KR20040088902A - Carbon nanotube array with self cleaning - Google Patents

Carbon nanotube array with self cleaning Download PDF

Info

Publication number
KR20040088902A
KR20040088902A KR1020030023342A KR20030023342A KR20040088902A KR 20040088902 A KR20040088902 A KR 20040088902A KR 1020030023342 A KR1020030023342 A KR 1020030023342A KR 20030023342 A KR20030023342 A KR 20030023342A KR 20040088902 A KR20040088902 A KR 20040088902A
Authority
KR
South Korea
Prior art keywords
nanotube array
carbon nanotube
carbon nanotubes
carbon
water
Prior art date
Application number
KR1020030023342A
Other languages
Korean (ko)
Other versions
KR100582170B1 (en
Inventor
이규호
손영우
이상봉
Original Assignee
이규호
손영우
이상봉
임지순
유재준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이규호, 손영우, 이상봉, 임지순, 유재준 filed Critical 이규호
Priority to KR1020030023342A priority Critical patent/KR100582170B1/en
Publication of KR20040088902A publication Critical patent/KR20040088902A/en
Application granted granted Critical
Publication of KR100582170B1 publication Critical patent/KR100582170B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

PURPOSE: A carbon nanotube array is provided to improve its self-cleaning ability and durability, thereby embodying the antifouling and highly water repellent surface. CONSTITUTION: The carbon nanotube array(13) is formed on a substrate(11) in a way that a plurality of carbon nanotubes(13a, 13b) having a certain diameter(D) satisfies the following equation, when a certain fluid having a certain surface tension(σ) and a certain hydraulic pressure(P) is contacted with the surface of the carbon nanotubes at a certain contact angle(θ): L<=πDσcosθ/P, wherein L is an interval between carbon nanotubes, and other symbols are as defined above. The height(H) of the carbon nanotube is not less than 1/200 and not more than 1/20 compared to the interval(L).

Description

자기세정력을 가지는 탄소나노튜브 어레이{Carbon nanotube array with self cleaning}Carbon nanotube array with self cleaning

본 발명은 탄소나노튜브 어레이에 관한 것으로서, 더욱 상세하게는 자기세정력을 가지는 탄소나노튜브 어레이에 관한 것이다.The present invention relates to a carbon nanotube array, and more particularly to a carbon nanotube array having a self-cleaning force.

독일의 식물학자 빌헬름 발쓰로트(Wilhelm Barthlott)은 여러 식물 잎의 표면을 전자 현미경으로 관찰하여 표면의 요철이 심할수록 물을 밀어내는 성질이 강하며, 발수성 요철구조의 표면은 표면 상의 오염물이 물방울 만으로도 쉽게 세정되는 자기 세정력(self-cleaning)을 가지는 것을 발견하였다. 그가 조사한 2만여종의식물 잎 중에서 특히 연꽃잎이 가장 강한 초발수성과 자기 세정력을 가지고 있음을 발견하고 이를 연꽃효과(Lotus effect)라고 명명하였다. 빌헬름은 마이크로미터 크기의 요철이 있는 거친 표면을 이용한 초발수성과 자기세정력을 가지는 표면 구조에 관한 특허를 EP0772514B1로 출원하였다.German botanist Wilhelm Barthlott observes the surface of various plant leaves with an electron microscope, and the more severe the irregularities on the surface, the stronger the water is pushed away. It has been found to have self-cleaning that is easily cleaned. Among the 20,000 plant leaves he investigated, he found that lotus leaf had the strongest water repellency and self-cleaning ability and named it lotus effect. Wilhelm has filed a patent on EP0772514B1 for a surface structure having super water repellency and self-cleaning force using a rough surface with micrometer-sized irregularities.

도 1은 초발수성 표면 상에 물방울을 보인 사진이다. 물방울은 표면장력에 의해 잎의 몇몇 점에서만 접촉하고 있으며 볼형태를 유지한다. 이 상태에서는 초발수성 표면이 약간만 기울어져도 물방울이 완전히 구르게 된다.1 is a photograph showing water droplets on a super water-repellent surface. Water droplets are only in contact with some of the leaves by surface tension and remain ball-shaped. In this state, even if the superhydrophobic surface is slightly inclined, the water droplets roll completely.

이러한 초발수성 표면의 적용범위는 매우 광범위하다. 예를 들어, 건축물, 자동차, 기차, 선박 등의 표면에 적용할 경우 세제를 사용하지 않아도 되며 빗물만으로도 마이크로미터 크기의 미세 먼지까지 모두 세척할 수 있다. 초발수성 표면은 세제없이 표면에 물방울이 구르는 것만으로도 미세 먼지까지 깨끗하게 세척되므로 솔이나 천으로 일반 표면을 문지르는 것에 비해 비용과 노력이 크게 절감된다. 특히 초발수성 표면은 물방울 자체가 표면에 접촉하지 않으므로 표면의 부식을 원천적으로 차단시킬 수 있어 외장재의 수명을 거의 영구적으로 연장시킬 수 있다. 이러한 초발수성 표면은 특히 고도의 청정환경을 필요로 하는 반도체 제조공정 분야에 적용되어 큰 효과를 볼 수 있다.The application of such superhydrophobic surfaces is very broad. For example, when applied to the surface of buildings, cars, trains, ships, etc., no detergent is required, and even rainwater alone can clean micrometer-sized fine dust. Super water-repellent surfaces clean up even fine dust just by rolling water droplets on the surface without detergent, which greatly reduces costs and effort compared to scrubbing ordinary surfaces with a brush or cloth. In particular, the super water-repellent surface, since the water droplets do not come into contact with the surface, it can fundamentally block the corrosion of the surface can extend the life of the exterior material almost permanently. This super water-repellent surface is particularly effective in the semiconductor manufacturing process field that requires a high clean environment can be seen a great effect.

하지만, 현재 초발수성 표면은 폴리머, 실리콘 등의 물질이 마이크로미터 정도의 크기를 가지는 요철 구조를 형성함으로써 이루어지는데, 이러한 요철 구조는 크기를 감소시키는 것이 어려워 자기세정력을 향상시키는 것이 용이하지 않다. 또한 초발수성 표면을 이루는 상기 물질들의 기둥은 크기가 작아질수록 요철구조의강도도 악화되어 내구성이 떨어지는 단점이 있다. 따라서, 연꽃잎과 같이 유체와의 접촉 면적이 나노크기를 가지고 뛰어난 자기세정력을 나타내는 초발수성 표면 구조에 대한 연구가 진행되고 있다.However, at present, the super water-repellent surface is formed by forming an uneven structure in which a material such as a polymer or silicon has a size of about a micrometer, and this uneven structure is difficult to reduce in size, and thus it is not easy to improve self-cleaning force. In addition, the pillars of the materials forming the super water-repellent surface has a disadvantage that the durability of the uneven structure is worsened as the size is smaller. Therefore, research has been conducted on super water-repellent surface structures, such as lotus leaves, in which the contact area with the fluid has a nano size and exhibits excellent self-cleaning force.

따라서, 본 발명이 이루고자하는 기술적 과제는 상술한 종래 기술의 문제점을 개선하기 위한 것으로서, 뛰어난 자기세정력과 강한 내구성을 가지는 탄소나노튜브 어레이를 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to provide a carbon nanotube array having an excellent self-cleaning force and a strong durability to improve the problems of the prior art described above.

도 1은 연꽃효과를 보이는 사진,1 is a photograph showing a lotus effect,

도 2는 본 발명의 실시예에 따른 탄소나노튜브 어레이를 간략히 나타낸 사시도.Figure 2 is a perspective view briefly showing a carbon nanotube array according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호설명><Code Description of Main Parts of Drawing>

11 ; 기판 12 ; 산화막11; Substrate 12; Oxide film

13a, 13b ; 탄소나노튜브 13 ; 탄소나노튜브 어레이13a, 13b; Carbon nanotubes 13; Carbon Nanotube Array

상기 기술적 과제를 달성하기 위하여 본 발명은,The present invention to achieve the above technical problem,

소정 표면 장력(σ)과 소정 유압(P)을 가지는 유체가 특정 접촉각(θ)으로 표면에 접촉할 때 상기 유체에 대한 자기세정력을 가지도록 기판 상에 소정 직경(D)을 가지는 복수의 탄소나노튜브가 수학식 1을 만족하는 간격(L)으로 배열되는 것을 특징으로 하는 탄소나노튜브 어레이를 제공한다.A plurality of carbon nanoparticles having a predetermined diameter (D) on the substrate to have a self-cleaning force for the fluid when a fluid having a predetermined surface tension (σ) and a predetermined hydraulic pressure (P) contacts the surface at a specific contact angle (θ) It provides a carbon nanotube array, characterized in that the tube is arranged at an interval (L) to satisfy the equation (1).

상기 탄소나노튜브의 높이(H)는 상기 간격(L)의 1/200이상 1/20이하인 것이 바람직하다.The height (H) of the carbon nanotubes is preferably 1/200 or more and 1/20 or less of the gap (L).

상기 탄소나노튜브 상의 유체(이물질)와 상기 탄소나노튜브(나노구조)의 표면과의 상대 흡착력(Ar)은 상대 흡착계수(C)와 탄소나노튜브의 흡착력(A)에 대해 수학식 2를 만족한다.The relative adsorption force (A r ) between the fluid (foreign substance) on the carbon nanotubes and the surface of the carbon nanotubes (nano structure) is expressed by Equation 2 for the relative adsorption coefficient (C) and the adsorption force (A) of the carbon nanotubes. Satisfies.

상기 유압은 100kg중/m2이하인 것이 바람직하다.The hydraulic pressure is preferably 100 kg / m 2 or less.

상기 직경(D)은 1nm 내지 500nm의 크기이고, 상기 접촉각(θ)은 90도 보다 큰 것이 바람직하다.The diameter D is in the range of 1 nm to 500 nm, and the contact angle θ is preferably greater than 90 degrees.

상기 탄소나노튜브의 표면에 테프론 코팅이 되는 것이 바람직하며, 상기 기판 상에 산화막이 더 형성된 것이 바람직하다.Preferably, the surface of the carbon nanotubes is coated with Teflon, and an oxide film is further formed on the substrate.

본 발명은 유체와의 접촉 면적비를 수 퍼센트 이하로 감소시켜 강한 발수성, 항오염성 및 자기세정력을 가지는 탄소나노튜브 어레이를 제공한다.The present invention provides a carbon nanotube array having strong water repellency, anti-pollution and self-cleaning power by reducing the contact area ratio with the fluid to several percent or less.

이하 본 발명의 실시예에 따른 탄소나노튜브 어레이를 도면을 참조하여 상세히 설명한다.Hereinafter, a carbon nanotube array according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 실시예에 따른 탄소나노튜브 어레이를 보인 개념도이다.2 is a conceptual diagram illustrating a carbon nanotube array according to an embodiment of the present invention.

도 2를 참조하면, 기판(11) 상에 소정 직경(D) 및 소정 높이(H)의 탄소나노튜브(13a, 13b)가 소정 간격(L)으로 복수개 배열된 탄소나노튜브 어레이(13)가 형성되어 있다. 탄소나노튜브 어레이(13)의 상면에는 물이 탄소나노튜브(13a, 13b)와 접촉각(θ)로 접촉하고 있다. 여기서, 기판(11) 상에는 산화막이 더 형성되어 탄소나노튜브(13a, 13b)를 더 강하게 고정시킬 수 있다.Referring to FIG. 2, a carbon nanotube array 13 having a plurality of carbon nanotubes 13a and 13b having a predetermined diameter D and a predetermined height H is arranged at predetermined intervals L on a substrate 11. Formed. Water is in contact with the carbon nanotubes 13a and 13b at the contact angle θ on the upper surface of the carbon nanotube array 13. Here, an oxide film may be further formed on the substrate 11 to fix the carbon nanotubes 13a and 13b more strongly.

물의 표면장력을 이용하여 탄소나노튜브 상에 물방울이 안착될 수 있는 조건은 다음과 같이 계산된다. 탄소나노튜브(13a, 13b)를 물 표면에 살짝 찔러넣으면탄소나노튜브(13a, 13b)는 물로부터 수직으로 항력을 받는다. 탄소나노튜브의 직경을 D라 하면 탄소나노튜브 둘레의 길이는 πD가 되고 탄소나노튜브 둘레의 길이에 물의 표면장력(σ)을 곱하면 수막이 접촉선을 따라 탄소나노튜브에 작용하는 힘을 구할 수 있다. 이 힘에서 탄소나노튜브(13a, 13b)가 물과 이루는 접촉각(θ)의 코사인 성분이 탄소나노튜브(13a, 13b)에 수직으로 작용하는 항력이 된다. 이 항력(f)은 수학식 3으로 주어진다.The conditions under which water droplets can be deposited on the carbon nanotubes using the surface tension of water are calculated as follows. When the carbon nanotubes 13a and 13b are slightly inserted into the water surface, the carbon nanotubes 13a and 13b are subjected to drag vertically from the water. If the diameter of the carbon nanotubes is D, the length of the periphery of the carbon nanotubes is πD and the length of the periphery of the carbon nanotubes is multiplied by the surface tension (σ) of the water to determine the force acting on the carbon nanotubes along the contact line. Can be. In this force, the cosine component of the contact angle θ formed by the carbon nanotubes 13a and 13b with water becomes a drag force acting perpendicular to the carbon nanotubes 13a and 13b. This drag f is given by equation (3).

탄소나노튜브(13a, 13b) 간 간격이 L 나노미터이고 정방형 격자로 배열되는 경우 단일 탄소나노튜브(13a)(13b)가 차지하는 면적은 L2이므로 단위 면적당 작용하는 힘, 즉 압력(P)은 수학식 4와 같이 주어진다.When the space between the carbon nanotubes 13a and 13b is L nanometers and is arranged in a square lattice, the area occupied by the single carbon nanotubes 13a and 13b is L 2, and thus the force acting per unit area, that is, the pressure P It is given by Equation 4.

수면과 탄소나노튜브 어레이(13) 표면 사이에 상기 압력값(P)보다 큰 압력이 작용하는 경우 탄소나노튜브 어레이(13) 내부의 공기를 모두 밀어내고 탄소나노튜브(13a, 13b) 사이의 공기층으로 물이 침투하게 된다. 이 경우 표면의 요철 구조의 전면에 물이 모두 접촉하게 되고 요철구조가 아닌 평평한 평면 구조일 경우보다 물과 물체 표면과의 접촉면이 더욱 증가하여 초발수성, 항오염 등의 효과를 나타낼 수 없게 된다. 따라서, 적용상황에 필요한 내수압(Pmax)를 설정하여탄소나노튜브(13a, 13b)의 직경(D)과 간격(L)을 설정하여야 탄소나노튜브(13a, 13b) 말단에 물방울을 얹게 할 수 있다. 이 상태에서 물과 물체 표면과의 접촉면이 최소화되므로 초발수성을 유지하여 물방울이 표면을 구르면서 약하게 흡착된 오염 물질을 제거할 수 있다.When a pressure greater than the pressure value P is applied between the surface of the water and the surface of the carbon nanotube array 13, the air layer between the carbon nanotube array 13 and the carbon nanotubes 13a and 13b is pushed out. Water penetrates into the In this case, all the water is in contact with the front surface of the concave-convex structure, and the contact surface between the water and the object surface is increased more than in the case of a flat planar structure other than the concave-convex structure, so that the effects of super water repellency and anti-pollution cannot be exhibited. Therefore, it is necessary to set the diameter (D) and the distance (L) of the carbon nanotubes (13a, 13b) by setting the water pressure (P max ) necessary for the application situation so that water droplets can be placed on the ends of the carbon nanotubes (13a, 13b). have. In this state, the contact surface between the water and the object surface is minimized, so that the water repellency can be maintained to remove the weakly adsorbed contaminants as the water droplets roll on the surface.

이와 같은 자기세정력을 나타낼 수 있는 탄소나노튜브(13a, 13b) 간 최대 간격(Lmax)은 수학식 4로부터 수학식 5와 같이 구할 수 있다.The maximum spacing L max between the carbon nanotubes 13a and 13b which may exhibit such a self-cleaning force may be obtained from Equation 4 as shown in Equation 5.

Pmax는 직경이 1mm 이하인 물방울의 경우 100kg 중/m2정도면 충분하며, 탄소나노튜브(13a, 13b)의 높이(H)는 탄소나노튜브(13a, 13b) 사이의 공기층을 유지할 수 있을 정도만큼 높아야 한다. 탄소나노튜브(13a, 13b)의 높이(H)는 2cos(θ)에 비례한다. 아직까지 탄소나노튜브(13a, 13b)와 물 간의 접촉각(θ)이 정확히 알려져 있지 않으므로 탄소나노튜브의 높이(H)도 정확히 결정할 수 없으나 접촉각(θ)이 대략 91°~96°라고 가정하면 간격(L)은 1/200 내지 1/20 이상인 것이 바람직하다.P max is about 100kg / m 2 for water droplets of 1mm or less in diameter, the height (H) of the carbon nanotubes (13a, 13b) is enough to maintain the air layer between the carbon nanotubes (13a, 13b) Should be as high as The height H of the carbon nanotubes 13a and 13b is proportional to 2cos (θ). Since the contact angle (θ) between the carbon nanotubes (13a, 13b) and water is not known yet, the height (H) of the carbon nanotubes cannot be determined accurately, but the interval is assumed that the contact angle (θ) is approximately 91 ° to 96 °. (L) is preferably 1/200 to 1/20 or more.

수학식 2에서 상온(섭씨 25도)에서 물의 표면 장력(σ)은 0.072N/m이고, 대기압 하의 공기 중에서 공기와 직경 1mm인 물방울과의 내부 압력차(P)은 14.4kg중/m2이며 물방울과 탄소나노튜브 간 접촉각(θ)은 90도보다 크다.In equation (2), the surface tension (σ) of water at room temperature (25 degrees Celsius) is 0.072 N / m, and the internal pressure difference (P) between air and water droplets having a diameter of 1 mm in air under atmospheric pressure is 14.4 kg / m 2 . The contact angle θ between the water droplets and the carbon nanotubes is greater than 90 degrees.

따라서, 탄소나노튜브 어레이(13)의 표면에 이물질이 존재하는 경우 탄소나노튜브 어레이(13)의 표면으로부터 이물질을 제거하는데 필요한 힘, 즉 상대적 흡착력(Ar)은 수학식 6과 같이 주어지는 C 값, 즉 접촉면의 면적비(D/L)2에 비례하여 감소한다. 물체 표면에 대한 오염 물질의 흡착력은 두 물체 사이의 접촉 면적에 비례하므로, 요철 구조의 표면은 평평한 표면에 비해 상대적으로 흡착력이 감소한다. 즉, 상대적 흡착력(Ar)은 수학식 6에서와 같이, (실질 접촉 면적)/(투영 면적)에 비례한다.Therefore, when foreign matter is present on the surface of the carbon nanotube array 13, the force required to remove the foreign matter from the surface of the carbon nanotube array 13, that is, the relative adsorption force (A r ) is given by Equation (6). That is, it decreases in proportion to the area ratio (D / L) 2 of the contact surface. Since the adsorption force of the contaminants on the object surface is proportional to the contact area between the two objects, the surface of the uneven structure has a decrease in the adsorption force relative to the flat surface. That is, the relative adsorption force A r is proportional to (actual contact area) / (projection area), as shown in equation (6).

상기의 수학식 1 내지 4로부터 직경 D 나노미터인 탄소나노튜브(13a, 13b)가 평균 L 나노미터 간격으로 배열된 경우 소정 내수압(Pmax)에서 공기층을 유지할 수 있는지를 임의의 유체 표면장력(σ)과 접촉각(θ)으로부터 구할 수 있다.When the carbon nanotubes 13a and 13b having diameter D nanometers are arranged at average L nanometer intervals from the above Equations 1 to 4, it is determined whether the fluid layer can maintain an air layer at a predetermined water pressure (P max ). σ) and contact angle θ.

특히 25℃의 물에서 최대 내수압(Pmax)이 1, 10, 100kg중/m2로 나타나는 경우 탄소나노튜브 어레이(13) 구조 표면의 스펙, 즉 탄소나노튜브(13a, 13b)의 직경(D), 최대 간격(Lmax) 및, 요철 구조가 없는 평평한 표면에 대한 탄소나노튜브 어레이 표면의 상대적 흡착력(Arel)을 계산하면 표 1로 제시된다. 여기서, 접촉각(θ)은 탄소나노튜브(13a, 13b)의 경우 정확한 값이 알려져 있지 않으므로 180도로 가정한다.Particularly, when the maximum water pressure (P max ) in water at 25 ° C. is 1, 10, and 100 kg / m 2 , the specification of the surface of the carbon nanotube array 13 structure, that is, the diameter of the carbon nanotubes 13a and 13b (D ), The maximum spacing (L max ), and the relative adsorption force (A rel ) of the carbon nanotube array surface to the flat surface without the uneven structure are shown in Table 1. Here, the contact angle θ is assumed to be 180 degrees because the exact value of the carbon nanotubes (13a, 13b) is not known.

PmaxD(nm)(kg중/m2)P max D (nm) (kg / m 2 ) 22 55 1010 2020 3030 5050 100100 200200 1One Lmax L max 67826782 1072410724 1516615166 2144821448 2626826268 3391233912 4795847958 6782367823 Arel A rel 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 1010 Lmax L max 21452145 33913391 47964796 67826782 83078307 1072410724 1516615166 2144821448 Arel A rel 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.01%0.01% 100100 Lmax L max 678678 10721072 15171517 21452145 26272627 33913391 47964796 67826782 Arel A rel 0.00%0.00% 0.00%0.00% 0.00%0.00% 0.01%0.01% 0.01%0.01% 0.02%0.02% 0.04%0.04% 0.09%0.09%

탄소나노튜브(13a, 13b)와 물이 접촉각(θ)은 90.6도로 알려져 있으나 아직 정확한 값은 알 수 없으므로 실험을 통해 그 값을 결정해야 한다. 이 접촉각(θ)은 최대 내수압만을 결정한다. 극히 미약한 소수성을 가지는 경우 최대 내수압은 1/100 정도로 감소하고, 접촉각(θ)이 95.7도 정도로 약간의 소수성을 가지는 경우 1/10 정도로 최대 내수압(Pmax)이 감소한다. 직경 1mm인 물방울의 내수압이 14kg중/m2인 구조를 채택하면 연꽃효과를 충분히 얻을 수 있다.The contact angle (θ) between the carbon nanotubes (13a, 13b) and water is known as 90.6 degrees, but the exact value is not known yet. This contact angle [theta] determines only the maximum water pressure. If having a very weak hydrophobic maximum water pressure is reduced to 1/100, and the contact angle (θ) is 95.7 degree, so reducing the maximum water pressure (P max) so 1/10 cases having some hydrophobic properties. When the water pressure of 1mm in diameter is 14kg / m 2 , the lotus effect can be obtained.

예를 들면, 표 1에서 탄소나노튜브(13a, 13b)의 직경(D)이 200nm이고 최대 내수압(Pmax)이 100kg중/m2인 경우 탄소나노튜브(13a, 13b) 간 최대 간격(Lmax)은 대략 7μm이고 상대적 흡착력(Arel)은 0.09% 정도로 극히 작아진다.For example, in Table 1, when the diameter D of the carbon nanotubes 13a and 13b is 200 nm and the maximum water pressure P max is 100 kg / m 2 , the maximum spacing between the carbon nanotubes 13a and 13b (L). max ) is approximately 7 μm and the relative adsorption force (A rel ) is extremely small, such as 0.09%.

탄소나노튜브 말단에 소수성 물질, 예를 들어 테프론과 같은 불소 수지류를 코팅시키면 접촉각이 더욱 증가하여 초발수성의 특성을 향상시킬 수 있다. 또는 기판과 탄소나노튜브 사이에 산화막을 증착시켜 탄소나노튜브가 기판에 부착되는 힘을 더 강화시킬 수 있다.Coating the hydrophobic material, for example, fluororesins such as teflon at the end of the carbon nanotubes can further increase the contact angle to improve the super water-repellent properties. Alternatively, an oxide film may be deposited between the substrate and the carbon nanotubes to further strengthen the force of attaching the carbon nanotubes to the substrate.

본 발명은 내구성이 강한 탄소나노튜브를 소정 간격으로 배열하여 초발수성표면을 실현하여 항오염 표면을 실현할 수 있다.The present invention can realize a super-contaminated surface by arranging durable carbon nanotubes at predetermined intervals to realize a super water-repellent surface.

상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 바람직한 실시예의 예시로서 해석되어야 한다. 때문에 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.While many details are set forth in the foregoing description, they should be construed as illustrative of preferred embodiments, rather than to limit the scope of the invention. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the technical spirit described in the claims.

상술한 바와 같이, 본 발명에 따른 탄소나노튜브 어레이는 연꽃효과를 이용하여 초발수성 항오염 표면을 구현할 수 있다는 것이다.As described above, the carbon nanotube array according to the present invention can implement a superhydrophobic anti-contamination surface by using the lotus effect.

Claims (8)

소정 표면 장력(σ)과 소정 유압(P)을 가지는 유체가 특정 접촉각(θ)으로 표면에 접촉할 때 상기 유체에 대한 자기세정력을 가지도록 기판 상에 소정 직경(D)을 가지는 복수의 탄소나노튜브가 다음의 식을 만족하는 간격(L)으로 배열되는 것을 특징으로 하는 탄소나노튜브 어레이.A plurality of carbon nanoparticles having a predetermined diameter (D) on the substrate to have a self-cleaning force for the fluid when a fluid having a predetermined surface tension (σ) and a predetermined hydraulic pressure (P) contacts the surface at a specific contact angle (θ) Carbon nanotube array, characterized in that the tube is arranged at an interval (L) satisfying the following equation. 제 1 항에 있어서,The method of claim 1, 상기 탄소나노튜브의 높이(H)는 상기 간격(L)의 1/200이상 1/20이하인 것을 특징으로 하는 탄소나노튜브 어레이.The carbon nanotube array is characterized in that the height (H) of the carbon nanotubes is 1/200 or more and 1/20 or less of the gap (L). 제 1 항에 있어서,The method of claim 1, 상기 탄소나노튜브 상의 유체(이물질)와 상기 탄소나노튜브(나노구조)의 표면과의 상대 흡착력(Ar)은 상대 흡착계수(C)와 탄소나노튜브의 흡착력(A)에 대해 다음의 식을 만족하는 것을 특징으로 하는 탄소나노튜브 어레이.The relative adsorption force (A r ) between the fluid (foreign substance) on the carbon nanotubes and the surface of the carbon nanotubes (nano structure) is expressed by the following equation for the relative adsorption coefficient (C) and the adsorption force (A) of the carbon nanotubes. Carbon nanotube array, characterized in that to satisfy. 제 1 항에 있어서,The method of claim 1, 상기 유압은 1000kg중/m2이하인 것을 특징으로 하는 탄소나노튜브 어레이.The hydraulic pressure is carbon nanotube array, characterized in that less than 1000kg / m 2 . 제 1 항에 있어서,The method of claim 1, 상기 직경(D)은 1nm 내지 500nm의 크기인 것을 특징으로 하는 탄소나노튜브 어레이.The diameter (D) is a carbon nanotube array, characterized in that the size of 1nm to 500nm. 제 1 항에 있어서,The method of claim 1, 상기 탄소나노튜브의 표면에 테프론 코팅이 된 것을 특징으로 하는 탄소나노튜브 어레이.Carbon nanotube array, characterized in that the Teflon coating on the surface of the carbon nanotubes. 제 1 항에 있어서,The method of claim 1, 상기 기판 상에 산화막이 더 형성된 것을 특징으로 하는 탄소나노튜브 어레이.Carbon nanotube array, characterized in that the oxide film is further formed on the substrate. 제 1 항에 있어서,The method of claim 1, 상기 접촉각(θ)은 90도보다 작은 것을 특징으로 하는 탄소나노튜브 어레이.The contact angle (θ) is carbon nanotube array, characterized in that less than 90 degrees.
KR1020030023342A 2003-04-14 2003-04-14 Carbon nanotube array with self cleaning KR100582170B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030023342A KR100582170B1 (en) 2003-04-14 2003-04-14 Carbon nanotube array with self cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030023342A KR100582170B1 (en) 2003-04-14 2003-04-14 Carbon nanotube array with self cleaning

Publications (2)

Publication Number Publication Date
KR20040088902A true KR20040088902A (en) 2004-10-20
KR100582170B1 KR100582170B1 (en) 2006-05-23

Family

ID=37370558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030023342A KR100582170B1 (en) 2003-04-14 2003-04-14 Carbon nanotube array with self cleaning

Country Status (1)

Country Link
KR (1) KR100582170B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046166A3 (en) * 2006-10-18 2008-06-12 Nanocyl Sa Use of a marine anti-biofouling and fouling release coating composition
US7628974B2 (en) 2003-10-22 2009-12-08 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
CN101528867B (en) * 2006-10-18 2012-05-23 纳诺塞尔股份有限公司 Use of composition for marine anti-biofouling and fouling release
KR101449248B1 (en) * 2012-02-28 2014-10-08 부산대학교 산학협력단 Polymer composite for self-healing of cleaning and the manufacturing method of it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628974B2 (en) 2003-10-22 2009-12-08 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
US8101150B2 (en) 2003-10-22 2012-01-24 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
WO2008046166A3 (en) * 2006-10-18 2008-06-12 Nanocyl Sa Use of a marine anti-biofouling and fouling release coating composition
US8080285B2 (en) 2006-10-18 2011-12-20 Nanocyl S.A. Marine anti-biofouling release coating of polysiloxane and cylindrical nanofiller
CN101528867B (en) * 2006-10-18 2012-05-23 纳诺塞尔股份有限公司 Use of composition for marine anti-biofouling and fouling release
NO338592B1 (en) * 2006-10-18 2016-09-12 Nanocyl Sa Use of composition that prevents overgrowth with marine organisms and preparations that loosen this overgrowth
KR101449248B1 (en) * 2012-02-28 2014-10-08 부산대학교 산학협력단 Polymer composite for self-healing of cleaning and the manufacturing method of it

Also Published As

Publication number Publication date
KR100582170B1 (en) 2006-05-23

Similar Documents

Publication Publication Date Title
Zhang et al. A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance
KR101458213B1 (en) Nanostructured film and method of controlling surface properties of the nanostructured film
US7842624B2 (en) Textile substrates having self-cleaning properties
TWI535800B (en) Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same
Idumah et al. On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications
Hsieh et al. Hierarchical oil–water separation membrane using carbon fabrics decorated with carbon nanotubes
DE102007050835A1 (en) Superhydrophobic and self-cleaning powders and manufacturing processes thereof
KR101844956B1 (en) Fabrication method for hydrophilic aluminum surface and the hydrophilic surface body
KR101470287B1 (en) Superhydrophobic hierarchical structure for unidirectional movement of water droplets and method of manufacturing the same
KR101956458B1 (en) Aluminum substrate having surface with microstructure and nanopatterns positioned on the microstructure
JP2013103414A (en) Water-repellent material and production process thereof
KR100582170B1 (en) Carbon nanotube array with self cleaning
KR101268270B1 (en) Hydrophobic layer having nanoparticles and method for fabricating the same
Muramatsu et al. Two-dimensional assemblies of colloidal SiO2 and TiO2 particles prepared by the Langmuir–Blodgett technique
US7851056B2 (en) Ultralyophobe interfaces
KR101997874B1 (en) Switchable superhydrophobic film and preparing method of same
US20110070421A1 (en) Non-wettable surfaces
KR20130047025A (en) Method for fabricating unwetting electro-devices by formation of superhydrophobic surface thereon
KR20110110953A (en) Supe-hydrophobic coating material self-cleaning coating film and method for making the same
KR20070031151A (en) A hollow glass spheres coated a mesoporous TiO2 thin film and a preparation method thereof
JP2022174894A (en) Bolometer and method for manufacturing the same
US8119230B2 (en) Transparent film with UV-shielding and water/oil repellent functions
KR102149060B1 (en) Fine Metal Mask for Producing OLED Panel
He et al. Fabricating superamphiphobic surface with fluorosilane glued carbon nanospheres films
Karimi et al. Decontamination of surfaces exposed to single wall carbon nanohorns

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130508

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee