KR20040069156A - Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating - Google Patents

Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating Download PDF

Info

Publication number
KR20040069156A
KR20040069156A KR1020030005622A KR20030005622A KR20040069156A KR 20040069156 A KR20040069156 A KR 20040069156A KR 1020030005622 A KR1020030005622 A KR 1020030005622A KR 20030005622 A KR20030005622 A KR 20030005622A KR 20040069156 A KR20040069156 A KR 20040069156A
Authority
KR
South Korea
Prior art keywords
positive electrode
powder
lithium secondary
secondary battery
electrode powder
Prior art date
Application number
KR1020030005622A
Other languages
Korean (ko)
Other versions
KR100500699B1 (en
Inventor
김호기
박규성
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2003-0005622A priority Critical patent/KR100500699B1/en
Publication of KR20040069156A publication Critical patent/KR20040069156A/en
Application granted granted Critical
Publication of KR100500699B1 publication Critical patent/KR100500699B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A method for preparing a positive electrode powder for a lithium secondary battery and a lithium secondary battery prepared by using the positive electrode powder are provided, to allow the reductive condition to be controlled simply without flowing inert or reductive gases of high purity in heating process. CONSTITUTION: The method comprises the step of applying microwave to a positive electrode powder containing iron together with carbon to induce the heating of carbon and to make the reductive condition. The composition of the positive electrode powder is represented by LiFe(1-x)MxPO4, wherein 0<=x<1, and M is a transition metal. Preferably the composition of the positive electrode powder is represented by LiFePO4. Preferably the positive electrode powder is surface coated with a conductivity improver.

Description

마이크로파 가열을 이용한 리튬이차전지용 양극 분말의 제조방법{Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating}Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating}

본 발명은 휴대전원으로서 각광받고 있는 리튬이차전지용 양극 분말의 제조방법에 관한 것으로, 보다 상세하게는 철을 함유하는 양극 분말의 제조과정 중에 원료 물질을 탄소와 함께 마이크로파에 노출시킴으로써 환원성 분위기 하에서 열을 가하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cathode powder for a lithium secondary battery, which is in the spotlight as a portable power source. More particularly, the present invention relates to heat treatment in a reducing atmosphere by exposing raw materials to microwaves together with carbon during the manufacturing process of an anode powder containing iron. It is about how to add.

현재까지 양극 물질로는 LiCoO2, LiNiO2, LiMn2O4등이 주로 연구되어 왔으며상용화에도 성공하고 있다. 하지만 현재 가장 널리 쓰이고 있는 LiCoO2의 경우 그 원료가격이 높으며 환경적인 문제를 발생시키고 있다. 또한 LiCoO2의 대체재료로서 연구되는 LiNiO2의 경우 그 제조가 어렵고 열적 안정성이 떨어지며, LiMn2O4는 고온에서 전극 퇴화가 빠르게 일어나고 전기 전도도가 낮다는 단점을 가지고 있다.To date, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc. have been mainly studied as anode materials and have been successfully commercialized. However, LiCoO 2 , which is the most widely used at present, has a high raw material price and causes environmental problems. In addition, LiNiO 2 , which is studied as a substitute material for LiCoO 2 , is difficult to manufacture and has low thermal stability, and LiMn 2 O 4 has disadvantages of rapid electrode degradation and high electrical conductivity at high temperatures.

새로운 전지재료인 LiFePO4는 환경친화적이고 매장량도 풍부하며 원료가격도 매우 저렴하다. 또한 방전전압이 3.4V vs. Li/Li+로서 기존 재료보다 쉽게 저전력, 저전압을 구현할 수 있으며, 이론 용량이 170mAh/g으로서 전지용량 또한 우수하다. 하지만 이 물질의 문제점은 Fe의 산화수가 2+로서, 이는 Fe의 안정한 산화수가 3+임에 비추어 볼 때 환원성 분위기가 필요하고, 전도도가 낮아 순수한 상태에서는 전지특성이 좋지 않다는 데에 있다.LiFePO 4 , a new battery material, is environmentally friendly, has abundant reserves, and has a very low raw material price. In addition, the discharge voltage is 3.4V vs. As Li / Li + , it is possible to realize low power and low voltage more easily than the existing materials. The theoretical capacity is 170mAh / g, and the battery capacity is also excellent. However, the problem with this material is that the oxidation number of Fe is 2+, which requires a reducing atmosphere in view of the stable oxidation number of Fe, and the battery characteristics are not good in a pure state with low conductivity.

LiFePO4분말제조에 관련된 선행기술로는 고상반응법, 졸겔(Sol-Gel)법 등이 보고되고 있다. 기존 방법 모두에서는 출발물질을 다양하게 준비한 후 합성단계에서의 최종 열처리는 고순도의 N2, Ar, N2/H2등의 기체를 수시간 동안 다량 흘려주면서 진행하고 있다. 하지만 이러한 방법으로는 단상의 물질을 합성할 수는 있으나 제조 단가가 상승하므로 Fe 전이금속의 가격이 싸고 매장량이 풍부하다는 장점을 상쇄시킬 수 있다.As a prior art related to the production of LiFePO 4 powder, a solid-phase reaction method, a sol-gel (Sol-Gel) method and the like have been reported. In all of the existing methods, after preparing various starting materials, the final heat treatment in the synthesis step is performed by flowing a large amount of high purity gases such as N 2 , Ar, and N 2 / H 2 for several hours. However, this method can synthesize a single phase material, but the manufacturing cost increases, which can offset the advantages of low Fe transition metal price and abundant reserves.

본 발명의 목적은 열처리 단계에서 고순도의 불활성/환원성 기체를 흘려줌이 없이도 매우 간단하게 환원성 분위기를 제어할 수 있는 방법을 포함하는 리튬이차전지용 양극 분말의 제조방법을 제공함에 있다.An object of the present invention is to provide a method for producing a cathode powder for a lithium secondary battery comprising a method for controlling the reducing atmosphere very simply without flowing a high purity inert / reducing gas in the heat treatment step.

도 1은 본 발명의 마이크로파를 이용하는 가열수단의 구현예.1 is an embodiment of a heating means using the microwave of the present invention.

도 2는 공침법으로 합성된 분말의 X-선 회절패턴으로서, (a) pH=5, (b) pH=6, (c) pH=7, (d) pH=8에서 준비된 원료분말을 마이크로웨이브 오븐 내에서 4분 열처리한 최종분말의 결과를 나타낸다.2 is an X-ray diffraction pattern of a powder synthesized by coprecipitation method, wherein (a) pH = 5, (b) pH = 6, (c) pH = 7, and (d) pH = 8. The result of the final powder heat-treated in wave oven for 4 minutes is shown.

본 발명은 철을 함유한 리튬이차전지용 양극분말의 제조방법으로서,The present invention is a method for producing a positive electrode powder for a lithium secondary battery containing iron,

양극 분말의 열처리과정은 양극 분말을 탄소와 함께 마이크로파에 노출시켜 탄소의 가열을 유도하여 환원성 분위기를 조성하면서 수행됨을 특징으로 하는 리튬이차전지용 양극 분말의 제조방법을 포함한다.The heat treatment process of the positive electrode powder includes a method for producing a positive electrode powder for a lithium secondary battery, characterized in that the positive electrode powder is exposed to microwaves together with carbon to induce heating of carbon to form a reducing atmosphere.

이하 본 발명의 내용을 더욱 상세히 설명하기로 한다.Hereinafter, the content of the present invention will be described in more detail.

본 발명은 리튬이차전지의 제조에 양극 활물질로 사용되는 양극 분말 중에서 특히 조성내에 철(Fe)이 함유되며, 철의 산화수가 2가로 존재하는 양극 활물질을 대상으로 한다.The present invention relates to a cathode active material in which iron (Fe) is contained in the composition, and in which the oxidation number of iron is present in the cathode powder used as a cathode active material in the manufacture of a lithium secondary battery.

이와 같은 조성을 갖는 양극 활물질은 바람직하게는 LiFe1-xMxPO4(0≤x <1)을 기본조성으로 하며, 여기서 M은 전이금속원소로서 Mn, Co, Ni 등이 포함되며, 보다 바람직하게는 x=0인 LiFePO4이다.The positive electrode active material having such a composition is preferably based on LiFe 1-x M x PO 4 (0≤x <1), where M is a transition metal element, Mn, Co, Ni and the like, more preferably Preferably LiFePO 4 with x = 0.

또한 본 발명의 양극 활물질은 상기 조성의 분말 표면의 전도성을 개선시킬 목적으로 탄소나 은(Ag) 등의 전도성 개선제로 표면코팅 처리한 상태의 분말도 포함한다.In addition, the positive electrode active material of the present invention also includes a powder in a surface-coated state with a conductivity improving agent such as carbon or silver (Ag) for the purpose of improving the conductivity of the powder surface of the composition.

최종 열처리 단계 이전의 양극 활물질의 제조과정은 공지의 어떠한 것도 포함할 수 있다. 여기에는 고상반응법, 졸겔법 등의 액상법 등이 포함된다.Preparation of the positive electrode active material before the final heat treatment step may include any known. This includes liquid phase methods such as solid phase reaction method and sol gel method.

바람직하게는 양극 분말의 제조는 공침법(Co-Precipitation Method)에 의한 것을 포함한다. 공침법은 액상법으로서 출발물질의 혼합을 분자단위에서 매우 균일하게 제어하여 저온 상형성을 쉽게 유도하고, 입자크기를 작게 조절하여 전도도를 향상시킬 수 있다.Preferably, the preparation of the positive electrode powder includes one by a co-precipitation method. Coprecipitation method is a liquid phase method to control the mixing of the starting material very uniformly in the molecular unit to easily induce low-temperature phase formation, and to control the particle size to improve the conductivity.

양극 분말이 LiFePO4인 조성의 경우를 예를 들어 위 제조과정을 설명하면 다음과 같다.For example, in the case of a composition in which the positive electrode powder is LiFePO 4 , the manufacturing process will be described as follows.

먼저, 침전형성 과정에서 우선 2가의 철염과 인산을 수용액 상태로 만든 후 이를 교반 중인 LiOH 수용액에 적하한다. 이때 혼합이 진행되면서 녹색의 침전이 형성된다. 수용액 내에는 용존 산소에 의한 철의 산화를 방지하고 공침시에 탄소를 공급하기 위해 환원제인 L-아스코브르산을 침전이 형성된 수용액에 첨가한다. 환원제의 첨가 이후 최종 pH를 조절하고, 세척과정을 거친 후 진공오븐에 넣어 수분을 완전히 제거한다. 건조된 분말은 분쇄와 펠렛 성형을 거쳐 본 발명에 의한 열처리 과정을 거치게 된다.First, in the process of precipitation formation, first, divalent iron salt and phosphoric acid are made into an aqueous solution and then dropwise added to the stirring LiOH aqueous solution. At this time, as the mixing proceeds, a green precipitate is formed. In the aqueous solution, L-ascorbic acid, a reducing agent, is added to the aqueous solution in which precipitation is formed to prevent oxidation of iron by dissolved oxygen and to supply carbon during coprecipitation. After the addition of the reducing agent, the final pH is adjusted, and after the washing process, the vacuum oven is completely removed to remove moisture. The dried powder is subjected to a heat treatment process according to the present invention through pulverization and pellet molding.

열처리 과정에 사용되는 마이크로파는 가열원으로서 탄소를 급속하게 가열할수 있는 것인 한 특별한 제한을 두고 있지 않다. 즉, 마이크로파는 탄소를 가열하여 산소를 급속히 제거하고, 이로부터 얻어지는 이산화탄소, 일산화탄소 등에 의한 환원성 분위기를 제공할 수 있어야 하며, 동시에 리튬이차전지 양극 활물질 예를 들면 LiFePO4의 합성온도까지 순간적으로 도달시킬 수 있는 수단을 가지는 것인 한 어느 것도 이용이 가능하다. 이러한 단시간 내의 환원성 열처리는 철의 산화방지는 물론이거니와, 휘발에 의한 리튬과 인의 결손마저도 줄일 수 있는 효과도 있다. 마이크로파에 의한 바람직한 구현예가 후술하는 실시예 및 도 1에 개시되어 있다. 도 1 및 실시예에 적용된 마이크로파 가열장치는 마이크로파 오븐을 이용하였고, 마이크로파 가열이 어려운 재료인 석영용기 등에 활성탄소와 펠렛을 함께 넣어 출력 650W에서 동작되는 것이 이용되었으나 이는 어디까지나 예시적인 것으로 이에 한정되는 것은 아님은 물론이다.The microwave used in the heat treatment process is not particularly limited as long as it can rapidly heat carbon as a heating source. That is, the microwave should be able to heat the carbon to remove oxygen rapidly and provide a reducing atmosphere by carbon dioxide, carbon monoxide, etc. obtained from it, and at the same time to reach the synthesis temperature of the lithium secondary battery cathode active material, for example, LiFePO 4 . Anything may be used as long as it has a means to do so. Such a reducing heat treatment in a short time, as well as preventing the oxidation of iron, and also has the effect of reducing the defects of lithium and phosphorous due to volatilization. Preferred embodiments with microwaves are disclosed in the examples described below and in FIG. 1. The microwave heating apparatus used in FIG. 1 and the example used a microwave oven, and used to operate at an output of 650 W by putting activated carbon and pellets together in a quartz container, which is a material which is difficult to microwave. Of course not.

상기 과정으로 제조되는 양극 분말은 도 2의 X선 회절패턴에서 볼 수 있듯이 pH 변화에 따라서도 안정적으로 단일상의 LiFePO4분말이 합성되는 것을 확인할 수 있다. 따라서 본 발명에 의한 마이크로파 가열법은 환원성 분위기로 효과적으로 제어하여 2가의 산화수를 가지는 철화합물인 LiFePO4분말을 제조함에 매우 유용하며, 공정시간을 크게 단축시킨다.As can be seen from the X-ray diffraction pattern of FIG. 2, the cathode powder prepared by the above process can be stably synthesized in a single phase LiFePO 4 powder according to the pH change. Therefore, the microwave heating method according to the present invention is very useful for producing LiFePO 4 powder, which is an iron compound having a divalent oxidation number, by effectively controlling the reducing atmosphere, and greatly shortening the process time.

이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다. 다만이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니된다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, these examples are only presented to understand the content of the present invention and should not be construed that the scope of the present invention is limited to these embodiments.

<실시예><Example>

먼저 공침법을 이용하여 침전물을 준비하였다. (NH4)2Fe(SO4)2·6H2O와 H3PO4혼합수용액을 상온에서 자석막대를 이용하여 교반 중인 LiOH·H2O 수용액에 부었다. 이때 출발물질의 비율은 3(Li):1(Fe):1(PO4)로 맞추어 리튬결손을 줄이고자 하였다. 그리고 용존산소에 의한 철의 산화를 방지하고 공침시에 탄소를 공급하기 위하여 환원제인 L-아스코브르산을 침전이 형성된 수용액에 첨가하였다. 이후 최종 pH는 NH4OH를 첨가하여 조절하였다. 첨가량에 따라 pH를 5에서 8까지 조절하였으며, pH 조절 후 10분간 더 교반시켰다. 얻어진 침전을 원심분리기를 이용하여 용액과 분리 및 세척하였다. 그리고 침전물은 진공오븐에서 90℃, 20시간 동안 건조시켰으며 이후 유발에서 분쇄하고 일축가압성형을 통해 펠렛으로 제조되었다.First, a precipitate was prepared by coprecipitation. A mixed solution of (NH 4 ) 2 Fe (SO 4 ) 2 .6H 2 O and H 3 PO 4 was poured into a stirring LiOH · H 2 O aqueous solution using a magnetic rod at room temperature. At this time, the ratio of starting material was adjusted to 3 (Li): 1 (Fe): 1 (PO 4 ) to reduce lithium deficiency. In order to prevent oxidation of iron by dissolved oxygen and to supply carbon during coprecipitation, L-ascorbic acid as a reducing agent was added to an aqueous solution in which precipitation was formed. The final pH was then adjusted by adding NH 4 OH. The pH was adjusted from 5 to 8 according to the amount added, and further stirred for 10 minutes after adjusting the pH. The precipitate obtained was separated and washed with the solution using a centrifuge. The precipitate was dried at 90 ° C. in a vacuum oven for 20 hours and then pulverized in a mortar and prepared into pellets through uniaxial press molding.

마이크로파에 의한 가열은 도 1과 같은 장치(650W의 마이크로파 오븐)를 이용하였으며, 마이크로파 가열을 위한 탄소물질로는 활성탄이 이용되었다. 마이크로파 가열이 어려운 석영 용기 내에 활성탄을 적당히 담고 그 위에 펠렛을 두었다. 이후 활성탄을 다시 부어 펠렛을 완전히 덮었다. 마이크로파 오븐 내에 준비한 석영 용기를 넣고 오븐을 작동시켰다. 가열시간은 4분으로 설정하였다. 마이크로파노출시간을 4분으로 고정한 이유는 본 실험에서 이용한 마이크로파 오븐의 출력 650W에서 대략 2분 정도 노출이 되면 활성탄이 가열되어 빨갛게 타기 시작하고, 그 후 2분 정도 더 가열시켜 상형성을 유도하기 위함이다. 보조실험으로서 마이크로파 노출시간을 3분 정도로 한 경우 상형성 정도가 떨어짐을 알 수 있었고, 장시간 동안 마이크로파를 노출시간다면 상이 불균일해짐을 확인할 수 있었다. 가열이 끝난 후 오븐 내에서 충분히 냉각시키고 나서 용기를 꺼내 펠렛을 분리한 후 유발에서 분쇄하였다. 이렇게 준비된 분말은 X-선 회절을 통해 상분석을 하였으며, 도 2에서와 같이 철이 2가의 산화수를 가지는 LiFePO4가 성공적으로 제조되었음을 알 수 있다.The microwave heating was performed using the apparatus as shown in FIG. 1 (650W microwave oven), and activated carbon was used as a carbon material for microwave heating. Activated carbon was appropriately contained in a quartz container, which was difficult to microwave, and pellets were placed thereon. The activated carbon was then poured again to completely cover the pellets. The prepared quartz container was put into a microwave oven, and the oven was operated. The heating time was set to 4 minutes. The reason why the microwave exposure time was fixed at 4 minutes was to activate the activated carbon when it was exposed for about 2 minutes at the output of 650W of microwave oven used in this experiment, and then burned red for 2 minutes to induce phase formation. to be. As a secondary experiment, the degree of image formation was reduced when the microwave exposure time was about 3 minutes, and it was confirmed that the phase became uneven when the microwave exposure time was long. After the heating was over, after cooling sufficiently in an oven, the container was taken out, the pellet was separated, and then ground in a mortar. The powder thus prepared was subjected to phase analysis through X-ray diffraction, and as shown in FIG. 2, LiFePO 4 having a bivalent oxidation number was successfully prepared.

본 발명에 의하면 기존의 고상반응법, 졸겔법 등의 열처리 단계에서 고순도의 불활성/환원성 기체를 흘려주면서 환원분위기를 조절하는 방법과는 달리 기체의 도움없이 매우 간단하게 환원성 분위기를 제어할 수 있다. 또한 제조시간이 매우 짧아 양극을 제조할 때 시간적, 경제적인 면에서 효율적이며, 리튬과 인의 휘발량을 줄일 수 있어 전지특성 또한 개선시킬 수 있다.According to the present invention, unlike a method of controlling a reducing atmosphere while flowing a high purity inert / reducing gas in a heat treatment step such as a conventional solid phase reaction method or a sol gel method, the reducing atmosphere can be controlled very simply without the help of a gas. In addition, since the manufacturing time is very short, it is efficient in terms of time and economics when manufacturing the positive electrode, and the volatilization amount of lithium and phosphorus can be reduced, thereby improving battery characteristics.

Claims (5)

철을 함유하는 리튬이차전지용 양극 분말의 제조방법에 있어서,In the manufacturing method of the positive electrode powder for lithium secondary batteries containing iron, 양극 분말의 열처리과정은 양극 분말을 탄소와 함께 마이크로파에 노출시켜 탄소의 가열을 유도하여 환원성 분위기를 조성하면서 수행됨을 특징으로 하는 리튬이차전지용 양극 분말의 제조방법.The heat treatment process of the positive electrode powder is a method of manufacturing a positive electrode powder for a lithium secondary battery, characterized in that the exposure to the microwave powder with carbon to induce heating of carbon to form a reducing atmosphere. 제 1항에 있어서,The method of claim 1, 양극 분말의 조성은 LiFe1-xMxPO4(0≤x <1)을 기본조성으로 하며, 여기서 M은 전이금속원소임을 특징으로 하는 리튬이차전지용 양극 분말의 제조방법.The composition of the positive electrode powder is LiFe 1-x M x PO 4 (0≤x <1) as a basic composition, wherein M is a method for producing a positive electrode powder for a lithium secondary battery, characterized in that the transition metal element. 제 2항에 있어서,The method of claim 2, 양극 분말은 전도성 향상제가 표면코팅처리된 것임을 특징으로 하는 리튬이차전지용 양극 분말의 제조방법.The positive electrode powder is a method of manufacturing a positive electrode powder for a lithium secondary battery, characterized in that the conductivity improver is surface-coated. 제 1항에 있어서,The method of claim 1, 양극 분말의 조성은 LiFePO4임을 특징으로 하는 양극 분말의 제조방법.A method of producing a cathode powder, characterized in that the composition of the cathode powder is LiFePO 4 . 제 1항에 의해 제조된 양극 분말로 제조되는 리튬이차전지.A lithium secondary battery made of a cathode powder prepared by claim 1.
KR10-2003-0005622A 2003-01-28 2003-01-28 Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating KR100500699B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0005622A KR100500699B1 (en) 2003-01-28 2003-01-28 Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0005622A KR100500699B1 (en) 2003-01-28 2003-01-28 Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating

Publications (2)

Publication Number Publication Date
KR20040069156A true KR20040069156A (en) 2004-08-04
KR100500699B1 KR100500699B1 (en) 2005-07-12

Family

ID=37358048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0005622A KR100500699B1 (en) 2003-01-28 2003-01-28 Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating

Country Status (1)

Country Link
KR (1) KR100500699B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785491B1 (en) * 2006-03-06 2007-12-13 한국과학기술원 Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby
CN100371239C (en) * 2006-03-20 2008-02-27 清华大学 Method for preparing high density lithium ferric phosphate by microwave heating
WO2009061845A1 (en) * 2007-11-05 2009-05-14 Board Of Regents, The University Of Texas System Rapid microwave-solvothermal synthesis and surface modification of nanostructured phospho-olivine cathodes for lithium ion batteries
CN102381692A (en) * 2010-08-31 2012-03-21 中国科学院宁波材料技术与工程研究所 High-performance lithium ion phosphate materials prepared by microwave method and preparation method of high-performance lithium ion phosphate materials
KR101249974B1 (en) * 2010-04-01 2013-04-03 한국기초과학지원연구원 An elecltrod for lithium secondary battery processed in reducing atmospheres, method for fabricating the same, and lithium secondary battery containing the same
CN104022284A (en) * 2014-06-20 2014-09-03 郑州德朗能微波技术有限公司 Method for preparing anode material lithium iron phosphate of lithium ion battery with ion and electron mixed conductive network structure
KR101440003B1 (en) * 2012-11-23 2014-09-12 한국화학연구원 The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
KR20190007123A (en) * 2017-07-11 2019-01-22 한국화학연구원 Preparation method of conductive metal oxide nanoparticle with large surface area via simple synthetic procedure
KR20200026567A (en) 2018-09-03 2020-03-11 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same
WO2021246831A1 (en) 2020-06-05 2021-12-09 주식회사 엘지화학 Tube module and tube assembly comprising same
KR20210151542A (en) 2020-06-05 2021-12-14 주식회사 엘지에너지솔루션 Tube module and tube assembly comprising the same
KR20220041424A (en) 2020-09-25 2022-04-01 주식회사 엘지화학 Tube module and tube assembly comprising the same
KR20220060341A (en) 2020-11-04 2022-05-11 주식회사 엘지화학 Rotary kiln
KR20220105962A (en) 2021-01-21 2022-07-28 주식회사 엘지화학 Rotary kiln
KR20220105961A (en) 2021-01-21 2022-07-28 주식회사 엘지화학 Rotary kiln
KR20220105963A (en) 2021-01-21 2022-07-28 주식회사 엘지화학 Rotary kiln

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225358A (en) * 1984-04-20 1985-11-09 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US5770018A (en) * 1996-04-10 1998-06-23 Valence Technology, Inc. Method for preparing lithium manganese oxide compounds
US6348182B1 (en) * 1996-06-27 2002-02-19 The Honjo Chemical Corporation Process for producing lithium manganese oxide with spinel structure
DE19815611A1 (en) * 1998-04-07 1999-10-14 Riedel De Haen Gmbh Process for the production of lithium metal oxides
US6814764B2 (en) * 2000-10-06 2004-11-09 Sony Corporation Method for producing cathode active material and method for producing non-aqueous electrolyte cell
KR100426958B1 (en) * 2002-03-13 2004-04-13 한국과학기술원 Synthesis Method of LiFePO4 Powder by Controlling Heat Treatment Atmosphere for Lithium Secondary Battery cathode

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100785491B1 (en) * 2006-03-06 2007-12-13 한국과학기술원 Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby
CN100371239C (en) * 2006-03-20 2008-02-27 清华大学 Method for preparing high density lithium ferric phosphate by microwave heating
WO2009061845A1 (en) * 2007-11-05 2009-05-14 Board Of Regents, The University Of Texas System Rapid microwave-solvothermal synthesis and surface modification of nanostructured phospho-olivine cathodes for lithium ion batteries
KR101249974B1 (en) * 2010-04-01 2013-04-03 한국기초과학지원연구원 An elecltrod for lithium secondary battery processed in reducing atmospheres, method for fabricating the same, and lithium secondary battery containing the same
CN102381692A (en) * 2010-08-31 2012-03-21 中国科学院宁波材料技术与工程研究所 High-performance lithium ion phosphate materials prepared by microwave method and preparation method of high-performance lithium ion phosphate materials
KR101440003B1 (en) * 2012-11-23 2014-09-12 한국화학연구원 The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
CN104022284A (en) * 2014-06-20 2014-09-03 郑州德朗能微波技术有限公司 Method for preparing anode material lithium iron phosphate of lithium ion battery with ion and electron mixed conductive network structure
KR20190007123A (en) * 2017-07-11 2019-01-22 한국화학연구원 Preparation method of conductive metal oxide nanoparticle with large surface area via simple synthetic procedure
KR20200026567A (en) 2018-09-03 2020-03-11 주식회사 엘지화학 Microwave furnace and plasticity method of positive electrode active material using the same
WO2021246831A1 (en) 2020-06-05 2021-12-09 주식회사 엘지화학 Tube module and tube assembly comprising same
KR20210151542A (en) 2020-06-05 2021-12-14 주식회사 엘지에너지솔루션 Tube module and tube assembly comprising the same
KR20220041424A (en) 2020-09-25 2022-04-01 주식회사 엘지화학 Tube module and tube assembly comprising the same
KR20220060341A (en) 2020-11-04 2022-05-11 주식회사 엘지화학 Rotary kiln
KR20220105962A (en) 2021-01-21 2022-07-28 주식회사 엘지화학 Rotary kiln
KR20220105961A (en) 2021-01-21 2022-07-28 주식회사 엘지화학 Rotary kiln
KR20220105963A (en) 2021-01-21 2022-07-28 주식회사 엘지화학 Rotary kiln

Also Published As

Publication number Publication date
KR100500699B1 (en) 2005-07-12

Similar Documents

Publication Publication Date Title
KR100500699B1 (en) Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating
Franger et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties
Ni et al. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid
KR100309769B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP4654686B2 (en) Carbon-coated Li-containing powder and method for producing the same
JP5473894B2 (en) Room temperature single phase Li insertion / extraction material for use in Li-based batteries
KR101198489B1 (en) A method for preparing iron source used for preparing lithium ferrous phosphate, and a method for preparing lithium ferrous phosphate
KR100449073B1 (en) Cathode material for lithium secondary batteries and method for manufacturing the Same
KR20060116669A (en) Method for making a lithium mixed metal compound
JP2004095385A (en) Method of manufacturing positive electrode material for lithium ion battery and lithium ion battery
CN108899531A (en) A kind of preparation method of Phosphate coating nickel cobalt aluminium tertiary cathode material
JPH07142065A (en) Manufacture of active material for lithium secondary battery
KR20130000849A (en) Method of preparing cathode active material for lithium secondary batteries and lithium secondary batteries using the same
JP2004259470A (en) Positive electrode active material for lithium ion battery, and lithium ion battery having it
KR100300334B1 (en) Positive active material for lithium secondary battery and method of preparing the same
KR100366226B1 (en) Preparation methode of cathode materials for Li-secondary battery
CN114105117B (en) Preparation method of precursor and lithium nickel iron phosphate positive electrode material
JP4707950B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
JP4522682B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
CN112875766B (en) Method for preparing ternary cathode material by microwave heating solution method with carbon source added
JPH10106566A (en) Manufacture of positive electrode active material for lithium secondary battery
JP2931961B2 (en) Method for producing layered rock-salt type lithium ferrite by solvothermal ion exchange method
CN108511724A (en) A kind of collosol and gel auxiliary supercritical CO2Drying prepares iron manganese phosphate for lithium method
Yang et al. Fast preparation of LiFePO4 nanoparticles for lithium batteries by microwave-assisted hydrothermal method
KR100426958B1 (en) Synthesis Method of LiFePO4 Powder by Controlling Heat Treatment Atmosphere for Lithium Secondary Battery cathode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120702

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee