KR20050045216A - Plate field emission device with coating layer - Google Patents

Plate field emission device with coating layer Download PDF

Info

Publication number
KR20050045216A
KR20050045216A KR1020030079196A KR20030079196A KR20050045216A KR 20050045216 A KR20050045216 A KR 20050045216A KR 1020030079196 A KR1020030079196 A KR 1020030079196A KR 20030079196 A KR20030079196 A KR 20030079196A KR 20050045216 A KR20050045216 A KR 20050045216A
Authority
KR
South Korea
Prior art keywords
coating film
field emission
emission device
carbon
carbon nanotubes
Prior art date
Application number
KR1020030079196A
Other languages
Korean (ko)
Other versions
KR100561491B1 (en
Inventor
김광배
나양운
Original Assignee
일진디스플레이(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진디스플레이(주) filed Critical 일진디스플레이(주)
Priority to KR20030079196A priority Critical patent/KR100561491B1/en
Priority to TW093134163A priority patent/TW200516627A/en
Priority to PCT/KR2004/002898 priority patent/WO2005045871A1/en
Publication of KR20050045216A publication Critical patent/KR20050045216A/en
Application granted granted Critical
Publication of KR100561491B1 publication Critical patent/KR100561491B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Abstract

본 발명은 디스플레이장치 등에 인쇄되어 전자방출원으로 이용되는 전계방출소자에 관한 것으로, 카본나노튜브의 외표면에 탄소계열의 코팅막을 형성하므로써, 아킹현상으로 인한 카본나노튜브의 손상을 예방하여 전계방출소자의 방출특성이 향상되고 수명이 연장될 뿐만 아니라 전계방출소자의 전류밀도가 상대적으로 증가하여 휘도가 향상되게 한 것이다. The present invention relates to a field emission device printed on a display device and used as an electron emission source, by forming a carbon-based coating film on the outer surface of the carbon nanotubes, thereby preventing damage to the carbon nanotubes due to arcing phenomenon to the field emission In addition to improving the emission characteristics of the device and extending its life, the current density of the field emission device is relatively increased, thereby improving luminance.

Description

코팅막이 형성된 전계방출소자 및 그것의 제조방법 {Plate field emission device with coating layer} Field emission device having a coating film and a method of manufacturing the same {Plate field emission device with coating layer}

본 발명은 디스플레이장치 등에 구비되어 전자방출원으로 이용되는 전계방출소자에 관한 것으로, 특히 카본나노튜브에 탄소계열의 물질을 코팅하여 저전압동작 및 방출특성을 향상시킬 수 있도록 된 코팅막이 형성된 전계방출소자 및 그것의 제조방법에 관한 것이다. The present invention relates to a field emission device provided in a display device, etc. and used as an electron emission source, and in particular, a field emission device having a coating film formed thereon to improve low voltage operation and emission characteristics by coating a carbon-based material on a carbon nanotube. And to a method for producing the same.

일반적으로, 전계방출소자는 디스플레이장치, 조명장치, 백라이트유닛 등의 전자방출원으로 이용되는 것으로서, 이 전계방출소자는 에미터에 강한 전계를 형성하여 냉전자를 방출시키면, 방출전자가 진공속을 이동하면서 형광막과 충돌하여 형광체를 발광시켜 화상을 구현하는 표시소자이다. In general, the field emission device is used as an electron emission source for a display device, an illumination device, a backlight unit, and the like, when the field emission device forms a strong electric field on the emitter to emit cold electrons, the emitted electrons move in a vacuum speed. The display device is configured to display an image by colliding with a fluorescent film to emit phosphors.

기존의 전계방출소자는 진공에서의 잔류 가스입자들이 전자들과 충돌하여 이온화됨은 물론 가스이온들이 마이크로 팁과 충돌하여 손상을 입힐 우려가 있을 뿐만 아니라, 형광체입자가 떨어져 나와 마이크로 팁을 오염시키므로 전계방출소자의 수명 및 성능을 저하시키는 단점이 있다. Conventional field emission devices not only have residual gas particles in a vacuum collide with electrons and become ionized, but gas ions can collide with micro tips and cause damage, as well as phosphor particles fall off and contaminate the micro tips. There is a disadvantage of degrading the life and performance of the device.

따라서, 전계방출소자의 단점을 해결하기 위한 수단으로서, 물리적·화학적으로 안정된 카본나노튜브를 사용하여 전계방출 특성을 향상시키려는 목적으로 기판위에 카본나노튜브를 형성하는 방법이 제안된 바 있으며, 특히 카본나노튜브를 형성하는 방법으로는 화학기상증착(CVD)을 이용하여 카본나노튜브를 기판위에 직접 성장시키는 방법과 페이스트(paste)를 이용하여 스크린인쇄하는 방법이 있다. Therefore, as a means for solving the shortcomings of the field emission device, a method of forming carbon nanotubes on a substrate has been proposed for the purpose of improving the field emission characteristics using carbon nanotubes that are physically and chemically stable. Methods of forming nanotubes include a method of growing carbon nanotubes directly on a substrate using chemical vapor deposition (CVD) and a screen printing method using a paste.

그런데, 전계방출소자의 패널(챔버)내의 진공도가 시간이 흐르면서 점차로 감소되고, 이로 인한 아웃개싱 및 잔류가스들과 전자들의 충돌로 인해 이온화된 이온들이 전자방출원을 스퍼터링(이온충돌)하여 소자가 손상되어 수명이 감소되는 단점이 있다. 그래서 이러한 진공도의 저하를 개선하기 위해 게터(getter)를 장착하여 잔류가스를 제거하지만 여전히 상기와 같은 문제가 존재하였다. However, the degree of vacuum in the panel (chamber) of the field emission device gradually decreases over time, and the ionized ions sputter the electron emission source due to outgassing and collision of the residual gases and electrons, thereby causing the device It has the disadvantage of being damaged and reducing its lifespan. Thus, in order to improve the decrease in the degree of vacuum, a getter is installed to remove residual gas, but the above problems still exist.

이에, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 카본나노튜브에 비정질다이아몬드를 코팅하여 저전압동작 및 방출특성을 향상시킬 수 있도록 된 코팅막이 형성된 전계방출소자 및 그것의 제조방법을 제공하는 데에 그 목적이 있다. Accordingly, the present invention has been made to solve the problems described above, and the field emission device and the method of manufacturing the coating film is formed to improve the low-voltage operation and emission characteristics by coating amorphous diamond on the carbon nanotubes The purpose is to provide.

상기한 바의 목적을 달성하기 위한 본 발명은, 카본나노튜브의 외표면에 코팅막을 형성한 것을 특징으로 한다.The present invention for achieving the above object is characterized in that the coating film is formed on the outer surface of the carbon nanotubes.

그리고, 코팅장치내에 코팅하고자하는 카본나노튜브를 수용한 상태에서, 200∼500℃의 온도범위에서 카본을 포함하는 메탄 또는 에틸렌과 수소분위기의 40∼70 Torr의 압력에서 10∼60분간 유지하여 코팅막을 형성시킨 것을 특징으로 한다. In the state where the carbon nanotubes to be coated are accommodated in the coating apparatus, the coating film is maintained for 10 to 60 minutes at a pressure of 40 to 70 Torr in a methane or ethylene containing carbon and a hydrogen atmosphere in a temperature range of 200 to 500 ° C. It characterized by forming.

이하, 본 발명에 따른 실시예를 상세하게 설명하면 다음과 같다. Hereinafter, an embodiment according to the present invention will be described in detail.

도 1은 본 발명에 따른 전계방출소자를 도시한 모식도이며, 도 2는 본 발명에 따른 전계방출소자의 SEM 사진이고, 도 3은 본 발명에 따른 전계방출소자의 전계방출특성을 비교도시한 그래프이며, 도 4는 본 발명에 따른 전계방출소자의 전계방출영상을 비교도시한 사진으로서, 카본나노튜브(10)의 외표면에 코팅막(20)을 형성한 것을 특징적 구성으로 한다. 1 is a schematic diagram showing a field emission device according to the present invention, Figure 2 is a SEM photograph of the field emission device according to the invention, Figure 3 is a graph showing the field emission characteristics of the field emission device according to the present invention 4 is a photograph showing a comparison of the field emission image of the field emission device according to the present invention, characterized in that the coating film 20 is formed on the outer surface of the carbon nanotubes 10.

먼저, 본원 발명은 카본나노튜브(10)의 외표면 바람직하게는, 말단부에 증착과정을 통해 코팅막(20)을 형성함으로써, 고전압상태에서 아킹현상(arcing)으로 인해 발생하는 손상을 최소화시킴은 물론 전자의 일함수(work function)를 감소시켜 전자방출을 용이하게 하기 위한 것이다. First, the present invention, by forming the coating film 20 through the deposition process on the outer surface of the carbon nanotube 10, preferably, the end portion of the carbon nanotube 10, as well as minimizing the damage caused by the arcing phenomenon (arcing) in a high voltage state In order to reduce the work function of the electron (electron) to facilitate electron emission.

이때, 코팅막(20)은, 전자친화도, 화학적안정성, 열적안정성, 고경도 등의 특성을 갖는 물질로서, 비정질다이아몬드, 유사 다이아몬드(Diamond Like Carbon), 카본화이버, 보론나이트라이드, 알루미늄나이트라이드, 갈륨나이트라이드, 그라파이트 등과 같은 일함수가 낮은 탄소계열의 물질을 단독 또는 혼합하여 이용함이 바람직하다.In this case, the coating film 20 is a material having characteristics such as electron affinity, chemical stability, thermal stability, high hardness, amorphous diamond, diamond like carbon, carbon fiber, boron nitride, aluminum nitride, It is preferable to use carbon-based materials having a low work function such as gallium nitride, graphite, or the like alone or in combination.

또한, 코팅막(20)의 코팅방법으로는 스퍼터링법이나 전자빔 또는 레이저증착법이나 화학기상증착법이나 캐소딕아크증착법(Cathodic arc deposition) 등이 적합하며, 그 두께를 1∼10㎚의 범위로 코팅함이 바람직하다. In addition, as a coating method of the coating film 20, sputtering method, electron beam or laser deposition method, chemical vapor deposition method, cathodic arc deposition method, etc. are suitable, and the thickness is coated in the range of 1-10 nm. desirable.

이는, 전자방출원의 기하학적 형상을 고려한 것으로 기하학적 형상의 종횡비가 높을 수록, 즉 전자방출원 팁(tip) 끝이 예리 할 수록 전자 방출이 좋아지는데 너무 두껍게 코팅하면 종횡비가 낮아지기 때문이다. This is because the geometry of the electron emission source is considered, and the higher the aspect ratio of the geometric shape, that is, the sharper the tip of the electron emission source tip, the better the electron emission.

한편, 플라즈마 화학기상증착법을 이용한 코팅막을 형성하는 공정을 살펴보면, 코팅장치를 200∼500℃의 온도범위로 세팅한 상태에서 카본을 포함하는 메탄 또는 에틸렌 등의 가스(수소함량: 0.1∼ 0.5 wt%)와 수소분위기의 40∼70 Torr의 압력에서 10∼60분간 유지하여 에미터 표면에 비정질다이아몬드(일함수: 1∼3eV)를 1∼10㎚의 두께로 코팅하였다.On the other hand, when looking at the process of forming a coating film using the plasma chemical vapor deposition method, the gas such as methane or ethylene containing carbon (hydrogen content: 0.1 to 0.5 wt%) in a state that the coating apparatus is set to a temperature range of 200 ~ 500 ℃ ) And amorphous diamond (work function: 1 to 3 eV) were coated on the emitter surface at a thickness of 1 to 10 nm at 10 to 60 minutes at a pressure of 40 to 70 Torr in a hydrogen atmosphere.

이때, 코팅막의 형성공정에서 플라즈마 화학기상증착법과 비정질다이아몬드에 한정하여 설명하였지만, 그 밖에도 상기한 범위에 포함되는 코팅법 및 코팅재료가 본원 권리범위에 포함됨은 당연하다.In this case, the coating film was formed by the plasma chemical vapor deposition method and the amorphous diamond, but the coating method and the coating material included in the above range is naturally included in the scope of the present application.

한편, 본원발명의 작동과정을 설명하면, 카본나노튜브(10)의 말단부에 코팅막(20)을 형성하여 디스플레이장치(미도시)에 장착 또는 인쇄한 다음, 디스플레이장치에 일정이상(문턱전압:turn on voltage)의 전압이 인가되면, 팁 주위에 전계가 형성되어 카본나노튜브(10)로부터 전자가 방출되기 시작한다.On the other hand, when explaining the operation of the present invention, the coating film 20 is formed on the distal end of the carbon nanotubes (10) mounted or printed on a display device (not shown), and then at least a certain threshold (threshold voltage: turn) When a voltage of on voltage is applied, an electric field is formed around the tip, and electrons start to be emitted from the carbon nanotubes 10.

이 경우, 디스플레이장치에서 열처리시 발생하는 아웃개싱 및 잔류가스들이 코팅막(20)에 의해 카본나노튜브(10)와의 흡착 및 충돌로 인한 손상을 방지시키는 것으로 판단된다. In this case, it is determined that outgassing and residual gases generated during heat treatment in the display device prevent damage due to adsorption and collision with the carbon nanotubes 10 by the coating film 20.

한편, 도 2는 종래기술과 본원발명의 SEM사진을 비교한 것이다. On the other hand, Figure 2 compares the SEM image of the present invention and the prior art.

비교예(코팅막이 형성되지 않음)의 경우 카본나노튜브의 직경(β)이 1∼5㎚이면서 카본입자의 직경(γ)이 60∼70㎚인 반면, 본원발명(코팅막이 형성됨)의 경우 카본나노튜브의 직경(α)이 10∼20㎚이었다. In the comparative example (the coating film is not formed), the carbon nanotubes have a diameter β of 1 to 5 nm and the carbon particles have a diameter γ of 60 to 70 nm. The diameter α of the nanotubes was 10 to 20 nm.

이때, 본원발명의 카본나노튜브의 직경(α)이 비교예에 비해 적어도 2배 이상 성장하였음을 알 수 있었다.At this time, it can be seen that the diameter (α) of the carbon nanotubes of the present invention was grown at least twice as compared with the comparative example.

한편, 도 3은 종래기술과 본원발명의 전계방출특성을 도시한 그래프도로서, 비교예(코팅막이 형성되지 않음)의 경우 문턱전압(turn on field)이 약 2 V/um 인 반면, 본원발명의 경우 문턱전압이 약 1.5 V/um으로 감소함을 알 수 있었다.On the other hand, Figure 3 is a graph showing the field emission characteristics of the prior art and the present invention, in the case of the comparative example (coating film is not formed) the threshold voltage (turn on field) is about 2 V / um, In the case of the threshold voltage was found to decrease to about 1.5 V / um.

또한, 본원발명은 방출전류(Emission Current)가 비교예에 비해 동일한 전압에서 약 2배 이상 향상됨을 알 수 있었으며, 고전압(3kV이상)에서도 아킹에 의한 손상의 거의 없었음을 알 수 있었다. In addition, the present invention was found that the emission current (Emission Current) is improved by about two times or more at the same voltage compared to the comparative example, it can be seen that there was almost no damage by arcing even at high voltage (3kV or more).

한편, 도 4는 종래기술과 본원발명의 전계방출영상을 비교 도시한 것이다.On the other hand, Figure 4 shows a comparison of the field emission image of the prior art and the present invention.

비교예(코팅막이 형성되지 않음)는 1.5kV에서 방출전류(Emission Current)가 약 8mA가 발생하는 반면, 본원발명(코팅막이 형성됨)은 1.5kV에서 방출전류가 약 20mA가 발생하였음을 알 수 있었다. In Comparative Example (coating film not formed), the emission current (Emission Current) is generated about 8mA at 1.5kV, while the present invention (coating film is formed) was found that the emission current was generated about 20mA at 1.5kV. .

이는, 카본나노튜브(10)에 코팅된 코팅막(20)의 일함수가 낮은 물질로 이루어져 전계 전자 방출효율이 증가함과 더불어 코팅막(20)이 전체적으로 균일하게 코팅되었기 때문인 것으로 판단된다.This is because the work function of the coating film 20 coated on the carbon nanotubes 10 is low, and the electron emission efficiency is increased and the coating film 20 is uniformly coated.

결론적으로, 도 2 내지 도 4에서와 같이, 전자방출원인 예리한 팁(tip) 끝의 물질이 일함수가 낮은 물질로 이루어져 전계전자 방출효율이 증가했고, 코팅을 통해서 전체적으로 균일하게 되었으며, 코팅막에 의해 잔류가스원자 및 이온 등의 충돌로 인한 손상이 감소된 것을 판단된다. In conclusion, as shown in Figures 2 to 4, the material of the sharp tip (tip) which is the electron emission source is made of a material having a low work function to increase the field electron emission efficiency, became uniform throughout the coating, by the coating film It is judged that damage due to collision of residual gas atoms and ions is reduced.

이상에서 설명한 바와 같이 코팅막이 형성된 전계방출소자 및 그것의 제조방법에 의하면, 카본나노튜브의 외표면에 코팅막을 형성하므로써 아킹현상으로 인한 카본나노튜브의 손상을 예방하여 전계방출소자의 방출특성이 향상되고 수명이 연장될 뿐만 아니라 전계방출소자의 전류밀도가 상대적으로 증가하여 휘도가 향상되는 효과가 있는 것이다. As described above, according to the field emission device having a coating film and a method of manufacturing the same, by forming a coating film on the outer surface of the carbon nanotubes, the carbon nanotubes are prevented from being damaged due to arcing and thus the emission characteristics of the field emission devices are improved. In addition, the lifespan is extended and the current density of the field emission device is relatively increased, thereby improving brightness.

도 1은 본 발명에 따른 전계방출소자를 도시한 모식도,1 is a schematic diagram showing a field emission device according to the present invention,

도 2는 본 발명에 따른 전계방출소자를 도시한 SEM 사진, 2 is a SEM photograph showing a field emission device according to the present invention;

도 3은 본 발명에 따른 전계방출소자의 전계방출특성을 비교 도시한 그래프, 3 is a graph illustrating a comparison of the field emission characteristics of the field emission device according to the present invention;

도 4는 본 발명에 따른 전계방출소자의 전계방출영상을 비교 도시한 사진.Figure 4 is a photograph showing a comparison of the field emission image of the field emission device according to the present invention.

* 도면 중 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 카본나노튜브 20 : 코팅막10: carbon nanotube 20: coating film

Claims (5)

카본나노튜브의 표면에 탄소계열의 코팅막을 형성한 것을 특징으로 하는 코팅막을 형성한 전계방출소자.A field emission device having a coating film, characterized in that a carbon-based coating film is formed on the surface of the carbon nanotubes. 제 1항에 있어서, 상기 코팅막은, The method of claim 1, wherein the coating film, 그 재질이 비정질다이아몬드, 유사 다이아몬드, 카본화이버, 보론나이트라이드, 알루미늄나이트라이드, 갈륨나이트라이드, 그라파이트 중 어느 하나 또는 그들의 혼합물인 것을 특징으로 하는 코팅막을 형성한 전계방출소자. A field emission device having a coating film, wherein the material is any one of amorphous diamond, pseudo diamond, carbon fiber, boron nitride, aluminum nitride, gallium nitride, graphite, or a mixture thereof. 제 1항에 있어서, 상기 코팅막은, The method of claim 1, wherein the coating film, 스퍼터링법, 캐소딕아크증착법, 전자빔 또는 레이저증착법, 화학기상증착법 중 어느 하나의 코팅 방법에 의해 형성되는 것을 특징으로 하는 코팅막을 형성한 전계방출소자. A field emission device having a coating film, characterized in that formed by any one of the coating method, sputtering method, cathodic arc deposition method, electron beam or laser deposition method, chemical vapor deposition method. 제 1항에 있어서, 상기 코팅막은, The method of claim 1, wherein the coating film, 그 두께가 1∼10㎚인 것을 특징으로 하는 코팅막을 형성한 전계방출소자. A field emission device comprising a coating film, the thickness of which is 1 to 10 nm. 코팅장치내에 코팅하고자하는 카본나노튜브를 수용한 상태에서, 200∼500℃의 온도범위에서 카본을 포함하는 메탄 또는 에틸렌과 수소분위기의 40∼70 Torr의 압력에서 10∼60분간 유지하여 코팅막을 형성시킨 것을 특징으로 하는 코팅막을 형성한 전계방출소자의 제조 방법. In a state where carbon nanotubes to be coated are accommodated in a coating apparatus, a coating film is formed by maintaining carbon methane or ethylene containing carbon at a temperature ranging from 200 to 500 ° C. for 10 to 60 minutes at a pressure of 40 to 70 Torr in a hydrogen atmosphere. The manufacturing method of the field emission element which formed the coating film characterized by the above-mentioned.
KR20030079196A 2003-11-10 2003-11-10 Plate field emission device with coating layer KR100561491B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20030079196A KR100561491B1 (en) 2003-11-10 2003-11-10 Plate field emission device with coating layer
TW093134163A TW200516627A (en) 2003-11-10 2004-11-09 Field emission device with coating layer and method for fabricating the same
PCT/KR2004/002898 WO2005045871A1 (en) 2003-11-10 2004-11-10 Field emission device with coating layer and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20030079196A KR100561491B1 (en) 2003-11-10 2003-11-10 Plate field emission device with coating layer

Publications (2)

Publication Number Publication Date
KR20050045216A true KR20050045216A (en) 2005-05-17
KR100561491B1 KR100561491B1 (en) 2006-03-20

Family

ID=34567687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20030079196A KR100561491B1 (en) 2003-11-10 2003-11-10 Plate field emission device with coating layer

Country Status (3)

Country Link
KR (1) KR100561491B1 (en)
TW (1) TW200516627A (en)
WO (1) WO2005045871A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100816B1 (en) * 2005-07-29 2012-01-02 삼성에스디아이 주식회사 Electron emission source for emitting thermal electron, electron emission device having the same, flat display apparatus having the same, and method of manufacturing the same
KR20150118666A (en) * 2014-04-14 2015-10-23 현대자동차주식회사 Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
WO2017007138A1 (en) * 2015-07-07 2017-01-12 주식회사 밸류엔지니어링 Repeller for ion implanter, cathode, chamber wall, slit member, and ion generating device comprising same
US9748094B2 (en) 2010-09-03 2017-08-29 Samsung Electronics Co., Ltd. Semiconductor compound structure and method of fabricating the same using graphene or carbon nanotubes, and semiconductor device including the semiconductor compound structure
KR20180005875A (en) * 2016-07-07 2018-01-17 티디에스 주식회사 Method for manufacturing a high-definition field emission device and the field emission device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093764B (en) 2006-06-23 2012-03-28 清华大学 Field emission component, and preparation method
FR2909801B1 (en) 2006-12-08 2009-01-30 Thales Sa COLD CATHODE ELECTRONIC TUBE
EP2179434A1 (en) 2007-08-23 2010-04-28 E. I. du Pont de Nemours and Company Field emission device with protecting vapor
US8133793B2 (en) 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8569730B2 (en) 2008-07-08 2013-10-29 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
US20100032639A1 (en) 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US20100108976A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon-based films, and methods of forming such devices
US8835892B2 (en) 2008-10-30 2014-09-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US8421050B2 (en) 2008-10-30 2013-04-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US8183121B2 (en) 2009-03-31 2012-05-22 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
CN104124122B (en) * 2014-07-31 2017-01-18 国家纳米科学中心 Method for improving carbon nanotube field emitting performance through diamond-like carbon film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494583B2 (en) * 1999-01-13 2004-02-09 松下電器産業株式会社 Method for manufacturing electron-emitting device
JP2000285792A (en) * 1999-03-31 2000-10-13 Canon Inc Electron emitting element and image forming device using the same
JP3604652B2 (en) * 2000-07-12 2004-12-22 昭夫 平木 Electron emission cathode and method of manufacturing the same
KR20020049630A (en) * 2000-12-19 2002-06-26 임지순 field emitter
KR20030060611A (en) * 2002-01-10 2003-07-16 삼성전자주식회사 Field emitter device comprising carbon nanotube with protective membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100816B1 (en) * 2005-07-29 2012-01-02 삼성에스디아이 주식회사 Electron emission source for emitting thermal electron, electron emission device having the same, flat display apparatus having the same, and method of manufacturing the same
US9748094B2 (en) 2010-09-03 2017-08-29 Samsung Electronics Co., Ltd. Semiconductor compound structure and method of fabricating the same using graphene or carbon nanotubes, and semiconductor device including the semiconductor compound structure
KR20150118666A (en) * 2014-04-14 2015-10-23 현대자동차주식회사 Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
WO2017007138A1 (en) * 2015-07-07 2017-01-12 주식회사 밸류엔지니어링 Repeller for ion implanter, cathode, chamber wall, slit member, and ion generating device comprising same
US10573486B2 (en) 2015-07-07 2020-02-25 Value Engineering, Ltd. Repeller, cathode, chamber wall and slit member for ion implanter and ion generating devices including the same
KR20180005875A (en) * 2016-07-07 2018-01-17 티디에스 주식회사 Method for manufacturing a high-definition field emission device and the field emission device

Also Published As

Publication number Publication date
WO2005045871A1 (en) 2005-05-19
TW200516627A (en) 2005-05-16
KR100561491B1 (en) 2006-03-20

Similar Documents

Publication Publication Date Title
KR100561491B1 (en) Plate field emission device with coating layer
US6903500B2 (en) Field emitter device comprising carbon nanotube having protective membrane
US20020171357A1 (en) Electron emitter including carbon nanotubes and its application in gas discharge devices
US20050200261A1 (en) Low work function cathode
WO1997039469A1 (en) Energetic-electron emitters
JPS63210099A (en) Preparation of diamond film
KR100735792B1 (en) Discharge lamp
Saito Carbon nanotube field emitter
JP2001357771A (en) Electron emission element and its manufacturing method and surface light emitting device and image display device and solid vacuum device
US20100072879A1 (en) Field emission device with anode coating
Kim et al. Effects of gas exposure on the field-emission properties of ZnO nanorods
Zhang et al. Stable field emission from planar-gate electron source with MWNTs by electrophoretic deposition
JP2002352694A (en) Electrode, electron emission element and device using it
US20050266764A1 (en) Method of stabilizing field emitter
JP2010027480A (en) Electroluminescent material, its manufacturing method, and electroluminescent element
TW202015088A (en) Operation method for electron source
JPH1069868A (en) Phosphor light-emitting device and its manufacture
JP2004139747A (en) Transparent conductive film and its manufacturing method
Choi et al. Improvement of the field emission stability of carbon nanotube paste emitter by post-treatments
JP3132461B2 (en) Field emission display device and method of manufacturing the same
JP4803760B2 (en) Electron emitter field aging method
KR200429141Y1 (en) Cold Cathode Fluorescent Lamp Having A Electrode Coated With Diamond-Like Carbon
KR20050048852A (en) Field emitter having thin and uniform protective layer
Zhang et al. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units
Jin et al. Enhanced Thermionic Emission from Barium Strontium Oxide Coated Carbon Nanotubes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140303

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee