KR20040096382A - Nanowire electrode for rechargable lithium battery and fabrication method thereof - Google Patents

Nanowire electrode for rechargable lithium battery and fabrication method thereof Download PDF

Info

Publication number
KR20040096382A
KR20040096382A KR1020030029458A KR20030029458A KR20040096382A KR 20040096382 A KR20040096382 A KR 20040096382A KR 1020030029458 A KR1020030029458 A KR 1020030029458A KR 20030029458 A KR20030029458 A KR 20030029458A KR 20040096382 A KR20040096382 A KR 20040096382A
Authority
KR
South Korea
Prior art keywords
nanowire
electrode
secondary battery
nanowires
sno
Prior art date
Application number
KR1020030029458A
Other languages
Korean (ko)
Other versions
KR100496648B1 (en
Inventor
최헌진
성한규
김진형
조병원
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2003-0029458A priority Critical patent/KR100496648B1/en
Publication of KR20040096382A publication Critical patent/KR20040096382A/en
Application granted granted Critical
Publication of KR100496648B1 publication Critical patent/KR100496648B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A nanowire electrode for a lithium secondary battery and its preparation method are provided, to obtain a negative electrode using nanowires as a negative electrode active material for improving battery capacity, high rate charge/discharge characteristics and cycle characteristics. CONSTITUTION: The nanowire is any one material selected from the group consisting of Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO2, ZnO, CdO, PbO and C. A nanowire negative electrode comprises a current collector(11b), a negative electrode active material made of the nanowires(15) and an electrolyte(14). Preferably the current collector is any one selected from the group consisting of Sc, Ti, Zr, Ru, Lu, Hf, Ta, W, Pt, Mo stainless steel, TiN, SiC, TiB2 and their alloys.

Description

리튬이차전지용 나노선 전극 및 그 제조방법{NANOWIRE ELECTRODE FOR RECHARGABLE LITHIUM BATTERY AND FABRICATION METHOD THEREOF}NANOWIRE ELECTRODE FOR RECHARGABLE LITHIUM BATTERY AND FABRICATION METHOD THEREOF

본 발명은 리튬 이차전지 나노선 전극 및 그 제조방법에 관한 것으로, 보다 상세하게는 나노 크기를 가지며, 지름과 길이의 비가 매우 큰 나노선 (nanowires)을 이용한 리튬 이차전지 전극 및 이를 이용한 리튬전지 제조 방법에 관한 것이다.The present invention relates to a lithium secondary battery nanowire electrode and a method of manufacturing the same, and more particularly, to a lithium secondary battery electrode using nanowires having a nano size and a very large ratio of diameter and length, and a lithium battery using the same It is about a method.

기왕의 상용화된 리튬 이차전지는 양극은 LiCoO2분말, 음극은 탄소 분말을 사용한다. 그러나 향후 높은 용량 및 안정된 수명을 갖는 리튬 전지를 개발하기 위해서 보다 높은 용량과 안정된 수명 특성을 갖는 전극 재료 개발이 필요하다The commercially available lithium secondary battery uses LiCoO 2 powder for the positive electrode and carbon powder for the negative electrode. However, in order to develop a lithium battery having a high capacity and a stable life in the future, it is necessary to develop an electrode material having a higher capacity and a stable life characteristics.

분말형 전극을 사용하면 전지 제조시 도전체 및 집전체와 연결이 용이하고 높은 활물질 밀도로 전극을 제조할 수 있다는 장점이 있으나, 구형이기 때문에 표면적이 작아 리튬 이온의 충방전 탈,삽입에 필요한 가용면적이 작고, 리튬이온의 탈,삽입 확산 경로가 길기 때문에 충방전 속도가 느리고, 리튬의 충방전이 반복됨에 따라 결정구조가 무너지면서 분말 표면에 단락 부분이 쉽게 생기면서 사이클 수명이 감소한다는 단점이 있다.The powder type electrode has the advantage that it is easy to connect with a conductor and a current collector during battery manufacturing, and that the electrode can be manufactured with a high active material density. Due to the small area, long discharge and insertion path of lithium ions, the charging and discharging rate is slow, and as the charging and discharging of lithium is repeated, the crystal structure collapses and short-circuited parts are easily formed on the powder surface, which reduces the cycle life. have.

