KR20030095695A - Activated carbon or activated carbon fiber/transition metal composite and preparation thereof - Google Patents

Activated carbon or activated carbon fiber/transition metal composite and preparation thereof Download PDF

Info

Publication number
KR20030095695A
KR20030095695A KR1020020033236A KR20020033236A KR20030095695A KR 20030095695 A KR20030095695 A KR 20030095695A KR 1020020033236 A KR1020020033236 A KR 1020020033236A KR 20020033236 A KR20020033236 A KR 20020033236A KR 20030095695 A KR20030095695 A KR 20030095695A
Authority
KR
South Korea
Prior art keywords
activated carbon
transition metal
carbon fiber
nets
conductive
Prior art date
Application number
KR1020020033236A
Other languages
Korean (ko)
Inventor
박수진
이재락
장유신
신준식
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020020033236A priority Critical patent/KR20030095695A/en
Publication of KR20030095695A publication Critical patent/KR20030095695A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE: A porous adsorbent/transition metal catalyst having far improved adsorption/reduction capabilities for polar air polluting sources such as NOx as maintaining high adsorption capability for organic and inorganic materials is provided. CONSTITUTION: The method comprises the process of impressing current between the two electrodes by using a transition metal plate as the anode and using activated carbon or activated carbon fiber fixed between conductive nets as the cathode in an electrolytic plating cell, wherein the transition metal is Cu, Fe, Ni or Ag, wherein the conductive nets are made of a conductive alloy material, wherein the activated carbon fiber is non woven fabric or fabric compressed and fixed between the nets, and wherein the activated carbon is compressed and fixed between the nets in a lump shape.

Description

활성탄 또는 활성탄소섬유/전이금속 복합체 및 이의 제조방법{ACTIVATED CARBON OR ACTIVATED CARBON FIBER/TRANSITION METAL COMPOSITE AND PREPARATION THEREOF}ACTIVATED CARBON OR ACTIVATED CARBON FIBER / TRANSITION METAL COMPOSITE AND PREPARATION THEREOF}

본 발명은 활성탄 또는 활성탄소섬유/전이금속 복합체 및 이의 제조 방법에 관한 것이다.The present invention relates to activated carbon or activated carbon fiber / transition metal composite and a method for producing the same.

현대 산업의 급속한 발달에 따라 환경오염에 대한 관심이 집중되고 있는 가운데 활성탄소섬유 (activated carbon fibers, ACFs)는 넓은 비표면적을 가지고 있어 흡착용량이 크며, 발달된 미세공이 표면에 노출되어 있어 흡착속도가 빠른 장점을 가지고 있기 때문에, 오염물질의 제거 능력이 높을 뿐만 아니라 경제적, 환경친화적인 측면에서도 유리하다. 활성탄소섬유는 특히 안정성과 재생성이 좋고 섬유상이기 때문에 가공이 용이하여 직포, 부직포, 쉬트 등의 형태로 만들어져 용매회수, 공업제품의 정제, 오??폐수의 정수 처리시설, 소각시설의 유해 배기가스의 흡착 및 제거 장치 등에 널리 사용되고 있다.With the rapid development of modern industry, attention is being paid to environmental pollution, while activated carbon fibers (ACFs) have a large specific surface area, which has a large adsorption capacity, and developed micropores are exposed on the surface, so adsorption rate Has the advantage of fast removal of contaminants and is advantageous in terms of economic and environmental friendliness. Activated carbon fibers are particularly stable and reproducible, and because they are fibrous, they are easy to process and are made in the form of woven fabrics, nonwoven fabrics, sheets, etc., and are used for solvent recovery, industrial product purification, wastewater purification treatment facilities, and incineration facilities. It is widely used in the adsorption and removal apparatus of

각종 유·무기 오염원에 오염된 기체나 액체는 활성탄소섬유 층을 통과하면서 오염 물질이 고체상태로 탄소 표면에 부착되는데, 표면에서 일어나는 이러한 현상을 흡착이라 하며, 이 흡착 성능은 활성탄소섬유의 기공 구조, 표면적, 입자 크기, 표면 에너지 등에 의해 결정된다고 알려져 있다. 그러나, 활성탄 또는 활성탄소섬유 자체는 높은 비표면적과 잘 발달된 기공 구조를 가지고 있음에도 불구하고 효율적인 재료로서 제공되지 못했다.Gases and liquids contaminated with various organic and inorganic pollutants pass through the activated carbon fiber layer and the contaminants adhere to the carbon surface in a solid state. This phenomenon occurs on the surface called adsorption. It is known to be determined by structure, surface area, particle size, surface energy and the like. However, activated carbon or activated carbon fiber itself has not been provided as an efficient material despite having a high specific surface area and a well-developed pore structure.

극성을 가지는 다양한 환경오염원에 대한 흡착/환원능력은 흡착제가 가지는기공구조에 따른 물리적 흡착성능과 더불어 또한 그 표면의 화학적 성질에 의해서도 많은 영향을 받는데, 흡착제 표면에 극성 및 환원력을 부여하기 위하여 전이 금속을 이용해왔다. 다공성 물질에 전이금속 촉매를 도입하여 다공성촉매를 제조하기 위한 방법으로, 무전해 도금법, 이온교환법, 전해도금 방법 등이 있다. 상기 무전해도금법은 예를 들면 한국특허출원 제1999-12280호에 기재되어 있으며, 이온교환법을 이용한 제올라이트의 금속촉매 제조방법은 문헌[S. Martinet al., Appl. Catal. A: Gen. 193, 265 (2000); 및 N. Jana, Appl. Catal. B: Env. 30, 445 (2001)] 등에 알려져 있다. 그러나, 무전해 도금법은 촉매 특성을 제어하기가 쉽지 않다는 단점이 있으며, 또한, 지금까지는 전해도금은 피도금체가 전도성을 어느 정도 가지고 있어야 가능했기 때문에, 전도성이 없거나 약한 제올라이트나 활성탄 또는 활성탄소섬유와 같은 좋은 기공구조를 가지는 다공체에 적용할 수 없는 문제점이 있어 왔다. 따라서, 활성탄 또는 활성탄소섬유를 이용한 이온교환법의 이용은 비교적 많은 제약과 복잡한 과정을 거치기 때문에 거의 적용이 없었다.Adsorption / reduction capacity for various environmental pollutants with polarity is affected by physical adsorption performance according to the pore structure of the adsorbent and also by the chemical properties of its surface. In order to impart polarity and reducing power to the adsorbent surface, Has been used. As a method for preparing a porous catalyst by introducing a transition metal catalyst into the porous material, there are an electroless plating method, an ion exchange method, an electroplating method, and the like. The electroless plating method is described, for example, in Korean Patent Application No. 1999-12280, and a method for preparing a metal catalyst of zeolite using ion exchange method is described in S. Martin et al. , Appl. Catal. A: Gen. 193, 265 (2000); And in N. Jana, Appl. Catal. B: Env. 30, 445 (2001) and the like. However, the electroless plating method has a disadvantage in that it is not easy to control the characteristics of the catalyst. Also, until now, electroplating has been possible because the plated body has a certain degree of conductivity. There has been a problem that cannot be applied to porous bodies having the same good pore structure. Therefore, the use of ion exchange method using activated carbon or activated carbon fiber has little application because it undergoes relatively many constraints and complex processes.

또한, 기존의 다공성 흡착제에 대한 무전해 금속이온의 도금처리는 광산이나 공업단지 등에서 배출되는 오.폐수에서의 중금속 오염원을 선택적으로 흡착, 제거하기 위하여 이용되었으나, 흡착제 자체의 표면성질에 의해 도금처리하기 위한 금속의 종류가 제한되었으며, 일반적으로 액상에서의 흡착, 제거에 국한되었다. 또한, 금속이온에 의하여 그 흡착성능이 저하되어 흡착제로서의 기능이 떨어지는 단점이 있었다.In addition, the plating of electroless metal ions on the porous porous adsorbent has been used to selectively adsorb and remove heavy metal contaminants from the wastewater discharged from mines and industrial complexes, but by the surface properties of the adsorbent itself. The type of metal to be limited is limited, generally limited to adsorption, removal in the liquid phase. In addition, the adsorption performance is reduced by the metal ions have a disadvantage in that the function as the adsorbent is poor.

따라서, 본 발명의 목적은 유.무기물에 대한 높은 흡착특성을 거의 그대로 유지하면서 NOx등과 같은 극성 대기오염원에 대하여도 훨씬 향상된 흡착/환원 능력을 가진 다공성 흡착제/전이금속 촉매를 제공하는 것을 그 목적으로 한다.Accordingly, it is an object of the present invention to provide a porous adsorbent / transition metal catalyst with much improved adsorption / reduction ability for polar air pollutants such as NO x while maintaining high adsorption characteristics for organic and inorganic substances. It is done.

도 1은 본 발명에 따라 전해 Cu 도금에 의해 제조한 활성탄소섬유/Cu 촉매 표면을 전해도금되지 않은 경우와 비교하여 나타낸 전자현미경 사진이고,1 is an electron micrograph showing the surface of an activated carbon fiber / Cu catalyst prepared by electrolytic Cu plating according to the present invention compared with the case where it is not electroplated,

도 2는 본 발명의 실시예 1에 따른 활성탄소섬유/Cu 촉매에 의한 NOx환원(전환)율을 나타낸 도면이고,2 is a view showing the NO x reduction (conversion) rate by the activated carbon fiber / Cu catalyst according to Example 1 of the present invention,

도 3은 본 발명의 실시예 2에 따른 활성탄소섬유/Fe 촉매에 의한 NOx환원(전환)율을 나타낸 도면이고,3 is a view showing the NO x reduction (conversion) rate by the activated carbon fiber / Fe catalyst according to Example 2 of the present invention,

도 4는 본 발명의 실시예 3에 따른 활성탄소섬유/Ni 촉매에 의한 NOx환원(전환)율을 나타낸 도면이고,4 is a view showing the NO x reduction (conversion) rate by the activated carbon fiber / Ni catalyst according to Example 3 of the present invention,

도 5는 본 발명의 실시예 4에 따른 활성탄/Ag 촉매에 의한 NOx환원(전환)율을 나타낸 도면이다.5 is a view showing the NO x reduction (conversion) rate by the activated carbon / Ag catalyst according to Example 4 of the present invention.

따라서, 본 발명은 상기 목적을 달성하기 위하여, 전이금속 전해도금조에서 전이금속판을 양극으로 하고 전도성 망(net)사이에 고정된 활성탄 또는 활성탄소섬유를 음극으로 하여 두 전극 사이에 전류를 인가하는 것을 포함하는, 활성탄 또는 활성탄소섬유/전이금속 복합체의 제조방법을 제공한다.Therefore, in order to achieve the above object, the present invention provides a current between two electrodes using a transition metal plate as an anode in a transition metal electroplating bath and an activated carbon or activated carbon fiber fixed between conductive nets as a cathode. It provides a method of producing an activated carbon or activated carbon fiber / transition metal composite.

또한, 본 발명은 본 발명에 따른 방법에 의해 제조된 활성탄 또는 활성탄소섬유/전이금속 복합체를 제공한다.The present invention further provides activated carbon or activated carbon fiber / transition metal composites produced by the process according to the invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 특징은 기존에는 시도된 바 없는 다공성 저전도성의 활성탄 또는 활성탄소섬유를 전해도금법에 의해 전이금속으로 도금하며, 이때 상기 활성탄 또는 활성탄소 섬유를 도전성 망(net) 사이에 고정한 상태로 적용한다는데 있다.The present invention is characterized by plating a transition metal by electroplating, which has not been attempted before, with a porous low conductivity activated carbon or activated carbon fiber, wherein the activated carbon or activated carbon fiber is applied in a fixed state between conductive nets. It is.

본 발명에서 활성탄 또는 활성탄소섬유는 종래의 입상, 분말상 활성탄, 활성탄소섬유 및 활성탄소함유 직포 또는 부직포 등을 포함한다. 또한, 본 발명의 활성탄소섬유는 필터형태로 제조되어 사용될 수도 있다.Activated carbon or activated carbon fibers in the present invention includes conventional granular, powdered activated carbon, activated carbon fibers and activated carbon-containing woven or nonwoven fabrics. In addition, the activated carbon fiber of the present invention may be used in the form of a filter.

본 발명에 사용되는 상기 활성탄 또는 활성탄소섬유는 1000 내지 2000 (m2.g-1)의 비표면적을 갖는 것이 바람직하다.The activated carbon or activated carbon fiber used in the present invention preferably has a specific surface area of 1000 to 2000 (m 2 · g −1 ).

본 발명에 따른 전해도금에 양극으로 가능한 금속은 전이금속으로서, 특히 Cu, Ni, Fe, Ag 등이 바람직하다.The metal which can be used as an anode in the electroplating according to the present invention is preferably a transition metal, in particular Cu, Ni, Fe, Ag or the like.

본 발명에 따르면, 전해도금 시에 피도금체인 전도성이 낮은 다공성 활성탄 또는 활성탄소섬유를 철 또는 기타 전도성 합금과 같은 금속 전도성 물질의 망(net)으로 예를 들면 망 사이에 압착고정하여 전도성을 높인 후에 수행한다. 전도성 망을 사용하지 않을 경우 단시간에 원하는 만큼의 충분한 도금피막을 얻을 수 없으며, 고른 피막을 얻을 수 없다.According to the present invention, the electroconductive high-conductivity porous activated carbon or activated carbon fiber, which is a plated body, is pressed into a net of a metal conductive material such as iron or other conductive alloy, for example, by crimping between the nets to increase conductivity. Do it later. If the conductive net is not used, sufficient plating film as desired may not be obtained in a short time, and even coating may not be obtained.

본 발명에 따른 전해 도금은 당분야에 공지된 전이금속도금 방법에 따라 수행할 수 있다. 본 발명에 따른 도금욕에 있어서, 사용될 수 있는 전해 도금용액은 전해질 및 초기 금속이온의 공급원으로써 금속염을 공급하며, 첨가제로 안정제 등을 첨가한다. 이러한 도금용액에서 전류를 인가하여 도금하여 금속 피막을 얻을 수 있다. 도금의 두께는 도금시간으로 조절할 수 있으며, 수 nm에서 수 mm까지도 가능하나 용도에 따라 필요한 만큼 조절하여 처리할 수 있다.Electrolytic plating according to the present invention can be carried out according to a transition metal plating method known in the art. In the plating bath according to the present invention, the electrolytic plating solution that can be used supplies a metal salt as a source of electrolyte and initial metal ions, and adds a stabilizer or the like as an additive. In such a plating solution, a metal film may be obtained by applying a current to the plating solution. The thickness of the plating can be adjusted by the plating time, and can be adjusted from several nm to several mm, but can be adjusted as necessary depending on the application.

본 발명에 따라 제조된 활성탄 또는 활성탄소섬유/전이금속 복합체는 흡착제인 활성탄 또는 활성탄소섬유의 높은 다공도를 이용하면서도 고르게 전이금속이 도금되어, 액상 또는 기상 유.무기 오염원 및 극성오염원의 처리에 촉매로 적용될 수 있으며, 황산화물, 질소산환물, 특히 NOx등에 대한 흡착/환원특성이 우수하여 이의제거에 특히 유용하다.The activated carbon or activated carbon fiber / transition metal composite prepared according to the present invention is plated with a transition metal evenly while using a high porosity of activated carbon or activated carbon fiber as an adsorbent, thereby catalyzing the treatment of liquid or gaseous organic / inorganic and polar pollutants. It can be applied to, it is particularly useful for the removal of sulfur oxides, nitrogen oxides, especially the adsorption / reduction characteristics for NO x and the like.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

하기 실시예에 있어서 각각의 특성 값들은 다음 방법에 의하여 측정하였다.In the following examples, the respective characteristic values were measured by the following method.

1. NOx환원력 측정1. NO x reducing power measurement

NOx환원력 측정 시험에 사용한 가스크로마토그래프 (GC)는 도남인스트루먼트의 DS 6200을 사용하였고, 검출기로는 열 포획검출기 (TCD)를 사용하였다. 반응관 (내경= 10 mm)의 온도는 P.I.D. 온도제어기를 사용하여 150-500℃로 일정하게 유지시켰으며, NOx가스의 유속은 M.F.C. (Mass Flow Controller)를 사용하여 10 ml/min으로 유지시켰다. 촉매의 양은 0.5 g을 사용하였으며, 분석 전 각 시료들은 반응기 내에서 150℃에서 1시간 동안 초고순도 헬륨으로 퍼징하여 수분을 제거하였다. 표준곡선은 300, 600, 그리고 1000 ppm의 NOx표준가스를 이용하여 구하였으며, 이로부터 각 시편의 NOx제거효율을 측정하였다.The gas chromatograph (GC) used for the NO x reduction force measurement test was used with a DS 6200 from Donam Instruments, and a thermal trap detector (TCD) was used as a detector. The temperature of the reaction tube (inner diameter = 10 mm) was kept constant at 150-500 ° C. using a PID temperature controller, and the flow rate of NO x gas was maintained at 10 ml / min using MFC (Mass Flow Controller). . The amount of catalyst was 0.5 g, and each sample was purged with ultra high purity helium at 150 ° C. for 1 hour in the reactor to remove moisture before analysis. Standard curves were obtained using 300, 600, and 1000 ppm NO x standard gases, from which the NO x removal efficiencies of each specimen were measured.

2. BET 비표면적 측정 (m2.g-1)2. Measurement of BET specific surface area (m 2 .g -1 )

활성탄소섬유의 비표면적은 77K의 액체 질소 분위기 하에서 시료 약 0.1 g을 채취하여 질소기체를 흡착질로 하여 흡착량을 측정하였다. 시료의 전처리는 573K에서 시료 내 잔류 압력이 10-3torr 이하로 될 때까지 약 9-12 시간동안탈기(degassing) 시켰다. N2등온흡착시험 후, P/Po(P는 부분 압력, Po는 포화 증기압)가 약 0.05에서 0.3까지는 흡착량에 대해서 직선의 기울기를 나타내며, 이것으로부터 BET 비표면적을 구하였다.The specific surface area of the activated carbon fibers was measured by taking about 0.1 g of a sample under a liquid nitrogen atmosphere of 77 K and adsorbing nitrogen gas as an adsorbate. Pretreatment of the sample was degassed for about 9-12 hours at 573 K until the residual pressure in the sample became 10 −3 torr or less. After the N 2 isothermal adsorption test, P / P o (P is the partial pressure, P o is the saturated vapor pressure) was about 0.05 to 0.3, indicating the slope of the straight line with respect to the adsorption amount, from which the BET specific surface area was obtained.

실시예 1Example 1

활성탄소섬유로서 타이완카본㈜의 비표면적이 2121 m2/g인 AW2001을 사용하여 전해도금 방법에 의해 구리(Cu) 전해도금을 수행하였다. 구체적으로, 양극과 음극에 각각, 동판과, 철(Fe) 망(net)(메쉬 크기: 5×5 mm)사이에 클립으로 압착 고정된 활성탄소섬유(부직포 형태)를 사용하여 1-20초 동안 전해도금 시켰다. 전류 밀도는 60 A/m2의 조건으로 처리하였다. 각각 전해도금 처리된 시편은 증류수로 충분히 세척후, 건조기에서 완전히 건조시켰다.Copper (Cu) electroplating was performed by electroplating using AW2001 having a specific surface area of 2121 m 2 / g of Taiwan Carbon as an activated carbon fiber. Specifically, 1-20 seconds using an activated carbon fiber (non-woven fabric) that is crimped and fixed between the copper plate and the iron (Fe) net (mesh size: 5 x 5 mm) to the positive electrode and the negative electrode, respectively. Electroplated for The current density was treated under the condition of 60 A / m 2 . Each electroplated specimen was washed with distilled water sufficiently and completely dried in a drier.

Cu가 미도금된 활성탄소섬유 자체 및 상기와 같이 제조된 활성탄소섬유/Cu 복합체에 대해 각각 주사전자현미경(SEM)으로 단면을 측정하여, 그 결과를 도 1a 및 1b에 나타내었으며, 이들의 BET 비표면적을 측정하여 표 1에 나타내었다.The cross-sections were measured by scanning electron microscopy (SEM) for the activated carbon fiber itself without Cu and the activated carbon fiber / Cu composite prepared as described above, and the results are shown in FIGS. The specific surface area was measured and shown in Table 1.

또한, 상기에서 제조된 활성탄소섬유/Cu 복합체를 촉매로 사용하여 150℃에서의 NOx환원력을 상술한 바와 같이 측정하였으며, 이에 대한 결과는 도 2에 나타내었다.In addition, using the activated carbon fiber / Cu composite prepared as a catalyst was measured as described above NO x reducing power at 150 ℃, the results are shown in FIG.

실시예 2Example 2

동판 대신 철(Fe)판을 사용하여 실시예 1에서와 동일한 과정을 수행하였으며, 10-60초 동안 전해도금 시켰다.An iron (Fe) plate was used instead of the copper plate, and the same process as in Example 1 was carried out, and electroplated for 10-60 seconds.

상기와 같이 제조된 활성탄소섬유/Fe 촉매에 의한 200℃에서의 NOx환원에 대한 결과는 도 3에, 비표면적은 표 1에 나타내었다.The result of NO x reduction at 200 ° C. by the activated carbon fiber / Fe catalyst prepared as described above is shown in FIG. 3, and the specific surface area is shown in Table 1.

실시예 3Example 3

동판 대신 니켈(Ni)판을 사용하여 실시예 1에서와 동일한 과정을 수행하였으며, 1-10분 동안 전해도금 시켰다.A nickel (Ni) plate was used instead of the copper plate, and the same process as in Example 1 was carried out, and electroplated for 1-10 minutes.

상기와 같이 제조된 활성탄소섬유/Ni 촉매에 의한 300℃에서의 NOx환원에 대한 결과는 도 4에, 비표면적은 표 1에 나타내었다.The result of NO x reduction at 300 ° C. by the activated carbon fiber / Ni catalyst prepared as described above is shown in FIG. 4, and the specific surface area is shown in Table 1.

실시예 4Example 4

동판 대신 은(Ag)판을 사용하고 활성탄소섬유 대신 덩어리(chop) 형태의 활성탄이 압착된 철망을 사용하여 실시예 1에서와 동일한 과정을 수행하였으며, 1-10분 동안 전해도금 시켰다.A silver plate was used instead of the copper plate, and the same process as in Example 1 was carried out using a wire mesh compressed with activated carbon in the form of chops instead of activated carbon fibers, and electroplated for 1-10 minutes.

상기와 같이 제조된 활성탄/Ag 촉매에 의한 500℃에서의 NOx환원에 대한 결과는 도 5에, 비표면적은 표 1에 나타내었다.The result of NO x reduction at 500 ° C. by the activated carbon / Ag catalyst prepared as described above is shown in FIG. 5, and the specific surface area is shown in Table 1.

실시예Example 도금된 금속Plated metal 도금시간Plating time BET 비표면적(m2.g-1)BET specific surface area (m 2 .g -1 ) 미처리 (활성탄소섬유)Untreated (Activated Carbon Fiber) -- -- 21212121 미처리 (활성탄소)Untreated (Activated Carbon) -- -- 12071207 실시예 1Example 1 CuCu 1 sec1 sec 17091709 5 sec5 sec 15501550 10 sec10 sec 14531453 20 sec20 sec 12001200 실시예 2Example 2 FeFe 10 sec10 sec 16301630 20 sec20 sec 15521552 40 sec40 sec 14131413 60 sec60 sec 13051305 실시예 3Example 3 NiNi 1 min1 min 16051605 2 min2 min 13401340 4 min4 min 927927 10 min10 min 352352 실시예 4Example 4 AgAg 1 min1 min 10051005 2 min2 min 913913 4 min4 min 736736 10 min10 min 304304

상기 표 1 및 도 2 내지 4의 결과로부터 본 발명에 따라 제조한 활성탄 또는 활성탄소섬유/전이금속 촉매는 높은 비표면적에 의한 유.무기 오염물질에 대한 우수한 흡착 특성을 유지하고 전해도금을 통하여 도입된 금속에 의한 NOx의 환원에도 매우 우수한 특성을 나타냄을 알 수 있다. 특히, NOx의 환원력에서, 미처리 활성탄 또는 활성탄소섬유는 시간이 지남에 따라 환원력이 급격히 저하되었으나, 본 발명에 따라 제조된 촉매는 72시간 이상 지속적인 환원활성을 나타내었다. 이는 무전해 도금처리한 경우(한국특허출원 제1999-12280호 참조) 보다도 우수한 성능을 나타내는 것으로 전해도금의 특성상 피도금체에 금속산화물이 아닌 순수한 금속형태로 도금되기 때문인 것으로 생각된다. 또한, 공정 및 장치가 단순하며, 처리 시간이 초 (sec) 단위의 매우 짧은 시간에서도 효과적으로 금속의 양을 조절할 수 있기때문에 에너지 및 경제성 면에서도 효과적이다.Activated carbon or activated carbon fiber / transition metal catalyst prepared according to the present invention from Table 1 and the results of FIGS. 2 to 4 maintains excellent adsorption characteristics for organic and inorganic contaminants due to high specific surface area and is introduced through electroplating. It can be seen that the very excellent properties are also exhibited for the reduction of NO x by the used metal. In particular, in the reducing power of NO x, the reduced power of the untreated activated carbon or activated carbon fiber is rapidly reduced over time, the catalyst prepared according to the present invention showed a continuous reducing activity for 72 hours or more. This is due to the superior performance of the electroless plating treatment (see Korean Patent Application No. 1999-12280), and is believed to be due to the plating of the metal to be plated in the form of a pure metal rather than a metal oxide. In addition, the process and apparatus are simple, and the treatment time is effective in terms of energy and economy because the treatment time can effectively control the amount of metal even in a very short time in seconds.

본 발명에 따르면 전해도금법에 의해 활성탄 또는 활성탄소섬유에 전이금속이 양호하게 전해도금될 수 있으며 이렇게 하여 수득된 활성탄 또는 활성탄소섬유/전이금속 복합체는 오염물질에 대한 흡착특성/환원력이 우수하여 처리용 촉매로 유용하게 사용될 수 있다.According to the present invention, the transition metal may be well electroplated on the activated carbon or the activated carbon fiber by the electroplating method, and the activated carbon or the activated carbon fiber / transition metal complex thus obtained is treated with excellent adsorption characteristics / reducing power to contaminants. It can be usefully used as a catalyst for.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (8)

전해도금조에서 전이금속판을 양극으로 하고 전도성 망(net)사이에 고정된 활성탄 또는 활성탄소섬유를 음극으로 하여 두 전극 사이에 전류를 인가하는 것을 포함하는, 활성탄 또는 활성탄소섬유/전이금속 복합체의 제조방법.Of an activated carbon or activated carbon fiber / transition metal composite, comprising applying a current between two electrodes using a transition metal plate as an anode in an electroplating tank and an activated carbon or activated carbon fiber fixed between conductive nets as a cathode. Manufacturing method. 제 1 항에 있어서,The method of claim 1, 전이 금속이 Cu, Fe, Ni 또는 Ag임을 특징으로 하는 방법.Wherein the transition metal is Cu, Fe, Ni or Ag. 제 1 항에 있어서,The method of claim 1, 전도성 망이 철 또는 전도성 합금 재질로 된 망임을 특징으로 하는 방법.A method characterized in that the conductive mesh is a mesh of iron or conductive alloy material. 제 1 항에 있어서,The method of claim 1, 활성탄소섬유가 부직포 또는 직포 형태로 망 사이에 압착고정됨을 특징으로 하는 방법.Activated carbon fibers are non-woven or woven fabric, characterized in that the crimp between the mesh. 제 1 항에 있어서,The method of claim 1, 활성탄이 덩어리 형태로 망 사이에 압착고정됨을 특징으로 하는 방법.Activated carbon is compressed in a lump form between the nets. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 방법에 의해 제조된 활성탄 또는 활성탄소섬유/전이금속 복합체.Activated carbon or activated carbon fiber / transition metal composite prepared by the method according to any one of claims 1 to 5. 제 6 항에 따른 복합체를 촉매로 사용하여 액상 또는 기상 유기 또는 무기 오염원을 선택적 흡착/환원 처리하는 방법.A process for the selective adsorption / reduction of liquid or gaseous organic or inorganic pollutants using the complex according to claim 6 as a catalyst. 제 7 항에 있어서,The method of claim 7, wherein 오염원이 NOx임을 특징으로 하는 방법.Characterized in that the source is NO x .
KR1020020033236A 2002-06-14 2002-06-14 Activated carbon or activated carbon fiber/transition metal composite and preparation thereof KR20030095695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020033236A KR20030095695A (en) 2002-06-14 2002-06-14 Activated carbon or activated carbon fiber/transition metal composite and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020033236A KR20030095695A (en) 2002-06-14 2002-06-14 Activated carbon or activated carbon fiber/transition metal composite and preparation thereof

Publications (1)

Publication Number Publication Date
KR20030095695A true KR20030095695A (en) 2003-12-24

Family

ID=32387001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020033236A KR20030095695A (en) 2002-06-14 2002-06-14 Activated carbon or activated carbon fiber/transition metal composite and preparation thereof

Country Status (1)

Country Link
KR (1) KR20030095695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154816A (en) * 2011-01-20 2011-08-17 天津市飞荣达科技有限公司 FeCo alloy/CuO double-plating magnetic carbon fiber and preparation method and application
US8748337B2 (en) 2006-04-28 2014-06-10 INHA—Industry Partnership Institute Preparation method of multi-metals / activated carbon composites

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860508A (en) * 1994-06-09 1996-03-05 Sumitomo Electric Ind Ltd Metal nonwoven fabric and method for producing the same
JP2000160475A (en) * 1998-11-26 2000-06-13 Falcon Technology:Kk Cloth and clothes
KR20020028091A (en) * 2000-10-06 2002-04-16 오원춘 Plated and activated carbon fiber having improved antibacterial characteristics and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860508A (en) * 1994-06-09 1996-03-05 Sumitomo Electric Ind Ltd Metal nonwoven fabric and method for producing the same
JP2000160475A (en) * 1998-11-26 2000-06-13 Falcon Technology:Kk Cloth and clothes
KR20020028091A (en) * 2000-10-06 2002-04-16 오원춘 Plated and activated carbon fiber having improved antibacterial characteristics and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748337B2 (en) 2006-04-28 2014-06-10 INHA—Industry Partnership Institute Preparation method of multi-metals / activated carbon composites
CN102154816A (en) * 2011-01-20 2011-08-17 天津市飞荣达科技有限公司 FeCo alloy/CuO double-plating magnetic carbon fiber and preparation method and application

Similar Documents

Publication Publication Date Title
Acharya et al. Adsorbed Cr (VI) based activated carbon/polyaniline nanocomposite: a superior electrode material for asymmetric supercapacitor device
Shukla et al. Electro‐oxidation of Methanol in Sulfuric Acid Electrolyte on Platinized‐Carbon Electrodes with Several Functional‐Group Characteristics
WO2014129597A1 (en) Carbon material for use as catalyst carrier
Lee et al. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution
CN110404544B (en) Bimetallic catalytic material and preparation method and application method thereof
CN110127697B (en) Method for preparing modified activated carbon in large scale
CN113353932A (en) Hierarchical pore charcoal electrocatalyst prepared from pitaya peel and preparation method and application thereof
JP5167687B2 (en) Process for producing activated carbon-multimetallic complex
CN113198475A (en) Preparation method and application of ferroalloy catalyst
WO2019017252A1 (en) Porous metal body and current collector for nickel metal-hydride battery
KR102069492B1 (en) Method for producing metal impregnated activated carbon for concentration of low concentration ammonia
Xu et al. The adsorption mechanisms of ClO 4− onto highly graphited and hydrophobic porous carbonaceous materials from biomass
KR100512476B1 (en) Active carbon absorbent containing copper, silver and chrome and method for preparing same
Bai et al. Modification of textural properties of CuO-supported activated carbon fibers for SO2 adsorption based on electrical investigation
KR20040075463A (en) Antibacterial activated carbon and preparation thereof
KR20030095695A (en) Activated carbon or activated carbon fiber/transition metal composite and preparation thereof
JP2004113848A (en) Catalyst, method of manufacturing the same, and electrode catalyst
CN110240731B (en) Preparation method of graphene-metal oxide composite sponge with high specific surface area
CN110577220A (en) Preparation method and application of nitrogen-containing porous carbon based on waste goat wool
CN113289619B (en) Preparation method of flexible carbon fiber loaded gold electrocatalyst
KR100780480B1 (en) Filter for removing to noxious by using carbon/metal composites
KR20150019712A (en) Capacitive deionization electrode and manufacturing method thereof
KR102173845B1 (en) Porous carbon material using CDI with high capacity and efficiency and manufacturing method thereof
US20040180788A1 (en) Synthesizing carbon-based adsorbents for mercury removal
KR101069311B1 (en) Surface-reformed Active carbon and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application
E801 Decision on dismissal of amendment
A107 Divisional application of patent