KR20060034420A - High porous activated carbon for hydrogen storage and preparation thereof - Google Patents

High porous activated carbon for hydrogen storage and preparation thereof Download PDF

Info

Publication number
KR20060034420A
KR20060034420A KR1020040083436A KR20040083436A KR20060034420A KR 20060034420 A KR20060034420 A KR 20060034420A KR 1020040083436 A KR1020040083436 A KR 1020040083436A KR 20040083436 A KR20040083436 A KR 20040083436A KR 20060034420 A KR20060034420 A KR 20060034420A
Authority
KR
South Korea
Prior art keywords
activated carbon
potassium
hydrogen
shell
surface area
Prior art date
Application number
KR1020040083436A
Other languages
Korean (ko)
Other versions
KR100599254B1 (en
Inventor
진항교
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020040083436A priority Critical patent/KR100599254B1/en
Publication of KR20060034420A publication Critical patent/KR20060034420A/en
Application granted granted Critical
Publication of KR100599254B1 publication Critical patent/KR100599254B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • C01B32/366Reactivation or regeneration by physical processes, e.g. by irradiation, by using electric current passing through carbonaceous feedstock or by using recyclable inert heating bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

본 발명은 수소저장용 고기공도 활성탄과 이의 제조방법에 관한 것으로서, 더욱 상세하게는 종래의 탄화물 원료 대신에 견과각(堅果殼)을 불활성 분위기 하에서 칼륨화합물에 의해 특정의 조건에서 탈수 및 활성화 반응을 수행하면, 비표면적 등의 기공도가 증가하고, 흡착과 탈착 공정 수행이 용이하여 수소의 반복적 흡착저장이 용이하며, 특히 수소흡착용량은 월등하게 향상되어 수소자동차, 연료전지 등의 실용화 촉진에 유용한 수소저장용 고기공도 활성탄과 이의 제조방법에 관한 것이다.The present invention relates to a hydrogen-coated high-molecular activated carbon and a method for producing the same, and more particularly, dehydration and activation reaction under specific conditions by using a potassium compound in an inert atmosphere in place of conventional carbide raw materials. When carried out, the porosity of the specific surface area, etc. increases, and the adsorption and desorption processes are easily performed, so that repeated adsorption and storage of hydrogen is easy. In particular, the hydrogen adsorption capacity is significantly improved, which is useful for promoting the practical use of hydrogen vehicles and fuel cells Meat ball for hydrogen storage also relates to activated carbon and a method for producing the same.

견과각(堅果殼), 칼륨화합물, 수소저장, 수소흡착, 활성탄Nut angle, potassium compound, hydrogen storage, hydrogen adsorption, activated carbon

Description

수소저장용 고기공도 활성탄과 이의 제조방법{High porous activated carbon for hydrogen storage and preparation thereof} High porous activated carbon for hydrogen storage and preparation method thereof             

도 1은 본 발명에 따른 수소저장용 고기공도 활성탄의 제조공정도이다.1 is a manufacturing process diagram of the hydrogen-coated high porosity activated carbon according to the present invention.

도 2는 본 발명에 따라 제조한 활성탄의 압력변화에 따른 수소등온흡착선(25 ℃)을 나타낸 것이다.Figure 2 shows a hydrogen isothermal adsorption line (25 ℃) according to the pressure change of the activated carbon prepared according to the present invention.

도 3은 활성탄 종류에 따른 비표면적과 수소 흡착용량과의 상관 관계를 나타낸 것이다.Figure 3 shows the correlation between the specific surface area and the hydrogen adsorption capacity according to the type of activated carbon.

본 발명은 수소저장용 고기공도 활성탄과 이의 제조방법에 관한 것으로서, 더욱 상세하게는 종래의 탄화물 원료 대신에 견과각(堅果殼)을 불활성 분위기 하에서 칼륨화합물에 의해 특정의 조건에서 탈수 및 활성화 반응을 수행하면, 비표면적 등의 기공도가 증가하고, 흡착과 탈착 공정 수행이 용이하여 수소의 반복적 흡착저장이 용이하며, 특히 수소흡착용량은 월등하게 향상되어 수소자동차, 연료전지 등 의 실용화 촉진에 유용한 수소저장용 고기공도 활성탄과 이의 제조방법에 관한 것이다.The present invention relates to a hydrogen-coated high-molecular activated carbon and a method for producing the same, and more particularly, dehydration and activation reaction under specific conditions by using a potassium compound in an inert atmosphere in place of conventional carbide raw materials. When carried out, the porosity of the specific surface area, etc. increases, and the adsorption and desorption process is easily performed, so that the repeated adsorption and storage of hydrogen is easy. Meat ball for hydrogen storage also relates to activated carbon and a method for producing the same.

활성탄은 일반적으로 환경 기능성 소재로서, 고비표면적 및 기공구조의 발달에 따른 흡착능력 및 흡착속도가 우수하여, 그 사용목적에 따라 기상에서 가스분리, 제거 및 탈취, 액상에서의 유기용제 및 중금속 회수, 정제 농축 및 탈색을 위한 흡착필터, 촉매 및 촉매용 담체 등의 용도로 널리 사용되고 있다. 현재 널리 사용되고 있는 활성탄은 주로 야자각(coconut shell), 톱밥(saw dust), 석탄(coal) 등을 원료로 하여 제조되고 있으며, 최근에는 왕겨, 볏집 등과 같은 농업 부산물을 사용하거나 폐타이어나 커피 폐기물과 같은 폐자원을 사용한 활성탄의 제조방법에 관한 기술들이 다수 보고되고 있다.Activated carbon is generally an environmentally functional material, and has excellent adsorption capacity and adsorption rate according to the development of high specific surface area and pore structure, and according to the purpose of use, gas separation, removal and deodorization in the gas phase, organic solvent and heavy metal recovery in the liquid phase, It is widely used for adsorption filters, catalysts and catalyst carriers for purification concentration and decolorization. Currently, widely used activated carbon is mainly made of coconut shell, sawdust, coal, etc., and recently, agricultural by-products such as rice hulls, rice hulls, waste tires or coffee wastes are used. Many techniques for producing activated carbon using waste resources such as these have been reported.

현재까지 활성탄은 수소 흡착용량이 적은 것으로 알려져 있는데 이는 비표면적이 1,500 ㎡/g 이하인 활성탄에 대해 주로 측정하였기 때문이며, 기공이 잘 발달되어 비표면적이 2,000 ㎡/g 이상인 고기공도 활성탄은 활성탄 원료의 종류에 따라 높은 수소저장능을 나타낼 가능성이 보인다.To date, activated carbon has been known to have a low hydrogen adsorption capacity because it is mainly measured for activated carbon having a specific surface area of less than 1,500 m 2 / g, and highly pore-developed activated carbon has a specific surface area of 2,000 m 2 / g or more. As a result, it is likely to exhibit high hydrogen storage capacity.

이러한 활성탄은 일반적으로 탄소가 주성분인 유기물을 탄화한 후 활성화시켜 제조는 바, '탄화'란 유기물을 불활성 분위기하에서 가열하면 열분해, 중축합, 방향족탄화 등의 다양한 화학반응을 거쳐 탄소가 농축된 형태로 되는 것을 의미한다. Such activated carbon is generally manufactured by carbonizing and activating an organic substance containing carbon as a main component, and carbonization is a form in which carbon is concentrated through various chemical reactions such as pyrolysis, polycondensation, and aromatic carbonization when the organic substance is heated in an inert atmosphere. It means to be.

탄화물을 활성화시켜 활성탄을 제조하는 방법에는 기체활성화법과 화학 활성화법이 있다. There are gas activation and chemical activation methods for producing activated carbon by activating carbide.

첫째로, 기체활성화법은 고온에서 탄화물을 수증기, 탄산가스, 공기 등의 산화성기체와 접촉시키면 탄화물이 산화성가스와 반응하여 이산화탄소, 일산화탄소의 형태로 제거되면서 그 자리에 미세한 기공이 형성되는 것이다. 기체활성화 과정은 다음의 두 단계로 진행된다고 알려져 있다. First, in the gas activation method, when a carbide is contacted with an oxidizing gas such as water vapor, carbon dioxide, or air at a high temperature, the carbide reacts with the oxidizing gas to be removed in the form of carbon dioxide and carbon monoxide, thereby forming fine pores in place. The gas activation process is known to proceed in two steps.

제 1 단계에서는 탄화물의 활성점(미조직화 부분)이 선택적으로 반응하여 제거되면서 미세한 기공이 생성되고 탄소결정체 사이에 닫혀있던 기공이 개방되어 기공도가 급속히 증가하는 단계이다. 제 2 단계에서는 탄소결정체와 미세한 기공이 산화성기체와 반응하면서 기공크기가 증가하는 단계이다.In the first step, the active site (unstructured portion) of the carbide is selectively reacted and removed to generate fine pores and open pores closed between the carbon crystals to rapidly increase porosity. In the second step, the pore size increases as the carbon crystal and the fine pores react with the oxidative gas.

이러한 기체활성화법은 반응공정이 간단하고 장치의 부식이 적으며 대량생산이 용이하여 현재 상업용 활성탄의 대부분이 기체활성화법으로 제조되고 있으나, 고비표면적의 잘 발달된 미세기공을 갖는 활성탄을 얻기 위하여 많은 고정 탄소의 기화를 수반해야하기 때문에 활성화 수율이 낮고 기공구조의 조절이 어려우며 고온 열처리를 통한 많은 에너지가 소요되므로 경제적이지 못하다. 또한, 제조한 활성탄의 경우 기공도가 높지 않아 일반적으로 비표면적 1,500 ㎡/g 이하의 활성탄을 제조하고 있다. This gas activation method is simple in the reaction process, less corrosion of the device and easy to mass production, most of the commercial activated carbon is produced by the gas activation method, but to obtain activated carbon having high specific surface area and well developed micropores Since it must be accompanied by the vaporization of fixed carbon, it is not economical because the activation yield is low, the pore structure is difficult to control, and a lot of energy is required through high temperature heat treatment. In addition, the activated carbon produced is not high in porosity, and thus, activated carbon having a specific surface area of 1,500 m 2 / g or less is generally manufactured.

둘째로, 화학 활성화법은 탄소질 원료에 화학 활성화제를 함유시킨 후 불활성 분위기하에서 가열하면 탈수 및 산화반응이 진행되면서 다공질의 활성탄이 제조되는 것이다. 화학 활성화제로는 일반적으로 인산, 염화아연, 금속수산화물 등의 산성 용액이나 염기성 용액이 사용된다. Secondly, the chemical activation method is to include a chemical activator in the carbonaceous raw material and then heated in an inert atmosphere to produce porous activated carbon as the dehydration and oxidation reaction proceeds. Generally as a chemical activator, acidic solutions, such as phosphoric acid, zinc chloride, a metal hydroxide, and basic solution are used.

이러한 화학 활성화법의 한 예를 들면 톱밥 등의 목질을 화학 활성화제인 인 산과 혼합한 후 350 ∼ 500 ℃에서 하소시키면 중기공이 발달한 비표면적 2,000 ㎡/g 정도의 고기공도 활성탄이 제조된다. One example of such a chemical activation method is to mix wood such as sawdust with phosphoric acid, a chemical activator, and calcinate at 350 to 500 ° C. to produce a high porosity activated carbon having a specific surface area of about 2,000 m 2 / g.

그러나, 인산을 사용하는 경우를 제외하고는 생성물의 수율을 높이고 화학 활성화제의 사용량을 줄이기 위하여 다음에 예시된 바와 같이 화학 활성화제의 원료로서 유연탄, 코크스 등의 반탄화물이나 야자각탄 등의 탄화물을 사용하는 것이 보편적이다.However, except in the case of using phosphoric acid, in order to increase the yield of the product and to reduce the amount of chemical activator used, as the raw material of the chemical activator, semi-carbide such as bituminous coal and coke or carbide such as palm kernel is used It is universal to use.

미국특허 제 4,082,694호에서는 유연탄, 유연탄코크스를 수산화칼륨으로 화학 활성화시켜 비표면적 2,300 ∼ 3,000 ㎡/g 정도인 고기공도 활성탄을 제조한 바 있고, 미국특허 제 5,064,805호에서는 야자각탄화물을 2 ∼ 6 중량비의 수산화칼륨으로 활성화시켜 저유황 고기공도 활성탄을 제조한 바 있다. U.S. Patent No. 4,082,694 chemically activated bituminous coal and bituminous carbon coke with potassium hydroxide to produce a meat-based activated carbon having a specific surface area of about 2,300 to 3,000 m 2 / g, and U.S. Patent No. 5,064,805 to 2 to 6 by weight Activated with potassium hydroxide to produce low sulfur meat ball activated carbon.

이러한 기체활성화법이나 화학 활성화법으로는 비표면적이 2,000 ∼ 3,200 ㎡/g 정도인 고기공도 성탄의 제조는 가능하나, 실제 측정한 수소흡착용량은 상온, 100 기압 조건에서 0.8 중량%를 초과하지 못하였다.The gas activation method or the chemical activation method allows the production of high porosity charcoal with a specific surface area of about 2,000 to 3,200 m 2 / g, but the actual measured hydrogen adsorption capacity does not exceed 0.8% by weight at 100 atm. It was.

또한, 일본특허공개 제 2002-348,111호에서는 비표면적 1,000 ∼ 2,500 ㎡/g 인 활성탄을 수소 분위기 하에서 분쇄하면서 수소를 화학흡착하여 저장하였다. 이 방법은 상온에서 수소가 최대 3.5 중량% 까지 화학결합은 하였으나 상온에서 탈착이 어려워 상온 방출량이 0.2 중량% 이하로 미미하므로 실제 사용이 불가능한 실정이다.In Japanese Patent Laid-Open No. 2002-348,111, hydrogen was chemisorbed and stored while pulverizing activated carbon having a specific surface area of 1,000 to 2,500 m 2 / g under a hydrogen atmosphere. In this method, hydrogen is chemically bonded up to 3.5% by weight at room temperature, but since it is difficult to desorb at room temperature, the room temperature emission amount is less than 0.2% by weight.

이에 본 발명자들은 상기와 같이 종래의 반탄화물 또는 탄화물 원료로부터 제조된 활성탄의 수소흡착용량이 적으며, 탈착이 용이하지 않은 단점으로 인한 문제를 해결하고자 연구 노력하였다. 그 결과, 상기 탄화물 원료 대신에 견과각을 불활성 분위기 하에서 칼륨화합물로 특정의 조건에서 화학적으로 활성화시키면, 이로부터 제조된 활성탄은 비표면적 등의 기공도가 증가하고 흡·탈착이 용이하며, 특히, 수소흡착용량은 월등하게 향상된다는 것을 알게 되어 본 발명을 완성하게 되었다. Accordingly, the present inventors have tried to solve the problem due to the disadvantage that the hydrogen adsorption capacity of the activated carbon prepared from the conventional semi-carbide or carbide raw material is not easy, and the desorption is not easy. As a result, when the nut angle is chemically activated under specific conditions with a potassium compound in an inert atmosphere instead of the carbide raw material, the activated carbon prepared therefrom increases porosity such as specific surface area and is easily absorbed and desorbed. Hydrogen adsorption capacity was found to be significantly improved to complete the present invention.

따라서, 본 발명은 수소흡착용량이 월등하게 향상되고 수소의 반복 흡착 저장이 가능한 고기공도 활성탄 및 이의 제조방법을 제공하는 데 그 목적이 있다.
Accordingly, an object of the present invention is to provide a high porosity activated carbon and a method for producing the same, which can greatly improve the hydrogen adsorption capacity and allow repeated adsorption storage of hydrogen.

