KR20060009224A - High stereospecific polybutene-1 polymer - Google Patents

High stereospecific polybutene-1 polymer Download PDF

Info

Publication number
KR20060009224A
KR20060009224A KR1020050127244A KR20050127244A KR20060009224A KR 20060009224 A KR20060009224 A KR 20060009224A KR 1020050127244 A KR1020050127244 A KR 1020050127244A KR 20050127244 A KR20050127244 A KR 20050127244A KR 20060009224 A KR20060009224 A KR 20060009224A
Authority
KR
South Korea
Prior art keywords
polybutene
catalyst
butene
polymerization
polymer
Prior art date
Application number
KR1020050127244A
Other languages
Korean (ko)
Inventor
홍승표
박민규
황석중
김덕경
Original Assignee
주식회사 일렘테크놀러지홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 일렘테크놀러지홀딩스 filed Critical 주식회사 일렘테크놀러지홀딩스
Priority to KR1020050127244A priority Critical patent/KR20060009224A/en
Publication of KR20060009224A publication Critical patent/KR20060009224A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명에 따른 고입체규칙성 폴리부텐-1 중합체는, 1-부텐(1-Butene)의 단일 중합체 또는 무게비 40%까지 공단량체가 함유된, α-올레핀이 공중합된 공중합체로서, 촉매 잔사에 있어서 티타늄이 단위 ppm (1ppm) 미만의 수준으로 검출되고, 13C-NMR에 의해 측정된 입체규칙성(isotactic index, mmmm%)이 96이상이며, 분자량 분포가 Mw/Mn 3~6이고, 그 분자량 분포의 범위를 Mw/Mn 8이상으로 조절할 수 있다.The high-stereoregular polybutene-1 polymer according to the present invention is a homopolymer of 1-butene or a copolymer of α-olefin copolymer containing a comonomer up to a weight ratio of 40% by weight. Titanium is detected at a level below unit ppm (1 ppm), the isotactic index (mmmm%) measured by 13 C-NMR is 96 or more, and the molecular weight distribution is Mw / Mn 3 to 6; The range of the molecular weight distribution can be adjusted to Mw / Mn 8 or more.

폴리부텐-1, 고입체성, 고활성, 불활성기체, 질소, 헬륨, 아르곤, 촉매잔사 Polybutene-1, High solidity, High activity, Inert gas, Nitrogen, Helium, Argon, Catalyst residue

Description

고입체규칙성 폴리부텐-1 중합체{high stereospecific polybutene-1 polymer} High stereospecific polybutene-1 polymer

도 1a는 외부전자공여체(루이스 염기)없이 중합된 폴리부텐-1(Polybutene-1) 호모 중합체의 핵자기공명(13C-NMR) 스펙트럼 결과(비교 실시예 2 참고)이고, FIG. 1A is a nuclear magnetic resonance ( 13 C-NMR) spectral result of polybutene-1 homopolymer polymerized without external electron donor (Lewis base) (see Comparative Example 2),

도 1b는 외부 전자공여체(루이스 염기)로 디메톡시디 이소프로필 실란((i-Pr)2Si(OCH3)2)을 첨가하여 중합된 폴리부텐-1 호모 중합체의 핵자기공명(13C-NMR) 스펙트럼 결과(실시예 1 참고)이고, 1B shows the nuclear magnetic resonance ( 13 C-) of a polybutene-1 homopolymer polymerized by addition of dimethoxydi isopropyl silane (( i -Pr) 2 Si (OCH 3 ) 2 ) as an external electron donor (Lewis base). NMR) spectral results (see Example 1),

도 2는 외부전자공여체(루이스 염기) 없이 중합된 폴리부텐-1 호모 중합체의 26~28ppm의 영역에서의 핵자기공명(13C-NMR) 스펙트럼 결과(비교 실시예 2참고)이고, FIG. 2 shows nuclear magnetic resonance ( 13 C-NMR) spectral results (see Comparative Example 2) in a 26-28 ppm region of a polybutene-1 homopolymer polymerized without an external electron donor (Lewis base).

도 3은 중합시 외부전자공여체(루이스 염기)를 첨가하여 입체 규칙성을 높인 폴리부텐-1의 26~28ppm의 영역에서의 핵자기공명(13C-NMR) 스펙트럼 결과(실시예 1 참고)이다. FIG. 3 shows the results of nuclear magnetic resonance ( 13 C-NMR) spectra in the region of 26 to 28 ppm of polybutene-1 having increased stereoregularity by adding an external electron donor (Lewis base) during polymerization (see Example 1). .

본 발명은 고입체규칙성 폴리부텐-1 중합체에 관한 것으로, 상세하게는 1-부텐의 중합시, 종래 사용된 바 없었던, 불활성 기체를 사용함에 따라 특히 촉매 잔사에 있어서 ppm(무게) 수준으로는 티타늄이 검출되지 않는, 즉, 티타늄이 단위 ppm 미만의 수준으로 검출되는, 고입체규칙성 폴리부텐-1 중합체에 관한 것이다.FIELD OF THE INVENTION The present invention relates to high stereoregular polybutene-1 polymers, particularly in the polymerization of 1-butene, particularly at catalyst (weight) levels, especially in catalyst residues, due to the use of inert gases, which have not been used previously. It relates to a high stereoregular polybutene-1 polymer in which no titanium is detected, ie titanium is detected at levels below unit ppm.

일반적으로 입체규칙성 폴리부텐-1은 1-부텐을 단량체로 하는 반결정성 고분자로, 폴리에틸렌 그리고 폴리프로필렌과 유사한 일반적 물성을 갖는 고분자량의 폴리올레핀이다.In general, stereoregular polybutene-1 is a semicrystalline polymer containing 1-butene as a monomer and is a high molecular weight polyolefin having general properties similar to those of polyethylene and polypropylene.

입체규칙성 폴리부텐-1은 휨저항성과 다른 폴리머와의 혼합성이 높고, 유변학적 특성, 결정거동등 독특한 성질을 가지고 있고, 폴리프로필렌, 저밀도 폴리프로필렌과 유사한 밀도 및 고밀도 폴리에틸렌과 유사한 녹는점을 보인다. 그리고 고온에서조차 장기간의 내구성을 갖는 등 훌륭한 안정성을 갖는다. Stereoregular polybutene-1 has high bending resistance and blendability with other polymers, has unique properties such as rheological properties and crystal behavior, and has similar melting point to polypropylene and low density polypropylene and high density polyethylene. see. And it has excellent stability, such as long-term durability even at high temperatures.

또한 입체규칙성 폴리부텐-1은, 기존의 폴리올레핀에 적용되었던 가공기계를 사용하여 이를 압출(extrusion), 사출(injection), 중공성형(blow molding)등에 쉽게 적용할 수 있다는 장점을 갖는다. In addition, the stereoregular polybutene-1 has an advantage that it can be easily applied to extrusion, injection, blow molding, etc. using a processing machine applied to existing polyolefins.

이러한 입체규칙성 폴리부텐-1의 사용가능한 온도 범위는 -20~105℃ 정도이며, 냉온수 배관용, 유연 포장지 개구용, 폴리프로필렌 필름 및 섬유의 유연제 혹은 핫멜트 접착제 성능 강화제 등으로 다양하게 사용된다.The temperature range of the stereoregular polybutene-1 is about -20 ~ 105 ℃, it is used for cold and hot water piping, flexible wrapping paper opening, polypropylene film and fiber softener or hot melt adhesive performance enhancer and the like.

상기 입체규칙성 폴리부텐-1의 제조방법으로는 탄화수소를 용매로 제조하는 방법과 1-부텐 자체를 용매로 제조하는 방법등이 보고되어 있으나, 제조 후 분리 문제등의 이유로 현재 상업적으로는 1-부텐 자체를 용매로 제조하는 방법이 사용되고 있다.As a method of preparing the stereoregular polybutene-1, a method of preparing a hydrocarbon as a solvent and a method of preparing 1-butene itself as a solvent have been reported. The method of manufacturing butene itself with a solvent is used.

일반적으로 입체규칙성 폴리부텐-1은 염화 디에틸알루미늄 같은 유기 알루미늄 화합물과 3염화티타늄을 주성분으로 하는 주촉매 존재하에서 1-부텐을 중합하여 얻는다.Stereoregular polybutene-1 is generally obtained by polymerizing 1-butene in the presence of an organoaluminum compound such as diethylaluminum chloride and a main catalyst composed mainly of titanium trichloride.

이 방법의 경우, 입체 특이성이 충분히 높지 못하여 비입체 규칙성 폴리부텐-1을 제거하여 왔다. 그리고 낮은 활성으로 인해 중합체 물성에 나쁜 영향을 미치는 촉매 잔사의 제거 공정이 필요하다. In this method, the stereospecificity has not been sufficiently high to remove non-stereoregular polybutene-1. In addition, there is a need for a process for removing catalyst residues that adversely affects polymer properties due to low activity.

입체규칙성 폴리부텐-1은 또한 염화 마그네슘에 담지된 티타늄 및 내부 전자공여체로 이루어진 촉매계의 존재하에서 1-부텐을 중합하여 얻어질 수 있다. Stereoregular polybutene-1 may also be obtained by polymerizing 1-butene in the presence of a catalyst system consisting of titanium supported on magnesium chloride and an internal electron donor.

하지만, 이 방법 역시 기존의 고활성 폴리에틸렌 혹은 폴리프로필렌 수준의 촉매 활성을 얻을 수 없기 때문에 여전히 ppm(무게) 수준의 티타늄 성분이 중합체 내에 잔존하고 있다는 문제가 있다.However, this method also suffers from the fact that the titanium component at the ppm (weight) level remains in the polymer because it cannot obtain catalytic activity at the level of the existing high activity polyethylene or polypropylene.

종래의 입체규칙성 폴리부텐-1의 제조방법에 관한 구체적인 예로서 유럽특허등록 제187,034 A2호에는, 노르말부탄, 이소부탄, 노르말펜탄, 이소펜탄 및 시클로펜탄과 같은 저급탄화수소를 용매로 하고, 지글러-나타계 촉매와 유기 알루미늄 화합물 및 외부 전자 공여체(루이스 염기) 그리고 1-부텐을 투입하여 20~45℃의 온도에서 중합하여 입자 형태의 높은 입체 규칙성을 갖는 폴리부텐-1을 제조하는 방법을 채택하였고, 이에 따라 제조된 폴리부텐-1로부터 용매를 분리해야 하는 문제점을 해결하고자 하였다.As a specific example of a conventional method for producing a stereoregular polybutene-1, European Patent Registration No. 187,034 A2 uses a lower hydrocarbon such as normal butane, isobutane, normal pentane, isopentane and cyclopentane as a solvent, and Ziegler. A method of preparing polybutene-1 having high stereoregularity in the form of particles by polymerizing at a temperature of 20 to 45 ° C. by adding an natac catalyst, an organoaluminum compound, an external electron donor (Lewis base) and 1-butene. The present invention was to solve the problem of separating the solvent from the polybutene-1 thus prepared.

이와 같은 폴리부텐-1 제조 방법은 98이상의 매우 높은 입체규칙성으로 인하여 비입체규칙성 폴리부텐-1을 제거하여줄 필요가 없다는 점 및 용매와의 분리가 용이하다는 장점이 있다. This polybutene-1 manufacturing method has the advantage of not having to remove the non-stereoregular polybutene-1 due to the very high stereoregularity of 98 or more and easy separation from the solvent.

하지만, 촉매 활성이 2,360g/g-cata·4h, 즉, 590g/g-cata·h의 저활성이기 때문에 중합체의 물성을 저하시키는 촉매 잔사 제거 공정이 필요하며, 촉매 효율이 지나치게 낮아서 실제 상업적으로 적용하기에는 어렵다는 단점이 있다.However, since catalyst activity is 2,360 g / g-cata · 4 h, that is, low activity of 590 g / g-cata · h, a catalyst residue removal process for reducing the physical properties of the polymer is required. The disadvantage is that it is difficult to apply.

한편, 종래의 또 다른 폴리부텐-1의 제조방법에 관한 구체적인 예로서는, 미국 특허등록 제6,306,996 B1 호를 살펴보면, 1-부텐 자체를 용매 및 단량체로 사용하고, 트리부틸알루미늄(TIBA)과 외부 전자 공여체로서 디이소프로필 디메톡시 실란(DIPMS)을 사용하고, 염화마그네슘 담지 주촉매 존재하에서 1-부텐을 2단계 중합을 통해 제조하였다. Meanwhile, as a specific example of another conventional method for preparing polybutene-1, US Patent No. 6,306,996 B1 shows that 1-butene itself is used as a solvent and a monomer, tributylaluminum (TIBA) and an external electron donor Diisopropyl dimethoxy silane (DIPMS) was used as a compound, and 1-butene was prepared through two-step polymerization in the presence of a magnesium chloride supported main catalyst.

이들은 전술한 제조법을 통하여 높은 입체 규칙성을 가지고, 촉매 잔사가 티타늄 기준 50ppm 이하를 보이며, 분자량 분포가 6이상 되는 폴리부텐-1을 제조함으로써 만족할 만한 물성을 얻을 수 있었고, 촉매 활성은 폴리부텐-1 단일 중합체 기준 14,000g/g-cata·4h 즉, 3,500g/g-cata·h의 활성을 보였다. They have high stereoregularity through the above-described preparation method, and have obtained satisfactory physical properties by preparing polybutene-1 having a catalyst residue of 50 ppm or less based on titanium and having a molecular weight distribution of 6 or more, and the catalytic activity is polybutene- It showed an activity of 14,000 g / g-cata.4h, that is, 3,500 g / g-cata.h, based on one homopolymer.

그러나 상기와 같은 방법에 의한 입체 규칙성 폴리부텐-1의 제조방법 역시, 기존의 고활성 폴리에틸렌 혹은 폴리프로필렌의 촉매 활성에 훨씬 못미치는 효율때문에 반응시간을 길게 가져야 한다는 단점이 있으며, 이는 생산성 저하에 직결된다는 문제점이 있었다. However, the method for preparing stereoregular polybutene-1 by the above method also has a disadvantage in that the reaction time should be long because of the efficiency much less than that of the existing high activity polyethylene or polypropylene. There was a problem of being connected directly.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, Accordingly, the present invention has been made to solve the above problems,

본 발명의 목적은, 높은 입체 규칙성을 가질 뿐만 아니라, 고활성 폴리에틸렌 혹은 폴리프로필렌에서 보여지는 수준의 높은 활성으로 1-부텐을 중합함으로써 티타늄 함량이 ppm(무게) 수준으로는 검출되지 않는, 즉, 티타늄이 단위 ppm (1ppm) 미만의 수준으로 검출되는, 고입체규칙성 폴리부텐-1 중합체를 제공하는 것이다.The object of the invention is not only to have high stereoregularity, but also to polymerize 1-butene with a high activity as seen in high activity polyethylene or polypropylene so that the titanium content is not detected at ppm (weight) levels, i.e. To provide a high stereoregular polybutene-1 polymer, wherein titanium is detected at levels below unit ppm (1 ppm).

상기와 같은 본 발명의 목적은, 1-부텐(1-Butene)의 단일 중합체 또는 무게비 40%까지 공단량체가 함유된, α-올레핀이 공중합된 공중합체로서, 그 물성이, 1)촉매 잔사에 있어서 티타늄이 단위 ppm (1ppm) 미만의 수준으로 검출되고, 2)13C-NMR에 의해 측정된 입체규칙성(isotactic index, mmmm%)이 96이상이며, 3) 분자량 분포가 Mw/Mn 3~6인 것을 특징으로 하는 고입체규칙성 폴리부텐-1 중합체에 의해 달성된다.The object of the present invention as described above is a homopolymer of 1-butene (1-Butene) or a copolymer copolymerized with an α-olefin containing a comonomer up to a weight ratio of 40%, the physical properties of which 1) catalyst residue Titanium is detected at a level of less than 1 ppm (1 ppm), 2) isotactic index (mmmm%) measured by 13 C-NMR is 96 or more, and 3) molecular weight distribution is Mw / Mn 3 ~. 6, which is achieved by a high stereoregular polybutene-1 polymer.

상기와 같은 폴리부텐-1의 제조 방법은, 고입체규칙성 폴리부텐-1의 제조에 사용되는 통상의 촉매의 존재하에 고입체규칙성 폴리부텐-1을 제조하는 방법에 있어서, 용매로 사용되거나 또는 용매로 사용되지 않는, 반응단량체인 1-부텐을 수소를 투입하여 중합시, 중합 반응기내 불활성 기체가 수소와 함께 존재하도록, 상기 촉매의 투입과 별도로 중합반응 개시 직전에 불활성 기체를 상기 중합반응기내로 투입하는 단계를 포함하며, 이때, 상기 중합 단계는 주어진 반응온도에서 반응물의 기액 평형압보다 중합 반응기내의 압력을 높이도록 상기 불활성 기체를 상기 중합 반응기내에 투입하는 것을 특징으로 한다.Such a method for preparing polybutene-1 is used as a solvent in the method for preparing high stereoregular polybutene-1 in the presence of a conventional catalyst used for preparing high stereoregular polybutene-1. Alternatively, in the polymerization of 1-butene, a reaction monomer, which is not used as a solvent, with hydrogen, an inert gas is added to the polymerization reaction immediately before initiation of the polymerization reaction so that an inert gas is present with hydrogen in the polymerization reactor. And injecting the inert gas into the polymerization reactor so that the pressure in the polymerization reactor is higher than the gas-liquid equilibrium pressure of the reactants at a given reaction temperature.

그리고, 상기 불활성 기체로서, 질소, 헬륨 및 아르곤으로 이루어진 그룹에서 선택되는 어느 하나를 사용하는 것이 바람직하고, 상기 불활성 기체 투입 단계는 중합반응온도를 10℃~110℃로 하는 것이 바람직하고, 20℃~90℃로 하는 것이 더욱 바람직하다. And, as the inert gas, it is preferable to use any one selected from the group consisting of nitrogen, helium and argon, and the inert gas input step is preferably a polymerization reaction temperature of 10 ℃ to 110 ℃, 20 ℃ It is more preferable to set it as -90 degreeC.

이하, 본 발명에 따른 고입체규칙성 폴리부텐-1 중합체에 대하여 상세하게 설명한다. Hereinafter, the high stereoregular polybutene-1 polymer according to the present invention will be described in detail.

본 발명은 폴리부텐-1 중합체의 중합 과정에서, 종래에는 이용된 바 없었던, 불활성 기체를 의도적으로 투입함에 따라, 불활성 기체가 투입되는 다른 일반적인 반응에서와는 달리, 높은 입체규칙성을 갖고, 촉매 잔사에 있어서 티타늄이 단위 ppm (1ppm) 미만의 수준으로 검출되는, 폴리부텐-1을, 고활성 폴리에틸렌 혹은 폴리프로필렌 수준의 높은 촉매 수율로 중합하여 얻는다는 기술적 사상에 기초한다.In the polymerization process of the polybutene-1 polymer, the present invention has a high stereoregularity, unlike other general reactions in which an inert gas is introduced, by intentionally adding an inert gas, which has not been conventionally used. It is based on the technical idea that polybutene-1, in which titanium is detected at levels below unit ppm (1 ppm), is obtained by polymerizing with a high catalyst yield of high activity polyethylene or polypropylene.

즉, 본 발명에 따른 고입체규칙성 폴리부텐-1 중합체의 제조방법은, 상용 촉매의 존재하에 고입체규칙성 폴리부텐-1을 제조하는 방법에 있어서, 용매로 사용되거나 또는 용매로 사용되지 않는, 반응단량체인 1-부텐을 수소를 투입하여 중합시, 중합 반응기내 불활성 기체가 수소와 함께 존재하도록, 상기 촉매의 투입과 별도로 중합반응 개시 직전에 불활성 기체를 상기 중합반응기내로 투입하여 반응을 진행시키도록 한다(S1).That is, the method for producing a high stereoregular polybutene-1 polymer according to the present invention is a method for producing a high stereoregular polybutene-1 in the presence of a commercial catalyst, which is used as a solvent or not used as a solvent. In the polymerization of 1-butene, which is a reaction monomer, inert gas is introduced into the polymerization reactor immediately before the start of the polymerization reaction so that an inert gas is present with hydrogen in the polymerization reactor. To proceed (S1).

이하 본 발명의 실시예에 따른 제조 과정을 상술한다. 이하에서는 회분식 반 응기를 이용하는 경우에 관한 설명이나, 회분식 반응기이외에도 연속완전혼합식 반응기, 관형반응기, 또는 기타 반응기등 모든 형태의 반응기를 사용할 수 있으며, 특별히 회분식 반응기에 의해 제한되지 않음이 당업자에게 이해되어 질 것이다. Hereinafter, a manufacturing process according to an embodiment of the present invention will be described in detail. In the following description of the case of using a batch reactor, but in addition to the batch reactor, all types of reactors, such as a continuous fully mixed reactor, a tubular reactor, or other reactors can be used, it is understood that those skilled in the art are not particularly limited by the batch reactor. Will be.

먼저, 첫번째 과정에서 용매 및/또는 반응 단량체로 사용되는 1-부텐(1-Butene)을 반응기에 넣는데, 이때 공촉매(g) 및 외부전자공여체(h)를 넣고 전처리 하는 과정을 거치도록 하는 것이 바람직하다.First, 1-butene (1-Butene), which is used as a solvent and / or a reaction monomer in the first step, is put into a reactor, where a co-catalyst (g) and an external electron donor (h) are added and pretreated. desirable.

