KR20040005465A - Multifunction injectin system for a capillary electrophoresis microchip - Google Patents

Multifunction injectin system for a capillary electrophoresis microchip Download PDF

Info

Publication number
KR20040005465A
KR20040005465A KR1020020040040A KR20020040040A KR20040005465A KR 20040005465 A KR20040005465 A KR 20040005465A KR 1020020040040 A KR1020020040040 A KR 1020020040040A KR 20020040040 A KR20020040040 A KR 20020040040A KR 20040005465 A KR20040005465 A KR 20040005465A
Authority
KR
South Korea
Prior art keywords
terminal
voltage
sample
injection
buffer solution
Prior art date
Application number
KR1020020040040A
Other languages
Korean (ko)
Other versions
KR100496977B1 (en
Inventor
신민성
진 공
Original Assignee
주식회사 옵트론-텍
김용성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 옵트론-텍, 김용성 filed Critical 주식회사 옵트론-텍
Priority to KR10-2002-0040040A priority Critical patent/KR100496977B1/en
Publication of KR20040005465A publication Critical patent/KR20040005465A/en
Application granted granted Critical
Publication of KR100496977B1 publication Critical patent/KR100496977B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44782Apparatus specially adapted therefor of a plurality of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44713Particularly adapted electric power supply

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE: A multi-functional test sample injection apparatus is provided to supply optimal test sample injection voltage according to test samples and to adjust an amount of samples by adjusting voltages. CONSTITUTION: Power supplied from a power supplying section(101) is applied to a voltage generating section(102). Different voltage is applied to a damping solution discharging terminal(104), a test sample injection terminal(105), a test sample discharging terminal(106), and a damping solution injection terminal(107) of the voltage generating section(102) under the control of a control section(103). The damping solution discharging terminal(104) is connected to a first terminal, the test sample injection terminal(105) is connected to a second terminal, the test sample discharging terminal(106) is connected to the third terminal and the damping solution injection terminal(107) is connected to a fourth terminal.

Description

모세관 전기영동 마이크로 칩을 위한 다기능 시료주입장치.{MULTIFUNCTION INJECTIN SYSTEM FOR A CAPILLARY ELECTROPHORESIS MICROCHIP}Multifunctional sample injection device for capillary electrophoretic microchips. {MULTIFUNCTION INJECTIN SYSTEM FOR A CAPILLARY ELECTROPHORESIS MICROCHIP}

본 발명은 모세관 전기영동 마이크로 칩을 위한 시료주입장치에 관한 것으로, 하기할 종래의 시료주입방법인 개폐식시료주입방법과 집중식시료주입방법을 선택하여 사용가능하게 하는 다기능 시료주입장치에 관한 것이다.The present invention relates to a sample injection device for a capillary electrophoretic microchip, and to a multi-function sample injection device that can be used by selecting a conventional sample injection method, an open-type sample injection method and a concentrated sample injection method.

최근 합성화학과 생명과학의 발전으로 신약개발이나 진단 등의 분야에서 분석해야 하는 표적물질의 증가를 가져오게 되었고, 이에 따라 고가의 시약이나 시료가 다량으로 필요하게 되어 극미량 분석을 통한 비용 절감의 필요성이 높아지고 있다.Recent advances in synthetic chemistry and life sciences have led to an increase in target materials that need to be analyzed in new drug development and diagnostics, and as a result, expensive reagents and samples are required in large quantities, which leads to the need for cost reduction through trace analysis. It is rising.

극미량의 시료나 시약을 다루는 일의 비중이 증가하면서 각광받게 된 것이 실험실칩(lab-on-a-chip) 기술이다. 실험실칩은 반도체 분야에서 널리 사용되는 사진식각인쇄(photolithography)기술이나 미세 가공 기술(micromachining)을 이용하여 유리, 실리콘 또는 플라스틱으로 된 수 ㎠ 크기의 칩 위에 여러 가지 장치들을 집적시킨 화학 마이크로 프로세서로서, 고속, 고효율 및 저비용의 자동화된 실험이 가능하다.Lab-on-a-chip technology has come to the fore in the face of the increasing proportion of working with very small amounts of samples or reagents. Laboratory chips are chemical microprocessors that integrate various devices on a few cm 2 chip made of glass, silicon, or plastic using photolithography or micromachining techniques widely used in the semiconductor field. High speed, high efficiency and low cost automated experiments are possible.

