KR20050083263A - Uniform distribution of si doping concentrations for lec gaas - Google Patents

Uniform distribution of si doping concentrations for lec gaas Download PDF

Info

Publication number
KR20050083263A
KR20050083263A KR1020040011726A KR20040011726A KR20050083263A KR 20050083263 A KR20050083263 A KR 20050083263A KR 1020040011726 A KR1020040011726 A KR 1020040011726A KR 20040011726 A KR20040011726 A KR 20040011726A KR 20050083263 A KR20050083263 A KR 20050083263A
Authority
KR
South Korea
Prior art keywords
gaas
lec
single crystal
uniform distribution
added
Prior art date
Application number
KR1020040011726A
Other languages
Korean (ko)
Inventor
오명환
김진희
Original Assignee
네오세미테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 네오세미테크 주식회사 filed Critical 네오세미테크 주식회사
Priority to KR1020040011726A priority Critical patent/KR20050083263A/en
Publication of KR20050083263A publication Critical patent/KR20050083263A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

LEC법에 의한 GaAs 성장시 반도전성특성을 갖도록 Si을 첨가할 때, 성장 단결정내에 Si이 균일하게 분포하도록 분말형태로 장입한다. 그러기 위하여 #1000 mesh이상의 미립자가 바람직하고 이를 제조하는 과정에서의 고순도를 유지하기 위한 석영도가니 및 봉을 발명하였다.When Si is added to have semi-conductive properties during GaAs growth by the LEC method, it is loaded in powder form so that Si is uniformly distributed in the growth single crystal. To this end, a fine particle of # 1000 mesh or more is preferable and a quartz crucible and rods for maintaining high purity in the process of preparing the same have been invented.

Description

LEC(Liquid Encapsulated Czochrlski) 법에 의한 GaAs 단결정 성장시 Si dopant 분포조절 {Uniform distribution of Si doping concentrations for LEC GaAs}Uniform distribution of Si doping concentrations for LEC GaAs by GaAs single crystal growth by Liquid Encapsulated Czochrlski (LEC) method

LEC(Liquid Encapsulated Czochralski)법은 GaAs 단결정성장에서 적용되는 한 제조공법으로, Ga과 As 원재료와 As의 휘발을 막기 위한 차폐제(encapsulant)인 산화붕소(B2O3)를 결정성장로 내부의 반응용기(crucible)에 투입하여 불활성 가스 분위기에서 Ga과 As를 합성 및 용융(melting)시킨 다음, 시드(seed)를 반응용기의 GaAs 용융액(melt)의 표면에 접촉시킨후 서서히 응고시키면서 결정을 끌어올리는 방법이다.Liquid Encapsulated Czochralski (LEC) is a manufacturing method applied to GaAs single crystal growth.The reaction of boron oxide (B 2 O 3 ), an encapsulant to prevent volatilization of Ga and As raw materials and As, is carried out inside the crystal growth furnace. It is put into a crucible to synthesize and melt Ga and As in an inert gas atmosphere, and then the seed is brought into contact with the surface of the GaAs melt of the reaction vessel and gradually solidified while pulling up the crystal. Way.

GaAs 반도체을 사용하여 제반 소자로 쓰이기 위해서는 전기적으로 활성화되는 전자농도(carrier concentration)가 단결정내에 있어야 하는데 그것이 가능한 것이 바로 Si에 의한 n-type이다. 그런데 이러한 n-type 특성을 위하여 실리콘(Si)을 첨가(doping)하게 되는데 이때 Si 첨가량에 따라 단결정내 전자농도(carrier concentration)의 분포가 좌우된다. 그런데 Si은 녹는점이 1414 ℃로서 GaAs(1240℃)보다 훨씬 높아 첨가시 용해가 잘 안될 뿐 아니라 비중이 GaAs(3.14g/㎤)에 비하여 2.16(g/㎤)으로 매우 작아서 특히 LEC법의 경우에 표면에 부유해지는 경향이 불가피하다. In order to be used as a general device using GaAs semiconductors, an electrically activated carrier concentration must be present in a single crystal, which is an n-type by Si. However, silicon (Si) is added for this n-type characteristic, and the distribution of the electron concentration in the single crystal depends on the amount of Si added. However, the melting point of Si is much higher than GaAs (1240 ℃), and its melting point is 1414 ℃. So, its specific gravity is very small (2.16g / cm3) compared to GaAs (3.14g / cm3). The tendency to float on the surface is inevitable.

따라서 LEC법에 의한 도전성 GaAs 단결정을 성장시키기 위하여 첨가하는 Si원소가 단결정 내에서 균일한 분포하게 하기 위한 방안이 필수적이나 LEC 법은 현재까지 주로 불순물 무첨가(undoping)에 의한 반절연 GaAs 단결정성장의 주요 방법으로 적용되어왔기 때문에 Si과 같은 불순물 첨가의 경우는 사실상 본 발명이 최초가 아닌가 한다.Therefore, the method of uniformly distributing the Si element added to grow the conductive GaAs single crystal by the LEC method is essential. However, the LEC method is the main reason for the semi-insulating GaAs single crystal growth by undoping impurities. Since it has been applied by the method, in the case of the addition of impurities such as Si, the present invention is actually the first.

내용 적용Content application

첨가하는 실리콘(Si)의 순도을 유지하기 위해 석영(quartz)으로 제작한 도가니와 석영봉을 준비하여 실리콘(Si)을 분말과 판상형태로 준비한다. 고객의 사양에 맞는 전자농도를 갖도록 계산된 실리콘(Si) 유입량과 GaAs 다결정 및 차폐제 산화붕소(B2O3) 순으로 장입한 crucible을 수분을 제거한 LEC 성장로 에 장입한다.In order to maintain the purity of the added silicon (Si), a crucible and a quartz rod made of quartz are prepared to prepare silicon (Si) in powder and plate form. Crucibles loaded in the order of silicon (Si) inflows and GaAs polycrystalline and shielding boron oxide (B 2 O 3 ) calculated to have an electron concentration that meets the customer's specifications are loaded into a dehumidified LEC growth furnace.

결정성장로 내부에 원부자재와 반응할 수 있는 활성화 가스 및 불순물을 제거하고 As 휘발을 최소화하기 위하여 불활성 가스로 가압을 한뒤, 온도을 올려 GaAs 다결정을 용융시키고 첨가한 실리콘(Si)은 녹는점이 1414℃이므로 충분한 시간동안 안정화시켜 GaAs 용융액에 고용되게 한다.Pressurized with an inert gas to remove activating gas and impurities that can react with the raw subsidiary materials inside the crystal growth furnace, and minimize volatilization of As. The temperature is raised to melt GaAs polycrystal and the added silicon (Si) has a melting point of 1414 ℃. Therefore, it is stabilized for a sufficient time to be dissolved in the GaAs melt.

그런데 이때 첨가한 실리콘(Si)의 형태에 따라 매우 근본적인 성장특성의 차이가 나타나는데, 본 발명과 같이 분말형태의 경우 안정화 시간이 짧아지는 반면에 판상형태이면 안정화 시간이 길어지게 된다. 이후 seeding-shouldering-body 성장-tailing을 통하여 성장을 진행시키면서 GaAs 단결정제조가 완료된다.. However, at this time, there is a very fundamental difference in growth characteristics depending on the shape of the added silicon (Si). In the case of the powder form as in the present invention, the stabilization time is short while the stabilization time is long in the case of a plate shape. Subsequently, GaAs single crystal manufacturing is completed while growing through seeding-shouldering-body growth-tailing.

특성분석결과, 분말 형태로 장입한 Si dopant의 경우 GaAs 용융액내에 균일하게 고용되어 있어 전자농도(carrier concentration)가 성장초기부터 후미부까지 2배이내의 일정한 값을 가진 것으로 나타났다. 반면 판상형태로 장입한 경우는 GaAs 용융액내에 기존의 정상응고(normal freezing)형태를 보여 C = K*Co*(1 - g)k-1 를 가지므로 초기부와 후미부의 Si 분포차이가 약 5배 정도 나타났다. 따라서 본 발명과 같은 분말형태의 Si을 첨가함으로써 초기부와 후미부가 2배 이내로 비교적 균일한 특성을 갖는 도전성 GaAs 단결정을 성장할 수 있었다.As a result of the characterization, the Si dopant charged in powder form was uniformly dissolved in the GaAs melt, so that the carrier concentration had a constant value within 2 times from the beginning to the rear. On the other hand, when charged in the form of plate, it shows the existing normal freezing form in the GaAs melt and has C = K * Co * (1-g) k-1 . About twice appeared. Therefore, by adding the powdered Si as in the present invention, it was possible to grow a conductive GaAs single crystal having relatively uniform characteristics within two times of the initial portion and the tail portion.

LEC법에 의한 GaAs 단결정 성장시 본 발명과 같은 #1000 mesh이상의 실리콘(Si) 분말 첨가방법에 의하여 다음과 같은 효과를 기할 수 있었다. 우선, seeding후의 melt 안정화 시간을 기존의 10시간 정도에서 2시간 정도 이내로 크게 줄일 수가 있었고, 아울러 첨가하는 실리콘(Si) 장입량만큼 단결정내 전자농도(carrier concentration)가 정확히 제어되었으며, 성장 후 단결정내에 전자농도(carrier cconcentration) 분포가 초기부와 후미부가 2배 이내로 제어되었다. 이것은 기존의 VGF(vertical gradient freezing)방법이 약 5배정도 차이나는 것에 비하여 탁월한 균일성을 보여주는 것이다. When the GaAs single crystal was grown by the LEC method, the following effects could be obtained by the method of adding silicon (Si) powder of # 1000 mesh or more as in the present invention. First, the melt stabilization time after seeding could be greatly reduced from about 10 hours to within 2 hours, and the electron concentration in the single crystal was precisely controlled by the amount of silicon (Si) added. Carrier cconcentration distribution was controlled within 2 times in the initial and tail regions. This shows excellent uniformity compared to the conventional VGF (vertical gradient freezing) method by about 5 times.

도 1은 본 발명의 분말 Si 제작용 도가니.1 is a crucible for producing powder Si of the present invention.

도 2는 본 발명의 GaAs 단결정 성장 장치의 단면도.2 is a cross-sectional view of a GaAs single crystal growth apparatus of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

101 : 석영도가니 102 : 석영봉101: quartz crucible 102: quartz rod

201 : 시드 인상축 202 : 시드201: seed raising axis 202: seed

203 : GaAs 단결정 204 : 흑연 열선 203: GaAs single crystal 204: graphite heating wire

205 : 반응용기 206 : B2O3 차폐제205 reaction vessel 206 B 2 O 3 shielding agent

207 : GaAs melt(용융액) 208 : 반응용기 인상축207 GaAs melt 208 Reduction of reaction vessel

209 : 고체-액체 계면209 solid-liquid interface

Claims (2)

LEC법에 의한 GaAs 단결정 성장시 도전성 GaAs성장을 위하여 첨가하는 Si doping을 위하여 #1000 mesh 이상의 분말형태로 Si원소를 파쇄하여 장입하는 경우, 전자농도(carrier concentration)의 정밀제어가 가능하였고, 나아가 단결정내 초기부와 후미부간의 Si분포의 차이가 2배정도로 비교적 균일한 특성을 갖도록 하는 제조공법When Si element is crushed and loaded in powder form of # 1000 mesh or more for Si doping to be added for the growth of conductive GaAs by the LEC method, it is possible to precisely control the electron concentration. The manufacturing method to have a relatively uniform characteristic of the difference of Si distribution between the inner part and the rear part of the inner part about 2 times 반도체로서의 순도를 유지하면서 원하고자하는 입자크기의 실리콘(Si) 분말형태을 제조하기 위한 석영재질(quartz)의 도가니와 봉.Crucibles and rods of quartz material for the production of silicon (Si) powders of desired particle size while maintaining purity as a semiconductor.
KR1020040011726A 2004-02-23 2004-02-23 Uniform distribution of si doping concentrations for lec gaas KR20050083263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040011726A KR20050083263A (en) 2004-02-23 2004-02-23 Uniform distribution of si doping concentrations for lec gaas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040011726A KR20050083263A (en) 2004-02-23 2004-02-23 Uniform distribution of si doping concentrations for lec gaas

Publications (1)

Publication Number Publication Date
KR20050083263A true KR20050083263A (en) 2005-08-26

Family

ID=37269524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040011726A KR20050083263A (en) 2004-02-23 2004-02-23 Uniform distribution of si doping concentrations for lec gaas

Country Status (1)

Country Link
KR (1) KR20050083263A (en)

Similar Documents

Publication Publication Date Title
CN110382748B (en) Method of forming a monocrystalline silicon ingot with improved resistivity control
KR102150405B1 (en) Single crystal growth apparatus and single crystal growth method using apparatus
KR20120057536A (en) Method of Producing SiC Single Crystal
JPH1036197A (en) Production of iii-v compound semiconductor crystal
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
EP3591102B1 (en) Compound semiconductor and method for producing single crystal of compound semiconductor
CN107313110B (en) Preparation formula and preparation method of P-type indium phosphide single crystal
US5408951A (en) Method for growing silicon crystal
JPS62502793A (en) Single crystal silicon ingot drawn continuously
US4637854A (en) Method for producing GaAs single crystal
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
KR20050083263A (en) Uniform distribution of si doping concentrations for lec gaas
JPH0244798B2 (en)
JP3818023B2 (en) Method for producing GaAs single crystal
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
KR101465425B1 (en) Method for growing silicon single crystal
JPH1112086A (en) Production of chemical semiconductor single crystal and gallium arsenide single crystal
KR100945668B1 (en) A method of growth for gaas single crystal by vgf
TWI793167B (en) Gallium Arsenide Compound Semiconductor Crystal and Wafer Group
JP4200690B2 (en) GaAs wafer manufacturing method
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
CN115233292A (en) Low-resistivity silicon single crystal and preparation method thereof
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPS5938199B2 (en) Compound semiconductor crystal growth equipment
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM

Legal Events

Date Code Title Description
A201 Request for examination
AMDR Request for amendment