepare a membrane electrode assembly.

실험예 1: Ion Exchange Capacity 측정Experimental Example 1: Ion Exchange Capacity Measurement

상기 비교예 1의 Nafion 112 전해질막(Dupont 사), 및 비교예 2의 술폰화된 폴리에테르 에테르 케톤 전해질막 각각 0.5 g을 100 ℃의 초순수에서 2 시간 동안 수화시킨 후, NaCl 100 mL 수용액에 10 시간 이상 담지시켜 수소 이온(H+)을 나트륨 이온(Na+)으로 치환시켰다. 상기 치환된 수소 이온(H+)을 0.1 N NaOH 표준용액으로 적정하고, 적정에 사용된 NaOH의 양으로 하기 수학식 1에 따라 고분자막의 IEC 값을 계산하고, 그 결과를 하기 표 1에 기재하였다. 0.5 g of each of Nafion 112 electrolyte membrane of Comparative Example 1 (Dupont) and sulfonated polyether ether ketone electrolyte membrane of Comparative Example 2 was hydrated in ultrapure water at 100 ° C. for 2 hours, and then, It was supported for more than time to replace hydrogen ions (H + ) with sodium ions (Na + ). The substituted hydrogen ions (H + ) were titrated with 0.1 N NaOH standard solution, and the IEC value of the polymer membrane was calculated according to Equation 1 as the amount of NaOH used for the titration, and the results are shown in Table 1 below. .

[수학식 1][Equation 1]

IEC(-SO3H mequiv./g) IEC (-SO 3 H mequiv./g)

= (소비된 NaOH 표준용액(mL) × 0.1N) / 건조된 박막의 무게(g)= (Consumed NaOH standard solution (mL) × 0.1N) / weight of dried thin film (g)

실험예 2: 수소이온 전도도의 측정Experimental Example 2: Measurement of hydrogen ion conductivity

ZAHNER IM-6 Impedance Analyzer를 사용하여, 1 Hz ~ 1 MHz의 Frequency 영역에서 Potentio-Static Four-Probe 방법에 의해, 70 ℃의 온도 및 상대 습도 40%, 또는 70 ℃의 온도 및 상대 습도 100% 상태에서 각각 시편 1 내지 시편 3의 수소이온 전도도를 측정하였고, 그 결과를 하기 표 1에 기재하였다.Using a ZAHNER IM-6 Impedance Analyzer, by the Potentio-Static Four-Probe method in the frequency range of 1 Hz to 1 MHz, a temperature of 70 ° C. and a relative humidity of 40%, or a temperature of 70 ° C. and a relative humidity of 100% In each of the specimens 1 to 3 hydrogen ion conductivity was measured, the results are shown in Table 1 below.

실험예 3: 메탄올 투과도(MeOH crossover)Experimental Example 3: Methanol Permeability (MeOH crossover)

상기 실시예 3에서 제조한 술폰화된 폴리에테르 에테르 케톤/ 지르코늄 인산수소를 포함하는 유/무기 복합 전해질 막(시편 1), 비교예 1의 Nafion 112 전해질막(Dupont 사)(시편 2), 및 비교예 2의 술폰화된 폴리에테르 에테르 케톤 전해질막(시편 3)의 메탄올 투과도는 확산 셀(diffusion cell) 장치를 사용하여 측정하였다. An organic / inorganic composite electrolyte membrane (Sample 1) containing sulfonated polyether ether ketone / zirconium hydrogen phosphate prepared in Example 3 (Sample 1), Nafion 112 electrolyte membrane (Dupont) of Comparative Example 1 (Sample 2), and The methanol permeability of the sulfonated polyether ether ketone electrolyte membrane (Sample 3) of Comparative Example 2 was measured using a diffusion cell apparatus.

먼저 좌측 셀에는 10 M의 메탄올 수용액을, 우측 셀에는 순수한 물을 넣고 셀의 중간에 상기 전해질 막을 끼워 넣은 후, 우측 셀에서 용액을 샘플링하면서 얻은 시간(t)에 따른 우측 셀 내의 메탄올 농도(C i (t))의 변화로부터 메탄올 투과도를 계산하였다. 이때, 메탄올 투과도(D i ㆍK i )는 전해질 두께(L)와 막의 노출면적(A) 값, 우측 셀의 부피(V), 및 좌측 셀의 메탄올 초기농도(C i0 ) 값으로부터 하기 수학식 2에 의하여 계산하였다. 또한, 그 결과를 하기 표 1에 기재하였다.First, 10 M aqueous methanol solution is added to the left cell, pure water is inserted into the right cell, and the electrolyte membrane is inserted in the middle of the cell. Then, the methanol concentration ( C ) in the right cell is obtained according to the time ( t ) obtained by sampling the solution in the right cell. The methanol permeability was calculated from the change in i ( t )). At this time, the methanol permeability (D i and K i) is to the electrolyte thickness (L) with the film exposure area (A) value, the volume (V), and methanol to the initial concentration (C i0) value of the left cell of the right cell expression Calculated by 2. In addition, the results are shown in Table 1 below.

[수학식 2][Equation 2]

C i (t) = {(AㆍD i ㆍK i ㆍC io ) / VㆍL} × t C i (t) = {( A and D i and K i and C io) / V and L} × t

전해질막Electrolyte membrane IEC (meq/g)IEC (meq / g) 수소이온 전도도 (S/㎝)Hydrogen ion conductivity (S / cm) Methanol Permeability (㎠/S)Methanol Permeability (㎠ / S) 상대습도 100 %Relative Humidity 100% 상대습도 40 %Relative Humidity 40% 시편1 (실시예 3)Specimen 1 (Example 3) 1.081.08 0.3820.382 0.120.12 2.02 * 10-7 2.02 * 10 -7 시편2 (비교예 1)Psalm 2 (Comparative Example 1) 0.910.91 0.1390.139 0.020.02 2.67 * 10-6 2.67 * 10 -6 시편3 (비교예 2)Psalm 3 (Comparative Example 2) 1.521.52 0.1620.162 0.010.01 0.97 * 10-6 0.97 * 10 -6

상기 표 1 의하면, 실시예 3, 비교예 1 및 비교예 2의 전해질막을 비교하였을 때, 지르코늄 인산수소를 술폰화된 폴리에테르 에테르 케톤에 첨가한 유기/무기 복합 전해질 막(실시예 3)의 수소이온 전도도가 크게 향상되었음을 확인할 수 있었다. 또한, 본 발명에 따른 유기/무기 복합 전해질 막(실시예 3)은 종래 고분자막에 사용되던 나피온과 비교하여 고온에서의 메탄올 투과도가 향상되었음을 확인할 수 있었다.According to Table 1, when comparing the electrolyte membranes of Example 3, Comparative Example 1 and Comparative Example 2, hydrogen of the organic / inorganic composite electrolyte membrane (Example 3) in which zirconium hydrogen phosphate was added to the sulfonated polyether ether ketone It was confirmed that the ionic conductivity was greatly improved. In addition, it was confirmed that the organic / inorganic composite electrolyte membrane according to the present invention (Example 3) improved methanol permeability at a high temperature as compared to Nafion used in the conventional polymer membrane.

실험예 4: 셀 성능 분석Experimental Example 4: Cell Performance Analysis

상기 실시예 5, 비교예 1 및 비교예 2에서 제조된 막전극 접합체(MEA)로 단위전지 셀을 구성하여 성능을 확인하였다. Arbin의 PEMFC test station 장비를 사용하였으며, 셀온도는 70℃, 셀 유효면적은 25cm2, 수소의 유량은 200cc/m, 공기의 유량은 1000cc/m 이었다. 셀은 대기압 상태에서 운전되었으며, 상대습도 40%, 셀 온도 70℃ 조건에서 셀 성능을 확인하였고, 그 결과는 도 1에 나타내었다. Performance was confirmed by constructing a unit battery cell from the membrane electrode assembly (MEA) prepared in Example 5, Comparative Example 1 and Comparative Example 2. Arbin's PEMFC test station was used. The cell temperature was 70 ° C, the cell effective area was 25cm 2 , the flow rate of hydrogen was 200cc / m, and the flow rate of air was 1000cc / m. The cell was operated at atmospheric pressure, and the cell performance was confirmed at a relative humidity of 40% and a cell temperature of 70 ° C. The results are shown in FIG. 1.

도 1에 의하면, 본 발명에 따라 제조된 유/무기 복합 전해질 막과 전극을 구비하는 연료전지는 높은 수소이온 전도성 보유를 통해 고온 및 저습도 조건하에서도 우수한 성능을 나타냄을 확인할 수 있었다.1, it can be seen that the fuel cell including the organic / inorganic composite electrolyte membrane and the electrode manufactured according to the present invention exhibits excellent performance even under high temperature and low humidity conditions through high hydrogen ion conductivity retention.

본 발명의 제조방법에 따르면, 금속(Ⅳ)과 고분자의 수소이온 교환기 간의 겔화(gelation) 없이, 수소이온 교환기를 갖는 고분자 및 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)를 포함하는 유기/무기 복합 전해질막 및 전극을 제조할 수 있다. 또한, 제조된 전해질막 및 전극은 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)에 의해 높은 수소이온 전도도를 가지면서도 내화학성 및 열안정성이 우수하다. 또한, 본 발명의 제조방법에 따라 제조된 유기/무기 복합 전해질막 및/또는 전극으로 구성된 막전극 접합체를 포함하는 연료전지는 저가습 조건에서 향상된 성능구현이 가능하다. According to the production method of the present invention, a polymer having a hydrogen ion exchange group and a metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ) without gelation between the metal (IV) and the hydrogen ion exchange group of the polymer An organic / inorganic composite electrolyte membrane and an electrode may be prepared. In addition, the prepared electrolyte membrane and electrode have high hydrogen ion conductivity by metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ), and are excellent in chemical resistance and thermal stability. In addition, a fuel cell including a membrane electrode assembly composed of an organic / inorganic composite electrolyte membrane and / or an electrode manufactured according to the manufacturing method of the present invention enables improved performance at low humidity conditions.

이상에서 본 발명의 기재된 구체예를 중심으로 상세히 설명하였지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Although described in detail above with reference to the specific embodiments of the present invention, it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention, and such modifications and modifications belong to the appended claims. It is also natural.

Claims (15)

수소이온 교환기를 갖는 고분자; 및 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)를 포함하는 유기/무기 복합 전해질막의 제조방법으로서, A polymer having a hydrogen ion exchange group; And a metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ). 암모늄화된 수소이온 교환기를 갖는 고분자와 금속(Ⅳ) 전구체 용액의 복합 용액으로 막을 성형한 후, 인산 처리하여 제조되는 것이 특징인 유기/무기 복합 전해질막의 제조방법.A method for producing an organic / inorganic composite electrolyte membrane, characterized in that the membrane is formed by forming a composite solution of a polymer having an ammoniumated hydrogen ion exchange group and a metal (IV) precursor solution, followed by phosphoric acid treatment. 제1항에 있어서, 상기 암모늄화된 수소이온 교환기를 갖는 고분자는 수소이온 교환기를 갖는 고분자와 아민을 혼합하여 제조되는 것이 특징인 전해질막의 제조방법.The method of claim 1, wherein the polymer having an ammonium hydrogen ion exchange group is prepared by mixing a polymer having an hydrogen ion exchange group and an amine. 제1항에 있어서, 상기 금속(Ⅳ) 전구체 용액은 금속(Ⅳ) 알콕사이드 또는 금속(Ⅳ) 염; 금속과 배위결합하는 리간드; 및 산(acid)을 혼합하여 제조되는 것이 특징인 전해질막의 제조방법.The method of claim 1, wherein the metal (IV) precursor solution comprises a metal (IV) alkoxide or metal (IV) salt; Ligands that coordinate with metals; And a method for producing an electrolyte membrane, which is prepared by mixing an acid. 제1항에 있어서, 상기 수소이온 교환기는 설폰산기, 인산기, 히드록시기, 및 카르복실산기로 이루어진 군에서 선택된 1종 이상의 작용기인 것이 특징인 전해질막의 제조방법.The method of claim 1, wherein the hydrogen ion exchange group is at least one functional group selected from the group consisting of a sulfonic acid group, a phosphoric acid group, a hydroxy group, and a carboxylic acid group. 제1항에 있어서, 상기 고분자는 폴리아릴렌에테르(polyaryleneether, PAE), 폴리에테르에테르케톤 (polyetheretherketone, PEEK), 폴리에테르에테르술폰 (polyetherethersulfone, PEES), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 나피온(Nafion), 폴리아졸(polyazole), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리페닐렌 옥사이드(polyphenylene oxide), 폴리페닐렌 설파이드(polyphenylene sulfide), 폴리술폰, 폴리카보네이트, 폴리스티렌, 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리퀴녹살린, (포스페이티드) 폴리포스파젠 및 폴리벤즈이미다졸로 이루어진 군에서 선택된 1종 이상의 고분자인 것이 특징인 전해질막의 제조방법.The method of claim 1, wherein the polymer is polyaryleneether (PAE), polyetheretherketone (PEEK), polyetherethersulfone (polyetherethersulfone, PEES), polytetrafluoroethylene (polytetrafluoroethylene, PTFE), poly Polyvinylidenefluoride (PVDF), Nafion, polyazole, polyvinylalcohol (PVA), polyphenylene oxide, polyphenylene sulfide, polyphenyl An electrolyte characterized by at least one polymer selected from the group consisting of sulfones, polycarbonates, polystyrenes, polyimides, polyamides, polyquinoxalines, (phosphated) polyphosphazenes and polybenzimidazoles Method of Making Membranes. 제1항에 있어서, 상기 금속(Ⅳ)은 ⅣA족 및 ⅣB족 금속으로 이루어진 군에서 선택된 1종 이상의 금속인 것이 특징인 전해질막의 제조방법.The method of claim 1, wherein the metal (IV) is at least one metal selected from the group consisting of Group IVA and Group IVB metals. 제3항에 있어서, 상기 금속과 배위결합하는 리간드는 아세톤 및 아세틸 아세톤으로 이루어진 군에서 선택된 1종 이상인 것이 특징인 전해질막의 제조방법.The method of claim 3, wherein the ligand coordinating with the metal is at least one selected from the group consisting of acetone and acetyl acetone. 제1항에 있어서, 상기 금속(Ⅳ) 전구체 용액은 상기 암모늄화된 수소이온 교환기를 갖는 고분자 100 중량부 대비 0.1 내지 1000 중량부로 포함되는 것이 특징 인 전해질막의 제조방법.The method of claim 1, wherein the metal (IV) precursor solution is included in an amount of 0.1 to 1000 parts by weight based on 100 parts by weight of the polymer having the ammonized hydrogen ion exchange group. 기체 확산층의 일면 또는 양면 상에 금속(Ⅳ)-인산수소(M(Ⅳ)(HPO4)2)가 포함된 촉매층이 형성된 전극의 제조방법으로서,A method of manufacturing an electrode having a catalyst layer including metal (IV) -hydrogen phosphate (M (IV) (HPO 4 ) 2 ) formed on one or both surfaces of a gas diffusion layer, 촉매, 유기 고분자, 용매 및 금속(Ⅳ) 전구체 용액을 포함하는 혼합용액을 가스 확산층에 도포 및 건조시킨 후, 인산 처리하여 제조되는 것이 특징인 전극의 제조방법.A method for producing an electrode, characterized in that the mixed solution comprising a catalyst, an organic polymer, a solvent and a metal (IV) precursor solution is applied to a gas diffusion layer and dried, followed by phosphoric acid treatment. 제9항에 있어서, 상기 금속(Ⅳ) 전구체 용액은 금속(Ⅳ) 알콕사이드 또는 금속(Ⅳ) 염; 금속과 배위결합하는 리간드; 및 산(acid)을 혼합하여 제조되는 것이 특징인 전극의 제조방법.10. The method of claim 9, wherein the metal (IV) precursor solution comprises a metal (IV) alkoxide or metal (IV) salt; Ligands that coordinate with metals; And a method for producing an electrode, characterized in that the mixture is prepared by mixing an acid. 제9항에 있어서, 상기 유기 고분자는 암모늄화된 수소이온 교환기를 갖는 유기 고분자이며, 상기 수소이온 교환기는 설폰산기, 인산기, 히드록시기, 및 카르복실산기로 이루어진 군에서 선택된 1종 이상의 작용기인 것이 특징인 전극의 제조방법.10. The method of claim 9, wherein the organic polymer is an organic polymer having an ammoniumated hydrogen ion exchange group, wherein the hydrogen ion exchange group is at least one functional group selected from the group consisting of sulfonic acid groups, phosphoric acid groups, hydroxy groups, and carboxylic acid groups. Method for producing a phosphorous electrode. 제9항에 있어서, 상기 유기 고분자는 폴리아릴렌에테르(polyaryleneether, PAE), 폴리에테르에테르케톤 (polyetheretherketone, PEEK), 폴리에테르에테르술폰 (polyetherethersulfone, PEES), 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 나피온(Nafion), 폴리아졸(polyazole), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리페닐렌 옥사이드(polyphenylene oxide), 폴리페닐렌 설파이드(polyphenylene sulfide), 폴리술폰, 폴리카보네이트, 폴리스티렌, 폴리이미드(polyimide), 폴리아미드(polyamide), 폴리퀴녹살린, (포스페이티드) 폴리포스파젠 및 폴리벤즈이미다졸로 이루어진 군에서 선택된 1종 이상인 것이 특징인 전극의 제조방법.The method of claim 9, wherein the organic polymer is polyarylene ether (PAE), polyetheretherketone (PEEK), polyetherethersulfone (polyetherethersulfone, PEES), polytetrafluoroethylene (polytetrafluoroethylene, PTFE), Polyvinylidenefluoride (PVDF), Nafion, polyazole, polyvinylalcohol (PVA), polyphenylene oxide, polyphenylene sulfide, Of at least one member selected from the group consisting of polysulfone, polycarbonate, polystyrene, polyimide, polyamide, polyquinoxaline, (phosphate) polyphosphazene and polybenzimidazole Manufacturing method. 제9항에 있어서, 상기 금속(Ⅳ) 전구체 용액은 유기 고분자 100 중량부 대비 0.1 내지 1000 중량부로 포함되는 것이 특징인 전극의 제조방법.The method of claim 9, wherein the metal (IV) precursor solution is included in an amount of 0.1 to 1000 parts by weight based on 100 parts by weight of the organic polymer. 제9항에 있어서, 상기 금속(Ⅳ)은 ⅣA족 및 ⅣB족 금속으로 이루어진 군에서 선택된 1종 이상의 금속인 것이 특징인 전극의 제조방법.10. The method of claim 9, wherein the metal (IV) is at least one metal selected from the group consisting of Group IVA and Group IVB metals. 제10항에 있어서, 상기 금속과 배위결합하는 리간드는 아세톤 및 아세틸 아세톤으로 이루어진 군에서 선택된 1종 이상인 것이 특징인 전극의 제조방법.The method of claim 10, wherein the ligand coordinating with the metal is at least one selected from the group consisting of acetone and acetyl acetone.
KR1020070050184A 2007-05-23 2007-05-23 Method for preparing organic/inorganic composite electrolyte membrane and electrode comprising metal?-hydrogenphosphate KR101018226B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070050184A KR101018226B1 (en) 2007-05-23 2007-05-23 Method for preparing organic/inorganic composite electrolyte membrane and electrode comprising metal?-hydrogenphosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070050184A KR101018226B1 (en) 2007-05-23 2007-05-23 Method for preparing organic/inorganic composite electrolyte membrane and electrode comprising metal?-hydrogenphosphate

Publications (2)

Publication Number Publication Date
KR20080103191A true KR20080103191A (en) 2008-11-27
KR101018226B1 KR101018226B1 (en) 2011-02-28

Family

ID=40288634

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050184A KR101018226B1 (en) 2007-05-23 2007-05-23 Method for preparing organic/inorganic composite electrolyte membrane and electrode comprising metal?-hydrogenphosphate

Country Status (1)

Country Link
KR (1) KR101018226B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101497B1 (en) * 2009-02-20 2012-01-03 서울대학교산학협력단 Producing method for electrodes of fuel cell with high temperature type and membrane electrode assembly produced thereby
KR101365300B1 (en) * 2013-02-18 2014-02-20 삼성토탈 주식회사 A coated porous separator and a secondary battery using the same
CN110224163A (en) * 2019-06-17 2019-09-10 西安交通大学 A kind of flexible alcohol fuel battery and preparation method thereof based on gel-form solid polymer electrolyte film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101882862B1 (en) * 2011-10-17 2018-07-30 삼성전자주식회사 Composite, composite membrane including the compound, mamufacturing method thereof, and fuel cell including the anode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPG20040013A1 (en) * 2004-04-30 2004-07-30 Fuma Tech Gmbh ORGANIC SOLUTIONS OF TETRAVALENT METAL PHOSPHATES AND PYROPHOSPHATES PRECURSORS AND THEIR USE FOR THE MODIFICATION OF ELECTRODES AND FOR THE PREPARATION OF COMPOSITE MEMBRANES FOR FUEL CELLS OPERATING AT TEMPERATURES> 900 CENTIGRADS AND / OR LOW
KR20060055717A (en) * 2004-11-19 2006-05-24 주식회사 엘지화학 Novel sulphonated block copolymer and electrolyte membrane using the same
KR100708489B1 (en) * 2005-12-26 2007-04-18 주식회사 두산 Manufacturing method of proton-conducting electrolyte membrane and fuel cell using the same
KR101000197B1 (en) * 2006-12-20 2010-12-10 주식회사 엘지화학 Method of preparing electrode of membrane-electrode assembly for fuel cell, electrode and membrane-electrode assembly prepared by the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101497B1 (en) * 2009-02-20 2012-01-03 서울대학교산학협력단 Producing method for electrodes of fuel cell with high temperature type and membrane electrode assembly produced thereby
KR101365300B1 (en) * 2013-02-18 2014-02-20 삼성토탈 주식회사 A coated porous separator and a secondary battery using the same
CN110224163A (en) * 2019-06-17 2019-09-10 西安交通大学 A kind of flexible alcohol fuel battery and preparation method thereof based on gel-form solid polymer electrolyte film
CN110224163B (en) * 2019-06-17 2021-02-02 西安交通大学 Polymer gel electrolyte membrane-based flexible alcohol fuel cell and preparation method thereof

Also Published As

Publication number Publication date
KR101018226B1 (en) 2011-02-28

Similar Documents

Publication Publication Date Title
KR100728781B1 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR101201816B1 (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
WO2006067872A1 (en) Highly durable electrode catalyst layer
EP2156493B1 (en) Novel electrolyte utilizing a lewis acid/bronsted acid complex
Lee et al. Poly (ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells
KR101018226B1 (en) Method for preparing organic/inorganic composite electrolyte membrane and electrode comprising metal?-hydrogenphosphate
JP2010536152A (en) Supported catalyst layer for direct oxidation fuel cell
US8163438B2 (en) Composite electrolyte membrane, production method thereof, membrane-electrode assembly, and fuel cell
JP4846371B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
KR100708489B1 (en) Manufacturing method of proton-conducting electrolyte membrane and fuel cell using the same
KR100524819B1 (en) High Temperature Proton Exchange Membrane Using Ionomer/Soild Proton Conductor, Preparation Method Thereof and Fuel Cell Containing the Same
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
KR20110054607A (en) Reinfored composite electrolyte membrane and manufacturing method thereof
KR20100098234A (en) Method for fabricating polymer electrolyte composite membrane and polymer electrolyte fuel cell including polymer electrolyte composite membrane fabricated using the same
KR101105566B1 (en) Metal(iv)-silicate-phosphate and use of the same
US20090291348A1 (en) Electrolyte membrane for fuel cell and method of manufacturing the same, membrane electrode assembly and fuel cell
KR20130008850A (en) Electrode for fuel cell, and membrane-electrode assembly and fuel cell system including the same
US20090029223A1 (en) Proton conducting electrolyte
KR100969982B1 (en) Electrolyte membrane for fuel cell, and membrane-electrode assembly fuel cell
KR20080041844A (en) Membrane-electrode assembly for fuel cell, method of producing same, and fuel cell system comprising same
KR100962933B1 (en) Organic/inorganic composite electrolyte membrane using apatite and fuel cell comprising the same
KR100993973B1 (en) Organic/inorganic composite electrolyte membrane using metal? chromium phosphate complex and fuel cell comprising the same
JP2011060500A (en) Proton conductive composite electrolyte membrane, membrane electrode assembly and fuel cell using the same, and method of manufacturing the same
KR100791780B1 (en) Acid/base/inorganic polyelectrolyte type composite membrane for fuel cell and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 9