실험실칩 내에서 극미량 유체를 이송하는 방법은 시료의 양이 매우 작고, 대부분의 경우 유체의 이송이 매우 작은 크기의 미세 채널에서 이루어져야 하는 이유로 기존의 유체 이송방법과는 전혀 다르다.The method of transporting trace fluids in the laboratory chip is very different from the conventional fluid transport method, because the amount of sample is very small and in most cases the fluid must be transported in very small microchannels.

모세관 전기이동장치를 구현한 모세관 전기영동 마이크로 칩은 펌프나 밸브등의 유체 제어장치 없이 전기장만으로 유체의 흐름을 조절할 수 있어 장치가 매우 간단하며, 운용이 용이하고, 고속 분석이 가능하다. 상기 모세관 전기이동 장치를 구현한 실험실용 칩에서 할 수 있는 시료주입은 도 1 및 도 2에 도시된 것과 같은 두 가지 방법으로 행하여져 왔다.Capillary electrophoresis microchip that implements a capillary electrophoresis device can control the flow of fluid through an electric field without a fluid control device such as a pump or a valve, so the device is very simple, easy to operate, and high-speed analysis is possible. Sample injection that can be performed in a laboratory chip embodying the capillary electrophoretic device has been performed in two ways as shown in FIGS. 1 and 2.

도 1을 간략히 설명하면 다음과 같다. 개폐식주입방법은 도1a에 도시한바와 같이 초기에 4개의 부에 각각 완충용액주입부(1)에 HV를, 시료주입부(2)에 0.9V를, 시료배출부(3)에 0.7V를, 완충용액배출부(4)에 0V의 전압을 걸고, 도1b에 도시한바와 같이 수초동안 고전압이 나오는 완충용액주입부(1)를 차단(floating)시킴으로써 시료를 이동시킨다.Briefly explaining Figure 1 as follows. In the opening and closing method, as shown in FIG. 1A, HV is first applied to the buffer solution injection unit 1 at each of four parts, 0.9 V is applied to the sample injection unit 2, and 0.7 V is applied to the sample discharge unit 3, respectively. The sample is moved by applying a voltage of 0 V to the buffer solution discharging part 4, and then turning off the buffer solution injecting part 1 having a high voltage for several seconds as shown in Fig. 1B.

집중식주입방법은 도 2a에 도시한바와 같이 초기에 4개의 부에 각각 완충용액주입부(6)에 HV를, 시료주입부(5)에 HV를, 시료배출부(7)에 0V를, 완충용액배출부(8)에 HV의 전압을 걸고, 그 후에 도 2b에 도시한바와 같이 수초동안 각각 완충용액주입부(6)에 HV를, 시료주입부(5)에 0.7HV를, 시료배출부(7)에 0.7HV를, 완충용액배출부(8)에 0V의 전압을 인가시킴으로써 시료를 이동시킨다. 상기 HV는 고전압을 지칭하는 것으로 일반적으로 500V 내지 5kV 범위에서 시료에 따라 변화한다.In the centralized injection method, as shown in FIG. 2A, HV is initially buffered at four portions, HV at sample injection portion 5, HV at sample injection portion 5, and 0 V is buffered at sample discharge portion 7, respectively. A voltage of HV was applied to the solution discharge section 8, and then HV was applied to the buffer injection section 6, 0.7 HV to the sample injection section 5, respectively, for several seconds as shown in FIG. 2B. The sample is moved by applying 0.7 HV to (7) and a voltage of 0 V to the buffer discharge part 8. The HV refers to a high voltage and generally varies from sample to sample in the range of 500V to 5kV.

종래 시료주입장치의 회로도를 도 3 및 도 4에 나타내었다.3 and 4 show circuit diagrams of a conventional sample injection device.

도 3은 개폐식주입방법장치를 위한 회로도로서, 고전압 공급장치(9)에서 발생한 고전압을 고전압 분배장치에서 완충용액주입부(1), 시료주입부(2), 시료배출부(3), 완충용액배출부(4)에서 필요로 하는 전압으로 분배되어진 후 시료 주입을 위해 완충용액주입부(1)에 연결된 고전압 릴레이(11)를 이용하여 완충용액부를 차단시킨다. 도 4의 집중식주입방법장치는 두 개의 고전압 분배장치를 제작한 후 고전압 공급장치에서 발생한 고전압을 릴레이(12)를 통해 서로 번갈아 접속하여 시료주입부(5), 완충용액주입부(6), 시료배출부(7), 완충용액배출부(8)의 전압을 변화시킨다.FIG. 3 is a circuit diagram for an opening and closing injection method device, in which a high voltage generated from a high voltage supply device 9 is used in a high voltage distribution device for a buffer solution injection unit 1, a sample injection unit 2, a sample discharge unit 3, and a buffer solution. After the distribution to the required voltage in the discharge section 4 to block the buffer solution using a high voltage relay 11 connected to the buffer solution injection unit 1 for sample injection. In the concentrated injection method apparatus of FIG. 4, two high voltage distribution devices are fabricated, and the high voltage generated from the high voltage supply device is alternately connected to each other through the relay 12 to supply the sample injection unit 5, the buffer solution injection unit 6, and the sample. The voltage at the discharge portion 7 and the buffer solution discharge portion 8 is changed.

종래의 시스템은 한 시스템 내에서 두 가지의 시료주입 방법을 구현 할 수 없기 때문에 분석물질에 따른 시료주입방법을 다양하게 할 수 없고, 상기 전압분배장치는 저항에 의하여 이루어져서 시스템의 자동화가 불가능하고, 저항의 오차에따른 전압의 변화가 있을 수 있어 안정된 전압공급이 어려우며, 상기전압분배장치의 출력전압은 고전압 공급원에서 나온 전압의 총량을 초과하지 못하는 한계를 가진다.Conventional systems cannot implement two sample injection methods in one system, and thus cannot vary the sample injection method according to the analyte, and the voltage divider is made of a resistor, which makes automation of the system impossible. There may be a change in the voltage according to the error of the resistance is difficult to supply a stable voltage, the output voltage of the voltage divider has a limit that does not exceed the total amount of the voltage from the high voltage supply source.

이는 분리채널로 공급되는 시료의 양 및 시료플러그의 모양의 변화가 불가능하여 시스템의 분리능에 많은 영향을 미친다.This is not possible to change the amount of sample and the shape of the sample plug supplied to the separation channel has a great impact on the resolution of the system.

이에 본 발명은 상기와 같은 문제점들을 해소하기 위해 발명된 것으로써, 본 발명의 목적은 한 시스템에서 개폐식시료주입방법과 집중식시료주입방법을 동일한 시스템내에서 선택하여 수행가능하게 하고; 완충용액주입부, 시료주입부, 시료배출부, 완충용액배출부등 모세관 전기영동 마이트로칩의 각 부에 입력되는 전압을 다양하게 변화시켜 분리채널로 이동하는 시료의 플러그 모양을 조절하여 분석 시료에 따라 최적화된 시료주입전압 공급을 가능케 하며, 각 부의 전압을 조절하여 시료양의 조절을 가능하게 하는 모세관 전기영동 마이크로 칩을 위한 다기능 시료주입장치를 제공하기 위한 것이다.Accordingly, the present invention has been invented to solve the above problems, the object of the present invention is to make it possible to select the open and close sample injection method and centralized sample injection method in the same system in one system; By varying the voltage input to each part of the capillary electrophoretic mitrochip, such as buffer solution injection part, sample injection part, sample discharge part, buffer solution discharge part, and controlling the plug shape of the sample moving to the separation channel, According to the present invention, an optimized sample injection voltage can be supplied, and a multifunctional sample injection device for capillary electrophoretic microchips capable of controlling a sample amount by controlling voltage of each part is provided.

도 1a는 개폐식 주입방법의 초기상태이다.Figure 1a is an initial state of the closing method.

도 1b는 개폐식 주입방법의 플로팅상태이다.Figure 1b is a floating state of the closing method.

도 1c는 개폐식 주입방법의 시료주입상태이다.Figure 1c is a sample injection state of the opening and closing injection method.

도 2a는 집중식 주입방법의 샘플 저장상태이다.2A is a sample storage state of the concentrated injection method.

도 2b는 집중식 주입방법의 샘플 주입상태이다.Figure 2b is a sample injection state of the concentrated injection method.

도 3은 개폐식 주입방법장치의 회로도이다.3 is a circuit diagram of an opening and closing injection method apparatus.

도 4는 집중식 주입방법장치의 회로도이다.4 is a circuit diagram of a centralized injection method apparatus.

도 5는 본원발명의 일실시예에 따른 채널이 형성된 마이크로칩의 평면도이다.5 is a plan view of a microchip in which a channel is formed according to an embodiment of the present invention.

도 6은 본원발명에 따른 실험실 칩을 위한 다기능 시료주입장치의 회로도이다.6 is a circuit diagram of a multifunctional sample injection device for a laboratory chip according to the present invention.

도 7은 본원발명의 다른 실시예의 회로도이다.7 is a circuit diagram of another embodiment of the present invention.

도 8은 본원발명의 또 다른 실시예의 회로도이다.8 is a circuit diagram of another embodiment of the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 완충용액주입부 2 : 시료주입부1: buffer injection part 2: sample injection part

3 : 시료배출부 4 : 완충용액배출부3: sample discharge unit 4: buffer solution discharge unit

5 : 시료주입부 6 : 완충용액주입부5: sample injection unit 6: buffer solution injection unit

7 : 시료배출부 8 : 완충용액배출부7: sample outlet 8: buffer solution discharge

10 : 개폐식시료주입장치단자 11 : 고전압릴레이10: open and close sample injection device terminal 11: high voltage relay

13 : 집중식시료저장장치단자 14 : 집중식시료주입장치단자13: centralized sample storage device terminal 14: centralized sample injection device terminal

101 : 전압공급부 102 : 전압발생부101: voltage supply unit 102: voltage generator

103 : 제어부 104 : 완충용액배출부단자103 control unit 104 buffer solution discharge terminal

105 : 시료주입부단자 106 : 시료배출부단자105: sample injection terminal 106: sample discharge terminal

107 : 완충용액주입부단자 110 : 릴레이107: buffer solution injection terminal 110: relay

201 : 제 1 컨버터201: first converter

본 발명은 전압공급부에서 공급된 전압을 변환하여 상이한 다수개의 고출력전압을 발생시키는 고전압 발생부와 상기 고전압 발생부의 다수의 출력전압이 인가되는 다수의 단자와 시료가 이동하는 채널을 구비하는 마이크로칩과 다수개의 전압을 인가하여 각각의 출력전압과 전압인가 시간을 제어하는 제어부를 포함한다.The present invention provides a microchip including a high voltage generator for converting a voltage supplied from a voltage supply unit to generate a plurality of different high output voltages, a plurality of terminals to which a plurality of output voltages of the high voltage generator are applied, and a channel through which a sample moves. It includes a control unit for applying a plurality of voltages to control each output voltage and the voltage application time.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시된 것이다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. This embodiment is not intended to limit the scope of the invention, but is presented by way of example only.

도 5는 채널이 형성된 마이크로칩의 평면도이다.5 is a plan view of a microchip in which a channel is formed.

도 5에 도시한 바와 같이, 시료가 이동하는 채널이 형성된 마이크로칩은 제 1 단자(23), 제 2 단자(20), 제 3 단자(22), 제 4 단자(21)를 포함한다.As shown in FIG. 5, the microchip on which the channel through which the sample is moved is formed includes a first terminal 23, a second terminal 20, a third terminal 22, and a fourth terminal 21.

도 6은 본원발명에 따른 실시예의 회로도이다.6 is a circuit diagram of an embodiment according to the present invention.

전압공급부(101)에서 공급되는 전원은 전압발생부(102)로 인가되고, 제어부(103)의 신호에 따라 전압발생부(102)의 완충용액배출부단자(104), 시료주입부단자(105), 시료배출부단자(106), 완충용액주입부단자(107)에는 각각 상이한 전압이 인가된다. 상기 완충용액배출부단자(104)는 상기 제 1 단자(23)에, 시료주입부단자(105)는 상기 제 2 단자(20)에, 시료배출부단자(106)는 상기 제 3 단자(22)에, 완충용액주입부단자(107)는 상기 제 4 단자(21)에 각각 연결되고, 제어부(103)에서 설정된 전압에 따라 각각의 단자에 전압들이 인가되어 시료를 주입할 수 있게 된다.The power supplied from the voltage supply unit 101 is applied to the voltage generator 102, and the buffer solution discharge terminal 104 and the sample injection terminal 105 of the voltage generator 102 according to the signal of the controller 103. ), The sample discharge terminal 106 and the buffer solution injection terminal 107 are respectively applied different voltages. The buffer solution discharge terminal 104 is connected to the first terminal 23, the sample injection part terminal 105 is connected to the second terminal 20, and the sample discharge part terminal 106 is connected to the third terminal 22. ), The buffer solution injection terminal 107 is connected to the fourth terminal 21, respectively, and voltages are applied to each terminal according to the voltage set by the controller 103 to inject the sample.

예를 들어 개폐식 주입방식을 이용하는 경우, 초기에 완충용액배출부단자(104)에는 0을, 시료주입부단자(105)에는 0.9HV를, 시료배출부단자(106)에는 0.7HV를, 완충용액주입부단자(107)에는 HV를 설정하고, 전압유지시간을 20초로 설정하면 20초 동안 각 단자는 상기전압을 유지하며, 그 후에는 완충용액주입부단자(107)는 플로팅을 시키고, 시료배출부단자(106)에는 0.9HV를, 시료배출부단자(106)에는 0.7HV를, 완충용액배출부단자(104)에는 0을 설정하고, 전압유지시간을 5초로 설정한다. 상기 HV는 고전압을 지칭하는 것으로 일반적으로 500V 내지 5kV 범위에서 시료에 따라 상이하게 설정한다. 이 과정을 반복하면 개폐식 시료주입방법을 수행할 수 있으며, 설정값은 제어기(103)에 미리 입력한다.For example, in the case of using the open / close injection method, the buffer solution discharge terminal 104 initially has 0, the sample injection terminal 105 has 0.9 HV, the sample discharge terminal 106 has 0.7 HV, and the buffer solution. When the injection terminal 107 is set to HV, and the voltage holding time is set to 20 seconds, each terminal maintains the above voltage for 20 seconds, after which the buffer solution injection terminal 107 is floated and the sample is discharged. 0.9HV is set for the negative terminal 106, 0.7HV is set for the sample discharge terminal 106, 0 is set for the buffer discharge terminal 104, and the voltage holding time is set to 5 seconds. The HV refers to a high voltage and is generally set differently depending on the sample in the range of 500V to 5kV. Repeating this process can perform a closing sample injection method, the set value is input in advance to the controller (103).

도 7은 본원발명의 다른 실시예의 회로도이다.7 is a circuit diagram of another embodiment of the present invention.

본 실시예의 작동원리는 다음과 같다.The operating principle of this embodiment is as follows.

전압공급부(101)에서 공급되는 전원은 3개의 컨버터(201, 202, 203)로 인가되고, 제어부(103)의 신호에 따라 3개의 컨버터(201, 202, 203)의 각각의 출력단에는 각각 상이한 전압이 인가된다. 상기 3개의 출력단은 완충용액배출부단자(104), 시료주입부단자(105), 시료배출부단자(106), 완충용액주입부단자(107)에 연결된다.Power supplied from the voltage supply unit 101 is applied to the three converters 201, 202, and 203, and different voltages are respectively applied to the output terminals of the three converters 201, 202, and 203 according to signals of the controller 103. Is applied. The three output terminals are connected to the buffer solution discharge terminal 104, the sample injection terminal 105, the sample discharge terminal 106, and the buffer solution injection terminal 107.

상기 완충용액배출부단자(104)와 완충용액주입부단자(107)는 상기3개의 컨버터의 출력단 중 1개의 출력단과 연결되며, 릴레이(110)는 상기 완충용액배출부단자(104)에 위치하여 컨버터(201)의 출력단과 접지부 중 하나를 제어신호에 따라 선택하여 완충용액배출부단자(104)에 연결시킨다. 예컨대 개폐식시료주입방식일 때는 릴레이가 (ⅱ)의 위치로 되어 완충용액배출부단자(104)의 전압은 접지가 되며, 집중식시료주입방식으로 시스템이 구동될 때는 릴레이가 (ⅰ)과 (ⅱ)의 위치로 반복하여 변환하여 완충용액배출부단자의 전압은 컨버터(201)의 출력전압과 접지상태로 반복하여 변환하게 된다.The buffer solution discharge terminal 104 and the buffer solution injection terminal 107 are connected to one output terminal of the output terminals of the three converters, the relay 110 is located in the buffer solution discharge terminal 104 One of the output terminal and the ground portion of the converter 201 is selected according to the control signal and connected to the buffer solution discharge terminal 104. For example, in the case of the open / close sample injection method, the relay is in the position of (ii), and the voltage of the buffer solution discharge terminal 104 is grounded. When the system is driven by the concentrated sample injection method, the relay is (i) and (ii). Repeatedly converted to the position of the buffer solution discharge terminal is repeatedly converted to the output voltage and the ground state of the converter 201.

본 실시예에 따르면, 제어부(103)에서 발생하는 신호에 따라 컨버터(201, 202, 203)가 작동하게 되고, 또한 릴레이의 작동도 결정되어 각각의 단자에 설정된 전압들이 인가되어 시료를 주입할 수 있게 된다.According to the present exemplary embodiment, the converters 201, 202, and 203 operate according to the signal generated from the controller 103, and the operation of the relay is determined, and the voltages set at the respective terminals are applied to inject the sample. Will be.

예를 들어 개폐식 주입방식을 이용하는 경우, 초기에 제어부(103)에서는 릴레이를 작동시키는 신호를 내보내 완충용액배출부출력단자(104)를 접지된 상태로 만든다. 동시에 시료주입부단자(105)에는 0.9HV를, 시료배출부단자(106)에는 0.7HV를, 완충용액주입부단자(107)에는 HV를 설정하고, 전압유지시간을 20초로 설정하면 20초 동안 각 단자는 상기전압을 유지하며, 그 후에는 완충용액주입부단자(107)는 플로팅을 시키고, 시료배출부단자(106)에는 0.9HV를, 시료배출부단자(106)에는 0.7HV를, 완충용액배출부단자(104)에는 0을 설정하고, 전압유지시간을 5초로 설정하여 이와 일치하는 제어신호를 3개의 컨버터(201, 202, 203)에 인가하면 또한 5초 동안 상기 전압이 각 단자에 유지된다. 이 과정을 반복하면 개폐식 시료주입방법을 수행할 수 있으며, 설정값은 제어기(103)에 미리 입력한다.For example, in the case of using the open / close injection method, the control unit 103 initially sends a signal for operating the relay to make the buffer solution discharge unit output terminal 104 grounded. At the same time, 0.9 HV is set at the sample injection terminal 105, 0.7 HV is set at the sample discharge terminal 106, HV is set at the buffer injection terminal 107, and the voltage holding time is set at 20 seconds. Each terminal maintains the above voltage, and after that, the buffer solution injection terminal 107 is floated, and 0.9 HV is applied to the sample discharge terminal 106, 0.7 HV is supplied to the sample discharge terminal 106. The solution discharge terminal 104 is set to 0, the voltage holding time is set to 5 seconds, and the corresponding control signal is applied to the three converters 201, 202, and 203, and the voltage is applied to each terminal for 5 seconds. maintain. Repeating this process can perform a closing sample injection method, the set value is input in advance to the controller (103).

또한 집중식시료주입방식으로 시스템이 구동될 때는 릴레이가 (ⅰ)과 (ⅱ)의 위치로 반복하여 변환하여 완충용액주입부단자(104)의 전압은 컨버터(201)의 출력전압과 접지상태로 반복하여 변환하게 된다.In addition, when the system is driven by the concentrated sample injection method, the relay is repeatedly converted to the positions of (i) and (ii) so that the voltage of the buffer solution injection terminal 104 is repeated with the output voltage of the converter 201 and the ground state. To convert it.

더 바람직하게는 상기 컨버터들의 출력단에 커패시터를 구비하여 잡음의 영향을 제거할 수 있다.More preferably, a capacitor may be provided at the output terminal of the converters to remove the influence of noise.

도 8은 본원발명의 또 다른 실시예의 회로도이다.8 is a circuit diagram of another embodiment of the present invention.

본 실시예의 작동원리는 다음과 같다.The operating principle of this embodiment is as follows.

전압공급부(101)에서 공급되는 전원은 4개의 컨버터(301, 302, 303, 304)로 인가되고, 제어부(103)의 신호에 따라 4개의 컨버터(301, 302, 303, 304)의 4개의 출력단에는 각각의 상이한 전압이 인가되게 된다. 상기 4개의 출력단은 완충용액배출부단자(104), 시료주입부단자(105), 시료배출부단자(106), 완충용액주입부단자(107)에 연결된다.Power supplied from the voltage supply unit 101 is applied to four converters 301, 302, 303 and 304, and four output terminals of the four converters 301, 302, 303 and 304 according to the signal of the controller 103. Each different voltage is applied. The four output terminals are connected to the buffer solution discharge terminal 104, the sample injection terminal 105, the sample discharge terminal 106, and the buffer solution injection terminal 107.

제어부(103)에서 발생하는 신호에 따라 컨버터(301, 302, 303, 304)가 작동하게 되고, 각각의 단자에 설정된 전압들이 인가되어 시료를 주입할 수 있게 된다.The converters 301, 302, 303, and 304 operate according to signals generated by the controller 103, and voltages set at respective terminals are applied to inject a sample.

예를 들어 개폐식 주입방식을 이용하는 경우, 초기에 완충용액배출부단자(104)에는 0을, 시료주입부단자(105)에는 0.9HV를, 시료배출부단자(106)에는 0.7HV를, 완충용액주입부단자(107)에는 HV를 설정하고, 전압유지시간을 20초로 설정하면 20초 동안 각 단자는 상기전압을 유지하며, 그 후에는 완충용액주입부단자(107)는 플로팅을 시키고, 시료배출부단자(106)에는 0.9HV를, 시료배출부단자(106)에는 0.7HV를, 완충용액배출부단자(104)에는 0을 설정하고, 전압유지시간을 5초로 설정하여 이와 일치하는 제어신호를 4개의 컨버터(301, 302, 303, 304)에 인가하면 또한 5초 동안 상기 전압이 각 단자에 유지된다. 이 과정을 반복하면 개폐식시료주입방법을 수행할 수 있으며, 설정값은 제어기(103)에 미리 입력한다.For example, in the case of using the open / close injection method, the buffer solution discharge terminal 104 initially has 0, the sample injection terminal 105 has 0.9 HV, the sample discharge terminal 106 has 0.7 HV, and the buffer solution. When the injection terminal 107 is set to HV, and the voltage holding time is set to 20 seconds, each terminal maintains the above voltage for 20 seconds, after which the buffer solution injection terminal 107 is floated and the sample is discharged. Set 0.9HV for the negative terminal 106, 0.7HV for the sample discharge terminal 106, 0 for the buffer discharge terminal 104, and set the voltage holding time to 5 seconds to match the control signal. When applied to four converters 301, 302, 303, 304, the voltage is also held at each terminal for 5 seconds. Repeating this process can perform the opening and closing sample injection method, the set value is input in advance to the controller (103).

더 바람직하게는 상기 컨버터들의 출력단에 커패시터를 구비하여 외부환경에 의하여 발생하는 잡음의 영향을 제거할 수 있다.More preferably, by providing a capacitor at the output terminal of the converter can remove the influence of noise caused by the external environment.

한 시스템에서 두 가지 시료 주입방법을 동시에 수행가능하고, 각 단자에 입력되는 전압을 다양하게 변화시켜 분리채널로 이동하는 시료의 플러그 모양을 조절하여 분석 시료에 따라 최적화된 시료주입전압 공급이 가능하며 단자전압을 조절하여 시료양의 조절을 가능하게 하며, 조립이 용이하며 기존의 고전압 공급장치 1대의 비용보다 적은 비용으로 제작 가능한 모세관 전기용동 마이크로 칩을 위한 다기능 시료주입장치를 제공하기 위하는 것이다.It is possible to carry out two sample injection methods simultaneously in one system, and it is possible to supply the optimized sample injection voltage according to the analysis sample by adjusting the plug shape of the sample moving to the separate channel by varying the voltage input to each terminal. It is to provide a multifunctional sample injection device for capillary electrophoresis microchips that can control the amount of sample by controlling the terminal voltage, is easy to assemble, and can be manufactured at a cost less than the cost of one conventional high voltage supply device.

Claims (2)

전압 공급부와 상기 전압공급부의 다수의 출력전압이 인가되는 다수의 단자와 시료가 이동하는 채널을 구비하는 마이크로칩을 포함하는 전기장의 분포를 이용하여 시료를 주입하는 모세관 전기영동 마이크로 칩을 위한 시료주입장치에 있어서, 전압공급부에서 공급된 전압을 변환하여 마이크로칩의 각단에 상이한 다수개의 출력전압을 공급하는 전압 발생부와; 상기 전압 발생부의 상이한 다수개의 출력전압을 제어하여 각 출력전압을 변화시키는 제어부를 포함하는 모세관 전기영동 마이크로 칩을 위한 다기능 시료주입장치.Sample injection for capillary electrophoretic microchips for injecting a sample using a distribution of an electric field comprising a voltage supply unit, a microchip having a plurality of terminals to which a plurality of output voltages are applied and a channel through which the sample moves; An apparatus, comprising: a voltage generator for converting a voltage supplied from a voltage supply to supply a plurality of different output voltages to respective stages of a microchip; A multifunctional sample injection device for capillary electrophoretic microchip comprising a control unit for controlling a plurality of different output voltages of the voltage generator to change each output voltage. 제 1 항에 있어서,The method of claim 1, 상기 전압 발생부는 상기 전압공급원에서 인가된 전압을 변환하는 다수개의 컨버터와;The voltage generator includes a plurality of converters for converting the voltage applied from the voltage supply source; 상기 다수개의 컨버터의 출력단 중 어느 하나의 출력단의 전압과 접지전압을 선택적으로 완충용액주입부단자에 인가하고, 상기 컨버터의 출력단과 상기 완충용액주입부단자사이에 개재되는 릴레이를 포함하고;And selectively applying a voltage and a ground voltage of one of the output terminals of the plurality of converters to the buffer solution injection terminal and interposed between the output terminal of the converter and the buffer solution injection terminal; 상기 제어부는 다수개의 컨버터를 제어하여 각각의 출력전압을 변화시키고, 릴레이의 작동여부를 제어하는 것을 특징으로 하는 실험실 칩을 위한 다기능 시료주입장치.The control unit is a multi-function sample injection device for a laboratory chip, characterized in that for controlling the plurality of converters to change the respective output voltage, the operation of the relay.
KR10-2002-0040040A 2002-07-10 2002-07-10 Multifunction injectin system for a capillary electrophoresis microchip KR100496977B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0040040A KR100496977B1 (en) 2002-07-10 2002-07-10 Multifunction injectin system for a capillary electrophoresis microchip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0040040A KR100496977B1 (en) 2002-07-10 2002-07-10 Multifunction injectin system for a capillary electrophoresis microchip

Publications (2)

Publication Number Publication Date
KR20040005465A true KR20040005465A (en) 2004-01-16
KR100496977B1 KR100496977B1 (en) 2005-06-23

Family

ID=37315782

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0040040A KR100496977B1 (en) 2002-07-10 2002-07-10 Multifunction injectin system for a capillary electrophoresis microchip

Country Status (1)

Country Link
KR (1) KR100496977B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762015B1 (en) * 2006-08-19 2007-10-04 한국표준과학연구원 Replaceable electro-conductive coupler for electro-osmotic flow driven ultra small volume pipetting device
KR102198936B1 (en) * 2019-08-06 2021-01-05 경희대학교 산학협력단 Micro-capillary electrophoresis system using step-up converter device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819552A (en) * 1981-07-27 1983-02-04 Shimadzu Corp Electrophoresis analyzer
JP3031632B2 (en) * 1990-11-28 2000-04-10 株式会社日立製作所 Capillary electrophoresis mass spectrometer and analytical method
US5286356A (en) * 1993-01-21 1994-02-15 Millipore Corporation Method for sample analysis using capillary electrophoresis
JP3887943B2 (en) * 1998-04-28 2007-02-28 株式会社島津製作所 Microchip electrophoresis device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762015B1 (en) * 2006-08-19 2007-10-04 한국표준과학연구원 Replaceable electro-conductive coupler for electro-osmotic flow driven ultra small volume pipetting device
WO2008023876A1 (en) * 2006-08-19 2008-02-28 Korea Research Institute Of Standards And Science Replaceable electro-conductive coupler for electro-osmotic flow driven ultra small volume pipetting device
KR102198936B1 (en) * 2019-08-06 2021-01-05 경희대학교 산학협력단 Micro-capillary electrophoresis system using step-up converter device

Also Published As

Publication number Publication date
KR100496977B1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US5869004A (en) Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
US6790328B2 (en) Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream
JP5847858B2 (en) AM-EWOD device and driving method of AM-EWOD device by AC drive with variable voltage
US6379974B1 (en) Microfluidic systems
US6681788B2 (en) Non-mechanical valves for fluidic systems
WO1998022811A9 (en) Improved microfluidic systems
CA2355084A1 (en) Microfluidic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
US6725882B1 (en) Configurable micro flowguide device
DE69528705D1 (en) METHOD AND DEVICE FOR CARRYING OUT MICROFLUID MANIPULATIONS FOR CHEMICAL ANALYSIS AND SYNTHESIS
WO2003071262A1 (en) Micro chemical chip
Behnam et al. An integrated CMOS high voltage supply for lab-on-a-chip systems
KR100496977B1 (en) Multifunction injectin system for a capillary electrophoresis microchip
US7710086B1 (en) Modular high voltage power supply for chemical analysis
KR20030042118A (en) Level shifter having a plurlity of outputs
Khorasani et al. High-voltage CMOS controller for microfluidics
KR100606614B1 (en) continuous biochemical particles separators
EP2334432A1 (en) Material separation device
CN114677977B (en) Micro-fluidic pixel circuit and chip based on phase inverter
CN114582293A (en) Micro-fluidic active matrix driving circuit and micro-fluidic device
EP0342349B1 (en) Contour-clamped homogeneous electric field generator
US20200061616A1 (en) Electrokinetically separating, encapsulating and extracting analytes on a microfluidic device
WO2007016432A2 (en) Apparatus and method for coupling microfluidic systems with a mass spectrometer utilizing rapid voltage switching
JP4315772B2 (en) Sample injection method and microdevice
CN115888860A (en) Digital microfluidic driving system and method
Chien et al. Simultaneous hydrodynamic and electrokinetic flow control

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130614

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140616

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150615

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160711

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180614

Year of fee payment: 14