KR20070046256A - Oxidation catalyst for diesel engine fuel gas - Google Patents

Oxidation catalyst for diesel engine fuel gas Download PDF

Info

Publication number
KR20070046256A
KR20070046256A KR1020050102710A KR20050102710A KR20070046256A KR 20070046256 A KR20070046256 A KR 20070046256A KR 1020050102710 A KR1020050102710 A KR 1020050102710A KR 20050102710 A KR20050102710 A KR 20050102710A KR 20070046256 A KR20070046256 A KR 20070046256A
Authority
KR
South Korea
Prior art keywords
oxidation catalyst
diesel engine
catalyst
generation
powder
Prior art date
Application number
KR1020050102710A
Other languages
Korean (ko)
Inventor
박종순
이병목
Original Assignee
박종순
이병목
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종순, 이병목 filed Critical 박종순
Priority to KR1020050102710A priority Critical patent/KR20070046256A/en
Publication of KR20070046256A publication Critical patent/KR20070046256A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)

Abstract

본 발명은 디젤엔진용 산화 촉매에 대한 것으로서, 더욱 상세하게는 촉매 조성물중 고가인 백금 화합물을 사용하지 않고 귀사문석 분말로부터 얻어진 세라믹 담체에 비교적 염가의 전이금속을 담지한 산화촉매 조성물에 관한 것이다. 이러한 본 발명에 따른 산화촉매는 일산화탄소의 발생억제와 연소 온도를 낮추어 질소산화물의 발생을 억제시키며 불완전연소에 따른 수트(Soot)의 발생을 억제시키므로 가스상 물질의 유효 적절한 제거는 물론 입자상 물질에의한 촉매의 세공 막힘 현상을 줄여 내구성이 증대된 산화촉매를 얻게된다.The present invention relates to an oxidation catalyst for a diesel engine, and more particularly, to an oxidation catalyst composition in which a relatively inexpensive transition metal is supported on a ceramic carrier obtained from a feldspar powder without using an expensive platinum compound in the catalyst composition. The oxidation catalyst according to the present invention suppresses the generation of carbon monoxide and lowers the combustion temperature, thereby suppressing the generation of nitrogen oxides and suppressing the generation of soot due to incomplete combustion. Pore blockage of the catalyst is reduced to obtain an oxidation catalyst with increased durability.

디젤엔진, 산화촉매, 귀사문석, 입자상물질 Diesel engine, oxidation catalyst, serpentine, particulate matter

Description

디젤엔진 배출 가스 정화용 산화촉매{ Oxidation Catalyst for diesel engine fuel gas}Oxidation Catalyst for Diesel Engine Fuel Gas

도1 은 본 발명에 따른 산화촉매의 제조 공정도1 is a manufacturing process of the oxidation catalyst according to the present invention

본 발명은 디젤엔진용 산화 촉매에 대한 것으로서, 더욱 상세하게는 촉매 조성물중 고가인 백금 화합물을 사용하지 않고 귀사문석 분말로부터 얻어진 세라믹 에 비교적 염가의 전이금속을 담지한 산화촉매 조성물에 관한 것이다. The present invention relates to an oxidation catalyst for a diesel engine, and more particularly, to an oxidation catalyst composition in which a relatively inexpensive transition metal is supported on a ceramic obtained from a serpentine powder without using an expensive platinum compound in the catalyst composition.

디젤엔진은 저 연비이면서도 고출력 고부하 운전이 가능하여 선박등 대형 엔진위주로 사용되어 왔으나, 근자에 와서는 미연 탄화수소 등의 발생이 적고 휘발성 유기화합물의 배출이 가솔린에 비하여 상대적으로 낮게 배출되므로 인하여 소형 엔진에 까지 적용되는 등 수요가 계속 증가하고 있다. 그러나 디젤엔진은 가솔린 엔진에 비하여 상대적으로 입자상 물질의 배출이 많으며, 이를 방지하기 위한 배출가스 오염 방지 장치 등의 개발이 가솔린 엔진에 비하여 적게 이루어져 대기 오염의 주범으로 인식되기도 하였다.Diesel engines have been used mainly for large engines such as ships because of their low fuel consumption and high output and high load operation.However, in recent years, diesel engines have less generation of unburned hydrocarbons and relatively low emissions of volatile organic compounds compared to gasoline. The demand continues to increase, as applied until now. However, diesel engines emit more particulate matter than gasoline engines, and the development of emission pollution prevention devices to prevent them is less than that of gasoline engines.