본 발명은 견과각(堅果殼)과 칼륨화합물을 1 : 2 ∼ 5 중량비로 혼합 및 분쇄하는 1 단계; 상기 혼합 및 분쇄된 혼합물을 350 ∼ 450 ℃에서 탈수 반응시키는 2 단계; 상기 탈수 반응된 혼합물을 700 ∼ 900 ℃에서 화학 활성화 하는 3 단계; 및 상기 활성화된 생성물을 냉각, 세척 및 건조하는 4 단계를 포함하여 이루어진 수소저장용 고기공도 활성탄의 제조방법에 그 특징이 있다.The present invention comprises a step of mixing and grinding the nut shell and potassium compound in a weight ratio of 1: 2 to 5; Dehydrating the mixed and ground mixture at 350 to 450 ° C .; Chemically activating the dehydrated mixture at 700 to 900 ° C .; And it is characterized in that the method of producing a hydrogen storage high porosity activated carbon comprising the four steps of cooling, washing and drying the activated product.

이하 본 발명을 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 수소흡착용량이 우수하여 수소 저장용으로 사용될 수 있는 고기공도 활성탄에 관한 것이다.The present invention relates to a high porosity activated carbon that can be used for hydrogen storage with excellent hydrogen adsorption capacity.

종래에 상용화되고 있는 활성탄은 반탄화물 또는 탄화물 등의 탄화질 원료를 활성화하여 제조된 것으로, 활성화 조건에 따라 기공도 및 비 표면적에 많은 차이를 가진다. 그러나, 고기공도 활성탄을 제조하였더라도 공업적으로 절실히 요구되고 있는 수소에 대한 흡착용량은 한계가 있으며, 또한 화학흡착된 수소의 탈착이 어려워 반복 흡착 사용이 여의치 않아 수소저장용으로는 한계가 있었다. Activated carbon, which is conventionally commercialized, is prepared by activating carbonaceous raw materials such as semicarbide or carbide, and has a large difference in porosity and specific surface area depending on activation conditions. However, even if the high porosity activated carbon was produced, the adsorption capacity for hydrogen, which is desperately required industrially, is limited, and the adsorption of chemically adsorbed hydrogen is difficult.

이에, 본 발명은 비 가열원료(green state)를 탄화시키면 산소, 수소, 질소 등은 휘발성 기체로 제거되고 잔존탄소는 무정형 상태로 가교된 평평한 방향족 판들의 더미가 되면서 화학 활성화제와의 반응성이 감소된다는 것에 착안하여 특정의 비탄화물인 견과각을 원료로 하여 특정의 조건에서 화학적으로 활성화 시키므로서 기공도 및 수소흡착용량을 월등히 향상시킨 것이다. 또한, 기존 화학흡착에 비해 흡착과 탈착 공정 수행이 자유로워 수소의 반복적 흡착저장이 가능하다.Accordingly, in the present invention, carbonization of a non-heated raw material (green state) reduces oxygen, hydrogen, nitrogen, etc. as a volatile gas, and residual carbon becomes a pile of flat aromatic plates crosslinked in an amorphous state, thereby reducing reactivity with a chemical activator. In light of this, the porosity and hydrogen adsorption capacity are greatly improved by activating chemically under specific conditions using the nut angle as a specific non-carbide. In addition, the adsorption and desorption process can be freely performed compared to the conventional chemisorption, thereby enabling repeated adsorption and storage of hydrogen.

본 발명에 따른 수소저장용 고기공도 활성탄에 대하여 보다 구체적으로 설명하면 다음과 같다.When explaining the high-molecular weight activated carbon for hydrogen storage according to the present invention in more detail.

'견과(堅果)'는 단단한 껍데기로 쌓여 한 개의 씨만이 들어있는 나무열매를 통틀어 칭하는 용어로서 견과각(堅果殼)은 상기 견과의 껍데기를 칭한다.Nut is a term used to refer to a tree fruit containing only one seed, piled up as a hard shell, and a nut angle refers to the shell of the nut.

본 발명에서는 일반적으로 견과각으로 분류되고 있는 것을 모두 활성탄의 원료로 사용할 수 있는 바, 이들 견과각은 조직이 치밀하여 이로부터 제조된 활성탄은 기공이 양호하게 발달되고 기계적 강도가 높아 분진의 발생이 적어 반복사용에 유리한 특성을 가진다. 이러한 견과각은 예를 들면 호두각, 잣각, 아몬드각, 피스타치오각, 야자각, 은행각, 개암각 및 캐슈넛각 등이 사용될 수 있으며, 보다 바람직하기로는 야자각을 사용하는 것이 좋다. In the present invention, all that is generally classified as a nut angle can be used as a raw material of activated carbon, and these nut angles are dense in structure, and thus the activated carbon prepared therefrom has good pores and high mechanical strength, thus generating dust. It has a property that is advantageous for repeated use. Such nut angles may include, for example, walnut shell, pine nut, almond shell, pistachio shell, palm shell, ginkgo shell, hazelnut shell and cashew nut shell, and more preferably palm shell shell.

야자각은 다른 견과류에 비해 대량 공급이 용이하고, 가격이 저렴하여 경제적이며, 특히, 수소흡착능력이 다른 것에 비하여 월등하게 우수하여 수소저장용 활성탄에 적합하다.Coconut shells are easier to supply in bulk than other nuts, are inexpensive and economical, and are particularly suitable for hydrogen storage activated carbon because of their excellent hydrogen adsorption capacity.

또한, 탄화질 원료의 활성화를 위한 목적으로 널리 사용되고 있는 나트륨화합물, 칼륨화합물 및 암모늄화합물 등의 활성화제 예를 들면 NaOH, NaCl, NaHCO3, KOH, K2CO3, KClO3, KCl, NH4OH, NH4Cl, NH 4HCO3 등을 사용할 수 있다. In addition, activators such as sodium compounds, potassium compounds and ammonium compounds, which are widely used for the activation of carbonaceous raw materials, for example, NaOH, NaCl, NaHCO 3 , KOH, K 2 CO 3 , KClO 3 , KCl, NH 4 OH, NH 4 Cl, NH 4 HCO 3 and the like can be used.

본 발명에서는 상기한 활성화제중 칼륨화합물 예를 들면 수산화칼륨, 탄산칼륨, 초산칼륨, 이산화칼륨, 개미산칼륨, 수소화칼륨, 질산칼륨, 산화칼륨, 과산화칼륨, 황화칼륨, 황산칼륨, 인산칼륨 등을 사용하며, 보다 바람직하기로는 수산화칼륨을 사용하는 것이 좋다. 상기 칼륨화합물은 견과각을 화학적으로 활성화시키면서 동시에 활성탄내에 존재하는 미세결정 구조 속으로 층간 삽입되어 수소흡착용량 향상에 기여할 가능성이 있기 때문에 이를 선택 사용하는 것이 바람직하다. 이러한 칼륨화합물 중 특히, 수산화칼륨은 견과각과 혼합되어 열분해, 중축합 등의 탈수 반응을 완결한 후 활성화 단계에서 제거되면서 수소흡착이 잘 이루어지는 잉크병(ink-bottle) 형태의 입구가 좁은 기공을 생성시키기 때문에 이를 선택 사용하는 것이 가장 바람직하다. 이러한 칼륨화합물은 무수물 또는 수분함량이 2 ∼ 25 중량%인 수화물 형태로 사용될 수 있다. In the present invention, potassium compounds, such as potassium hydroxide, potassium carbonate, potassium acetate, potassium dioxide, potassium formate, potassium hydride, potassium nitrate, potassium oxide, potassium peroxide, potassium sulfide, potassium sulfate, potassium phosphate, etc. It is preferable to use potassium hydroxide. The potassium compound is preferably selected because it can be intercalated into the microcrystalline structure present in the activated carbon while chemically activating the nut angle, thereby contributing to the enhancement of the hydrogen adsorption capacity. Among these potassium compounds, potassium hydroxide is mixed with the nut angle to complete the dehydration reaction such as pyrolysis and polycondensation, and then removed in the activation step to generate narrow pores in the form of ink-bottle inlets which are well adsorbed by hydrogen. It is most preferable to use it selectively. Such potassium compounds may be used in the form of anhydrides or hydrates having a water content of 2 to 25% by weight.

한편, 본 발명에 따른 수소저장용 고기공도 활성탄의 제조방법에 대하여 구 체적으로 살펴보면 다음과 같다.On the other hand, the method for producing a hydrogen storage meat ball activated carbon according to the present invention in detail.

먼저, 상기 견과각과 칼륨화합물을 일정비로 첨가한 후, 미분쇄 하면서 균일하게 혼합한다. 견과각과 칼륨화합물은 1 : 2 ∼ 5 중량비, 바람직하기로는 1 : 3 ∼ 4 중량비 범위를 유지하는 것이 좋다. 상기 칼륨화합물의 사용량이 2 중량비 미만이면 화학 활성화가 불완전하게 일어나 기공생성이 적어지고, 5 중량비를 초과하는 경우에는 과다한 활성화 반응으로 인해 기공벽이 파괴되어 기공도가 오히려 감소되고 활성탄의 수율 및 경제성이 불량해지는 문제가 있다.First, the nut angle and the potassium compound are added in a constant ratio, and then mixed uniformly while grinding. The nut angle and the potassium compound are preferably 1: 2 to 5 by weight, preferably 1: 3 to 4 by weight. If the amount of the potassium compound is less than 2% by weight, the chemical activation is incomplete, resulting in less pore production. If the amount of the potassium compound exceeds 5% by weight, the pore wall is destroyed due to the excessive activation reaction, so that the porosity is rather reduced, and the yield and economic efficiency of activated carbon are reduced. There is a problem of this deterioration.

이때, 견과각과 칼륨화합물로 구성된 반응혼합물은 입자크기가 44 ∼ 420 ㎛ 크기가 되도록 미분쇄되는 것이 좋으며, 보다 바람직하기로는 74 ∼ 177 ㎛ 크기를 유지하는 것이 좋다. 미분쇄된 반응물 입자의 크기가 420 ㎛ 보다 크면 화학 활성화제가 견과각 입자 속으로 확산되기 어려워 활성화반응이 불완전하게 이루어지고 결과적으로 기공도 및 수소흡착용량이 감소하며 반응물 입자의 크기가 44 ㎛ 보다 작을 경우에는 미분쇄에 소요되는 동력비가 증가한다. 상기 미분쇄는 크러셔, 밀, 커터 등의 장치로 행할 수 있다.At this time, it is preferable that the reaction mixture composed of the nut angle and the potassium compound is pulverized to have a particle size of 44 to 420 μm, more preferably, to maintain a size of 74 to 177 μm. If the size of the finely pulverized reactant particles is larger than 420 μm, the chemical activation agent is difficult to diffuse into the nut shell particles, resulting in incomplete activation reactions, resulting in reduced porosity and hydrogen adsorption capacity and smaller size of the reactant particles than 44 μm. In this case, the power cost for grinding is increased. The fine pulverization can be performed with a device such as a crusher, a mill, a cutter, or the like.

상기와 같이 미분쇄된 견과각과 칼륨화합물은 혼합 분쇄과정을 거친 후, 견과각의 탈수 반응을 수행한다. 이는 견과각을 열분해과 동시에 중축합시켜 가교결합이 이루어지게 하여 기공의 막힘 현상을 억제하는 효과를 얻기 위함이다. As described above, the pulverized nut angle and the potassium compound undergo a mixed grinding process, and then dehydrate the nut angle. This is to obtain the effect of suppressing the clogging of the pores by the polycondensation at the same time as the pyrolysis of the nut angle.

이때, 탈수 반응은 상온에서부터 가열하여 350 ∼ 450 ℃의 범위에서 1 ∼ 2 시간 수행하여 칼륨화합물의 용융 및 반응발생 수분을 제거한다. 상기 탈수 반응시 온도가 350 ℃ 미만인 경우에는 탈수 반응속도가 느리고, 450 ℃를 초과하는 경우에는 가교결합이 안정하게 이루어지기 어려운 문제가 있다. 또한, 탈수 반응시 1시간 미만이면 탈수 반응이 완결되지 않아 후속 활성화반응이 양호하게 이루어지지 않을 수 있고 2시간을 초과하면 생성물의 물성에는 영향이 없지만 공정의 생산성이 감소되고 에너지 소요량이 증가하는 문제가 있다.At this time, the dehydration reaction is heated from room temperature to perform for 1 to 2 hours in the range of 350 ~ 450 ℃ to remove the potassium compound melting and reaction water. When the temperature during the dehydration reaction is less than 350 ℃ dehydration reaction rate is slow, if the temperature exceeds 450 ℃ cross-linking is difficult to be made stable. In addition, if the dehydration reaction is less than 1 hour, the dehydration reaction may not be completed, and subsequent activation reaction may not be satisfactory. If the dehydration reaction is longer than 2 hours, the physical properties of the product may not be affected. There is.

탈수 반응 후, 온도를 700 ∼ 900 ℃ 까지 승온시킨 후 2 ∼ 3 시간동안 활성화반응을 수행한다. 상기 활성화반응의 온도가 700 ℃ 미만이면 활성화 반응속도가 느려 활성화시간이 과다하게 소요되고 900 ℃를 초과하는 경우에는 과도한 활성화 반응으로 인해 공정의 제어가 어려워지고 기공벽이 파괴되어 기공도가 감소하며 활성탄의 기계적 강도가 감소하는 문제가 발생한다. 즉, 활성화 온도는 제조된 활성탄의 기공도에 큰 영향을 주는 요인이므로 상기 범위를 유지하는 것이 바람직하다. 탈수 및 활성화 공정에서 가열을 하기 위해서는 일반적인 로타리킬른, 회분식킬튼, 다단로(multiple-hearth furnace) 등을 사용한다.After the dehydration reaction, the temperature was raised to 700-900 ° C. and then the activation reaction was performed for 2 to 3 hours. If the temperature of the activation reaction is less than 700 ℃, the activation reaction rate is slow, excessive activation time is required, and if it exceeds 900 ℃, it is difficult to control the process due to excessive activation reaction and the pore wall is destroyed to reduce the porosity The problem occurs that the mechanical strength of activated carbon is reduced. That is, the activation temperature is a factor that greatly affects the porosity of the produced activated carbon, it is preferable to maintain the above range. For heating in dehydration and activation processes, conventional rotary kilns, batch kilns and multiple-hearth furnaces are used.

일반적으로 화학 활성화는 800 ∼ 900 ℃ 범위에서 탄화공정을 수행한 후, 400 ∼ 1000 ℃에서 열처리하여 활성화 반응을 수행하는 바, 본 발명은 비열처리원료인 견과각을 활성화 원료로 사용하므로 이와는 다른 새로운 방법에 의해 활성탄을 제조하는 것이다.In general, the chemical activation is performed after the carbonization process in the range of 800 ~ 900 ℃, heat treatment at 400 ~ 1000 ℃ to perform the activation reaction, the present invention uses a nut angle as a non-heat treatment raw material as an activation raw material Activated carbon is produced by the method.

활성화반응 후, 생성물은 상온까지 냉각시키고 여과액의 수소이온 농도가 중성이 될 때까지 물로 세척한다. 이때, 여과는 원심분리기 또는 필터프레스 등을 이용하여 수행한다. 상기 세척된 활성탄케이크는 회분식 또는 연속식 건조기 등을 이용하여 115 ∼ 150 ℃에서 2 ∼ 3 시간동안 건조하여 수분을 제거한 후 밀봉하여 수소흡착제로 사용한다.After the activation reaction, the product is cooled to room temperature and washed with water until the concentration of hydrogen ions in the filtrate is neutral. At this time, the filtration is performed using a centrifuge or a filter press. The washed activated carbon cake is dried for 2 to 3 hours at 115 to 150 ° C. using a batch dryer or a continuous dryer to remove moisture, and then sealed and used as a hydrogen adsorbent.

상기한 바와 같이, 본 발명에 따라 견과각을 칼륨화합물로 화학 활성화시켜 제조한 활성탄은 종래의 유연탄, 야자각탄, 저기공도 활성탄, 목질, 페놀수지 등의 원료로 제조한 기존 고기공도 활성탄 보다 수소흡착용량이 월등히 향상된다. As described above, the activated carbon prepared by chemically activating the nut angle according to the present invention is hydrogen adsorbed than the conventional meat ball activated carbon prepared from raw materials such as conventional bituminous coal, coconut shell coal, low porosity activated carbon, wood, and phenol resin. Capacity is greatly improved.

일반적으로, 종래의 고기공도 활성탄의 경우 100 기압 조건의 수소흡착용량이 0.8 중량% 이하의 매우 적은 양을 나타낸다. 이와 반면에, 본 발명에 따른 활성탄의 경우 수소흡착용량이 2.0 중량% 까지 증가하는 효과를 보여 기존에 비해 2.5배 정도의 향상된 수치를 나타낸다. In general, the conventional high porosity activated carbon shows a very small amount of hydrogen adsorption capacity of 0.8 at% or less under 100 atm. On the other hand, the activated carbon according to the present invention shows an effect of increasing the hydrogen adsorption capacity up to 2.0% by weight shows an improved value of about 2.5 times compared to the conventional.

또한, 흡착 및 탈착이 용이하여 수소를 반복적으로 흡착저장이 가능하다.In addition, since adsorption and desorption are easy, hydrogen may be repeatedly adsorbed and stored.

이하 본 발명에 대하여 실시예에 의거하여 더욱 자세하게 설명하겠는 바 본 발명이 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to Examples.

실시예 1Example 1

야자각 13.3 g과 수산화칼륨 53.3 g(야자각 : 수산화칼륨중량 = 1 : 4)를 진동밀에 가하고 분쇄, 혼합한 후 시료용기에 담아 관형로에 넣었다. 알곤 기체를 흘려 보내면서 가열을 시작하여 400 ℃에서 1시간 동안 탈수 반응을 충분히 시킨 후, 활성화 반응온도인 700 ℃까지 승온시켜 2시간 동안 활성화시켰다. 상기 활성화된 반응생성물에 물 2,000 g을 가하고 교반하여 잔존 수산화칼륨을 용출시킨 후 여과하고 물 3,000 g으로 세척하였다. 상기 여과된 활성탄 케이크를 150 ℃에서 3시간 건조시켜 활성탄을 제조하였다. 13.3 g of coconut shell and 53.3 g of potassium hydroxide (palm shell: weight of potassium hydroxide = 1: 4) were added to a vibrating mill, pulverized and mixed, and put in a sample container and placed in a tubular furnace. The heating was started while flowing argon gas, and sufficient dehydration reaction was carried out at 400 ° C. for 1 hour. 2,000 g of water was added to the activated reaction product, followed by stirring to elute the remaining potassium hydroxide, followed by filtration and washing with 3,000 g of water. The filtered activated carbon cake was dried at 150 ° C. for 3 hours to prepare activated carbon.

상기에서 제조된 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and hydrogen adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 2Example 2

상기 실시예 1과 동일하게 실시하되, 상기 반응온도를 800 ℃ 까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, the activation was carried out by raising the reaction temperature to 800 ℃.

상기에서 제조된 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and hydrogen adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 3Example 3

상기 실시예 1과 동일하게 실시하되, 상기 반응온도를 900 ℃ 까지 승온시켜 활성화를 수행하였다.In the same manner as in Example 1, the activation was carried out by raising the reaction temperature to 900 ℃.

상기에서 제조된 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and hydrogen adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

실시예 4Example 4

상기 실시예 1과 동일하게 실시하되, 야자각 대신에 호두각을 사용하여 활성화를 수행하였다.In the same manner as in Example 1, activation was performed using a walnut shell instead of a palm shell.

상기에서 제조된 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 1에 나타내었다.The porosity and hydrogen adsorption capacity of the activated carbon prepared above are measured and shown in Table 1 below.

구 분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 표면적Surface area 총비표면적 (㎡/g)Total specific surface area (㎡ / g) 23452345 24142414 27032703 19501950 미세기공표면적 (㎡/g)Micropore surface area (㎡ / g) 23102310 23702370 26492649 19101910 외부표면적 (㎡/g)External surface area (㎡ / g) 3535 4444 5454 3434 기공부피Pore volume 총기공부피 (cc/g)Total pore volume (cc / g) 1.271.27 1.621.62 2.22.2 1.051.05 미세기공부피 (cc/g)Micropore volume (cc / g) 1.191.19 1.531.53 2.12.1 0.970.97 중기공부피 (cc/g)Medium pore volume (cc / g) 0.080.08 0.090.09 0.10.1 0.080.08 수소흡착용량 (중량%)Hydrogen adsorption capacity (% by weight) 1.541.54 1.251.25 1.961.96 0.980.98 [측정방법] 1. 총비표면적 : 질소-BET식 2. 미세기공표면적, 외부표면적 : 질소-t플롯 3. 총기공부피 : 질소-Gurvitch 법칙 4. 미세기공부피, 중기공부피 : 질소-t플롯 5. 수소흡착용량 : 중량법, 25 ℃, 100 기압[Measurement Method] 1. Total Specific Surface Area: Nitrogen-BET Formula 2. Micropore Surface Area, External Surface Area: Nitrogen-t Plot 3. Total Pore Volume: Nitrogen-Gurvitch Law 4. Micropore Volume, Medium Pore Volume: Nitrogen-t Plot 5. Hydrogen adsorption capacity: gravimetric method, 25 ℃, 100 atm

상기 표 1에 나타낸 바와 같이, 본 발명에 따라 견과각으로 야자각을 수산화칼륨으로 화학 활성화시킨 실시예 1 ∼ 3는 최대 비표면적이 2,700 ㎡/g, 최대 수소흡착용량 1.96 중량%를 나타내었다. 또한, 견과류의 일종인 호두각의 경우 야자각에 비해 기공도 및 수소흡착용량이 약간 저하되는 경향을 보이나, 기존의 활성탄에 비해 우수한 효과를 나타내는 것을 확인하였다. As shown in Table 1, Examples 1 to 3 in which the coconut shell was chemically activated with potassium hydroxide according to the present invention showed a maximum specific surface area of 2,700 m 2 / g and a maximum hydrogen adsorption capacity of 1.96% by weight. In addition, in the case of walnut shell which is a kind of nut, porosity and hydrogen adsorption capacity tended to decrease slightly compared to palm shell, but it was confirmed that it showed an excellent effect compared to the existing activated carbon.

상기한 야자각 및 호두각 모두 총 비표면적에서 미세기공 면적이 차지하는 분율이 98% 이상으로서 분자크기가 작고 액화하기 어려운 수소분자의 흡착 저장에 유리한 기공구조를 가지고 있다. Both the palm and walnut angles have a pore structure in which the micropore area occupies more than 98% of the total specific surface area, which is advantageous for the adsorption and storage of hydrogen molecules having a small molecular size and difficult to liquefy.

또한, 도 2에는 상기 실시예 1에서 제조한 활성탄의 수소흡착등온선을 25 ℃, 10 ∼ 100 기압의 범위에서 측정하여 도시한 결과, 수소흡착용량은 압력에 따라 거의 비례하였는데 직선에서 약간 상부로 볼록한 흡착거동을 보였다.In addition, Figure 2 shows the hydrogen adsorption isotherm of the activated carbon prepared in Example 1 measured in the range of 25 ℃, 10 ~ 100 atm, hydrogen adsorption capacity is almost proportional to the pressure, but slightly convex upward in a straight line Adsorption behavior was shown.

비교예 1Comparative Example 1

현재 상용화되고 있는 여러 종류의 상용 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 2에 나타내었다.The porosity and hydrogen adsorption capacity of various types of commercially available activated carbon currently measured are shown in Table 2 below.

구 분division 상용활성탄Commercial Activated Carbon (A) 야자각 탄화물계(A) coconut shell carbide system (B) 유연탄 탄화물계(B) Bituminous carbon carbide system (C) 유연탄 탄화물계1) (C) Bituminous carbon carbide system 1) (D) 페놀고분자 수지계2) (D) phenolic polymer resin type 2) 표면적Surface area 총비표면적 (㎡/g)Total specific surface area (㎡ / g) 10891089 805805 31583158 23642364 미세기공표면적 (㎡/g)Micropore surface area (㎡ / g) 10801080 775775 31043104 23462346 외부표면적 (㎡/g)External surface area (㎡ / g) 99 3030 5454 1818 기공 부피Pore volume 총기공부피 (cc/g)Total pore volume (cc / g) 0.500.50 0.410.41 1.721.72 1.061.06 미세기공부피 (cc/g)Micropore volume (cc / g) 0.480.48 0.350.35 1.611.61 1.021.02 중기공부피 (cc/g)Medium pore volume (cc / g) 0.020.02 0.060.06 0.110.11 0.040.04 수소흡착용량 (중량%)Hydrogen adsorption capacity (% by weight) 0.430.43 0.320.32 0.750.75 0.760.76 [측정방법] 1. 총비표면적 : 질소-BET식 2. 미세기공표면적, 외부표면적 : 질소-t플롯 3. 총기공부피 : 질소-Gurvitch 법칙 4. 미세기공부피, 중기공부피 : 질소-t플롯 5. 수소흡착용량 : 중량법, 25 ℃, 100 기압 1) : 일본 간사이 코크 앤드 케미칼사, MSC30 2) : 일본 간사이 코크 앤드 케미칼사, MSP20[Measurement Method] 1. Total Specific Surface Area: Nitrogen-BET Formula 2. Micropore Surface Area, External Surface Area: Nitrogen-t Plot 3. Total Pore Volume: Nitrogen-Gurvitch Law 4. Micropore Volume, Medium Pore Volume: Nitrogen-t Plot 5. Hydrogen adsorption capacity: Gravimetric method, 25 ℃, 100 atm 1): Kansai Coke & Chemical Co., Ltd., MSC30 2): Kansai Coke & Chemical Co., Ltd., MSP20

상기 표 2에 나타낸 바와 같이, 여러 가지 상용 활성탄 중에서 가장 기공도가 발달된 간사이 코크 앤드 케미칼사의 슈퍼활성탄의 경우에도 본 발명의 견과각을 이용한 활성탄에 미치지 못하여 0.8 중량% 이하임을 확인할 수 있었다. As shown in Table 2, it was confirmed that even in the case of super activated carbon of Kansai Coke & Chemical Co., Ltd., which has the most porosity among various commercially available activated carbons, the activated carbon using the nut angle of the present invention was 0.8 wt% or less.

비교예 2Comparative Example 2

상기 실시예 1과 동일하게 수행하되, 야자각 대신에 여러 다른 비 열처리된 탄소질 원료를 사용하여 반응을 수행하여 활성탄을 제조하였다.In the same manner as in Example 1, but instead of coconut shell, the reaction was carried out using several different non-heat treated carbonaceous raw materials to prepare activated carbon.

상기에서 제조된 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 3에 나타내었다.The porosity and hydrogen adsorption capacity of the activated carbon prepared above are measured and shown in Table 3 below.

구 분division 활성탄 원료Activated carbon raw material (A) 대나무(A) bamboo (B) 페놀수지섬유(Kynol)(B) Phenolic Resin Fiber (Kynol) (C) 유연탄1) (C) Bituminous coal 1) (D) 유연탄2) (D) Bituminous coal 2) 표면적Surface area 총비표면적 (㎡/g)Total specific surface area (㎡ / g) 15211521 21152115 31493149 13221322 미세기공표면적 (㎡/g)Micropore surface area (㎡ / g) 14911491 20112011 31183118 12181218 외부표면적 (㎡/g)External surface area (㎡ / g) 3030 104104 3131 104104 기공 부피Pore volume 총기공부피 (cc/g)Total pore volume (cc / g) 0.840.84 1.161.16 1.41.4 0.750.75 미세기공부피 (cc/g)Micropore volume (cc / g) 0.770.77 0.940.94 1.341.34 0.520.52 중기공부피 (cc/g)Medium pore volume (cc / g) 0.070.07 0.220.22 0.060.06 0.230.23 수소흡착용량 (중량%)Hydrogen adsorption capacity (% by weight) 0.410.41 0.680.68 0.800.80 0.160.16 [측정방법] 1. 총비표면적 : 질소-BET식 2. 미세기공표면적, 외부표면적 : 질소-t플롯 3. 총기공부피 : 질소-Gurvitch 법칙 4. 미세기공부피, 중기공부피 : 질소-t플롯 5. 수소흡착용량 : 중량법, 25 ℃, 100 기압 1) : 인도네시아산 2) : 호주산[Measurement Method] 1. Total Specific Surface Area: Nitrogen-BET Formula 2. Micropore Surface Area, External Surface Area: Nitrogen-t Plot 3. Total Pore Volume: Nitrogen-Gurvitch Law 4. Micropore Volume, Medium Pore Volume: Nitrogen-t Plot 5. Hydrogen adsorption capacity: Gravimetric method, 25 ℃, 100 atm 1): Made in Indonesia 2): Made in Australia

상기 표 3에 나타낸 바와 같이, 총비표면적은 활성탄 원료의 종류에 따라 견과각을 사용한 경우보다 높게 나오기도 하나 수소흡착용량은 최대 0.8 중량%로 견과각계 활성탄에 비해 열등함을 확인할 수 있었다.As shown in Table 3, the total specific surface area is higher than the case of using a nut angle depending on the type of activated carbon raw material, but the hydrogen adsorption capacity was 0.8 wt%, which was inferior to that of nut shell-based activated carbon.

비교예 3Comparative Example 3

상기 실시예 1과 동일하게 수행하되, 칼륨화합물 대신에 다른 금속화합물 활성화제를 사용하여 반응을 수행하여 활성탄을 제조하였다.In the same manner as in Example 1, but instead of the potassium compound by using another metal compound activator to perform the reaction to prepare the activated carbon.

상기에서 제조된 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 4에 나타내었다.The porosity and hydrogen adsorption capacity of the activated carbon prepared above are measured and shown in Table 4 below.

구 분division 화학 활성화제Chemical activator (A) 수산화 리튬(A) lithium hydroxide (B) 수산화 나트륨(B) sodium hydroxide (C) 염화아연(C) zinc chloride (D) 염화칼슘(D) calcium chloride (E) 탄산리튬(E) lithium carbonate 표면적Surface area 총비표면적 (㎡/g)Total specific surface area (㎡ / g) 971971 13731373 15201520 472472 288288 미세기공표면적 (㎡/g)Micropore surface area (㎡ / g) 929929 13381338 14491449 269269 197197 외부표면적 (㎡/g)External surface area (㎡ / g) 4242 3535 7171 203203 9191 기공 부피Pore volume 총기공부피 (cc/g)Total pore volume (cc / g) 0.790.79 0.890.89 1.131.13 0.440.44 0.250.25 미세기공부피 (cc/g)Micropore volume (cc / g) 0.70.7 0.820.82 0.990.99 0.040.04 0.050.05 중기공부피 (cc/g)Medium pore volume (cc / g) 0.090.09 0.070.07 0.140.14 0.40.4 0.050.05 수소흡착용량 (중량%)Hydrogen adsorption capacity (% by weight) 0.310.31 0.410.41 0.390.39 0.200.20 0.240.24 [측정방법] 1. 총비표면적 : 질소-BET식 2. 미세기공표면적, 외부표면적 : 질소-t플롯 3. 총기공부피 : 질소-Gurvitch 법칙 4. 미세기공부피, 중기공부피 : 질소-t플롯 5. 수소흡착용량 : 중량법, 25 ℃, 100 기압[Measurement Method] 1. Total Specific Surface Area: Nitrogen-BET Formula 2. Micropore Surface Area, External Surface Area: Nitrogen-t Plot 3. Total Pore Volume: Nitrogen-Gurvitch Law 4. Micropore Volume, Medium Pore Volume: Nitrogen-t Plot 5. Hydrogen adsorption capacity: gravimetric method, 25 ℃, 100 atm

상기 표 4에 나타낸 바와 같이, 칼륨화합물 이외의 금속화학활성제로 활성화시킨 경우 칼륨화합물의 경우보다 현저히 낮은 기공도와 수소흡착용량을 나타내고 있음을 확인할 수 있었다. As shown in Table 4, it was confirmed that when activated with a metal chemical activator other than the potassium compound, it showed significantly lower porosity and hydrogen adsorption capacity than that of the potassium compound.

비교예 4Comparative Example 4

상기 실시예 1과 동일하게 실시하되, 상기 야자각 대신에 여러 가지 열처리된 탄화물 원료를 사용하여 반응을 수행하여 활성탄을 제조하였다.In the same manner as in Example 1, but instead of the coconut shell was carried out using a variety of heat-treated carbide raw material to prepare the activated carbon.

상기에서 제조된 활성탄의 기공도와 수소흡착용량을 측정하여 다음 표 5에 나타내었다.The porosity and hydrogen adsorption capacity of the activated carbon prepared above are measured and shown in Table 5 below.

구 분division 활성탄 원료Activated carbon raw material (A) 야자각탄(A) Coconut shell (B) 유연탄탄(B) Bituminous coal (C) 야자각계 상용활성탄(C) coconut shell commercial activated carbon 표면적Surface area 총비표면적 (㎡/g)Total specific surface area (㎡ / g) 26242624 21452145 20282028 미세기공표면적 (㎡/g)Micropore surface area (㎡ / g) 25962596 20092009 19951995 외부표면적 (㎡/g)External surface area (㎡ / g) 2828 136136 3333 기공 부피Pore volume 총기공부피 (cc/g)Total pore volume (cc / g) 1.21.2 1.21.2 0.970.97 미세기공부피 (cc/g)Micropore volume (cc / g) 1.141.14 0.920.92 0.90.9 중기공부피 (cc/g)Medium pore volume (cc / g) 0.060.06 0.280.28 0.070.07 수소흡착용량 (중량%)Hydrogen adsorption capacity (% by weight) 0.800.80 0.650.65 0.680.68 [측정방법] 1. 총비표면적 : 질소-BET식 2. 미세기공표면적, 외부표면적 : 질소-t플롯 3. 총기공부피 : 질소-Gurvitch 법칙 4. 미세기공부피, 중기공부피 : 질소-t플롯 5. 수소흡착용량 : 중량법, 25 ℃, 100 기압[Measurement Method] 1. Total Specific Surface Area: Nitrogen-BET Formula 2. Micropore Surface Area, External Surface Area: Nitrogen-t Plot 3. Total Pore Volume: Nitrogen-Gurvitch Law 4. Micropore Volume, Medium Pore Volume: Nitrogen-t Plot 5. Hydrogen adsorption capacity: gravimetric method, 25 ℃, 100 atm

상기 표 5에 나타낸 바와 같이, 탄화물 또는 저기공도 활성탄을 수산화칼륨으로 활성화시킨 경우, 비표면적은 견과각 원료와 비슷한 수준을 유지하나 수소흡착용량은 최대 0.68 중량%로 기존의 활성탄의 용량을 초과하지 못하는 한계성을 보임을 확인할 수 있었다.As shown in Table 5, when the carbide or low porosity activated carbon is activated with potassium hydroxide, the specific surface area is maintained at a level similar to that of the nut shell material, but the hydrogen adsorption capacity is up to 0.68% by weight, not exceeding the capacity of the existing activated carbon. It could be confirmed that there is no limit.

실시예 5Example 5

상기 실시예 1에서 제조된 활성탄을 이용하여, 수소의 반복 흡착 및 탈착 수행시의 수소흡착용량의 변화를 측정하고 그 결과를 다음 표 6에 나타내었다. By using the activated carbon prepared in Example 1, the change of hydrogen adsorption capacity during repeated adsorption and desorption of hydrogen was measured and the results are shown in Table 6 below.

이때, 25 ℃의 상온에서, 고압흡착, 상압탈착 및 진공 공정을 3회 거쳤다.At this time, the high pressure adsorption, atmospheric pressure desorption and vacuum processes were performed three times at room temperature of 25 ℃.

흡착회수Adsorption Recovery 수소흡착용량, 중량% (상온, 100 기압)Hydrogen adsorption capacity, weight% (room temperature, 100 atmospheres) 1One 1.541.54 22 1.501.50 33 1.521.52

상기 표 6에 나타낸 바와 같이, 본 발명에 따른 활성탄을 이용하여 수소의 반복 흡착 및 탈착 수행 시 수소흡착용량의 감소량은 0.1% 이내로 측정오차 범위 내이므로 수소흡착은 물리흡착거동을 따르며 상온에서 반복 사용하여도 수소저장능력이 유지된다는 것을 확인할 수 있었다.As shown in Table 6, when the repeated adsorption and desorption of hydrogen using the activated carbon according to the present invention, the amount of reduction of the hydrogen adsorption capacity is within the measurement error range within 0.1%, so the hydrogen adsorption is repeated at room temperature according to the physical adsorption behavior. Even if the hydrogen storage capacity was maintained.

도 3은 상기 실시예 1 ∼ 4 및 비교예 1 ∼ 4에서 제조된 활성탄들의 수소흡착용량을 비 표면적에 대해 도시하였다. 그 결과를 살펴보면 전반적으로 수소흡착용량은 비 표면적에 비례하는 거동을 보였지만, 견과각인 야자각과 호두각의 경우 상향으로 편기하여 수소흡착용량이 증가하는 현상을 보여 견과각이 수소흡착소재의 원료로서 효용성이 있음을 확인할 수 있었다.Figure 3 shows the hydrogen adsorption capacity of the activated carbon prepared in Examples 1 to 4 and Comparative Examples 1 to 4 with respect to the specific surface area. The results showed that the overall hydrogen adsorption capacity was proportional to the specific surface area, but in the case of nut and walnut angles, the hydrogen adsorption capacity increased as the nut angle was increased upward. It could be confirmed.

상기에서 살펴본 바와 같이, 본 발명에 따라 견과각을 칼륨화합물계 활성화제로 활성화시켜, 기존 활성탄 보다 높은 수소저장용량을 지닌 고기공도 활성탄을 제공 하므로서 수소자동차, 연료전지 등의 실용화를 촉진시키고 수소이송효율을 높일 수 있으며 궁극적으로는 환경오염감소 및 수소경제체제에 대비할 수 있는 효과가 있다.As described above, according to the present invention, by activating the nut angle with a potassium compound-based activator, by providing a high-molecular-activated activated carbon having a higher hydrogen storage capacity than the existing activated carbon, to promote the practical use of hydrogen vehicles, fuel cells, etc. It can increase the environmental impact and ultimately prepare for the reduction of environmental pollution and the hydrogen economy.

Claims (8)

견과각(堅果殼)과 칼륨화합물을 1 : 2 ∼ 5 중량비로 혼합 및 분쇄하는 1 단계;A step of mixing and grinding the nut shell and the potassium compound in a weight ratio of 1: 2 to 5; 상기 혼합 및 분쇄된 혼합물을 350 ∼ 450 ℃에서 탈수 반응시키는 2 단계;Dehydrating the mixed and ground mixture at 350 to 450 ° C .; 상기 탈수 반응된 혼합물을 700 ∼ 900 ℃에서 화학 활성화하는 3 단계; 및Chemically activating the dehydrated mixture at 700 to 900 ° C .; And 상기 활성화된 생성물을 냉각, 세척 및 건조하는 4 단계Four steps of cooling, washing and drying the activated product 를 포함하여 이루어진 것을 특징으로 하는 수소저장용 고기공도 활성탄의 제조방법.Method for producing a high porosity activated carbon for hydrogen storage, characterized in that comprises a. 제 1 항에 있어서, 상기 견과각(堅果殼)과 칼륨화합물의 분쇄는 입자크기가 44 ∼ 420 ㎛가 되도록 미분쇄 하는 것을 특징으로 하는 수소저장용 고기공도 활성탄의 제조방법.The method of claim 1, wherein the grinding of the nut angle and the potassium compound is pulverized to have a particle size of 44 to 420 µm. 제 1 항에 있어서, 상기 견과각(堅果殼)은 야자각, 호두각, 잣각, 아몬드각, 피스타치오각, 은행각, 개암각 및 캐슈넛각 중에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 수소저장용 고기공도 활성탄의 제조방법.According to claim 1, wherein the nut angle (堅果 殼) is hydrogen storage, characterized in that one or more selected from palm shell, walnut shell, pine shell, almond shell, pistachio shell, ginkgo shell, hazelnut shell and cashew nut shell Method for producing meat ball activated carbon. 제 1 항 또는 제 3 항에 있어서, 상기 견과각(堅果殼)은 야자각인 것을 특징으로 하는 수소저장용 고기공도 활성탄의 제조방법.The method of manufacturing a high-molecular-weight activated carbon for hydrogen storage according to claim 1 or 3, wherein the nut angle is a palm shell. 제 1 항에 있어서, 상기 칼륨화합물은 무수물 또는 수분이 2 ∼ 25 중량% 함유된 수화물인 것을 특징으로 하는 수소저장용 고기공도 활성탄의 제조방법.The method of claim 1, wherein the potassium compound is an anhydride or a method for producing a hydrogen storage high porosity activated carbon, characterized in that the hydrate containing 2 to 25% by weight of water. 제 1 항에 있어서, 상기 칼륨화합물은 수산화칼륨, 탄산칼륨, 초산칼륨, 이산화칼륨, 개미산칼륨, 수소화칼륨, 질산칼륨, 산화칼륨, 과산화칼륨, 황화칼륨, 황산칼륨 및 인산칼륨 중에서 선택된 1종 또는 2종 이상인 것을 특징으로 하는 수소저장용 고기공도 활성탄의 제조방법.The method of claim 1, wherein the potassium compound is one selected from potassium hydroxide, potassium carbonate, potassium acetate, potassium dioxide, potassium formate, potassium hydride, potassium nitrate, potassium oxide, potassium peroxide, potassium sulfide, potassium sulfate, and potassium phosphate; A method for producing hydrogenated high porosity activated carbon, characterized in that at least two kinds. 제 1 항 또는 제 6 항에 있어서, 상기 칼륨화합물은 수산화칼륨인 것을 특징으로 하는 수소저장용 고기공도 활성탄의 제조방법.7. The method of claim 1 or 6, wherein the potassium compound is potassium hydroxide. 제 1 항에 있어서, 상기 활성탄은 비 표면적이 1,500 ∼ 3,500 ㎡/g 이고, 수소흡착용량이 1.0 ∼ 2.0 중량%(흡착조건 : 100 기압, 25 ℃)인 것임을 특징을 하는 수소저장용 고기공도 활성탄의 제조방법.The method of claim 1, wherein the activated carbon has a specific surface area of 1,500 to 3,500 m 2 / g, hydrogen adsorption capacity of 1.0 to 2.0% by weight (adsorption conditions: 100 atm, 25 ℃) activated carbon for hydrogen storage Manufacturing method.
KR1020040083436A 2004-10-19 2004-10-19 High porous activated carbon for hydrogen storage and preparation thereof KR100599254B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040083436A KR100599254B1 (en) 2004-10-19 2004-10-19 High porous activated carbon for hydrogen storage and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040083436A KR100599254B1 (en) 2004-10-19 2004-10-19 High porous activated carbon for hydrogen storage and preparation thereof

Publications (2)

Publication Number Publication Date
KR20060034420A true KR20060034420A (en) 2006-04-24
KR100599254B1 KR100599254B1 (en) 2006-07-13

Family

ID=37143225

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040083436A KR100599254B1 (en) 2004-10-19 2004-10-19 High porous activated carbon for hydrogen storage and preparation thereof

Country Status (1)

Country Link
KR (1) KR100599254B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647010B1 (en) * 2005-10-24 2006-11-23 재단법인 포항산업과학연구원 Preparation method of short response time carbon electrode of supercapacitor
KR100715873B1 (en) * 2005-10-24 2007-05-07 재단법인 포항산업과학연구원 Increasing method of meso porous amount activated carbon for supercapacitor electrode
KR20160038969A (en) * 2014-09-30 2016-04-08 인하대학교 산학협력단 Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945595B1 (en) * 2016-08-31 2019-02-07 재단법인 한국탄소융합기술원 Activated carbon manufacturing method for recycling waste carbon fiber reinforced plastics and activated carbon by thereof
KR102424905B1 (en) * 2020-07-20 2022-07-25 인하대학교 산학협력단 Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616836B2 (en) 1986-06-03 1994-03-09 株式会社神戸製鋼所 Activated carbon molding for ozone decomposition
US5965483A (en) 1993-10-25 1999-10-12 Westvaco Corporation Highly microporous carbons and process of manufacture
JP3161194B2 (en) * 1993-11-18 2001-04-25 株式会社小島製作所 Method for producing shaped activated carbon from coffee bean husks
US6472343B1 (en) 2001-04-11 2002-10-29 Westvaco Corporation Shaped activated carbon
KR100475512B1 (en) * 2002-06-20 2005-03-10 코리아에프티 주식회사 Process method for lignocellulose activated carbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647010B1 (en) * 2005-10-24 2006-11-23 재단법인 포항산업과학연구원 Preparation method of short response time carbon electrode of supercapacitor
KR100715873B1 (en) * 2005-10-24 2007-05-07 재단법인 포항산업과학연구원 Increasing method of meso porous amount activated carbon for supercapacitor electrode
KR20160038969A (en) * 2014-09-30 2016-04-08 인하대학교 산학협력단 Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation

Also Published As

Publication number Publication date
KR100599254B1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
Egbosiuba et al. Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics
Aghel et al. CO2 capture from biogas by biomass-based adsorbents: A review
CA2089925C (en) High activity, high density activated carbon
Viswanathan et al. Methods of activation and specific applications of carbon materials
US5206207A (en) Preparation for high activity high density carbon
US5416056A (en) Production of highly microporous activated carbon products
US8926932B2 (en) High surface area carbon and process for its production
CA2134160C (en) Highly microporous carbons and process of manufacture
US5238470A (en) Emission control device
US5710092A (en) Highly microporous carbon
US6064560A (en) Active carbon and process for its production
CN104583120B (en) Activated carbon with high active surface area
ES2209931T3 (en) PROCEDURE TO PREPARE CONFORMED ACTIVATED CARBON.
US6537947B1 (en) Activated carbons from low-density agricultural waste
CN110182805A (en) A kind of preparation method of active carbon
KR20090022040A (en) Preparation of high porous activated carbon for methane storage
RU2311227C1 (en) Method of production of the nanostructure carbonic material with the high specific surface and microporosity
RU2391290C1 (en) Method of obtaining active coal
Chouikhi et al. Valorization of agricultural waste as a carbon materials for selective separation and storage of CO2, H2 and N2
CN111408343B (en) Preparation method of three-dimensional biochar and application of three-dimensional biochar in heavy metal adsorption
KR100599254B1 (en) High porous activated carbon for hydrogen storage and preparation thereof
CA1071177A (en) Active carbon process and composition
RU2446098C1 (en) Carbon material
Anjum et al. Impact of surface modification of activated carbon on BTEX removal from aqueous solutions: a review
JP2009057239A (en) Activated carbon preparation method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150702

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160607

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 13