이때 진공과 불활성 기체의 기류 투입을 반복하여 반응기를 깨끗이 한 후, 1-부텐(1-Butene)을 반응기에 넣고 공촉매(g)와 외부전자공여체(h)를 넣고 혼합하면서 충분히 전처리를 한다. At this time, the reactor is cleaned by repeating the introduction of vacuum and inert gas stream, and then 1-butene (1-Butene) is put in the reactor, and a pre-treatment is sufficiently performed while mixing the cocatalyst (g) and the external electron donor (h).

상기 공촉매(g)는 두번째 과정에서 지글러-나타계 등의 주촉매(i)와 접촉하여 1-부텐(1-Butene)을 중합시킨다. 외부전자공여체(h)는 입체 특이성을 극대화하기 위하여 투입된다. The cocatalyst (g) is contacted with the main catalyst (i) such as Ziegler-Natta type in the second process to polymerize 1-butene (1-Butene). The external electron donor (h) is added to maximize stereospecificity.

첫번째 과정에서, 반응기 내에는 바람직하지 않은 촉매독, 구체적인 예로 수분, 산소, 일산화탄소, 이산화탄소, 아세틸렌 등의 촉매독은 사전에 제거되어야 하며, 이를 위해 진공으로 치환하거나, 혹은 불활성 기체(j)로 치환하거나, 혹은 진공 치환 방법과 불활성 기체(j) 치환 방법을 병행하여, 촉매독을 제거하도록 한다.In the first process, undesirable catalyst poisons in the reactor, specifically catalyst poisons such as water, oxygen, carbon monoxide, carbon dioxide, acetylene, etc., must be removed in advance, for this purpose either by vacuum or by inert gas (j). Alternatively, the catalyst poison is removed in parallel with the vacuum substitution method and the inert gas (j) substitution method.

다음 두번째 과정으로, 주촉매(i), 불활성 기체(j)를 넣고 교반하면서 해당 중합 온도로 승온시켜 중합하는 과정을 거치게 된다. 이때 분자량 조절제를 같이 투입한다. In the second process, the main catalyst (i) and the inert gas (j) are added and stirred to raise the polymerization temperature to undergo a process of polymerization. At this time, the molecular weight regulator is added together.

두번째 과정은, 지글러-나타계등의 중합촉매인 주촉매(i)를 반응계 내에 투 입하고, 분자량 조절제를 넣은 다음, 불활성 기체(j)로 압력을 가한 후, 교반하면서 해당 중합온도로 승온시켜 중합하는 과정이다. In the second process, the main catalyst (i), which is a polymerization catalyst such as Ziegler-Natta type, is introduced into the reaction system, a molecular weight modifier is added, pressure is applied with an inert gas (j), and the temperature is raised to the polymerization temperature while stirring. It is a process of polymerization.

이때 중합반응온도는 10℃~110℃인 것이 바람직하고, 20℃~90℃에서 수행하는 것이 더욱 바람직하다. 그리고, 사용되는 압력은 약 1~1000 bar, 바람직하게는 1~60 bar의 조건에서 행한다. At this time, the polymerization reaction temperature is preferably 10 ° C ~ 110 ° C, more preferably carried out at 20 ° C ~ 90 ° C. The pressure used is about 1 to 1000 bar, preferably 1 to 60 bar.

중합시간은, 예를 들어, 일반적으로 회분식(Batch) 반응일 경우, 약 10분~20시간, 바람직하게는 약 30분~4시간이며, 일반적으로 연속식(CSTR) 반응일 경우에도 약 10분~20 시간, 바람직하게는 약 30분~4시간의 평균체류시간을 갖는 것이 좋다.The polymerization time is, for example, generally about 10 minutes to 20 hours, preferably about 30 minutes to 4 hours in the case of a batch reaction, and generally about 10 minutes in the case of a continuous (CSTR) reaction. It is preferred to have an average residence time of ˜20 hours, preferably about 30 minutes to 4 hours.

이와 같은 반응온도, 압력, 시간에서 높은 중합활성을 얻을 수 있게 된다.At this reaction temperature, pressure, and time, high polymerization activity can be obtained.

중합체 분자량을 조절하기 위해서 분자량 조절제로 수소를 사용한다. 한편, 반응 온도를 조절하여 중합체 분자량을 조절할 수도 있다. Hydrogen is used as the molecular weight regulator to control the polymer molecular weight. On the other hand, the polymer molecular weight may be adjusted by adjusting the reaction temperature.

이와 같은 두번째 과정은, 특히 반응계 내에서 어떠한 반응에도 참여하지 않는 불활성 기체(j)를 수소와 함께 특히 상기하는 바와 같은 일정압을 갖도록 투입함에 따라, 해당 온도에서의 기액 평형압력보다 높은 압력에서 중합반응이 이루어지도록 하여 중합활성을 월등하게 높여 주게 된다.This second process is especially polymerized at a pressure higher than the gas-liquid equilibrium pressure at that temperature, as inert gas (j) which does not participate in any reaction in the reaction system is introduced with hydrogen, in particular to have a constant pressure as described above. The reaction is made to significantly increase the polymerization activity.

이때 적절한 불활성 기체압이 투입되지 않을 경우, 상대적으로 중합활성이 저하되어 결과적으로 폴리부텐-1 제조에 있어 촉매의 효율을 상대적으로 저하시키게 된다. In this case, when the appropriate inert gas pressure is not added, the polymerization activity is relatively lowered, and as a result, the efficiency of the catalyst in the production of polybutene-1 is relatively lowered.

한편, 이 단계에서 필요에 따라 에틸렌 혹은 프로필렌과 같은 탄소수 1에서 20까지의 a-올레핀이 공단량체로 소량 투입될 수 있다. On the other hand, a small amount of a-olefin having 1 to 20 carbon atoms, such as ethylene or propylene, may be added to the comonomer at this stage as needed.

다음 세번째 과정으로, 생성된 폴리부텐-1을 중합 반응기 혹은 별도의 용기에서 교반하면서, 안정제 및 첨가제(k)를 투입하여 처리하는 과정을 거치게 된다.In the third process, while the resulting polybutene-1 is stirred in a polymerization reactor or a separate vessel, a process of adding a stabilizer and an additive (k) is performed.

상업적 응용시 감압후 이송을 위해 폴리부텐-1에 열을 가하게 되는데, 세번째 과정에서, 그 폴리부텐-1에 가해지는 열에 의한 열화현상(degradation)을 줄이기 위해 산화 방지제등을 첨가할 수 있다. In a commercial application, heat is applied to polybutene-1 for transport after decompression. In a third process, an antioxidant or the like may be added to reduce degradation caused by heat applied to the polybutene-1.

반응기 이후의 과정에 있어, 개념적으로 유사한 벌크-용액(bulk-solution) 공정의 저밀도 폴리에틸렌(LDPE)의 경우, 최종 단계인 압출기에 일반적으로 마스터 배치(MB)를 동시에 투입하여 안정제 및 첨가제(k)를 투입하는데, 상기한 바와 같이 세번째 과정에서 투입할 경우에는, 안정제 및 첨가제(k)가 폴리부텐-1에 보다 균일하게 혼합될 수 있으며, 안정제 및 첨가제(k)가 탄화수소에 용해 가능하거나 용해되지는 않더라도 나노 수준의 입자 크기를 지니고 있다면 분자 수준으로 혼합 가능하게 된다. In the post-reactor process, for low density polyethylene (LDPE) in a conceptually similar bulk-solution process, the master stage (MB) is usually added simultaneously to the final stage extruder to stabilizers and additives (k). In the third process, as described above, the stabilizer and the additive (k) may be more uniformly mixed with the polybutene-1, and the stabilizer and the additive (k) may be soluble or not soluble in hydrocarbons. If they do not have nanoparticle size, they can be mixed at the molecular level.

상기 세번째 과정에 있어서 중합 반응기가 회분식(batch)일 경우, 별도의 반응기 없이도 반응기에 직접 투입 가능하며, 연속완전혼합식(CSTR)인 경우, 별도의 교반 장치 혹은 다른 혼화 장치가 설치된 용기 내에서 안정제 및 첨가제(k)를 투입하여 균일하게 혼합이 가능하다.In the third process, if the polymerization reactor is a batch, it can be directly added to the reactor without a separate reactor, in the case of continuous complete mixing (CSTR), stabilizer in a vessel equipped with a separate stirring device or another mixing device And by adding an additive (k) it is possible to mix uniformly.

다음 네번째 과정으로, 감압후 미반응 단량체를 제거하여 고체 형태로 만드는 과정을 거치게 된다.The fourth step is to remove the unreacted monomer after decompression to form a solid.

네번째 과정에서는 충분히 감압을 하여 고체 형태의 폴리부텐-1을 얻으면 된다. In the fourth step, the pressure is sufficiently reduced to obtain polybutene-1 in solid form.

상기 본 발명에 따른 폴리부텐-1 제조에 사용되는 각각의 성분에 대해서 보다 상세히 설명하면 다음과 같다.Hereinafter, the components of the polybutene-1 according to the present invention will be described in detail.

상기 주촉매(i)는 삼염화티타늄 촉매, 솔베이형 삼염화티타늄 촉매, 사염화 티타늄 촉매, 실리카 담지 티타늄 촉매를 사용하거나, 지글러 나타형 촉매를 사용하거나, 메탈로센과 같은 단일 활성점 촉매, 또는 전이 금속 촉매를 사용한다.The main catalyst (i) may be a titanium trichloride catalyst, a solbay type titanium trichloride catalyst, a titanium tetrachloride catalyst, a silica-supported titanium catalyst, a Ziegler-Natta type catalyst, a single active site catalyst such as metallocene, or a transition metal catalyst. Use

높은 촉매 활성을 얻기 위해서 바람직하게는 실리카 또는 상기 마그네슘 담지형 중합촉매를 포함하는 마그네슘 담지 티타늄 촉매와 메탈로센 촉매를 사용할 수 있다. In order to obtain high catalytic activity, preferably, a magnesium-supported titanium catalyst and a metallocene catalyst including silica or the magnesium-supported polymerization catalyst can be used.

메탈로센계 촉매로서는 예를 들어 펜타메틸시클로펜타디에닐지르코늄 트리클로라이드, 비스(펜타메틸시클로펜타디에닐)지르코늄 디클로라이드, 인데닐지르코늄 트리클로라이드, 비스(인데닐)지르코늄 디클로라이드, 디메틸실릴렌-비스(인데닐)지르코늄 디클로라이드, (디메틸실릴렌)(디메틸실릴렌)-비스(인데닐)지르코늄 디클로라이드, (디메틸실릴렌)-비스(2-메틸-4-페닐인데닐)지르코늄 디클로라이드, (디메틸실릴렌)-비스(벤조인데닐)지르코늄 디클로라이드, 에틸렌-비스(인데닐)지르코늄 디클로라이드, (에틸렌)(에틸렌)-비스(인데닐)지르코늄 디클로라이드, (에틸렌)(에틸렌)-비스(3-메틸인데닐)지르코늄 디클로라이드, (에틸렌)(에틸렌)-비스(4,7-디메틸인데닐)지르코늄 디클로라이드, (3급-부틸이미드)(테트라메틸-η5-시클로펜타디에닐)-1,2-에탄디일지르코늄 디클로라이드, (3급-부틸이미드)디메틸(테트라메틸-η5-시클로펜타디에닐)실란지르코늄 디클로라이드, (메틸아미드)(테트라메틸-η5-시클로펜타디에닐)-1,2-에탄디일지르코늄 디클로라이드등을 사용할 수 있다.As the metallocene catalyst, for example, pentamethylcyclopentadienyl zirconium trichloride, bis (pentamethylcyclopentadienyl) zirconium dichloride, indenyl zirconium trichloride, bis (indenyl) zirconium dichloride, dimethylsilylene- Bis (indenyl) zirconium dichloride, (dimethylsilylene) (dimethylsilylene) -bis (indenyl) zirconium dichloride, (dimethylsilylene) -bis (2-methyl-4-phenylindenyl) zirconium dichloride , (Dimethylsilylene) -bis (benzoindenyl) zirconium dichloride, ethylene-bis (indenyl) zirconium dichloride, (ethylene) (ethylene) -bis (indenyl) zirconium dichloride, (ethylene) (ethylene) -Bis (3-methylindenyl) zirconium dichloride, (ethylene) (ethylene) -bis (4,7-dimethylindenyl) zirconium dichloride, (tert-butylimide) (tetramethyl-η5-cyclopenta Dienyl) -1,2-ethanediyl Zirconium Dichloride, (tert-butylimide) dimethyl (tetramethyl-η5-cyclopentadienyl) silanezirconium dichloride, (methylamide) (tetramethyl-η5-cyclopentadienyl) -1,2-ethane Diylzirconium dichloride and the like can be used.

상기 지글러-나타형 촉매로, 특히 다음의 마그네슘 담지형 중합촉매를 이용하는 것이 종래 내부전자공여체로서 프탈레이트계를 이용하는 경우와는 달리 환경친화적이라는 측면에서 바람직하다.As the Ziegler-Natta type catalyst, in particular, the following magnesium-supported polymerization catalyst is preferable in terms of being environmentally friendly unlike the case of using a phthalate system as a conventional internal electron donor.

즉, 할로겐 함유 마그네슘 화합물에 활성수소 함유 유기 화합물을 반응시킨 전처리 반응물에 PA를 투입하여 균일용액을 만들고, 이 균일용액에 염화티타늄을 첨가하여 구형입상의 담지체를 회수하고, 회수된 담지체에, 전이금속화합물과 환경호르몬 유발물질인 프탈레이트(phthalate)계 대신, 하기 [식1]의 디알킬프로판 1,3-디에테르 계의 구조내에 실리콘(Si) 원자를 갖는 내부전자공여체를 첨가하여, 특히 탄소원자수 3이상의 a-올레핀의 중합반응에서 촉매로 사용되어 환경친화적 특성 및 고활성을 갖게 되는, 마그네슘 담지형 중합촉매를 이용하는 것이 바람직하다.That is, PA is added to a pretreatment reaction product in which an active hydrogen-containing organic compound is reacted with a halogen-containing magnesium compound to make a homogeneous solution, and titanium chloride is added to the homogeneous solution to recover a spherical particulate carrier, and then to the recovered carrier. In place of the transition metal compound and the phthalate system, which is an environmental hormone-inducing substance, an internal electron donor having a silicon (Si) atom is added to the dialkyl propane 1,3-diether structure of the following formula [1], In particular, it is preferable to use a magnesium-supported polymerization catalyst, which is used as a catalyst in the polymerization of a-olefin having 3 or more carbon atoms and has environmentally friendly characteristics and high activity.

[식1][Equation 1]

Figure 112005075072639-PAT00001
Figure 112005075072639-PAT00001

상기 [식1]에서 R1, R2는 탄소수 1~20까지의 지방족 또는 방향족 탄화수소이고, R6은 탄소수 1~30까지의 지방족 또는 방향족 탄화수소이고, R2, R4 및 R5는 수소 또는 탄소수 1~30까지의 지방족 또는 방향족 탄화수소이다.In Formula [1], R 1 and R 2 are aliphatic or aromatic hydrocarbons having 1 to 20 carbon atoms, R 6 is aliphatic or aromatic hydrocarbons having 1 to 30 carbon atoms, and R 2 , R 4 and R 5 are hydrogen or Aliphatic or aromatic hydrocarbons having 1 to 30 carbon atoms.

상기 내부전자공여체는, 종래의 촉매에 빈번하게 사용되어 왔던 환경호르몬 유발물질인 프탈레이트계 내부전자공여체와는 달리 환경친화적 특성을 가지고 있으며, 이는 또한 상기 외부전자공여체로 사용될 수 있다.The internal electron donor, unlike the phthalate-based internal electron donor which is an environmental hormone-inducing substance which has been frequently used in the conventional catalyst, has an environmentally friendly property, and it can also be used as the external electron donor.

상기 마그네슘 담지형 중합촉매는, 그 화학구조가 아직 알려져 있지는 않으며, 조성에 있어서, 티타늄 1~4중량%, 마그네슘 15~30중량%, 할로겐 60~80중량% 및 실리콘(Si)이 1.0중량% 미만 포함된다.The magnesium-supported polymerization catalyst is not yet known in its chemical structure, and in composition, 1 to 4% by weight of titanium, 15 to 30% by weight of magnesium, 60 to 80% by weight of halogen and 1.0% by weight of silicon (Si) Included less than.

상기 주촉매(i)는, 또한 에틸렌, 혹은 프로필렌과 같은 a-올레핀으로 전처리(Prepolymerization)를 하여 사용될 수도 있다.The main catalyst (i) may also be used by prepolymerization with a-olefin such as ethylene or propylene.

상기 공촉매(g)로는 RnMX3 -n(여기서, M은 마그네슘, 보론, 알루미늄, 아연 등이며, 주기율표 IA, IIA, IIB, IIIB 또는 IVB족 금속을 의미하고, R은 탄소수 1~20의 직쇄, 측쇄 또는 시클로알킬기를 나타내며, X는 할로겐 원자를 의미하고, n은 0<n<3을 만족하는 정수이다)로 표시되는 유기금속화합물을 사용한다. The cocatalyst (g) is R n MX 3 -n (where M is magnesium, boron, aluminum, zinc, etc., means a metal of the periodic table IA, IIA, IIB, IIIB or IVB, R is 1 to 20 carbon atoms) An organometallic compound represented by a linear, branched or cycloalkyl group of X, X means a halogen atom, and n is an integer satisfying 0 <n <3.

상기 유기금속화합물의 구체적인 예로는 디에틸알루미늄 클로라이드(DEAC), 에틸알루미늄 디클로라이드(EADC), 디노르말부틸알루미늄 클로라이드(DNBAC), 디이소부틸알루미늄 클로라이드(DIBAC), 에틸알루미늄 세스퀴클로라이드(EASC), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 트리노르말헥실알루미늄(TNHA), 트리노르말옥틸알루미늄(TNOA), 트리노르말데실알루미늄(TNDA), 트리에틸징크, 트리에틸보란, 트리이소부틸보란, 그리고 메틸알루미녹산(MAO)류 등의 유기 알루미늄 화합물 중에서 선택하여 사용할 수 있으며, 또한 이들은 단독 혹은 혼합하여 사용될 수 있다. Specific examples of the organometallic compound include diethylaluminum chloride (DEAC), ethylaluminum dichloride (EADC), dinormalbutylaluminum chloride (DNBAC), diisobutylaluminum chloride (DIBAC), and ethylaluminum sesquichloride (EASC). , Triethylaluminum (TEA), triisobutylaluminum (TIBA), trinormallyhexyl aluminum (TNHA), trinormalmal octyl aluminum (TNOA), trinormaldecylaluminum (TNDA), triethyl zinc, triethyl borane, triiso It can select from organoaluminum compounds, such as butyl borane and methyl aluminoxane (MAO), and can also be used individually or in mixture.

바람직하게는 디에틸알루미늄 클로라이드(DEAC), 트리에틸알루미늄(TEA), 트리이소부틸알루미늄(TIBA), 그리고 메틸알루미녹산(MAO)류 등을 사용할 수 있다.Preferably, diethylaluminum chloride (DEAC), triethylaluminum (TEA), triisobutylaluminum (TIBA), methylaluminoxane (MAO), or the like can be used.

또한 외부 전자공여체인 조촉매(h)는 생성되는 폴리부텐-1의 입체특이성을 극대화 하기 위하여 투입된다. In addition, the promoter (h), which is an external electron donor, is added to maximize the stereospecificity of the resulting polybutene-1.

예를 들면 실란 화합물, 무기산, 황화수소, 에테르류, 디에테르류, 에스테르류, 아민류, 유기산, 유기산 에스테르 등의 화합물이 사용될 수 있으며, 또한 이들은 단독으로 사용하는 이외에 2이상 혼합하여 사용될 수 있다. For example, compounds such as silane compounds, inorganic acids, hydrogen sulfides, ethers, diethers, esters, amines, organic acids, and organic acid esters may be used, and these may be used in combination of two or more in addition to being used alone.

상기 외부 전자공여체(h)로서 알킬, 아릴 및 알콕시기를 함유하는 실란화합물을 사용하는 것이 바람직하며, 구체적인 예로는 디페닐디메톡시실란, 페닐트리메톡시실란, 이소부틸메톡시실란, 디이소부틸디메톡시실란, 시클로헥실메틸디메톡시실란, 그리고, 디이소프로필디메톡시실란 등을 사용할 수 있다. As the external electron donor (h), it is preferable to use a silane compound containing alkyl, aryl and alkoxy groups, and specific examples thereof include diphenyldimethoxysilane, phenyltrimethoxysilane, isobutylmethoxysilane and diisobutyldimeth. A methoxysilane, cyclohexyl methyldimethoxysilane, diisopropyl dimethoxysilane, etc. can be used.

또한 상기한 바와 같이, 디알킬프로판 1,3-디에테르 계의 구조내에 실리콘(Si) 원자를 갖는 특이한 구조를 가진 내부전자공여체를 외부전자공여체(h)로 사용할 수도 있다.In addition, as described above, an internal electron donor having an unusual structure having a silicon (Si) atom in the dialkyl propane 1,3-diether structure may be used as the external electron donor (h).

한편, 본 발명에 있어서, 상기한 바와 같이, 입체규칙성 폴리부텐-1의 중합활성을 높이기 위해, 특히 반응에 참여하지 않는 불활성 기체(j)를 사용하여 주어진 반응온도에서 반응물의 기액 평형압 보다 반응기 내의 압력을 높인다는 것이 중요하다.On the other hand, in the present invention, as described above, in order to increase the polymerization activity of the stereoregular polybutene-1, in particular, the gas-liquid equilibrium pressure of the reactants at a given reaction temperature using an inert gas (j) that does not participate in the reaction is higher. It is important to increase the pressure in the reactor.

즉, 회분식 및 연속완전혼합식 혹은 다른 방식의 반응기 내에서 지글러-나타형 촉매등 및 유기알루미늄 화합물 존재하에 반응에 참여하지 않는 불활성 기체를 수소와 함께 첨가하여 해당 온도에서의 반응물의 기액 평형 압력보다 높은 압력하에서 중합함으로써 높은 수율로 폴리부텐-1을 제조할 수 있다. That is, an inert gas that does not participate in the reaction in the presence of an Ziegler-Natta catalyst and an organoaluminum compound in a batch and continuous fully mixed or other reactors is added together with hydrogen to give a higher than the gas-liquid equilibrium pressure of the reactants at that temperature. By polymerizing under high pressure, polybutene-1 can be produced in high yield.

이러한 불활성 기체는, 1-부텐을 중합하여 폴리부텐-1을 제조하는 반응에 참여하지 않는 기체로서, 예를 들어 질소, 헬륨, 네온, 아르곤, 크립톤, 제논 그리고 라돈등을 단독으로 또는 2이상 혼합하여 사용할 수 있으며, 특히 질소, 헬륨 및 알르곤중 어느 하나의 사용이 바람직하다.Such an inert gas is a gas that does not participate in the reaction of polymerizing 1-butene to prepare polybutene-1, and, for example, nitrogen, helium, neon, argon, krypton, xenon, radon, etc., alone or in combination of two or more. It can be used, in particular, the use of any one of nitrogen, helium and argon is preferred.

그리고 상기 안정제 및 첨가제(k)는 필요에 따라 폴리올레핀계 수지에서 사용되고 있는 페놀계 산화방지제, 인 또는 황계 산화방지제, 열안정제 및 핵제등을 사용할 수 있다. 그리고 이외 다른 안정제 및 첨가제(k)를 더 첨가할 수도 있다.As the stabilizer and the additive (k), phenol-based antioxidants, phosphorus or sulfur-based antioxidants, heat stabilizers, and nucleating agents used in polyolefin resins may be used as necessary. In addition, other stabilizers and additives (k) may be further added.

상기 본 발명의 제조방법에 따른 고입체규칙성 폴리부텐-1 중합체는, 1-부텐(1-Butene)의 단일 중합체 또는 무게비 40%까지 공단량체가 함유된, α-올레핀이 공중합된 공중합체로서 다음의 물성을 갖는다.The high stereoregular polybutene-1 polymer according to the preparation method of the present invention is a single polymer of 1-butene (1-Butene) or a copolymer containing α-olefin copolymer containing a comonomer up to 40% by weight. It has the following physical properties.

즉, 우선, 하기 실시예로부터 확인할 수 있듯이, 촉매 잔사에 있어서 ppm(무게) 수준으로는 티타늄이 검출되지 않는다. 즉, 티타늄이 단위 ppm (1ppm) 미만의 수준으로 검출된다.That is, first, as can be seen from the examples below, titanium is not detected at the ppm (weight) level in the catalyst residue. That is, titanium is detected at levels below unit ppm (1 ppm).

그리고, 하기 실시예 및 첨부 도면으로 부터 확인할 수 있듯이, 13C-NMR에 의해 측정된 입체규칙성(isotactic index, mmmm%)이 96이상이 된다.And, as can be seen from the following examples and the accompanying drawings, the stereoregularity (isotactic index, mmmm%) measured by 13 C-NMR is 96 or more.

상기 폴리부텐-1 중합체는, 분자량 분포가 Mw/Mn 3~6으로서, 상기 분자량 분포의 조절은 가능하고, 또한 하기하는 일정한 공정 조작에 따라 분자량 분포를 Mw/Mn 8이상으로 넓힐 수 있다. The molecular weight distribution of the polybutene-1 polymer is Mw / Mn 3 to 6, and the molecular weight distribution can be controlled, and the molecular weight distribution can be widened to Mw / Mn 8 or more by the following constant process operation.

즉, 연속완전혼합식 반응기에 의해 제조시, 단일 반응기 및 1단계 중합만으로 분자량 분포가 Mw/Mn 3~6 범위내에서 조절될 수 있으며, 한편, 상기 분자량 분포는, 회분식 반응기, 연속완전혼합식 반응기, 이외의 방식의 반응기에 의해 제조되는 경우, 같은 방식의 반응기 또는 다른 방식의 반응기의 둘 또는 그 이상을 사용하여 병렬 또는 직렬로 연결한 후 반응시켜 분자량 분포의 범위를 Mw/Mn 8이상이 되게 할 수 있다.That is, when prepared by the continuous fully mixed reactor, the molecular weight distribution can be controlled within the range of Mw / Mn 3 ~ 6 only by a single reactor and one-stage polymerization, while the molecular weight distribution is a batch reactor, continuous mixed mixture When manufactured by a reactor or a reactor other than the reactor, two or more of the same reactor or another reactor are connected in parallel or in series, and then reacted to change the range of the molecular weight distribution of Mw / Mn 8 or more. It can be done.

이하, 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 하기 실시예에 한정되는 것은 아니라 첨부된 특허청구범위내에서 다양한 형태의 실시예들이 구현될 수 있으며, 단지 하기 실시예는 본 발명의 개시가 완전하도록 함과 동시에 당업계에서 통상의 지식을 가진 자에게 발명의 실시를 용이하게 하고자 하는 것이다.Hereinafter, the present invention will be described in more detail by explaining preferred embodiments of the present invention. However, the present invention is not limited to the following examples, and various forms of embodiments can be implemented within the scope of the appended claims, and the following examples are only common to those skilled in the art to complete the present disclosure. It is intended to facilitate the implementation of the invention to those with knowledge.

[실시예1]Example 1

(a) 촉매의 제조(a) Preparation of Catalyst

질소 기류하에 자석교반기와 응축기, 온도감지기가 장착된 1ℓ 4구 환저 플라스크에 데칸 50㎖와 염화 마그네슘 3.0g을 넣고 수분간 교반시킨 후 2-에틸헥산올 1㎖를 넣고 혼합물을 교반하면서 20분에 걸쳐 온도를 130℃까지 승온시킨 후 1시간 동안 반응시킨다. In a 1 liter four-necked round bottom flask equipped with a magnetic stirrer, condenser and temperature sensor under nitrogen stream, 50 ml of decane and 3.0 g of magnesium chloride were stirred for several minutes, and then 1 ml of 2-ethylhexanol was added and the mixture was stirred for 20 minutes. The temperature was raised to 130 ° C. over 1 hour.

1시간 반응후 PA 1.0g을 가하여 혼합물을 130℃의 질소 분위기 하에서 1시간 동안 교반하여 반응시킨다. 이와 같이 하여 얻은 균질용액의 반응물을 상온까지 냉각하여 사염화 티타늄을 저온에서 1시간에 걸쳐 적하하고, 교반하여 고체생성물을 함유하는 슬러리를 수득하였다.After 1 hour of reaction, 1.0 g of PA was added and the mixture was stirred for 1 hour under a nitrogen atmosphere of 130 ° C. The reaction product of the homogeneous solution thus obtained was cooled to room temperature, and titanium tetrachloride was added dropwise at a low temperature for 1 hour, followed by stirring to obtain a slurry containing a solid product.

이 고체 생성물을 여과시켜 분리하고 헵탄으로 4회 세척하였다. 이렇게 수득된 고체 생성물에 톨루엔 50㎖를 가한 후 교반하면서 염화 티타늄을 가하고 100℃까지 승온시킨 후, 2-이소프로필-2-트리메틸실리메틸-1,3-디메톡시 프로판(2-isopropyl-2-trimethylsillylmethyl-1,3-dimethoxy propane) 0.30g을 적하하고 110℃까지 승온시킨 후 2시간동안 반응시켰다.This solid product was isolated by filtration and washed four times with heptane. 50 ml of toluene was added to the solid product thus obtained, and titanium chloride was added while stirring, and the temperature was raised to 100 ° C., followed by 2-isopropyl-2-trimethylsilmethyl-1,3-dimethoxy propane (2-isopropyl-2- 0.30 g of trimethylsillylmethyl-1,3-dimethoxy propane) was added dropwise, and the reaction mixture was heated to 110 ° C. for 2 hours.

반응이 종료되면 고체생성물을 여과시켜 분리하고 헵탄을 넣어 4회 세척하고 헵탄을 다시 넣어 염화 티타늄을 넣고 98℃에서 2시간 동안 반응시켰다. 그 결과, 여기서 생성된 고체촉매 성분을 여과시켜 분리하고, 헵탄을 가하여 유리 티타늄화합물이 더 이상 검출되지 않을 때까지 세척 조작을 철저히 수행하여 헵탄 중에 현탁된 고체촉매 성분을 수득하였다. After the reaction was completed, the solid product was separated by filtration, heptane was added, washed four times, heptane was added again, titanium chloride was added and reacted at 98 ° C. for 2 hours. As a result, the resulting solid catalyst component was isolated by filtration and heptane was added to perform a washing operation thoroughly until no free titanium compound was detected any more to obtain a solid catalyst component suspended in heptane.

수득된 촉매 구성 성분을 ICP를 사용하여 분석한 결과 2~3 중량%의 티타늄, 16~19 중량%의 마그네슘이 존재함을 알 수 있었다. The obtained catalyst constituents were analyzed using ICP, and it was found that 2-3 wt% titanium and 16-19 wt% magnesium were present.

(b) 입체 규칙성 폴리부텐-1 중합체 중합(b) Stereoregular Polybutene-1 Polymer Polymerization

2ℓ 스텐레스강 고압반응기(autoclave)에 대해 진공 및 질소 치환 과정을 반복한 후, 질소 기류하에 상기 제조한 고체촉매 성분 0.01g, 디이소부틸메톡시실란 0.01g, 트리에틸알루미늄클로라이드(TEA) 0.3g, 1-부텐(1-Butene) 1.2ℓ, 그리고 수소 200㎖를 넣고 질소로 3bar의 압력을 추가로 가한 후, 반응기 온도를 80℃까지 승온시켜 중합 반응을 수행하였다.After repeating the vacuum and nitrogen replacement process for a 2 L stainless steel autoclave, 0.01 g of the solid catalyst component prepared above, 0.01 g of diisobutylmethoxysilane, and 0.3 g of triethylaluminum chloride (TEA) under a nitrogen stream. , 1.2-L of 1-butene (1-Butene), and 200 ml of hydrogen were added thereto, and then a pressure of 3 bar was further added with nitrogen.

1시간 30분 후, 반응기를 감압하여 미반응 1-부텐(1-Butene) 단량체를 제거하고, 얻으진 중합체는 90℃, 진공 상태하에서 12시간 동안 건조시켰다.After 1 hour 30 minutes, the reactor was depressurized to remove unreacted 1-butene monomer, and the obtained polymer was dried at 90 ° C. under vacuum for 12 hours.

건조하여 얻어진 폴리부텐-1 중합체의 활성은 23,000 g-/g-cata·1.5h 즉 15,300g-/g-cata·h이고, 분자량(Mw)은 430,000, 분자량 분포(Mw/Mn)는 3.22, 밀도는 0.886, 녹는점은 116.9℃였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The activity of the polybutene-1 polymer obtained by drying was 23,000 g- / g-cata · 1.5h, that is, 15,300 g- / g-cata · h, molecular weight (Mw) was 430,000, molecular weight distribution (Mw / Mn) was 3.22, The density was 0.886 and the melting point was 116.9 ° C., and titanium was not detected at the ppm (weight) level.

입체규칙성은 핵자기공명(NMR) 측정에 의해 실시 되었으며, 폴리부텐-1의 입체구조는 26~28ppm의 영역의 공명선의 모양으로부터 판단가능하였다.Stereoregularity was determined by nuclear magnetic resonance (NMR) measurement, and the conformation of polybutene-1 was determined from the shape of the resonance line in the region of 26 to 28 ppm.

[실시예2]Example 2

중합 시, 반응기 내에 질소로 6bar의 압력을 추가로 가한다는 것을 제외하고는 [실시예1]과 동일한 조건으로 폴리부텐-1 중합체를 제조하였다.In the polymerization, a polybutene-1 polymer was prepared under the same conditions as in [Example 1], except that an additional pressure of 6 bar was added to the reactor with nitrogen.

얻어진 폴리부텐-1 중합체의 활성은 32,400 g-/g-cata·1.5h 즉, 21,600 g-/g-cata·h 이고, 분자량 분포(Mw/Mn)는 3.69, 밀도는 0.884, 입체규칙성(Isotactic Index, % mmmm)은 99.7, 녹는점은 117.0℃였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다. The activity of the obtained polybutene-1 polymer is 32,400 g- / g-cata.1.5h, that is, 21,600 g- / g-cata.h, molecular weight distribution (Mw / Mn) is 3.69, density is 0.884, and stereoregularity ( Isotactic Index (% mmmm) was 99.7, melting point was 117.0 ℃, and titanium was not detected at ppm (weight) level.

[실시예3]Example 3

중합시, 외부전자 공여체로 디이소부틸메톡시실란 대신, 상기 내부전자공여체로 사용한 것과 같은, 2-이소프로필-2-트리메틸실리메틸-1,3-디메톡시 프로판(2- isopropyl-2-trimethylsillylmethyl-1,3-dimethoxy propane) 0.01g 가하였다는 것을 제외하고는 [실시예2]와 동일한 방법으로 폴리부텐-1 중합체를 제조하였다.In the polymerization, 2-isopropyl-2-trimethylsillylmethyl, as used as the internal electron donor instead of diisobutylmethoxysilane as the external electron donor, is used. Polybutene-1 polymer was prepared in the same manner as in [Example 2], except that 0.01 g of -1,3-dimethoxy propane) was added thereto.

얻어진 폴리부텐-1 중합체의 활성은 29,700 g-/g-cata·1.5h, 즉 19,800g-/g-cata·h이고, 분자량 분포(Mw/Mn)는 4.11, 밀도는 0.880, 입체규칙성(Isotactic Index, % mmmm)은 96.9, 녹는점은 115.6℃였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The activity of the obtained polybutene-1 polymer is 29,700 g- / g-cata.1.5h, that is, 19,800g- / g-cata.h, molecular weight distribution (Mw / Mn) is 4.11, density is 0.880, stereoregularity ( Isotactic Index (% mmmm) was 96.9, melting point was 115.6 ℃, and titanium was not detected at ppm (weight) level.

[실시예4]Example 4

중합 시, 공단량체로 프로필렌을 투입했다는 것을 제외하고는 [실시예2]와 동일한 조건으로 폴리부텐-1과 프로필렌의 공중합체를 제조하였다. In the polymerization, a copolymer of polybutene-1 and propylene was prepared under the same conditions as in [Example 2], except that propylene was added as a comonomer.

얻어진 폴리부텐-1과 프로필렌 공중합체의 활성은 30,700 g-/g-cata·1.5h, 즉 20,500 g-/g-cata·h이고, 분자량 분포(Mw/Mn)는 3.45, 밀도는 0.881, 주쇄 상의 메틸기는 무게비 14%, 녹는점은 116.5℃, 134.2℃였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The activity of the obtained polybutene-1 and propylene copolymer is 30,700 g- / g-cata.1.5h, that is, 20,500 g- / g-cata.h, molecular weight distribution (Mw / Mn) is 3.45, density is 0.881, main chain The methyl group of the phase was 14% by weight, the melting point was 116.5 ℃, 134.2 ℃, titanium was not detected at the ppm (weight) level.

[실시예5]Example 5

50ℓ스텐레스강 고압반응기(autoclave)에 대해 진공 및 질소 치환 과정을 반복한 후, 질소 기류하에 [실시예1]에서와 같은 방법으로 제조된 고체촉매 성분 0.3g, 디이소부틸메톡시실란 0.3g, 트리에틸알루미늄클로라이드(TEA) 0.12g, 부텐-1(Butene-1) 25ℓ, 수소 10bar 를 넣고 질소로 4bar의 압력을 추가로 가한 후, 반응기 온도를 80℃까지 승온시켜 중합 반응을 수행하였다.After repeating the vacuum and nitrogen replacement process for a 50 L stainless steel autoclave, 0.3 g of solid catalyst component, 0.3 g of diisobutylmethoxysilane, prepared in the same manner as in [Example 1] under a nitrogen stream, 0.12 g of triethylaluminum chloride (TEA), 25 L of butene-1, 10 bar of hydrogen were added thereto, and a pressure of 4 bar was further added with nitrogen, and then the reactor temperature was raised to 80 ° C. to carry out a polymerization reaction.

1시간 30분 후, 반응기 내의 중합체를 후속 교반용기로 이송하고, 산화방지 제로서 BHT를 투입하고, 감압하여 미반응 1-부텐(1-Butene) 단량체를 제거하고, 얻어진 중합체는 90℃, 진공 상태하에서 12시간 동안 건조시켰다.After 1 hour and 30 minutes, the polymer in the reactor was transferred to a subsequent stirring vessel, BHT was added as an antioxidant, and the pressure was removed to remove unreacted 1-butene monomer, and the obtained polymer was 90 ° C. under vacuum. Under conditions of drying for 12 hours.

건조하여 얻어진 폴리부텐-1 중합체의 활성은 28,300 g-/g-cata·1.5h, 즉 18,900g-/g-cata·h이고, 분자량 분포(Mw/Mn)는 4.05, MFR은 0.382 였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The activity of the polybutene-1 polymer obtained by drying was 28,300 g- / g-cata.1.5h, that is, 18,900g- / g-cata.h, molecular weight distribution (Mw / Mn) was 4.05, MFR was 0.382, titanium Was not detected at the ppm (weight) level.

[실시예6]Example 6

두 개의 병렬 연결되어있는 50ℓ중합 반응기와 후속 공정으로 100ℓ의 교반기 및 감압-회수 시설이 있는 설비 상에서, 두 개의 50ℓ스텐레스강 고압반응기(autoclave)에 대해 진공 및 질소 치환 과정을 반복한 후, 각각 질소 기류하에 [실시예1]에서와 같은 방법으로 제조된 고체촉매 성분 0.3g, 디이소부틸메톡시실란 0.3g, 트리에틸알루미늄클로라이드(TEA) 0.12g, 부텐-1(Butene-1) 25ℓ, 수소 10bar 씩 넣고 질소로 각각 4bar의 압력을 추가로 가한 후, 반응기 온도를 한 개의 반응기는 70℃, 다른 하나의 반응기는 80℃까지 승온시켜 중합 반응을 수행하였다.On a 50 L polymerization reactor with two parallel connections and a subsequent process with a 100 L stirrer and a pressure-recovery facility, the vacuum and nitrogen replacement process was repeated for two 50 L stainless steel autoclaves, followed by nitrogen 0.3 g of solid catalyst component prepared in the same manner as in [Example 1] under airflow, 0.3 g of diisobutylmethoxysilane, 0.12 g of triethylaluminum chloride (TEA), 25 L of butene-1, hydrogen After adding 10 bar each and adding 4 bar pressure to each of nitrogen, one reactor was heated to 70 ° C. and the other reactor was heated to 80 ° C. to carry out a polymerization reaction.

1시간 30분 후, 각각의 반응기 내의 중합체를 동시에 후속 교반용기로 이송하고 혼합하면서 산화방지제로서 BHT를 투입하고 감압하여 미반응 1-부텐(1-Butene) 단량체를 제거하고, 얻어진 중합체는 90℃, 진공 상태하에서 12시간 동안 건조시켰다.After 1 hour and 30 minutes, the polymer in each reactor was simultaneously transferred to a subsequent stirring vessel and mixed while introducing BHT as an antioxidant and depressurizing to remove unreacted 1-butene monomer, and the obtained polymer was 90 ° C. And dried under vacuum for 12 hours.

건조하여 얻어진 폴리부텐-1 중합체의 활성은 27,800 g-/g-cata·1.5h, 즉 18,500g-/g-cata·h이고, 분자량 분포(Mw/Mn)는 7.4, MFR은 0.45 였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The activity of the polybutene-1 polymer obtained by drying was 27,800 g- / g-cata.1.5h, that is, 18,500 g- / g-cata.h, molecular weight distribution (Mw / Mn) was 7.4, MFR was 0.45, and titanium Was not detected at the ppm (weight) level.

[실시예7]Example 7

개폐 자동 조절 밸브가 부착된 50ℓ 스텐레스강 고압반응기(autoclave)에 대해 진공 및 질소 치환 과정을 반복한 후, 질소 기류하에 [실시예1]에서와 같은 방법으로 제조된 고체촉매 성분 0.3g, 디이소부틸메톡시실란 0.3g, 트리에틸알루미늄클로라이드(TEA) 0.12g, 1-부텐(1-Butene) 25ℓ, 수소 10bar를 넣고 질소로 4bar의 압력을 추가로 가한 후, 반응기 온도를 80℃까지 승온시켜 중합 반응을 시작하여, 약 1시간 30분후부터 연속완전혼합식(CSTR)로 전환하였다.After repeating the vacuum and nitrogen replacement process for a 50 L stainless steel autoclave with an open / close automatic control valve, 0.3 g of solid catalyst component, diiso, prepared in the same manner as in [Example 1] under a nitrogen stream. 0.3 g of butylmethoxysilane, 0.12 g of triethylaluminum chloride (TEA), 25 l of 1-butene (1-Butene), 10 bar of hydrogen were added, and an additional pressure of 4 bar was added to nitrogen, and the reactor temperature was raised to 80 ° C. The polymerization reaction was started and converted to continuous complete mixing (CSTR) after about 1 hour and 30 minutes.

체류 시간은 1시간 30분으로 설정하였으며, 액상에 용해된 질소가 반응기 외부로 함께 유출됨에 따른 자연 압력 손실은 질소로 보충하여 유지하였고, 반응기내 온도를 일정하게 유지시키면서 반응온도 편차에 따라 [실시예1]에서와 같은 방법으로 제조된 고체촉매 성분과 트리에틸알루미늄클로라이드의 투입량을 조절하였다.The residence time was set to 1 hour and 30 minutes, and the natural pressure loss as nitrogen dissolved in the liquid flowed out of the reactor was supplemented with nitrogen and maintained, and the temperature was kept constant in accordance with the reaction temperature deviation. The amount of the solid catalyst component and triethylaluminum chloride prepared in the same manner as in Example 1 was adjusted.

반응 시작 후, 1시간 30분 후부터 반응기 내의 중합체를 일정량씩 후속 교반용기로 이송하고 일정량이 되면, 산화방지제로서 BHT를 투입하고 감압하여 미반응 1-부텐(1-Butene) 단량체를 제거하여 얻어지는 중합체는 90℃, 진공 상태하에서 12시간 동안 각각 건조시켰다.1 hour and 30 minutes after the start of the reaction, the polymer in the reactor is transferred to a subsequent stirring container by a predetermined amount, and when a certain amount is obtained, BHT is added as an antioxidant and reduced pressure to remove unreacted 1-butene (1-Butene) monomer. Were dried at 90 ° C. under vacuum for 12 hours.

건조하여 얻어진 폴리부텐-1 중합체의 평균 활성은 19,200 g-/g-cata·h이었고, 분자량 분포(Mw/Mn)는 4.88, MFR은 0.37 이었으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The average activity of the polybutene-1 polymer obtained by drying was 19,200 g- / g-cata · h, the molecular weight distribution (Mw / Mn) was 4.88, MFR was 0.37, and titanium was not detected at ppm (weight) levels. .

[실시예8]Example 8

두개의 각각 개폐 자동 조절 밸브가 부착된 50ℓ스텐레스강 고압반응기 (autoclave) 와 후속 공정으로 100ℓ의 교반기 및 감압-회수 시설이 있는 설비 상에서, 두 개의 50ℓ스텐레스강 고압반응기(autoclave)에 대해 진공 및 질소 치환 과정을 반복한 후, 질소 기류하에 각각 [실시예1]에서와 같은 방법으로 제조된 고체촉매 성분 0.3g, 디이소부틸메톡시실란 0.3g, 트리에틸알루미늄클로라이드(TEA) 0.12g, 1-부텐(1-Butene) 25ℓ, 수소 10bar 씩을 넣고 각각 질소로 4bar의 압력을 추가로 가한 후, 반응기 온도를 한 개의 반응기는 70℃, 다른 한 개의 반응기는80℃까지 승온시켜 중합 반응을 시작하여, 약 1시간 30분 후부터 각각 동시에 연속완전혼합식(CSTR)로 전환하였다.Vacuum and nitrogen for two 50-l stainless steel autoclaves on a 50-l stainless steel autoclave with two open and closed self-regulating valves and a 100-l stirrer and a decompression-recovery unit in subsequent processes. After repeating the substitution process, 0.3g of solid catalyst component, 0.3g of diisobutylmethoxysilane, 0.12g of triethylaluminum chloride (TEA), 1-, prepared in the same manner as in [Example 1] under nitrogen stream After adding 25 L of butene (1-Butene) and 10 bar of hydrogen, and adding 4 bar of pressure to each of nitrogen, the reactor temperature was raised to 70 ° C. in one reactor and 80 ° C. in the other reactor to initiate polymerization. After about 1 hour and 30 minutes, each was converted into continuous complete mixing (CSTR).

체류 시간은 1시간 30분으로 설정하였으며, 액상에 용해된 질소가 반응기 외부로 함께 유출됨에 따른 자연 압력 손실은 질소로 보충하여 유지하였고, 각각의 반응기내 온도를 일정하게 유지시키면서 각각의 반응기내 반응온도 편차에 따라 주촉매와 트리에틸알루미늄클로라이드의 투입량을 각각 조절하였다.The residence time was set to 1 hour and 30 minutes, and the natural pressure loss as nitrogen dissolved in the liquid phase flowed out of the reactor was maintained by supplementing with nitrogen, and the reaction in each reactor was maintained while keeping the temperature in each reactor constant. The input amount of the main catalyst and triethylaluminum chloride was adjusted according to the temperature variation.

반응시작 후, 1시간 30분 후부터 각각의 반응기 내 중합체를 일정량씩 후속 교반용기로 이송하고 혼합하여 일정량이 되면, 산화방지제로서 BHT를 투입하고 감압하여 미반응 1-부텐(1-Butene) 단량체를 제거하여 얻어지는 중합체는 90℃, 진공 상태하에서 12시간 동안 각각 건조시켰다.After 1 hour and 30 minutes from the start of the reaction, each amount of polymer in each reactor was transferred to a subsequent stirring vessel and mixed to a certain amount. When a certain amount was added, BHT was added as an antioxidant and reduced pressure was used to remove unreacted 1-butene (1-Butene) monomer. The obtained polymer was dried at 90 ° C. under vacuum for 12 hours.

건조하여 얻어진 폴리부텐-1 중합체의 평균 활성은 17,900 g-/g-cata·h이었고, 분자량 분포(Mw/Mn)는 4.88, MFR은 0.45 이었으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The average activity of the polybutene-1 polymer obtained by drying was 17,900 g- / g-cata · h, the molecular weight distribution (Mw / Mn) was 4.88, MFR was 0.45, and titanium was not detected at ppm (weight) levels. .

[비교예1]Comparative Example 1

반응기 내에 질소 압력을 추가로 가하지 않았다는 것을 제외하고는 [실시예 1]과 동일한 조건으로 폴리부텐-1 중합체를 제조하였다.A polybutene-1 polymer was prepared under the same conditions as in [Example 1], except that no additional nitrogen pressure was added to the reactor.

얻어진 폴리부텐-1 중합체의 활성은 14,700 g-/g-cata·1.5h, 즉 9,800g-/g-cata·h이고, 분자량 분포(Mw/Mn)는 3.93, 밀도는 0.884, 입체규칙성(Isotactic Index, % mmmm)은 96.7, 녹는점은 117.4℃였으며, 중합체는 밝은 적황색을 엷게 띄었고, 티타늄은 약 2ppm(무게) 수준으로 검출되었다.The activity of the obtained polybutene-1 polymer is 14,700 g- / g-cata.1.5h, that is, 9,800g- / g-cata.h, molecular weight distribution (Mw / Mn) is 3.93, density is 0.884, stereoregularity ( Isotactic Index (% mmmm) was 96.7, melting point was 117.4 ℃, and the polymer was light reddish yellow and titanium was detected at about 2 ppm (weight) level.

[비교 실시예2]Comparative Example 2

외부 전자공여체인 조촉매(h) 디이소부틸메톡시실란을 투입하지 않았다는 것을 제외하고는 [실시예2]와 동일한 조건으로 폴리부텐-1 중합체를 제조하였다.A polybutene-1 polymer was prepared under the same conditions as in [Example 2], except that a promoter (h) diisobutylmethoxysilane, which is an external electron donor, was not added.

얻어진 폴리부텐-1 중합체의 활성은 35,200g-/g-cata·1.5h, 즉 23,500g-/g-cata·h이고, 분자량 분포(Mw/Mn)는 4.11, 입체규칙성(Isotactic Index, % mmmm)은 61.0, 녹는점은 108.5℃였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The activity of the obtained polybutene-1 polymer is 35,200 g- / g-cata.1.5 h, that is, 23,500 g- / g-cata.h, the molecular weight distribution (Mw / Mn) is 4.11, and isotactic index (%) mmmm) was 61.0, the melting point was 108.5 ℃, titanium was not detected at the ppm (weight) level.

[비교 실시예3]Comparative Example 3

내부전자공여체로 2-이소프로필-2-트리메틸실리메틸-1,3-디메톡시 프로판(2-isopropyl-2-trimethylsillylmethyl-1,3-dimethoxy propane) 대신 디노르말부틸프탈레이트(DNBP) 0.43g을 투입하였다는 것을 제외하고는 [실시예1]과 같은 방법으로 촉매를 제조하였으며, 1-부텐(1-Butene)은 [실시예2]와 같은 방법으로 중합을 실시하여, 폴리부텐-1을 제조하였다.0.43 g of dimethyl dibutyl phthalate (DNBP) was added instead of 2-isopropyl-2-trimethylsillylmethyl-1,3-dimethoxy propane as an internal electron donor. Except that, a catalyst was prepared in the same manner as in [Example 1], and 1-butene (1-Butene) was polymerized in the same manner as in [Example 2] to prepare polybutene-1. .

얻어진 폴리부텐-1과 프로필렌 공중합체의 활성은 27,600 g-/g-cata·1.5h, 즉 18,400g-/g-cata·h이고, 분자량 분포(Mw/Mn)는 3.55, 밀도는 0.886, 입체규칙 성(Isotactic Index, % mmmm)은 98.2, 녹는점은 116.7℃였으며, 티타늄은 ppm(무게) 수준으로는 검출되지 않았다.The activity of the obtained polybutene-1 and propylene copolymer was 27,600 g- / g-cata.1.5h, that is, 18,400g- / g-cata.h, molecular weight distribution (Mw / Mn) was 3.55, density was 0.886, steric The Isotactic Index (% mmmm) was 98.2 and the melting point was 116.7 ° C. Titanium was not detected at the ppm (weight) level.

도 1a는 외부전자공여체(루이스 염기) 없이 본 발명에 따라 중합된 폴리부텐-1 호모 중합체의 핵자기공명(13C-NMR) 스펙트럼 결과(비교 실시예2 참고)이고, 도 1b는 외부 전자공여체(루이스 염기)로 디메톡시디 이소프로필 실란((i-Pr)2Si(OCH3)2)을 첨가하여 중합된 폴리부텐-1 호모 중합체의 핵자기공명(13C-NMR) 스펙트럼 결과(실시예 1 참고)이다.FIG. 1A is a nuclear magnetic resonance ( 13 C-NMR) spectrum result of a polybutene-1 homopolymer polymerized according to the present invention without an external electron donor (Lewis base) (see Comparative Example 2), and FIG. 1B is an external electron donor Nuclear Magnetic Resonance ( 13 C-NMR) Spectrum Results of Polybutene-1 Homopolymer Polymerized by Addition of Dimethoxydi Isopropyl Silane (( i -Pr) 2 Si (OCH 3 ) 2 ) as (Lewis Base) See example 1).

폴리부텐-1의 입체구조는 도 1에서 '②'로 표시된 1-부텐(1-Butene) 단위체의 에틸 가지에 있는 메틸렌 탄소의 공명선(resonance peak)으로부터 측정될 수 있다. 입체규칙성(isotacticity)이 높을수록, 26~28ppm의 영역에서 단일선(singlet peak)에 가까운 공명선을 보여준다.The conformational structure of polybutene-1 may be measured from the resonance peak of methylene carbon in the ethyl branch of the 1-butene unit represented by '②' in FIG. 1. The higher the stereotacticity, the closer the singlet peak is in the region of 26-28ppm.

도 1a에서 확인할 수 있듯이, 폴리부텐-1의 입체 규칙성 저하로 인하여 26~28ppm의 영역에서 매우 복잡한 공명선(multiplet peak)를 보여 주었으며, 도 1b에서 확인할 수 있듯이, 외부전자공여체(루이스 염기)의 영향으로 입체 규칙성이 향상되어 26~28ppm의 영역에서 거의 완벽에 가까운 단일 공명선(singlet peak)을 보여준다.As can be seen in Figure 1a, due to the deterioration of the stereoregularity of polybutene-1 showed a very complex multiplet peak in the region of 26 ~ 28ppm, as can be seen in Figure 1b, of the external electron donor (Lewis base) The effect improves stereoregularity, showing a nearly perfect single-single peak in the region of 26-28 ppm.

도 2는 외부전자공여체(루이스 염기) 없이 본 발명에 따라 중합된 폴리부텐-1 호모 중합체의 26~28ppm의 영역에서의 핵자기공명(13C-NMR) 스펙트럼 결과(비교 실시예 2참고)로서, 이는, 얻어진 중합체를 입체규칙적인 것과 비입체규칙적인 것으로 분리할 목적으로, 시료를 에테르 추출(ether extraction)하는 에테르 추출 분리법(ether extraction fractionation)에 의해, 에테르에 용해되지 않는 입체 규칙성이 높은 시료 및 에테르에 용해되는 입체 규칙성이 낮은 시료로 분리(fractionation)하여 얻은 결과이다. 다량의 시료를 사용하였음에도 불구하고 입체 규칙성이 낮은 에테르에 용해되는 시료는 거의 얻어지지 않았다. FIG. 2 shows the results of nuclear magnetic resonance ( 13 C-NMR) spectra in the region of 26-28 ppm of the polybutene-1 homopolymer polymerized according to the present invention without an external electron donor (Lewis base) (see Comparative Example 2). This is because, for the purpose of separating the obtained polymers into stereoregular and non-stereoregular, high stereoregularity which is not soluble in ether by ether extraction fractionation which ether extracts a sample. This is the result obtained by fractionation into a sample having low stereoregularity dissolved in the sample and the ether. Despite the use of a large amount of samples, few samples were dissolved in the ether having low stereoregularity.

도 2에서 확인할 수 있듯이, 에테르 추출 분리법(ether extraction fractionation)을 사용한 결과, 에테르에 녹지않는 입체규칙적인 중합체도 주쇄 내에 다량의 비입체규칙적인 단위를 포함하고 있음을 알 수 있다.As can be seen in Figure 2, the result of using ether extraction fractionation (ether extraction fractionation), it can be seen that the stereo-regular polymer insoluble in the ether also contains a large amount of non-stereoregular units in the main chain.

도 3은 중합시 외부전자공여체(루이스 염기)를 첨가하여 입체 규칙성을 높인 폴리부텐-1의 26~28ppm의 영역에서의 핵자기공명(13C-NMR) 스펙트럼 결과(실시예 1 참고)이다. FIG. 3 shows the results of nuclear magnetic resonance ( 13 C-NMR) spectra in the region of 26 to 28 ppm of polybutene-1 having increased stereoregularity by adding an external electron donor (Lewis base) during polymerization (see Example 1). .

이 경우, 다량의 시료를 사용하였음에도 불구하고 에테르에 용해되는 입체 규칙성이 낮은 시료는 핵자기공명(13C-NMR) 스펙트럼을 측정할 만큼 얻어지지 않았다. 도 3에서 보이는 바와 같이, 얻어진 중합체는 높은 입체 규칙성으로 인해 26~28ppm에서의 확대된 스펙트럼에서도 단일 공명선(singlet peak)만을 보여주었으며, mmmm(%)는 98.7(입체규칙성(isotacticity)=0.987)의 높은 수치를 보여 주었다.In this case, although a large amount of samples were used, samples with low stereoregularity dissolved in ether were not obtained enough to measure nuclear magnetic resonance ( 13 C-NMR) spectra. As shown in FIG. 3, the obtained polymer showed only a single resonance peak even in an enlarged spectrum at 26 to 28 ppm due to high stereoregularity, and mmmm (%) was 98.7 (isotacticity = 0.987 ) Showed a high figure.

본 발명의 폴리부텐-1은 기존에 알려져 있는 폴리부텐-1 중합체와 달리 촉매 잔사에 있어서 ppm(무게) 수준으로는 티타늄이 검출되지 않을 정도, 즉 티타늄이 단위 ppm 미만의 수준으로 검출될 정도의 고순도를 획득한 것일 뿐만 아니라, 기존에 보고되어 있는 회분식(Batch) 반응기 외에 연속완전혼합식(CSTR) 반응기, 관형반응기(PFR) 및 기타 반응기를 통해서도 같은 효과를 달성하게 된다. Unlike conventionally known polybutene-1 polymers, the polybutene-1 of the present invention is such that titanium is not detected at the ppm (weight) level in the catalyst residue, that is, titanium is detected at a level of less than unit ppm. In addition to achieving high purity, the same effect is achieved through continuous fully mixed (CSTR) reactors, tubular reactors (PFR), and other reactors in addition to batch reactors that have been previously reported.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다. Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

Claims (1)

고입체규칙성 폴리부텐-1의 제조에 사용되는 통상의 촉매의 존재하에, 용매로 사용되거나 또는 용매로 사용되지 않는, 반응단량체인 1-부텐을 수소를 투입하여 중합하되, 중합 반응기내 불활성 기체가 수소와 함께 존재하도록, 상기 촉매의 투입과 별도로 중합반응 개시 직전에 불활성 기체를 상기 중합반응기내로 투입하고, 이때, 상기 중합 시 주어진 반응온도에서 반응물의 기액 평형압보다 중합 반응기내의 압력을 높이도록 상기 불활성 기체를 상기 중합 반응기내에 투입함으로써 제조된 1-부텐(1-Butene)의 단일 중합체, 또는 무게비 40%까지 공단량체가 함유된, α-올레핀이 공중합된 공중합체로서, In the presence of a conventional catalyst used for the preparation of the high-stereoregular polybutene-1, the reaction monomer 1-butene, which is used as a solvent or not as a solvent, is polymerized by introducing hydrogen into an inert gas in a polymerization reactor. Inert gas is introduced into the polymerization reactor immediately before the polymerization reaction is started separately from the addition of the catalyst so that is present with hydrogen, and at this time, the pressure in the polymerization reactor is higher than the gas-liquid equilibrium pressure of the reactants at the given reaction temperature. As a single polymer of 1-butene (1-Butene) prepared by introducing the inert gas into the polymerization reactor, or a copolymer copolymerized with α-olefin containing a comonomer up to 40% by weight, 중합 후 촉매 잔사 제거 과정을 수행하지 않은 상태에서 검출되는 촉매 잔사에 있어서 티타늄이 단위 ppm (1ppm) 미만의 수준으로 검출되는 것을 특징으로 하는 고입체규칙성 폴리부텐-1 중합체.A high-stereoregular polybutene-1 polymer, characterized in that titanium is detected at levels below unit ppm (1 ppm) in catalyst residues that are detected after polymerization without performing catalyst residue removal.
KR1020050127244A 2005-12-21 2005-12-21 High stereospecific polybutene-1 polymer KR20060009224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050127244A KR20060009224A (en) 2005-12-21 2005-12-21 High stereospecific polybutene-1 polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050127244A KR20060009224A (en) 2005-12-21 2005-12-21 High stereospecific polybutene-1 polymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020040103664A Division KR20050023197A (en) 2004-12-09 2004-12-09 high stereospecific polybutene-1 polymer

Publications (1)

Publication Number Publication Date
KR20060009224A true KR20060009224A (en) 2006-01-31

Family

ID=37120007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050127244A KR20060009224A (en) 2005-12-21 2005-12-21 High stereospecific polybutene-1 polymer

Country Status (1)

Country Link
KR (1) KR20060009224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523137B1 (en) * 2013-07-25 2015-05-26 대한유화 주식회사 Polybutene-1 homopolymer or copolymer by slurry polymerization and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523137B1 (en) * 2013-07-25 2015-05-26 대한유화 주식회사 Polybutene-1 homopolymer or copolymer by slurry polymerization and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3031832B1 (en) Method for preparing polyolefin
CN107043491A (en) The method for preparing impact resistance prolylene polymer composition
KR101154508B1 (en) Hybrid supported metallocene catalysts, method for preparing the same, and method for preparing the polyolefins using the same
EP3078682B1 (en) Olefin-based polymer having excellent processability
US11732069B2 (en) Polypropylene and method for preparing the same
US20160304639A1 (en) Long chain branched polypropylene
KR100472771B1 (en) high stereospecific polybutene-1 polymer and the highly active preparation method thereof
KR101561381B1 (en) Method for manufacturing polybutene-1 homopolymer or copolymer
JPH0632828A (en) Catalyst system for stereospecific polymerization of alpha-olefin, its polymerization and obtained polymer
KR20060009224A (en) High stereospecific polybutene-1 polymer
CN110903419B (en) Solid catalyst component for olefin polymerization, catalyst and application thereof
KR20050023197A (en) high stereospecific polybutene-1 polymer
KR102619381B1 (en) Manufacturing Methods for Highly Active Linear Low Density Polyethylene
KR20070080086A (en) Butene-1 (co)polymer and the method for preparing the same
KR20120040769A (en) Method for manufacturing polybutene-1 homopolymer or copolymer
US7098164B2 (en) Process for the polymerization of olefins
KR102215024B1 (en) Method for preparing polyolfin
KR101523137B1 (en) Polybutene-1 homopolymer or copolymer by slurry polymerization and preparation method thereof
US20240018171A1 (en) Novel titanium complexes as catalysts for alpha olefin polymerization
MXPA06002273A (en) High stereospecific polybutylene polymer and highly active process for preparation thereof
KR20210066607A (en) Catalyst for polymerization of polyolefin and preparing method thereof
KR20210066215A (en) Catalyst for polymerization of polyolefin
WO2019124805A1 (en) Olefin polymer, preparation method therefor and film using same
KR20070080085A (en) Polyolefin prepared using an antistatic agent and a method of preparing the same
WO1998046656A1 (en) Olefinic (co)polymer composition and process for producing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060821

Effective date: 20071129