이에 따라 새로운 형태의 전극을 개발하기 위한 연구가 진행되고 있다. 예를 들면 탄소나노튜브를 리튬이차전지 음극으로 사용하기 위한 연구가 있다 (대한민국 특허 공개 특2000-56422). 그러나 탄소나노튜브는 충방전 특성이 튜브의 지름에 따라 달라지는 반면, 지름 조절이 극히 어렵기 때문에 음극으로서 일정한 특성을 얻기 어렵다. 또한 탄소 자체의 방전 용량은 높지 않은 편이다.Accordingly, research to develop a new type of electrode is in progress. For example, there is a study for using carbon nanotubes as a lithium secondary battery negative electrode (Korean Patent Laid-Open No. 2000-56422). However, while carbon nanotubes have different charge and discharge characteristics depending on the diameter of the tube, it is difficult to obtain certain characteristics as a cathode because the diameter is extremely difficult to control. In addition, the discharge capacity of carbon itself is not high.

따라서, 본 발명은 상기 문제점을 개선하기 위한 것으로, 종래에 비해 전지용량, 고효율 충방전 특성 및 싸이클 특성이 향상된 리튬이차전지용 음극을 제공하는데 목적이 있다.Accordingly, an object of the present invention is to provide a negative electrode for a lithium secondary battery with improved battery capacity, high efficiency charge and discharge characteristics, and cycle characteristics, as compared with the related art.

도 1 은 나노선 활물질로 구성된 본 발명에 의한 집전체 일체형 리튬전극의 단면도.1 is a cross-sectional view of a current collector integrated lithium electrode of the present invention composed of a nanowire active material.

도 2 는 본 발명에 의해 집전체 기판에서 성장한 SnO2나노선 사진.2 is a SnO 2 nanowire photograph grown on the current collector substrate by the present invention.

도 3a는 본 발명에 의한 SnO2나노선을 포함하는 집전체 일체형 리튬 이차전지의 전지용량 및 수명시험 결과를 보여주는 그래프.Figure 3a is a graph showing the battery capacity and life test results of the current collector-integrated lithium secondary battery comprising a SnO 2 nanowires according to the present invention.

도 3b는 본 발명에 의한 SnO2나노선을 포함하는 집전체 일체형 리튬 이차전지의 충방전 특성 시험결과를 보여주는 그래프.Figure 3b is a graph showing the charge and discharge characteristics test results of the current collector integrated lithium secondary battery comprising a SnO 2 nanowires according to the present invention.

도 3c는 본 발명에 의한 Si 나노선을 포함하는 집전체 일체형 리튬 이차전지의 전지용량 및 수명시험 결과를 보여주는 그래프.Figure 3c is a graph showing the battery capacity and the life test results of the current collector integrated lithium secondary battery comprising a Si nanowire according to the present invention.

도 3d는 본 발명에 의한 SnO2나노선을 포함하는 집전체 분리형 리튬 이차전지의 전지용량 및 수명시험 결과를 보여주는 그래프.Figure 3d is a graph showing the battery capacity and life test results of the current collector separate lithium secondary battery containing a SnO 2 nanowires according to the present invention.

도 4 는 본 발명에 의해 집전체 기판에서 성장한 Si 나노선 사진.Figure 4 is a Si nanowire photograph grown on the current collector substrate by the present invention.

상기 목적을 달성하기 위하여 본 발명은 음극 활물질이 나노선(nanowires)으로 이루어지고, 상기 나노선은 Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO2, ZnO, CdO, PbO, C 중에서 선택되는 어느 하나의 물질인 리튬이차전지용 전극을 제공한다.In order to achieve the above object, the present invention is the anode active material is made of nanowires (nanowires), the nanowires are Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO 2 , ZnO, CdO, PbO, It provides an electrode for a lithium secondary battery which is any one material selected from C.

또한, 본 발명은 전류집전체, 나노선 음극활물질, 전해질이 순차적으로 일체화되어 집적된 전극으로서, 상기 나노선이 Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO2, ZnO, CdO, PbO, C 중에서 선택되는 어느 하나의 물질인 리튬이차전지용 전극을 제공한다.In addition, the present invention is a current collector, a nano-wire negative electrode active material, the electrode is an electrode integrated by sequentially integrated, the nano-wire is Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO 2 , ZnO, Provided is an electrode for a lithium secondary battery, which is any one material selected from CdO, PbO, and C.

전류 집전체는 Sc, Ti, Zr, Ru, Lu, Hf, Ta, W, Pt, Mo, 스테인레스 스틸, TiN, SiC, TiB2및 이들의 합금으로 구성된 군에서 선택되는 어느 하나의 물질을 사용할 수 있다.The current collector may use any one material selected from the group consisting of Sc, Ti, Zr, Ru, Lu, Hf, Ta, W, Pt, Mo, stainless steel, TiN, SiC, TiB 2 and alloys thereof. have.

상기 전극을 음극으로 사용하고, 양극활물질로는 LiCOO2, LiNiO2, LiMn2O4, LiMnO2, V2O5, V6O13, MnO2, (CF)n 및 SoCl2로 구성된 군에서 선택되는 어느 하나의 물질을 사용하여 우수한 특성의 리튬이차전지를 제조할 수 있다.The electrode is used as a cathode, and the cathode active material is LiCOO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , V 2 O 5 , V 6 O 13 , MnO 2 , (CF) n and SoCl 2 in the group Any material selected may be used to produce a lithium secondary battery having excellent properties.

또한, 본 발명은 기판 위에 전이금속 또는 귀금속으로 이루어지는 금속 촉매층을 형성하고, 상기 금속 촉매층 위에 Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO2, ZnO, CdO, PbO, C 중에서 선택되는 어느 하나의 물질의 기체상 전구체를 공급하여 나노선을 형성시키는 단계를 포함하여 구성되는 리튬이차전지용 전극 제조방법을 제공한다.In addition, the present invention forms a metal catalyst layer consisting of a transition metal or a noble metal on a substrate, Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO 2 , ZnO, CdO, PbO, C on the metal catalyst layer It provides a method for producing an electrode for a lithium secondary battery comprising the step of forming a nanowire by supplying a gaseous precursor of any one selected material.

도 1은 본 발명에 따른 리튬이차전지의 일례를 보여주는 단면도로서, 집전체 일체형 음극을 보여주고 있다. 음극은 기판(10) 위에 전류 집전체(11b), 나노선(15), 전해질(14)이 순차적으로 집적되어 있다. 양극은 집전체(11a) 위에 양극활물질(13) 전해질(14)이 순차적으로 집적되어 있으며, 양극과 음극은 분리막(12)으로 분리되어 있다.1 is a cross-sectional view showing an example of a lithium secondary battery according to the present invention, showing a current collector integrated negative electrode. As for the cathode, the current collector 11b, the nanowires 15, and the electrolyte 14 are sequentially integrated on the substrate 10. In the positive electrode, the positive electrode active material 13 and the electrolyte 14 are sequentially stacked on the current collector 11a, and the positive electrode and the negative electrode are separated by the separator 12.

기판은 실리콘 (Si), 사파이어 (sapphire), 탄화규소 (SiC) 등의 금속이나 세라믹스 등 소정의 기판을 제조하고자 하는 나노선의 종류에 맞게 선택할 수 있다.The substrate may be selected according to the type of nanowire to be prepared for a predetermined substrate such as metals such as silicon (Si), sapphire, silicon carbide (SiC), or ceramics.

전류 집전체는 상기 기판위에 물리증착법 (PVD), 화학증착법 (CVD), 또는 기타 소정의 방법으로 충분한 전도성을 띄면서 나노선의 성장을 도와줄 수 있는 금속과 세라믹스를 사용할 수 있다.The current collector may use metals and ceramics capable of assisting the growth of the nanowires while being sufficiently conductive on the substrate by physical vapor deposition (PVD), chemical vapor deposition (CVD), or any other method.

상기 나노선을 형성하는 구체적인 방법은 상기 전류 집전체 위에 PVD, CVD, 습식화학법 등의 소정의 방법으로 나노 크기의 촉매 금속 입자들을 형성한 후, 소정의 온도 (300℃ - 1500℃) 에서 PVD, CVD 또는 기타 기체상 전구체를 공급할 수 있는 소정의 방법으로 촉매가 위치된 기판위에 기체상 전구체를 공급하므로써 얻어진다.A specific method of forming the nanowires is to form nano-sized catalytic metal particles on the current collector by a predetermined method such as PVD, CVD, and wet chemical method, and then PVD at a predetermined temperature (300 ° C-1500 ° C) Obtained by supplying a gaseous precursor onto a substrate on which a catalyst is located in any manner that can supply CVD, CVD or other gaseous precursors.

이때 금속 촉매와 기체상 전구체로부터 분해된 성분이 나노 크기의 합금 (alloy)을 형성하고, 기체상 전구체가 계속 공급됨에 따라 나노 합금에서 과포화가 일어나면서 나노선이 침전 (precipitation) 에 의해 형성되게 된다.At this time, the components decomposed from the metal catalyst and the gaseous precursor form a nano-sized alloy, and as the gaseous precursor continues to be supplied, supersaturation occurs in the nanoalloy, and the nanowires are formed by precipitation. .

상기 금속 촉매는 성장시키고자 하는 나노선의 종류에 따라 달라지고, 전이 금속과 귀금속을 사용할 수 있으며, 또한, 상기 금속 촉매의 크기를 조절하므로써, 그에 비례하여 나노선의 지름을 조절할 수 있다. 예를 들어 2nm의 Au층을 기판 위에 증착하여 500℃로 온도를 상승할 경우 기판 위에 20 - 80nm 크기의 금속 촉매가 형성되며, 이를 통해 약 13 - 55nm의 반경을 갖는 나노선이 성장된다. 상기 Au층의 두께를 조절하게 되면 이에 비례하여 성장하는 나노선의 지름이 조절된다. 경우에 따라 금속 촉매 없이 나노선을 성장시킬 수 있다.The metal catalyst varies depending on the type of nanowire to be grown, and a transition metal and a noble metal may be used, and by adjusting the size of the metal catalyst, the diameter of the nanowire may be adjusted in proportion thereto. For example, when a 2 nm Au layer is deposited on a substrate to increase the temperature to 500 ° C., a metal catalyst having a size of 20 to 80 nm is formed on the substrate, thereby growing a nanowire having a radius of about 13 to 55 nm. When the thickness of the Au layer is adjusted, the diameter of the nanowires grows in proportion to the Au layer. In some cases, nanowires can be grown without a metal catalyst.

상기 전해질 층은 PVD, CVD 및 액상법중 어느 하나의 방법으로 형성된다.The electrolyte layer is formed by any one of PVD, CVD and liquid phase methods.

한편, 본 발명에 따른 나노선 음극활물질은집전체 없이 기판 위에, 또는 집전체가 입혀진 기판 위에 촉매를 형성시키고 상기 방법과 동일한 방법으로 성장시킬 수 있으며, 이렇게 성장한 나노선을 기판에서 분리하여, 일반적인 분말형 활물질로 전극을 구성하는 것과 동일한 방법으로 집전체 분리형 전극을 구성할 수 있다.On the other hand, the nanowire anode active material according to the present invention can form a catalyst on a substrate without a current collector, or a substrate coated with a current collector and grown in the same manner as the above method, by separating the grown nanowire from the substrate, The current collector-separated electrode can be configured in the same manner as the electrode is composed of the powdered active material.

집전체 일체형은 활물질과 전극이 함께 구성되어 있는 상태이기 때문에 전지 제조시 별도의 공정이 필요없다는 장점이 있다. 반면 집전체 분리형의 경우 전지를 제조하기 위해 전도체와 복합체를 만들어야 하는 추가 과정이 필요하다. 그러나 이방법은 전도체와 접촉면적을 크게 할 수 있기 때문에 충방전 속도를 향상시킬 수 있다.The current collector integrated type has an advantage that a separate process is not required when manufacturing a battery because the active material and the electrode are configured together. On the other hand, the current collector separate type requires an additional process of making a composite with a conductor to manufacture a battery. However, this method can increase the charge and discharge speed because the contact area with the conductor can be increased.

이하에서는 본 발명에 의한 리튬전지 전극을 제조하고, 이 전극으로부터 리튬 전지를 제조하여 성능을 시험한 실시예를 기술한다. 실시예에 의하여 본 발명이 보다 구체적으로 설명될 수 있지만, 이러한 실시예는 단지 본 발명의 예시이며, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the Example which manufactured the lithium battery electrode by this invention, manufactured the lithium battery from this electrode, and tested the performance is described. Although the present invention may be described in more detail by examples, these examples are merely illustrative of the present invention, and the present invention is not limited thereto.

실시예 1Example 1

실리콘 기판의 한면에 스퍼터링 증착법으로 TiN 100 nm, Ni 2 nm 의 순으로 증착하여 집전체과 촉매층을 형성하였다. 상기 기판에 CVD 에 의해 900℃ 에서 SnCl2와 H2와 O2를 공급하므로써 SnO2나노선을 성장시켰다. 여기서, H2는 SnCl2를 환원시키며, O2는 환원된 Sn과 반응하여 SnO2나노선을 성장시킨다. 도 2는 기판에 성장한 SnO2나노선을 보여준다. 이어 CVD 법에 의해 나노선이 성장한 기판에 LiPON 전해질을 증착시켰다.One surface of the silicon substrate was deposited in the order of TiN 100 nm and Ni 2 nm by sputter deposition to form a current collector and a catalyst layer. SnO 2 nanowires were grown by feeding SnCl 2 , H 2, and O 2 to the substrate at 900 ° C. by CVD. Here, H 2 reduces SnCl 2 and O 2 reacts with the reduced Sn to grow SnO 2 nanowires. 2 shows SnO 2 nanowires grown on a substrate. Subsequently, LiPON electrolyte was deposited on the substrate on which the nanowires were grown by CVD.

상기 집전체 일체형 나노선 음극, 리튬금속 또는 LiCoO2를 이용하여 일반적인 방법으로 제조한 양극과 분리막을 이용하여 전지를 구성한 다음, 충방전율 C/3로 양극을 기준으로 한 전지용량 및 싸이클 수명을 조사하였다. 도 3a 와 3b는 각각 실시예 1에 따른 리튬/SnO2나노선 집전체 일체형 이차전지의 싸이클 횟수에 따른 방전용량의 변화와 충방전 특성을 보여준다. 일반적인 SnO2분말이나 SnO2박막을 이용한 이차전지에서 예외없이 나타나는 두 번째 사이클에서의 70% 정도의 대폭적인 용량 감소가 나타나는데(T. Brousse et al., Powder Tech. 128, 124-130 (2002), S.C. Nam et al., Electrochem. Comm. 3, 6-10 (2001)), 상기 결과를 보면 본 발명에 의한 SnO2나노선 이차전지의 경우 그러한 용량 감소가 나타나지 않는 것을 알 수 있다. 이 점은 나노선을 이용한 리튬전지가 기존의 리튬전지에 비해 사이클 안정성에서 큰 향상이 있다는 것을 보여준다.The battery was constructed using a positive electrode and a separator manufactured by a general method using the current collector-integrated nanowire negative electrode, lithium metal, or LiCoO 2 , and then the battery capacity and cycle life based on the positive electrode were investigated at a charge / discharge rate of C / 3. It was. 3A and 3B show changes in discharge capacity and charge / discharge characteristics according to the number of cycles of the lithium / SnO 2 nanowire current collector integrated secondary battery according to Example 1, respectively. There is a significant 70% reduction in capacity in the second cycle without exception in secondary batteries using SnO 2 powders or SnO 2 thin films (T. Brousse et al., Powder Tech. 128, 124-130 (2002)). , SC Nam et al., Electrochem.Comm. 3, 6-10 (2001)), and the results show that the reduction of the capacity of the SnO 2 nanowire secondary battery according to the present invention does not appear. This shows that the lithium battery using nanowires has a significant improvement in cycle stability compared to the conventional lithium battery.

실시예 2Example 2

실리콘 기판의 한면에 스퍼터링 증착법으로 Pt 50 nm, Au 2 nm를 증착하여 집전체과 촉매층을 형성하였다. 상기 기판에 CVD 에 의해 500℃ 에서 SiCl4와 H2를 공급하므로써 Si 나노선을 성장시켰다. 도 4 는 실시예 2 의 방법으로 성장시킨 Si 나노선을 보여준다. 나노선이 형성된 음극을 실시예 1과 같은 방법으로 리튬이차전지를 구성하여 전지용량 및 싸이클 수명을 조사하였다. 도 3c는 실시예 2에 따른 리튬/Si 나노선 집전체 일체형 이차전지의 싸이클 횟수에 따른 방전용량의 변화를 보여준다.Pt 50 nm and Au 2 nm were deposited on one surface of the silicon substrate by sputter deposition to form a current collector and a catalyst layer. Si nanowires were grown by feeding SiCl 4 and H 2 to the substrate at 500 ° C. by CVD. 4 shows Si nanowires grown by the method of Example 2. FIG. The negative electrode on which the nanowires were formed was constructed in the same manner as in Example 1 to investigate the battery capacity and the cycle life. 3c shows the change of discharge capacity according to the cycle number of the lithium / Si nanowire current collector integrated secondary battery according to Example 2. FIG.

실시예 3Example 3

실리콘 기판의 한면에 스퍼터링 증착법으로 Ni 2 nm를 증착하였다. 상기 기판에 산화물과 탄소를 반응시켜 반응기체를 발생시키는 열탄소환원법에 의해 Sn 과 O를 공급하여 SnO 나노선을 성장시켰다. 기판을 알코올 용액에 담그고 1 분 동안 초음파를 가하여 SnO 나노선을 분리, 건조하였다. 분리한 나노선을 아세킬론 블랙 및 PvDF 의 조성물을 적당량의 1-메틸-2 피롤리돈 (NMP) 및 아세돈과 혼합한 다음, 적당한 점도가 얻어졌을때 알루미늄 박판 위에 캐스팅하여 건조시킨 후 압연하여 나노선 음극을 제조하였다. 나노선 음극과 LiCoO2양극으로 리튬이차전지를 구성하여 전지용량 및 싸이클 수명을 조사하였다. 도 3d는 실시예 3은 따른 리튬/SnO2나노선 집전체 분리형 이차전지의 싸이클 횟수에 따른 방전용량의 변화를 보여준다.Ni 2 nm was deposited on one surface of the silicon substrate by sputtering deposition. Sn and O were supplied by the thermal carbon reduction method in which an oxide and carbon were reacted with the substrate to generate a reactant, thereby growing SnO nanowires. The substrate was immersed in an alcohol solution and sonicated for 1 minute to separate and dry the SnO nanowires. The separated nanowires were mixed with an appropriate amount of acekylon black and PvDF with 1-methyl-2 pyrrolidone (NMP) and acedon, then cast on a thin sheet of aluminum when the proper viscosity was obtained, dried and rolled. Nanowire anode was prepared. The lithium secondary battery was composed of a nanowire anode and a LiCoO 2 cathode to investigate battery capacity and cycle life. Figure 3d shows a change in the discharge capacity according to the cycle number of the lithium / SnO 2 nanowire current collector-type secondary battery according to Example 3.

이상에서 살펴본 바와 같이, 본 발명은 산화물, 또는 금속, 또는 기타 성분의 나노선을 음극 활물질로 하는 집전체 일체형, 또는 집전체 분리형 리튬이차전지용 전극을 제공하여, 전지용량, 고효율 충방전 특성 및 싸이클 특성이 향상된 리튬이차전지를 제조할 수 있게 된다.As described above, the present invention provides a current collector-integrated type or current collector separated type lithium secondary battery electrode using a nanowire of an oxide, metal, or other component as a negative electrode active material, thereby providing battery capacity, high efficiency charge and discharge characteristics, and cycles. It is possible to manufacture a lithium secondary battery with improved characteristics.

Claims (9)

음극 활물질이 나노선(nanowires)으로 이루어지고,The negative electrode active material is made of nanowires (nanowires), 상기 나노선은 Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO2, ZnO, CdO, PbO, C 중에서 선택되는 어느 하나의 물질인The nanowire is any one material selected from Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO 2 , ZnO, CdO, PbO, C 리튬이차전지용 나노선 전극.Nanowire electrode for lithium secondary battery. 전류집전체, 나노선 음극활물질, 전해질이 순차적으로 일체화되어 집적된 전극으로서, 상기 나노선이 Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO2, ZnO, CdO, PbO, C 중에서 선택되는 어느 하나의 물질인A current collector, a nanowire anode active material, and an electrode in which an electrolyte is sequentially integrated and integrated, wherein the nanowires are Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO 2 , ZnO, CdO, PbO, C Any one material selected from 리튬이차전지용 나노선 전극.Nanowire electrode for lithium secondary battery. 제2항에 있어서, 상기 전류 집전체는 Sc, Ti, Zr, Ru, Lu, Hf, Ta, W, Pt, Mo, 스테인레스 스틸, TiN, SiC, TiB2및 이들의 합금으로 구성된 군에서 선택되는 어느 하나인The method of claim 2, wherein the current collector is selected from the group consisting of Sc, Ti, Zr, Ru, Lu, Hf, Ta, W, Pt, Mo, stainless steel, TiN, SiC, TiB 2 and alloys thereof. Which one 리튬이차전지용 나노선 전극.Nanowire electrode for lithium secondary battery. 제1항 또는 제3항의 전극을 음극으로 사용하고, 양극활물질로 LiCOO2,LiNiO2, LiMn2O4, LiMnO2, V2O5, V6O13, MnO2, (CF)n 및 SoCl2로 구성된 군에서 선택되는 어느 하나의 물질을 사용하여 구성되는 리튬이차전지.The electrode of claim 1 or 3 is used as a cathode, and LiCOO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , V 2 O 5 , V 6 O 13 , MnO 2 , (CF) n and SoCl as cathode active materials Lithium secondary battery using any one material selected from the group consisting of two . 기판 위에 전이금속 또는 귀금속으로 이루어지는 금속 촉매층을 형성하고,Forming a metal catalyst layer made of transition metal or precious metal on the substrate, 상기 금속 촉매층 위에 Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO2, ZnO, CdO, PbO, C 중에서 선택되는 어느 하나의 물질의 기체상 전구체를 공급하여 나노선을 형성시키는 단계를 포함하여 구성되는Forming a nanowire by supplying a gaseous precursor of any one material selected from Sb, Bi, Sn, Cd, In, Pb, Si, SnO, SnO 2 , ZnO, CdO, PbO, and C on the metal catalyst layer Configured including 리튬이차전지용 나노선 전극 제조방법.Nanowire electrode manufacturing method for a lithium secondary battery. 제5항에 있어서, 기판 위에 Sc, Ti, Zr, Ru, Lu, Hf, Ta, W, Pt, Mo, 스테인레스 스틸, TiN, SiC, TiB2및 이들의 합금으로 구성된 군에서 선택되는 어느 하나의 물질로 전류 집전체를 형성하는 단계를 포함하는The method of claim 5, wherein any one selected from the group consisting of Sc, Ti, Zr, Ru, Lu, Hf, Ta, W, Pt, Mo, stainless steel, TiN, SiC, TiB 2 and alloys thereof on a substrate Forming a current collector with a material 리튬이차전지용 나노선 전극 제조방법.Nanowire electrode manufacturing method for a lithium secondary battery. 제5항에 있어서, 상기 나노선은 PVD, CVD, 또는 습식화학법에 의하여 형성시키는 리튬이차전지용 나노선 전극 제조방법.The method of claim 5, wherein the nanowires are formed by PVD, CVD, or a wet chemical method. 제7항에 있어서, 상기 나노선은 300℃ - 1500℃에서 형성되는 리튬이차전지용 나노선 전극 제조방법.The method of claim 7, wherein the nanowires are formed at 300 ° C. to 1500 ° C. 9. 제5항에 있어서, 상기 금속 촉매의 크기를 조절하여 상기 나노선의 지름을 제어하는 것을 특징으로 하는 리튬이차전지용 나노선 전극 제조방법.The method of manufacturing a nanowire electrode for a lithium secondary battery according to claim 5, wherein the diameter of the nanowire is controlled by adjusting the size of the metal catalyst.
KR10-2003-0029458A 2003-05-09 2003-05-09 Nanowire electrode for rechargable lithium battery and fabrication method thereof KR100496648B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0029458A KR100496648B1 (en) 2003-05-09 2003-05-09 Nanowire electrode for rechargable lithium battery and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0029458A KR100496648B1 (en) 2003-05-09 2003-05-09 Nanowire electrode for rechargable lithium battery and fabrication method thereof

Publications (2)

Publication Number Publication Date
KR20040096382A true KR20040096382A (en) 2004-11-16
KR100496648B1 KR100496648B1 (en) 2005-06-22

Family

ID=37375110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0029458A KR100496648B1 (en) 2003-05-09 2003-05-09 Nanowire electrode for rechargable lithium battery and fabrication method thereof

Country Status (1)

Country Link
KR (1) KR100496648B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954979B1 (en) * 2007-09-14 2010-04-29 금오공과대학교 산학협력단 Negative active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery including same
CN103647085A (en) * 2013-12-19 2014-03-19 山东精工电子科技有限公司 Lithium ion battery negative current collector material and preparation method thereof
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
CN112216826A (en) * 2020-09-16 2021-01-12 合肥国轩高科动力能源有限公司 Preparation method of core-shell structure silicon-based negative electrode material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
KR100954979B1 (en) * 2007-09-14 2010-04-29 금오공과대학교 산학협력단 Negative active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery including same
CN103647085A (en) * 2013-12-19 2014-03-19 山东精工电子科技有限公司 Lithium ion battery negative current collector material and preparation method thereof
CN112216826A (en) * 2020-09-16 2021-01-12 合肥国轩高科动力能源有限公司 Preparation method of core-shell structure silicon-based negative electrode material

Also Published As

Publication number Publication date
KR100496648B1 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP4415241B2 (en) Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
US9105903B2 (en) All-solid-state lithium battery, and production method therefor
JP5357565B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP3624174B2 (en) Metal oxide electrode, method for producing the same, and lithium secondary battery using the same
KR101628873B1 (en) Negativ7e electrode active material, methode for synthesis the same, negative electrode including the same, and lithium rechargable battery including the same
KR101001827B1 (en) Method for producing negative electrode for lithium ion secondary battery
JP2007534177A (en) High capacity nanostructured germanium-containing materials and their lithium alloys
JP4910297B2 (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
WO2011068911A2 (en) High capacity electrode materials enhanced by amorphous silicon
WO2007086411A1 (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
KR101665099B1 (en) Anode materials for lithium rechargeable batteries including natural graphite and metal and a preparation method thereof
KR20110063390A (en) Method of manufacturing nano alloy powders for anode of thin film battery
CN110190240B (en) Composite lithium oxide film and preparation method and application thereof
JP2009277381A (en) Lithium battery
WO2015146315A1 (en) All-solid battery
JP2023508373A (en) Negative electrode for lithium secondary battery in which current collector is oxidized, and manufacturing method thereof
JP2003007288A (en) Manufacturing method of electrode for lithium secondary battery
JP2003077464A (en) Negative electrode film for lithium secondary battery and its manufacturing method
KR100496648B1 (en) Nanowire electrode for rechargable lithium battery and fabrication method thereof
TWI695536B (en) Laminate body and manufacturing method thereof
KR101200306B1 (en) Thin film battery having improved anode characteristics and method of manufacturing the same
JP2004335192A (en) Method of manufacturing positive electrode and method of manufacturing battery
JP2010251194A (en) Positive electrode for battery and method of manufacturing the same
KR100495674B1 (en) A cathode thin film for all solid state battery, preparation method thereof, and lithium thin film battery using the same
RU2761861C1 (en) Sodium-ion battery anode and method for its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100526

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee