KR20070103933A - Methods for carbon/metal composites by using conductive metal supports - Google Patents

Methods for carbon/metal composites by using conductive metal supports Download PDF

Info

Publication number
KR20070103933A
KR20070103933A KR1020060035861A KR20060035861A KR20070103933A KR 20070103933 A KR20070103933 A KR 20070103933A KR 1020060035861 A KR1020060035861 A KR 1020060035861A KR 20060035861 A KR20060035861 A KR 20060035861A KR 20070103933 A KR20070103933 A KR 20070103933A
Authority
KR
South Korea
Prior art keywords
activated carbon
metal
filter
electroplating
composite
Prior art date
Application number
KR1020060035861A
Other languages
Korean (ko)
Other versions
KR100780480B1 (en
Inventor
박수진
김병주
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020060035861A priority Critical patent/KR100780480B1/en
Publication of KR20070103933A publication Critical patent/KR20070103933A/en
Application granted granted Critical
Publication of KR100780480B1 publication Critical patent/KR100780480B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A method of manufacturing an activated carbon-metal composite for a filter capable of removing hazardous gases is provided to increase adhering force of a metal to the activated carbon while minimizing intrusion of the metal inside the activated carbon by electroplating an anode of a metal and a cathode of the activated carbon fixed to a conductive support, wherein the metal is placed over the activated carbon. A method of manufacturing an activated carbon-metal composite comprises electroplating an anode of a metal plate and a cathode of an activated carbon fixed on a conductive support mesh, causing the metal plate placed over the activated carbon to be plated on the surface of the activated carbon. The electroplating is carried out in the range of 1 second to 60 minutes, and within 5A/m^2 to 200A/m^2 of current density. The activated carbon used in the electroplating is an activated carbon or an activated carbon fiber maintaining the powder, assembly, crushed, filter or fiber forms. The conductive supporting unit is a metal mesh. The metal plated on the activated carbon is any one or two metals selected from Cu, Ni, Ag, Al, Fe, Co, Cr, Pt, Ru, and Sn. The weight of the metal plated on the activated carbon is 0.1 to 80% by weight compared to the activated carbon. A filter containing the activated carbon-metal composite can be used as a filter for an air conditioner, as a heap filter for a vacuum cleaner, or as a filter for a gas mask.

Description

전도성 금속 지지체를 이용한 활성탄소-금속 복합체의 제조방법{Methods for carbon/metal composites by using conductive metal supports}Method for producing activated carbon-metal composites using conductive metal supports

도 1은 본 발명에 따른 전기도금시 도금장치 구성 개략도를 나타낸 것이다. 1 shows a schematic diagram of a plating apparatus when electroplating according to the present invention.

도 2는 본 발명에 따른 전도성 지지체를 이용한 음극의 개념도를 나타낸 것이다.Figure 2 shows a conceptual diagram of a negative electrode using a conductive support according to the present invention.

본 발명은 전도성 금속 지지체를 이용한 활성탄소-금속 복합체의 제조방법에 관한 것으로, 더욱 상세하게는 금속판과, 전도성 지지체에 고정된 활성탄소를 특정의 조건에서 전기·화학적인 전기도금법을 수행하여 제조된 활성탄소-금속 복합체로서, 종래의 금속염이 첨착된 활성탄소에 비해 높은 견착력 및 비표면적을 유지하고, 순수한 금속의 도입으로 반응성이 좋으며, 상기 금속의 도금량 제어가 가능하여 독성가스 제거를 위한 반도체 공조용 필터, 해파필터, 방독면 필터 및 보호용 방호소재 특히, 기상 오염원인 NOx 제거가 가능한 전도성 금속 지지체를 이용한 활성탄소-금속 복합체의 제조방법에 관한 것이다.The present invention relates to a method for producing an activated carbon-metal composite using a conductive metal support, and more particularly, to a metal plate and an activated carbon fixed on a conductive support, which are prepared by performing an electrochemical chemical plating method under specific conditions. Activated carbon-metal complex, which maintains high adhesion and specific surface area compared to the activated carbon to which metal salts are impregnated. The present invention relates to a method for manufacturing an activated carbon-metal composite using an air-conditioning filter, a sea wave filter, a gas mask filter, and a protective protective material, in particular, a conductive metal support capable of removing NO x , a gaseous pollutant.

현대 산업의 급속한 발달에 따라 환경오염에 대한 관심이 집중되고 있는 가운데 활성탄소(activated carbons, ACs) 및 활성탄소섬유(activated carbon fibers, ACFs)는 넓은 비표면적을 가지고 있어 흡착용량이 크며, 발달된 미세공이 세공표면에 노출되어 있어 흡착속도가 빠른 장점을 가지고 있기 때문에 오염물질의 제거 능력이 높을 뿐만 아니라 경제적, 환경 친화적인 측면에서도 유리하다. 특히, 활성탄소는 안정성과 재생성이 좋고 가공이 용이하여 분말상, 조립상 또는 섬유상 등의 형태로 만들어져 용매회수, 공업제품의 정제, 오·폐수의 정수 처리시설, 소각시설의 유해 배기가스의 흡착 및 제거 장치 등에 널리 사용되고 있다. With the rapid development of modern industry, attention is being paid to environmental pollution, while activated carbons (ACs) and activated carbon fibers (ACFs) have a large specific surface area, which has a large adsorption capacity and Since the fine pores are exposed to the pore surface, the adsorption speed is high, so it is not only high in removing pollutants but also advantageous in terms of economic and environmental friendliness. In particular, activated carbon has good stability and reproducibility and is easy to process. It is made in the form of powder, granular or fibrous form. Widely used in devices and the like.

그러나, 활성탄소의 표면은 고온에서 합성되는 탄소재질의 특성상 비극성을 띠며 일부 극성부분도 염기성을 나타내므로 NOx, SOx, 및 HCl과 같은 산성가스에 대한 제거율이 기대이하로 낮은 단점이 있다.However, the surface of the activated carbon is non-polar due to the characteristics of the carbon material synthesized at a high temperature, and some polar parts are also basic, so that the removal rate for acid gases such as NO x , SO x , and HCl is lower than expected.

이러한 문제를 보완하기 위해서 전통적으로 활성탄소에 다양한 습·건식 표면처리를 시행하고 있는 바, 대표적인 습식 처리의 경우 가장 일반적인 산, 염기성 용액을 이용한 화학적 처리가 있으며, 그 외에 액상 오존처리 등이 있다. 또한 건식처리로는 기상 오존처리, 플라즈마처리, 열처리, 불소처리 등의 다양한 방법들이 있다. 이들은 탄소재료의 표면 관능기를 제어하여 보다 극성을 띠는 관능기를 도입하고자 하는 표면처리이다. In order to supplement these problems, traditionally, various wet and dry surface treatments have been performed on activated carbon, and typical wet treatments include chemical treatment using the most common acid and basic solutions, and liquid ozone treatment. In addition, there are various methods of dry treatment such as gas phase ozone treatment, plasma treatment, heat treatment, and fluorine treatment. These are surface treatments which try to introduce more polar functional groups by controlling the surface functional groups of the carbon material.

그 외에 촉매를 도입하는 표면처리로 대표적인 것이 전통적인 금속염 첨착법이 있다. 이는 금속염 용액에 활성탄소를 침지시켜 기공내부 및 탄소표면에 금속염을 담지시킨 후 이를 전조 및 소성 처리하여 금속/탄소 복합체를 얻는 방법으로 처리 전에 비해 담지된 금속염의 촉매효과에 의해 높은 기상오염원 제거율을 확보하게 된다.In addition, there is a conventional metal salt deposition method that is representative of the surface treatment to introduce a catalyst. It is a method of immersing activated carbon in a metal salt solution to support metal salts in the pores and carbon surfaces, and then rolling and calcining the metal salts to obtain metal / carbon composites. Secured.

이상에서 살펴본 바와 같이, 활성탄소를 이용하여 각종 독성가스를 제거하기 위한 방법으로, 활성탄소의 팩킹 방법, 활성탄소를 각종 전이금속 용액을 이용하여 첨착 활성탄소를 만드는 방법, 및 전구체 상태에서 전이금속을 도입한 후 탄화 및 활성화하여 금속이 도입된 활성탄소 등이 제시되고 있다. 그러나, 이들은 독성가스제거에 한계가 있으며, 특히 첨착법은 첨착된 금속염이 활성탄소의 미세기공을 막게 되어 활성탄소의 높은 비표면적을 유지시키지 못하는 큰 단점을 가지고, 첨착된 금속염과 탄소표면과의 견착력이 약하여 분리된 금속염 분말에 의한 이차 오염 발생이 가능하다. As described above, as a method for removing various toxic gases by using activated carbon, a method of packing activated carbon, a method of making activated carbon by using various transition metal solutions of activated carbon, and a transition metal in a precursor state Activated carbon and the like, which have been introduced and carbonized and activated, have been introduced. However, they are limited in the removal of toxic gases, and in particular, the impregnation method has a big disadvantage that the impregnated metal salts do not maintain the high specific surface area of the activated carbon because the impregnated metal salts block the micropores of the activated carbon. Secondary contamination can be caused by the weakly separated metal salt powder.

또한, 전구체 상태에서 섞을 경우 기존의 생산체계를 크게 변경시켜야 하는 문제가 따르며, 활성점이 되는 금속이 섬유내부에 존재하게 되어 금속의 손실이 크며, 이러한 금속염을 담지하는 방법들은 금속염이 기상오염원과 반응하기 위해서는 일련의 산화·환원반응을 거쳐야 하기 때문에 기상오염원과의 반응속도가 금속 자체를 도입한 경우보다 상대적으로 느린 단점을 갖는다.In addition, when mixing in the precursor state, there is a problem that the existing production system has to be greatly changed, and the metal that becomes the active point is present in the fiber, so the loss of metal is large, and the method of supporting the metal salt reacts with the gaseous pollutant. In order to do this, it has to go through a series of oxidation and reduction reactions, so the reaction rate with the gaseous source is relatively slower than the case of introducing the metal itself.

이에 본 발명자들은 활성탄소의 흡착능력을 최대로 발휘할 수 있으면서 동시에 도입된 금속의 손실을 최소화하여 독성가스 제거에 유리한 활성탄소-금속 복합체를 제조하기 위하여 연구 노력하였다. 그 결과, 금속판이 설치된 양극과 전도성 지지체에 고정된 활성탄소의 음극으로 구성된 극으로 전기·화학적인 전기도금법을 수행하는 일련의 공정으로 제조된 활성탄소-금속 복합체는, 종래의 활성탄에 금속염을 첨착시킨 복합체에 비해 견착력이 우수하고, 금속이 활성탄 내부로의 침투가 적어 비표면적 감소가 적으며, 또한 금속의 도입 시간에 따른 도입 양이 우수하다는 것을 알게되어 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to produce an activated carbon-metal composite that can maximize the adsorption capacity of activated carbon and minimize the loss of the introduced metal at the same time, which is advantageous for removing toxic gases. As a result, an activated carbon-metal composite prepared by a series of processes in which an electrochemical chemical electroplating method is performed with a cathode composed of an anode provided with a metal plate and an anode of activated carbon fixed to a conductive support is obtained by attaching a metal salt to a conventional activated carbon. Compared with the composite, it was found that the adhesion is excellent, the metal is less penetrated into the activated carbon, the specific surface area is reduced, and the amount of the metal introduced is excellent according to the introduction time, thereby completing the present invention.

따라서, 본 발명은 전도성 지지체를 이용한 전기도금법을 수행하여 활성탄소에 금속이 도입된 활성탄소-금속 복합체의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing an activated carbon-metal composite in which a metal is introduced into activated carbon by performing an electroplating method using a conductive support.

본 발명은 금속판이 설치된 양극과, 전도성 지지체에 고정된 활성탄소의 음극을 이용한 전기도금을 수행하여 상기 활성탄소 표면에 금속이 도입된 복합체를 형성하는 활성탄소-금속 복합체의 제조방법에 그 특징이 있다.The present invention is characterized in that the method of producing an activated carbon-metal composite to form a composite in which the metal is introduced on the surface of the activated carbon by electroplating using the anode with a metal plate and the anode of activated carbon fixed to the conductive support. .

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 전도성 지지체를 이용한 전기도금법으로 금속이 활성탄소에 도입된 활성탄소-금속 복합체의 제조방법에 관한 것으로, 순수한 금속이 전기·화학적으로 활성탄소의 표면에 도입되어 종래 활성탄에 금속염을 첨착시킨 복합체에 비해 견착력이 우수하여 분리된 금속에 의한 2차오염 발생이 적고, 금속이 활성탄소 내부로의 침투가 적어 표면에 금속이 도입되므로 비표면적의 감소가 적어 우수한 활성을 가진다. 또한, 본 발명은 순수한 금속이 도금되어 종래 금속염이 점착된 경우에 비해 목적으로 하는 양의 금속 도입이 가능하고, 순수한 금속이므로 상대적으로 빠른 반응성을 가진다.The present invention relates to a method for producing an activated carbon-metal composite in which a metal is introduced into activated carbon by electroplating using a conductive support, and a complex in which a pure metal is introduced electrochemically on the surface of the activated carbon and a metal salt is impregnated on a conventional activated carbon. Compared with the excellent adhesion, the generation of secondary pollution by the separated metal is less, the metal is less penetrated into the activated carbon and the metal is introduced to the surface, so the specific surface area is reduced, so it has excellent activity. In addition, the present invention is capable of introducing a desired amount of metal as compared with the case where the pure metal is plated and the conventional metal salt is adhered, and since the pure metal is a relatively fast reactivity.

본 발명은 금속판의 양극과 전도성 지지체에 고정된 활성탄소의 음극으로 구성된 극을 이용한 전기도금법으로 활성탄소-금속 복합체를 제조하는 것에 기술구성상의 특징이 있는 바, 이를 보다 구체적으로 살펴보면 다음과 같다.The present invention has a feature in the technical configuration of manufacturing an activated carbon-metal composite by an electroplating method using a pole composed of a cathode of a metal plate and an anode of activated carbon fixed to a conductive support, which will be described in more detail as follows.

상기 활성탄소는 당 분야에서 일반적으로 사용되는 것으로 노출된 활성화 자리를 구현하기 위하여 미세기공이 잘 발달되고 큰 비표면적을 갖는 것이 좋으며, 구체적으로 활성탄소 또는 활성탄소섬유를 사용하는 것이 바람직하다. 이러한 활성탄소는 분말상, 조립상, 파쇄상, 필터상 또는 섬유상의 형태를 유지하는 것을 사용할 수 있다.The activated carbon is generally used in the art, in order to implement the exposed activation sites, micropores are well developed and have a large specific surface area. Specifically, it is preferable to use activated carbon or activated carbon fibers. Such activated carbon may be used to maintain a powdery, granular, crushed, filter or fibrous form.

상기 전도성 지지체는 당 분야에서 일반적으로 사용되는 전도성 금속 소재로 된 망 형태를 유지하는 것으로, 구체적으로 철, 은, 니켈, 구리 및 아연 중에서 선택된 등 전도성을 가지는 금속을 소재로 된 0.1 ∼ 100 메쉬 정도의 구멍 크기를 갖는 것을 사용하는 것이 좋다. 이는 활성탄소를 지지체에 밀착시켜 전기도금 시 활성탄소의 전도성을 증가시키는 역할을 수행한다.The conductive support is to maintain the network form of a conductive metal material commonly used in the art, specifically, 0.1 to 100 mesh made of a metal having a conductivity such as selected from iron, silver, nickel, copper and zinc It is better to use one having a pore size. This serves to close the activated carbon to the support to increase the conductivity of the activated carbon during electroplating.

이러한 전도성 지지체에 활성탄소를 고정하는 바, 이러한 고정화 방법은 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 본 발명에서는 두 개의 전도성 망 사이에 활성탄소섬유 또는 활성탄소를 넣고 양쪽에서 압착한 뒤 클립 및 고정핀 등으로 고정하는 방법으로 사용하는 것이 좋다. 이렇게 준비된 전도성 망/활성탄소를 전해조에서 일정조건으로 도금 시 전도성 망과 접촉하고 있는 부분을 중심으로 활성탄소 표면에 금속의 도금이 시작되게 된다. 충분한 금속도금 후 전도성 망은 제거하고, 이후 순수한 금속이 도금된 활성탄소를 얻을 수 있다. Fixing the activated carbon to the conductive support bar, this immobilization method is generally used in the art, but is not particularly limited, in the present invention, after pressing the activated carbon fibers or activated carbon between the two conductive nets It is recommended to use a method of fixing with a clip and a fixing pin. The plating of the metal on the surface of the activated carbon is started centering on the part in contact with the conductive network when plating the conductive mesh / activated carbon prepared in a predetermined condition in the electrolytic cell. After sufficient metal plating the conductive nets can be removed and then pure carbon plated activated carbon can be obtained.

또한, 상기 금속판은 복합체를 형성하고자 하는 금속으로 형성하는 바, 상기 금속은 독성가스에 높은 반응성을 나타내는 특징을 갖는 전이금속 구체적으로 Cu, Ni, Ag, Al, Fe, Co, Cr, Pt, Ru 및 Sn 중에서 선택된 것이 좋다. 특히 Pt를 사용하여 제조된 복합체의 경우 상기 Pt 금속이 활성성분으로 작용하여 이를 함유한 경우 독성가스 중 NOx 제거에 매우 유용하다.In addition, the metal plate is formed of a metal to form a composite bar, the metal is a transition metal having a characteristic exhibiting high reactivity to toxic gas specifically Cu, Ni, Ag, Al, Fe, Co, Cr, Pt, Ru And Sn is preferably selected. Particularly, in the case of the composite prepared using Pt, the Pt metal is very useful for removing NO x in the toxic gas when the Pt metal acts as an active ingredient.

이러한 금속은 1종 또는 2종 이상의 다중 금속의 도입이 가능한 바, 다중 금속의 경우 처음 1종을 먼저 도입한 후 다른 금속을 도입하거나 각각의 금속판을 이용하여 동시에 도금을 수행하는 방법으로 수행될 수 있다.Such metals can be introduced by one or two or more kinds of multiple metals, and in the case of multiple metals, the first one can be introduced first, followed by introduction of other metals, or plating can be performed simultaneously using each metal plate. have.

상기 활성탄소와 금속판을 이용하여 전기도금법을 수행하여 활성탄소-금속 복합체를 제조하는 바, 제조된 복합체의 금속은 활성탄소에 대하여 0.1 ∼ 80 중량% 함유한다. 상기 함량이 0.1 중량% 미만이면 금속의 양이 충분하지 않아 독성가스와의 반응이 원활하지 않고, 80 중량%를 초과하는 경우에는 금속에 의한 기공막힘의 문제가 발생하여 활성탄소의 최대특징인 비표면적의 감소를 유발하는 문제 가 발생한다.An activated carbon-metal composite is prepared by electroplating using the activated carbon and the metal plate, and the metal of the prepared composite contains 0.1 to 80 wt% of the activated carbon. If the content is less than 0.1% by weight, the amount of metal is not sufficient, so the reaction with toxic gas is not smooth. If the content is more than 80% by weight, the problem of pore clogging caused by metal occurs, resulting in the specific surface area, which is the largest characteristic of activated carbon. A problem that causes a decrease in occurs.

이때, 전기도금법은 1초 ∼ 60분 범위의 도금시간과, 5 A/㎡ ∼ 200 A/㎡ 범위의 전류밀도하에서 수행되는 바, 상기 도금시간이 1초 미만이면 도금용액과 활성탄소의 접촉이 원활하기 일어나기에 충분치 않은 시간이기 때문에 바람직하지 않고 60분을 초과하는 경우에는 과도한 도금에 의한 비표면적 감소문제가 발생한다. 또한, 전류밀도가 5 A/㎡ 미만이면 도금이 원활하게 일어나지 않고 200 A/㎡를 초과하는 경우에는 도금이 너무 폭발적으로 일어나 금속의 뭉침에 의한 비표면적 감소의 문제가 있으므로 상기 범위를 유지하는 것이 바람직하다. At this time, the electroplating method is a plating time in the range of 1 second to 60 minutes, and 5 A / m 2 to 200 A / m 2 If the plating time is less than 1 second, it is not enough time for smooth contact between the plating solution and activated carbon, which is not preferable. If the plating time exceeds 60 minutes, the specific surface area is reduced due to excessive plating. A problem arises. In addition, when the current density is less than 5 A / m 2, plating does not occur smoothly, and when it exceeds 200 A / m 2, the plating is too explosive and there is a problem of reduction of specific surface area due to agglomeration of metals. desirable.

이상에서 제조된 활성탄소-금속 복합체는 반도체 공조용 필터, 해파필터, 방독면 필터 및 보호용 방호소재로 사용이 용이하고, 특히 NOx 등의 독성 가스의 제거에 유용하다.The activated carbon-metal composite prepared above is easy to use as a semiconductor air conditioning filter, a sea wave filter, a gas mask filter, and a protective material for protection, and is particularly useful for removing toxic gases such as NO x .

이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하나, 본 발명이 하기 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

실시예 1Example 1

양극과 음극에 각각 구리(Cu) 금속판과, 두 개의 8 메쉬 크기, 400 cm2 넓이의 철망사이에 고정된 활성탄소섬유(타이완카본㈜, 비표면적이 2100 ㎡/g인 AW2001)로 전기도금을 수행하여 활성탄소-구리 복합체를 제조하였다. 이때, 도금시간은 30초, 전류밀도는 60 A/㎡의 조건으로 처리하였고 도금 후 철망은 제거하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.Electroplating is carried out with copper (Cu) metal plates on the anode and cathode, respectively, and activated carbon fibers (AW2001 with a specific surface area of 2100 m2 / g) fixed between two 8 mesh and 400 cm 2 wire meshes. Activated carbon-copper composite was prepared. At this time, the plating time was 30 seconds, the current density was treated under the condition of 60 A / ㎡ and the wire mesh was removed after plating. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 2Example 2

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 니켈(Ni) 금속판을 사용하여 활성탄소-니켈 복합체를 제조하였다. 이때, 도금시간은 12분, 전류밀도는 5 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-nickel composite was manufactured using a nickel (Ni) metal plate instead of a copper (Cu) metal plate. At this time, plating time was 12 minutes, and the current density was processed on 5 A / m <2> conditions. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 3Example 3

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 은(Ag) 금속판을 사용하여 활성탄소-은 복합체를 제조하였다. 이때, 도금시간은 20초, 전류밀도는 120 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-silver composite was prepared using a silver (Ag) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 20 seconds, the current density was treated under the conditions of 120 A / ㎡. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 4Example 4

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 알루미늄(Al) 금속판을 사용하여 활성탄소-알루미늄 복합체를 제조하였다. 이때, 도금시간은 10초, 전류밀도는 200 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-aluminum composite was prepared using an aluminum (Al) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 10 seconds, the current density was treated under the conditions of 200 A / ㎡. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 5Example 5

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 철(Fe) 금속판을 사용하여 활성탄소-철 복합체를 제조하였다. 이때, 도금시간은 25초, 전류밀도는 80 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-iron composite was prepared using an iron (Fe) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 25 seconds, the current density was treated under the condition of 80 A / ㎡. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 6Example 6

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 코발트(Co) 금속판을 사용하여 활성탄소-코발트 복합체를 제조하였다. 이때, 도금시간은 15분, 전류밀도는 20 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-cobalt composite was prepared using a cobalt (Co) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 15 minutes, the current density was treated under the condition of 20 A / ㎡. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 7Example 7

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 크롬(Cr) 금속판을 사용하여 활성탄소-크롬 복합체를 제조하였다. 이때, 도금시간은 8분, 전류밀도는 40 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-chromium composite was prepared using a chromium (Cr) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 8 minutes, and the current density was processed on 40 A / m <2> conditions. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 8Example 8

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 플래티늄(Pt) 금속판을 사용하여 활성탄소-플래티늄 복합체를 제조하였다. 이때, 도금시간은 3분, 전류밀도는 80 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-platinum composite was prepared using a platinum (Pt) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 3 minutes, and the current density was processed on the conditions of 80 A / m <2>. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 9Example 9

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 루테늄(Ru) 금속판을 사용하여 활성탄소-루테늄 복합체를 제조하였다. 이때, 도금시간은 2분, 전류밀도는 100 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-ruthenium composite was prepared using a ruthenium (Ru) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 2 minutes, the current density was processed under the conditions of 100 A / ㎡. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

실시예 10Example 10

상기 실시예 1과 동일하게 실시하되, 구리(Cu) 금속판 대신에 주석(Sn) 금속판을 사용하여 활성탄소-주석 복합체를 제조하였다. 이때, 도금시간은 1분, 전류밀도는 200 A/㎡의 조건으로 처리하였다. 상기 전기도금 처리된 시편은 2차 증류수로 충분히 세척 후, 건조기에서 완전히 건조시켰다.In the same manner as in Example 1, an activated carbon-tin composite was prepared using a tin (Sn) metal plate instead of a copper (Cu) metal plate. At this time, the plating time was 1 minute, and the current density was processed on 200 A / m <2> conditions. The electroplated specimens were thoroughly washed with secondary distilled water and then completely dried in a drier.

비교예 1Comparative Example 1

상기 실시예 1과 동일하게 실시하되, 도금시간은 1초, 전류밀도는 5 A/㎡로 하여 활성탄소-구리 복합체를 제조하였다.In the same manner as in Example 1, but the plating time was 1 second, the current density was 5 A / ㎡ to prepare an activated carbon-copper composite.

비교예 2Comparative Example 2

상기 실시예 1과 동일하게 실시하되, 도금시간은 10분, 전류밀도는 60 A/㎡로 하여 활성탄소-구리 복합체를 제조하였다.In the same manner as in Example 1, but the plating time was 10 minutes, the current density was 60 A / ㎡ to prepare an activated carbon-copper composite.

비교예 3Comparative Example 3

실시예 1에서 사용된 활성탄소를 CuSO4 0.1 M의 금속염에 1시간 첨착 후 120 ℃에서 건조 후 250 ℃에서 열처리하였다.The activated carbon used in Example 1 was attached to a metal salt of CuSO 4 0.1 M for 1 hour, dried at 120 ° C., and then heat-treated at 250 ° C.

실험예Experimental Example

상기 실시예 1 ∼ 10 및 비교예 1 ∼ 3에서 제조된 흡착제의 비표면적, 도입된 금속의 종류 및 양, NOx 환원력 등을 다음의 방법으로 측정하여 그 결과를 다음 표 1에 나타내었다.Specific surface areas of the adsorbents prepared in Examples 1 to 10 and Comparative Examples 1 to 3, types and amounts of introduced metals, NO x reducing power, and the like were measured by the following methods, and the results are shown in Table 1 below.

[물성측정][Property Measurement]

(1) BET 비표면적 측정(㎡/g)(1) BET specific surface area measurement (㎡ / g)

활성탄소섬유의 비표면적은 77 K의 액체 질소 분위기 하에서 시료 약 0.1 g을 채취하여 질소기체를 흡착질로 하여 흡착량을 측정하였다. 시료의 전처리는 573 K에서 시료 내 잔류 압력이 10-3 torr 이하로 될 때까지 약 9 ∼ 12 시간동안 진공(degassing) 시켰다. N2 등온흡착시험 후, P/Po(P는 부분 압력, Po는 포화 증기압)가 약 0.05 ∼ 0.3까지는 흡착량에 대해서 직선의 기울기를 나타내며, 이것으로부터 BET 비표면적을 구하였다.The specific surface area of the activated carbon fibers was measured by taking about 0.1 g of a sample under a liquid nitrogen atmosphere of 77 K and adsorbing nitrogen gas as an adsorbate. The pretreatment of the sample was degassed for about 9-12 hours at 573 K until the residual pressure in the sample became 10 −3 torr or less. After the N 2 isothermal adsorption test, P / P o (P is the partial pressure, P o is the saturated vapor pressure) was about 0.05 to 0.3, indicating the slope of the straight line with respect to the adsorption amount, from which the BET specific surface area was obtained.

(2) 도입된 금속의 함량 측정(중량%)(2) Determination of the content of the introduced metal (wt%)

금속/활성탄소 복합체에 도입된 전이금속의 함량을 원자흡광광도법(Atomic absorption spectrophotometry, AAS)를 이용하여 관찰하였다.The content of the transition metal introduced into the metal / active carbon composite was observed using atomic absorption spectrophotometry (AAS).

(3) NOx 환원력 측정(3) NO x reducing power measurement

NOx 환원력 측정 시험에 사용한 가스크로마토그래프(GC)는 도남인스트루먼트의 DS 6200을 사용하였고, 검출기로는 열 포획검출기(TCD)를 사용하였다. 반응관(내경= 10 mm)의 온도는 P.I.D. 온도제어기를 사용하여 150 ∼ 500 ℃로 일정하게 유지시켰으며, NOx 가스의 유속은 M.F.C.(Mass Flow Controller)를 사용하여 10 ml/min으로 유지시켰다. 촉매의 양은 0.5 g을 사용하였으며, 분석 전 각 시료들은 반응기 내에서 150 ℃에서 1시간 동안 초고순도 헬륨으로 퍼징하여 수분을 제거하였다. 초기 NOx의 주입농도는 1013 ppm으로 고정하였으며, 필터층의 통과후 나오는 가스의 농도가 20 ppm을 넘을 때를 파과로 정하였으며, 이때까지 걸리는 시간을 파과시간으로 정하여 표기하였다. 표준곡선은 300, 600, 그리고 1000 ppm의 NOx 표준가스를 이용하여 구하였으며, 이로부터 각 시편의 NOx 제거효율을 측정 하였다. The gas chromatograph (GC) used for the NO x reduction force measurement test was used with a DS 6200 from Donam Instruments, and a thermal trap detector (TCD) was used as a detector. The temperature of the reaction tube (inner diameter = 10 mm) was kept constant at 150 ~ 500 ℃ using a PID temperature controller, the flow rate of NO x gas was maintained at 10 ml / min using MFC (Mass Flow Controller) . The amount of catalyst was 0.5 g, and each sample was purged with ultra high purity helium for 1 hour at 150 ° C. in the reactor to remove moisture before analysis. The initial injection concentration of NO x was fixed at 1013 ppm, and when the concentration of the gas coming out after the passage of the filter layer was set to 20 ppm, the breakthrough time was defined as the breakthrough time. Standard curves were obtained using NO x standard gases of 300, 600, and 1000 ppm, from which the NO x removal efficiencies of each specimen were measured.

구 분division 도금시간Plating time 전류밀도 (A/m2) Current density (A / m 2) BET 비표면적 (㎡/g)BET specific surface area (㎡ / g) 금속종류 및 함량 (중량%)Metal Type and Content (wt%) 파과시간 (분)Breakthrough time (min) 미처리Untreated -- -- 21002100 -- 77 실시예 1Example 1 30초30 seconds 6060 17201720 Cu (13.2)Cu (13.2) 4545 실시예 2Example 2 12분12 minutes 55 18001800 Ni (7.8)Ni (7.8) 2626 실시예 3Example 3 20초20 seconds 120120 17901790 Ag (6.2)Ag (6.2) 2121 실시예 4Example 4 10초10 sec 200200 18301830 Al (8.7)Al (8.7) 3030 실시예 5Example 5 25초25 sec 8080 17501750 Fe (11.4)Fe (11.4) 3838 실시예 6Example 6 15분15 minutes 2020 14701470 Co (32.5)Co (32.5) 180 이상More than 180 실시예 7Example 7 8분8 minutes 4040 17001700 Cr (12.6)Cr (12.6) 9696 실시예 8Example 8 3분3 minutes 8080 17101710 Pt (10.7)Pt (10.7) 6363 실시예 9Example 9 2분2 minutes 100100 16801680 Ru (16.5)Ru (16.5) 145145 실시예 10Example 10 1분1 minute 200200 15401540 Sn (20.5)Sn (20.5) 180 이상More than 180 비교예 1Comparative Example 1 1초1 sec 44 20502050 Cu (0.09)Cu (0.09) 99 비교예 2Comparative Example 2 10분10 minutes 210210 460460 Cu (81.6)Cu (81.6) 1212 비교예 3Comparative Example 3 -- -- 12501250 Cu (6.2)Cu (6.2) 1515

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 ∼ 10이 금속첨착법에 의해 제조한 비교예 3에 비해 높은 NO 제거력 및 높은 금속함량에도 불과하고 높은 비표면적을 유지한다는 것을 확인할 수 있었다. 또한 비교예 1 ~ 2는 본 발명의 조건을 벗어나는 경우로 NO 제거력이 비표면적과 금속함량 이 두 가지 중 한가지만 커서는 안되며, 높은 비표면적을 유지하면서 적정량의 금속함량을 가질때 높은 NO 제거력을 나타냄을 확인 할 수 있었다. As shown in Table 1, it can be confirmed that Examples 1 to 10 according to the present invention maintains a high specific surface area, even in high NO removal force and high metal content, compared to Comparative Example 3 prepared by the metal deposition method. . In addition, Comparative Examples 1 and 2 are outside the conditions of the present invention, the NO removal force is one of the two of the specific surface area and the metal content should not be large, but shows a high NO removal force when the appropriate amount of metal content while maintaining a high specific surface area. Could check.

특히, 비교예 3의 경우는 종래 금속염과 활성탄소가 첨착된 경우로 금속함량이 적음에도 불고하고 비표면적의 감소가 극심하다는 것을 확인할 수 있었다.In particular, in the case of Comparative Example 3 was confirmed that the conventional metal salt and the activated carbon is impregnated, even though the metal content is low, the specific surface area is greatly reduced.

상술한 바와 같이, 본 발명에 따라 제조된 전도성 지지체를 이용한 전기도금법으로 제조된 활성탄소-금속 복합체은 높은 비표면적을 유지하고, 순수한 금속의 도입으로 반응성이 좋으며, 상기 금속의 도금량의 제어가 가능하여 독성가스 제거를 위한 반도체 공조용 필터, 해파필터, 방독면 필터 및 보호용 방호소재 특히, 기상 오염원인 NOx에 대해서 높은 환원력을 나타낼 것으로 기대된다.As described above, the activated carbon-metal composite prepared by the electroplating method using the conductive support prepared according to the present invention maintains a high specific surface area, has good reactivity by the introduction of pure metal, and can control the plating amount of the metal. It is expected to show high reducing power against semiconductor air conditioning filter, sea wave filter, gas mask filter and protective material for protection against toxic gas, especially NO x , a gaseous pollutant.

Claims (9)

금속판이 설치된 양극과, 전도성 지지체에 고정된 활성탄소의 음극을 이용한 전기도금을 수행하여 Electroplating is performed using the anode with the metal plate installed and the cathode of activated carbon fixed to the conductive support. 상기 활성탄소 표면에 금속이 도입된 복합체를 형성하는 것을 특징으로 하는 활성탄소-금속 복합체의 제조방법.Method for producing an activated carbon-metal composite, characterized in that to form a complex in which metal is introduced on the surface of the activated carbon. 제 1 항에 있어서, 상기 전기도금은 1초 ∼ 60분 범위의 도금시간과 5 A/m2 ∼ 200 A/m2 범위의 전류밀도하에서 수행되는 것을 특징으로 하는 활성탄소-금속 복합체의 제조방법. The method of claim 1, wherein the electroplating is performed under a plating time in the range of 1 second to 60 minutes and a current density in the range of 5 A / m 2 to 200 A / m 2. . 제 1 항에 있어서, 상기 활성탄소는 분말상, 조립상, 파쇄상, 필터상 및 섬유상의 형태를 유지하는 활성탄 또는 활성탄소섬유인 것을 특징으로 하는 활성탄소-금속 복합체의 제조방법.The method of claim 1, wherein the activated carbon is an activated carbon or activated carbon fiber which maintains powder, granular, crushed, filter and fibrous forms. 제 1 항에 있어서, 상기 전도성 지지체는 전도성 금속 소재로 된 망 형태를 유지하는 것을 특징으로 하는 활성탄소-금속 복합체의 제조방법.The method of claim 1, wherein the conductive support maintains a network form of a conductive metal material. 제 1 항에 있어서, 상기 활성탄 표면에 도입된 금속은 Cu, Ni, Ag, Al, Fe, Co, Cr, Pt, Ru 및 Sn 중에서 선택된 1종 또는 2종 이상의 전이금속인 것을 특징으로 하는 활성탄소-금속 복합체의 제조방법.The activated carbon of claim 1, wherein the metal introduced on the surface of the activated carbon is one or two or more transition metals selected from Cu, Ni, Ag, Al, Fe, Co, Cr, Pt, Ru, and Sn. -Method of producing a metal complex. 제 1 항에 있어서, 상기 도입된 금속의 함량이 활성탄소 무게대비 0.1 ∼ 80 중량% 범위인 것을 특징으로 하는 활성탄소-금속 복합체의 제조방법.The method of claim 1, wherein the content of the introduced metal is in the range of 0.1 to 80% by weight based on the weight of the activated carbon. 청구항 1 내지 청구항 6항 중에서 선택된 제조방법으로 제조된 활성탄소-금속 복합체가 포함되어 이루어진 독성제거용 필터.A filter for removing toxicity, comprising an activated carbon-metal composite prepared by a method selected from claims 1 to 6. 제 7 항에 있어서, 상기 독성제거용 필터는 반도체 공조용 필터, 해파필터, 방독면 필터 및 보호용 방호 필터인 것을 특징으로 하는 독성제거용 필터.The filter for removing toxicity according to claim 7, wherein the filter for removing toxicity is a semiconductor air conditioning filter, a sea wave filter, a gas mask filter, and a protective protection filter. 청구항 1 내지 청구항 6항 중에서 선택된 제조방법으로 제조된 활성탄소-금속 복합체가 포함되어 이루어진 NOx 제거용 촉매.A catalyst for removing NOx, comprising an activated carbon-metal composite prepared by a manufacturing method selected from claims 1 to 6.
KR1020060035861A 2006-04-20 2006-04-20 Filter for removing to noxious by using carbon/metal composites KR100780480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060035861A KR100780480B1 (en) 2006-04-20 2006-04-20 Filter for removing to noxious by using carbon/metal composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060035861A KR100780480B1 (en) 2006-04-20 2006-04-20 Filter for removing to noxious by using carbon/metal composites

Publications (2)

Publication Number Publication Date
KR20070103933A true KR20070103933A (en) 2007-10-25
KR100780480B1 KR100780480B1 (en) 2007-11-28

Family

ID=38818127

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060035861A KR100780480B1 (en) 2006-04-20 2006-04-20 Filter for removing to noxious by using carbon/metal composites

Country Status (1)

Country Link
KR (1) KR100780480B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154816A (en) * 2011-01-20 2011-08-17 天津市飞荣达科技有限公司 FeCo alloy/CuO double-plating magnetic carbon fiber and preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523324B1 (en) * 2003-02-21 2005-10-25 한국화학연구원 Antibacterial activated carbon and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154816A (en) * 2011-01-20 2011-08-17 天津市飞荣达科技有限公司 FeCo alloy/CuO double-plating magnetic carbon fiber and preparation method and application

Also Published As

Publication number Publication date
KR100780480B1 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
KR101804714B1 (en) Supporting carbon material for solid polymer fuel cell, metal-catalyst-particle-supporting carbon material, and method for manufacturing said materials
Maina et al. Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors
Lee et al. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution
JP2573333B2 (en) Porous composition and method for producing the same
US20240058749A1 (en) Device and method for degrading gaseous organic pollutant through electrochemical process
KR100780481B1 (en) Preparation method of multi-metals?activated carbon composites
CA2720866A1 (en) Gas decomposition apparatus and method for decomposing gas
CN113353932A (en) Hierarchical pore charcoal electrocatalyst prepared from pitaya peel and preparation method and application thereof
KR20170021590A (en) Single-atom or Sub-nanometer Metal Supported Sulfur-doped Zeolite Templated Carbon and Use Thereof
JP4893918B2 (en) Nitrogen-containing carbon-based electrode catalyst
CN110560051A (en) Titanium dioxide modified activated carbon supported silver monatomic catalyst and application thereof in formaldehyde oxidation
KR100780480B1 (en) Filter for removing to noxious by using carbon/metal composites
KR102069492B1 (en) Method for producing metal impregnated activated carbon for concentration of low concentration ammonia
RU2456717C1 (en) Method of forming catalyst layer for solid-polymer fuel cell
CN114226709A (en) Nano porous bismuth and preparation method and application thereof
KR100512476B1 (en) Active carbon absorbent containing copper, silver and chrome and method for preparing same
CN111204848B (en) Method for removing pollutants through non-uniform cathodic electro-reduction of metal loaded on conductive substrate
CN113262778B (en) Oxygen vacancy-containing molybdenum dioxide/bismuth photocatalyst and preparation method and application thereof
Du et al. Highly Efficient and Non-Precious Metal for the Li-SOCl2 Battery Using Nitrogen Doped Carbon Supported Cu Nanoparticles
KR20030095695A (en) Activated carbon or activated carbon fiber/transition metal composite and preparation thereof
JP2006202687A (en) Electrode catalyst for fuel cell of metal cluster
CN113289619A (en) Preparation method of flexible carbon fiber loaded gold electrocatalyst
KR101069311B1 (en) Surface-reformed Active carbon and manufacturing method thereof
Xu et al. Study on performance of electrocatalytic dechlorination of 2, 5-dichloronitrobenzene by copper and palladium bimetallic composites modified Ti electrode in aqueous solution
CN115532317B (en) Pd/ZIFs-8@Ti 3 C 2 T x Electrocatalyst, preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 12