이러한 디젤엔진의 대기 오염 물질은 주로 질소산화물과 입자상 물질에 의하 여 발생한다. 따라서 디젤자동차의 배출가스 규제 대상물질은 일산화질소와 이산화질소 등을 포함한 질소산화물과 미연소 연료와 그 산화물이 결합하거나 수트(Soot)등으로 이루어진 입자상물질로 버너 및 소각로와 같은 외연 기관에서는 유효 적절한 수단들이 강구 되어 왔다.Air pollutants in these diesel engines are mainly generated by nitrogen oxides and particulate matter. Therefore, the emission targets of diesel vehicles are nitrogen oxides including nitrogen monoxide and nitrogen dioxide, and unburned fuels and particulate matters that are combined with oxides or soot, which are effective in external combustion engines such as burners and incinerators. Have been devised.

그러나 이들 외연 기관에 채택된 시스템은 질소산화물을 제거하기 위한 방법으로 연소 온도를 낮추거나 저연비(낮은 공기비)운전 또는 연소용 공기로 배기가스를 순환 공급 운전하는 방법, 촉매를 사용하여 배기 가스중의 질소 산화물을 분해 환원하는 방법, 암모니아수 또는 요소를 분무하여 화학반응을 통하여 제거하는 방법들이 사용되고 있지만, 디젤 엔진의 경우에는 근자에 와서 연료 분사시기 지연 및 배기가스 재순환 장치 등이 적용되기 시작 하였으며, 후처리 기술들은 고비점 탄화수소를 제거하기위한 산화촉매와 과잉산소 분위기하 질소산화물을 분해 또는 환원하는 촉매, 입자상 물질을 여과하는 필터들이 개발되기 시작하였지만 이러한 촉매는 대부분 백금과 같은 고가의 귀금속을 담지하고 있으며, 불활성 물질이나 황의 독성에 의한 촉매독 현상으로 비표면적이 줄어들어 시간이 지남에 따라 활성 저하 및 압력 손실이 많아 시스템의 체적은 크게 되고, 촉매 수명 또한 짧다는 문제점을 갖고 있었다.However, the system adopted in these external combustion engines is a method for removing nitrogen oxides by lowering the combustion temperature, operating a low fuel consumption (low air ratio) or circulating and supplying exhaust gas to the combustion air, and using a catalyst. The method of decomposing and reducing nitrogen oxides and removing them through chemical reaction by spraying ammonia water or urea has been used, but in the case of diesel engines, fuel injection timing delays and exhaust gas recirculation devices have been applied in the near future. Process technologies have begun to develop oxidation catalysts to remove high-boiling hydrocarbons, catalysts to decompose or reduce nitrogen oxides in an atmosphere of excess oxygen, and filters to filter particulate matter, but most of these catalysts carry expensive precious metals such as platinum. And may be caused by the toxicity of inert substances or sulfur. Poison phenomenon volume of the deactivation, and the pressure loss is increased in accordance with the system by reducing the specific surface area over time is significant, the catalyst life is short In addition, had the problem.

본 발명은 이러한 문제점을 해결하기위하여 알루미나나 제올라이트 등에 백금을 담지한 촉매 조성물과 달리 자연으로부터 얻어진 귀사문석 분말을 세정 원심분리 선별하여 건조 후 성형하는 단계를 통하여 표면적을 조절하고 기공의 크기 를 조절 가능한 산화 촉매를 제조함으로써 입자상 물질의 생성을 최대한 억제시키며, 입자상 물질에 의한 세공의 막힘을 줄여 내구성이 확보된 촉매를 제조하고자 하였다.     In order to solve this problem, unlike the catalyst composition carrying platinum on alumina or zeolite, the present invention is capable of controlling the surface area and controlling the size of pores through the step of forming centrifugally separating and washing the serpentine powder obtained from nature and forming after drying. By preparing an oxidation catalyst, it was possible to suppress the generation of particulate matter to the maximum, and to reduce the clogging of pores by the particulate matter to prepare a catalyst having durability.

이하 본 발명에 따른 디젤엔진 배출가스 정화용 산화촉매 조성물에 대하여 구체적으로 살펴보면 다음과 같다.Hereinafter, the oxidation catalyst composition for purification of diesel engine exhaust gas according to the present invention will be described in detail.

본 발명에 따른 산화 촉매는 하니컴 형태 또는 비드 형태등 원하는 형태로 성형이 가능하며 그 크기를 엔진의 크기 또는 사용조건에 맞게 기공의 크기 표면적 등을 조절하여 성형이 가능하고, 그 구성 성분은 이산화규소(SiO2) 35~45%, 산화마그네슘(MgO) 30~45%, 산화철(Fe2O3) 2~5%, 미량원소로 크롬(Cr), 니켈(Ni), 코발트(Co)등을 함유한 것으로 천연으로부터 얻어진 귀사문석을 습식 볼밀로 미분쇄하여 얻어진 슬러리를 수세 원심분리 침전시켜 상등액을 제거하고 탈수한 후 침전물의 상층부 2~10%는 제거한 후 재차 수세 원심분리 침전의 과정을 통하여 얻어진 미분말에서 소량의 샘플을 채취하여 건조 플레이트에 성형 엑스선회절분석(XRF)과, 유도결합플라즈마질량분석법(ICP-MS)으로 분석하여 성분 조성을 비교 확인하고, 미분말에 산화 성능을 조절하기 위한 첨가제를 부가하여 성형, 건조, 소성 과정을 통하여 얻어진 촉매이다. The oxidation catalyst according to the present invention can be formed into a desired shape such as honeycomb form or bead form, and the size can be formed by adjusting the size of the pores according to the size of the engine or the conditions of use, etc., and its components are silicon dioxide. (SiO2) 35-45%, magnesium oxide (MgO) 30-45%, iron oxide (Fe2O3) 2-5%, trace elements contain chromium (Cr), nickel (Ni), cobalt (Co), etc. The slurry obtained by fine grinding the serpentine obtained from the wet ball mill was washed with water by centrifugation, and the supernatant was removed. After dehydration, 2 to 10% of the upper layer of the precipitate was removed, and again, a small amount of fine powder was obtained through the process of washing with centrifugation. Samples were collected and analyzed on a dry plate by X-ray diffraction analysis (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to compare and verify the composition of the ingredients. A catalyst obtained by the molding, drying and firing process, in addition to the.

상기의 과정에서 유도결합플라즈마질량분석법(ICP-MS)은 촉매의 제조시 수세 및 정제 과정에서 매번 실시하지 않고 간단히 엑스선회절분석(XRF)을 통하여 성분을 확인하며, 성분 확인 과정을 통하여 복합 금속화합물을 적절한 농도로 부가한 다. 여기에 부가되는 금속화합물은 Fe, Co, Ni, Nb, Sr, Ta, Rn, Rh, Se중 선택된 하나 이상의 성분이며, 이들 성분은 중량비로 0.1%~5%가 산 또는 알카리 분위기에서 수용액 성분으로 함침시켜 제조한다. 특히 천연으로부터 얻어지는 귀사문석에는 이들 상기의 금속들이 수십에서 수천 ppm까지 존재하므로 간단히 엑스선회절분석(XRF)을 통하여 금속화합물의 부가 없이 얻어지는 경우도 있다. In the above process, inductively coupled plasma mass spectrometry (ICP-MS) is not carried out every time during the washing and purification of the catalyst, and the component is simply identified through X-ray diffraction analysis (XRF). Is added at the appropriate concentration. The metal compound added thereto is at least one component selected from Fe, Co, Ni, Nb, Sr, Ta, Rn, Rh, Se, and these components are 0.1% to 5% by weight as an aqueous solution component in an acid or alkaline atmosphere. It is prepared by impregnation. In particular, in the serpentine obtained from nature, since these metals are present in the tens to thousands of ppm, they may be obtained without the addition of a metal compound simply by X-ray diffraction analysis (XRF).

이하 본 발명에 따른 실시 예를 통하여 상술하면 다음과 같다.Hereinafter, the embodiment according to the present invention will be described.

실시 예 1. 귀사문석을 기계적으로 분쇄하여 얻어진 분말 중 325메시 통과분 100g을 볼밀에 넣고 30분간 밀링하여 평균 입자 크기가 5㎛ 정도가 되도록한 후 정치하여 상등액을 제거하고 탈수한 후 침전물의 상층부 5%는 제거한 후, 100㎖의 순수를 부가하고 2분 동안 강하게 교반한 후 정치하여 침전시키는 과정을 통하여 얻어진 미분말에서 5g의 정도의 샘플을 채취하여 원형 타블렛을 성형 건조 한 후 엑스선회절분석(XRF)실시하였다. Example 1. In a ball mill, 100 g of 325 mesh passages of the powder obtained by mechanically pulverizing the serpentine is placed in a ball mill and milled for 30 minutes to obtain an average particle size of about 5 μm. After removing 5%, 100 ml of pure water was added, the mixture was stirred vigorously for 2 minutes, and the sample was placed in a fine powder of about 5 g from the fine powder obtained by precipitation. The round tablet was molded and dried, and then X-ray diffraction analysis (XRF ).

실시 예 2. 또 다른 귀사문석 분말에 대하여 볼밀에서 밀링, 1차 세정 공정을 거친 후 금속 복합수산화물 20g (1N농도)을 부가하고 강하게 교반하여 정치한 후 침전, 성형, 건조한 후 엑스선회절분석을 실시하였다.Example 2. Another calcite powder was subjected to milling and primary cleaning in a ball mill, followed by adding 20 g (1 N concentration) of metal composite hydroxide, stirring and standing still, and performing X-ray diffraction analysis after precipitation, molding, and drying. It was.

조성Furtherance 실시 예 1Example 1 실시 예 2Example 2 SiO2SiO2 42.5 %42.5% 44.7 %44.7% MgOMgO 40.2 %40.2% 39.3 %39.3% Fe2O3Fe2O3 4.7 %4.7% 3.3 %3.3% CrCr 2210 ppm2210 ppm 3854 ppm3854 ppm NiNi 1154 ppm1154 ppm 3104 ppm3104 ppm CoCo 72 ppm72 ppm 118 ppm118 ppm TaTa 120 ppm120 ppm 210 ppm210 ppm

또 상기의 과정을 통하여 얻어진 분말을 제환기로 2mm의 비드를 성형하여 150℃온도에서 30분간 건조 후 650℃ 온도에서 2시간 소성하여 촉매를 완성하였다. 또 상기의 과정을 통하여 얻어진 촉매에 대하여 활성을 측정한 결과 SO2 전환율은 각기 15.1%, 15.4%로 기존의 백금담지 촉매에 비교 할 때 85% 의 수준을 보이는 양호한 결과를 얻었다. In addition, the powder obtained through the above process was formed into a bead of 2mm by a dehydrator, dried for 30 minutes at 150 ℃ temperature and calcined at 650 ℃ temperature for 2 hours to complete the catalyst. As a result of measuring the activity of the catalyst obtained through the above process, SO2 conversion was 15.1% and 15.4%, respectively.

이와 같은 실험 결과 귀사문석 분말로부터 촉매원료를 얻을 수 있었으며 금속화합물의 부가 없이도 탄화수소, 일산화탄소 저감 및 입자상 물질을 발생을 제거 할 수 있는 촉매 역할이 가능하다는 사실을 알수 있었다. As a result of this experiment, catalyst raw material could be obtained from your serpentine powder, and it could be known that it is possible to act as a catalyst to remove hydrocarbons, carbon monoxide, and particulate matter without adding metal compound.

상술한 바와 같이 디젤엔진의 배출가스 정화용 산화촉매를 얻기 위한 방법으로 귀사문석 분말을 미분쇄하여 세정, 원심분리, 침전과정과 염가의 복합 금속화합물 부가를 통하여 얻어진 분말을 성형, 건조, 소성을 하였고, 이 과정을 통하여 얻어진 촉매는 디젤엔진의 배출가스의 일산화탄소의 발생억제와 연소 온도를 낮추어 질소산화물의 발생을 억제시키며, 불완전연소에 따른 수트(Soot)의 발생을 억제시키므로 가스상 물질의 유효적절한 제거는 물론 입자상 물질의 제거를 가능하게 한다.As described above, the powder obtained by pulverizing your serpentine powder was pulverized as a method for obtaining an oxidation catalyst for purifying exhaust gas of a diesel engine, and then the powder obtained through washing, centrifugation, precipitation and addition of inexpensive composite metal compound was molded, dried and calcined. The catalyst obtained through this process suppresses the generation of carbon monoxide in the exhaust gas of diesel engines and lowers the combustion temperature, thus suppressing the generation of nitrogen oxides and suppressing the generation of soot due to incomplete combustion, thus effectively removing gaseous substances. Of course makes it possible to remove particulate matter.

Claims (3)

천연의 귀사문석 분말을 미분쇄하여 세정, 원심분리, 탈수 선별 과정을 2회 이상 반복하며 엑스선회절분석결과에 의하여 필요한 경우 금속화합물을 부가하여 얻어진 분말을 성형, 건조, 소성하여 얻어진 디젤엔진 배출가스 정화용 촉매 조성물. Diesel engine exhaust gas obtained by pulverizing the natural serpentine powder by pulverizing, washing, centrifugation and dehydration screening twice or more, and forming, drying and calcining the powder obtained by adding metal compound if necessary by X-ray diffraction analysis. Purification catalyst composition. 제 1항에 있어서 얻어진 분말은 그 화학적 조성에 이산화규소(SiO2) 35~45%, 산화마그네슘(MgO) 30~45%, 산화철(Fe2O3) 2~5%, 미량원소로 크롬(Cr), 니켈(Ni), 코발트(Co)등을 함유한 것을 특징으로 하는 것. The powder obtained in claim 1 has 35 to 45% of silicon dioxide (SiO2), 30 to 45% of magnesium oxide (MgO), 2 to 5% of iron oxide (Fe2O3), and chromium (Cr) and nickel as trace elements. (Ni), cobalt (Co) and the like. 제 1항에 있어서 부가되는 금속화합물은 Fe, Co, Ni, Nb, Sr, Ta, Rn, Rh, Se 중 선택된 하나 이상의 성분이며, 이들 성분은 중량비로 0.1%~5%가 산 또는 알카리 분위기에서 수용액 성분으로 함침시켜 제조 하는 것.The metal compound added in claim 1 is at least one component selected from Fe, Co, Ni, Nb, Sr, Ta, Rn, Rh, Se, and these components are 0.1% to 5% by weight in an acid or alkaline atmosphere. To be impregnated with an aqueous component.
KR1020050102710A 2005-10-31 2005-10-31 Oxidation catalyst for diesel engine fuel gas KR20070046256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050102710A KR20070046256A (en) 2005-10-31 2005-10-31 Oxidation catalyst for diesel engine fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050102710A KR20070046256A (en) 2005-10-31 2005-10-31 Oxidation catalyst for diesel engine fuel gas

Publications (1)

Publication Number Publication Date
KR20070046256A true KR20070046256A (en) 2007-05-03

Family

ID=38271620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050102710A KR20070046256A (en) 2005-10-31 2005-10-31 Oxidation catalyst for diesel engine fuel gas

Country Status (1)

Country Link
KR (1) KR20070046256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298667B1 (en) * 2011-03-24 2013-08-21 주식회사 씨비비 Apparatus for purifying exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298667B1 (en) * 2011-03-24 2013-08-21 주식회사 씨비비 Apparatus for purifying exhaust gas

Similar Documents

Publication Publication Date Title
US9855528B2 (en) System for the purification of exhaust gas from an internal combustion engine
US7138353B2 (en) Particulate burning catalyst
KR20090091754A (en) Catalysts for dual oxidation of ammonia and carbon monoxide with low to no nox formation
CN1245444A (en) Method for reduction of nitrogen oxides
JPH01176431A (en) Method for removing nitrogen oxide
JP2007307446A (en) Oxidation catalyst for cleaning exhaust gas
KR20090007438A (en) Composition based on alumina, cerium and barium and/or strontium, used especially for trapping nitrogen oxides (nox)
WO2013153915A1 (en) Catalyst for purifying exhaust gas
KR20070046256A (en) Oxidation catalyst for diesel engine fuel gas
JP4512691B2 (en) Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation
KR20170138418A (en) How to remove soot from a sulfur gas stream
KR100236480B1 (en) Zeolite including-catalytic body for exhaust gas of a vehicle
KR100701331B1 (en) Oxidation Catalyst for Removing the Fine Soot Particulates of Exhaust Gas and Method Thereof
KR100584988B1 (en) A catalyst for selective catalytic reduction of nitrogen oxides using waste catalyst, and a preparing method thereof
RU2004320C1 (en) Method for gas purification catalytic agent preparing
EP2926902B1 (en) Catalyst for discharge gas purification
KR100258585B1 (en) Catalyst for removing nitrogen oxides and particulates of diesel engine exhuaust gases and method of preparing the same
WO2023036315A1 (en) Structured catalyst and preparation method therefor, and method for simultaneously removing sox and nox of flue gas
US20220379293A1 (en) Diesel oxidation catalyst
RU2196756C2 (en) Method for manufacture filter foam ceramics
EP1923134A1 (en) Oxidation catalysts for removing fine soot particulates from exhaust gases and method of removing fine soot particulates using the same
KR100588857B1 (en) Method for manufacturing catalyzed diesel particulate filter system
JPS6147568B2 (en)
Montilla‑Verdú et al. Catalysts for NOx‑Assisted Diesel Soot Oxidation
CN117920319A (en) Molecular sieve catalyst, preparation method and application thereof, and method for treating chloropetrochemical organic waste gas

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination