JPS5819552A - Electrophoresis analyzer - Google Patents

Electrophoresis analyzer

Info

Publication number
JPS5819552A
JPS5819552A JP56118056A JP11805681A JPS5819552A JP S5819552 A JPS5819552 A JP S5819552A JP 56118056 A JP56118056 A JP 56118056A JP 11805681 A JP11805681 A JP 11805681A JP S5819552 A JPS5819552 A JP S5819552A
Authority
JP
Japan
Prior art keywords
pipe
electrophoresis
detector
pipe diameter
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56118056A
Other languages
Japanese (ja)
Other versions
JPS6258462B2 (en
Inventor
Shunei Mizuno
水野 俊英
Shoichi Kobayashi
章一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56118056A priority Critical patent/JPS5819552A/en
Priority to US06/361,738 priority patent/US4459198A/en
Priority to DE8282102577T priority patent/DE3270957D1/en
Priority to EP82102577A priority patent/EP0070963B1/en
Publication of JPS5819552A publication Critical patent/JPS5819552A/en
Publication of JPS6258462B2 publication Critical patent/JPS6258462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enable detection at a desired position of an electrophoresis pipeline with a simple construction by forming a section sharply changed in the diameter in a pipeline between a sample injecting section and a detector while feed current is automatically switched. CONSTITUTION:An electrophoresis pipeline 7 between a sample injection section 5 and a detector 6 is so arranged that a pretube 7a large in the pipeline diameter is connected in series to a capillary tube 7b small therein through a step section 8. A voltage fed from a power supply circuit 2 is converted into a digital value with an analog-digital converter 10 and inputted into a microcomputer 11 to measure changes in the fed voltage in terms of time whereby the interface of different ion component zones of a sample is detected. When the voltage variation signals exceed a certain limit, an opening signal is provided to a relay 12 to reduce the power source for electrophoresis.

Description

【発明の詳細な説明】 この発明は電気泳動分析装置に関し、さらに詳しくは、
泳動管路の所定位置を成る種のイオン成分1−ンが通過
していることを検知しうる゛手段を備えた電気泳動分析
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophoretic analyzer, and more specifically,
The present invention relates to an electrophoresis analyzer equipped with means capable of detecting the passage of a species of ion component 1 through a predetermined position of an electrophoresis channel.

電気泳動分析装置において管路の所定の位置を成る種の
イオン成分ゾーンが通過し工いることを検知する必要性
は、特に試料から目的成分を分取するとき、あるいは逆
に目的外の成分を除夫するときなどに生じる。従来、こ
の検知手段としては、特許庁文献No 76−6884
9号(Journal of Chramtograp
hy711& 1976)の第1oxic記載のように
電気泳動分析装置が本来備えている検出器に前記検知手
段の機能を兼ねさせたもの、あるいは帽園6g−880
2号に記載のようc#に動管路の所定の位置に本来の検
出器とは別個に同様の°検出器を設けたものが知られて
いる。
In an electrophoresis analyzer, it is necessary to detect when a species of ionic component zone passes through a predetermined position in a pipe, especially when separating a target component from a sample, or conversely, when separating a target component from a sample, or conversely, detecting a component other than the target component. This occurs when one is removed from a husband. Conventionally, this detection means is disclosed in Patent Office Document No. 76-6884.
No. 9 (Journal of Chramtograp
hy711 & 1976), a detector that is originally included in an electrophoresis analyzer also serves as the detection means, or
As described in No. 2, it is known that a similar ° detector is provided in a C# at a predetermined position in the flow pipe, separate from the original detector.

しかしながら、前者の場合には、検出器が本来設置され
る位置での検知しかできないので用途が限定されており
、後者の場合には、泳動管路中に置が複雑化し、また試
料との間で相互作用を生じるおそれもある。
However, in the former case, the detector can only detect at its original location, so its applications are limited; in the latter case, the placement in the electrophoresis tube is complicated, and the distance between the detector and the sample is limited. There is also a risk of interaction occurring.

この発明は、このような状況に鑑みそなされたものであ
って、泳動管路の任意の所定位置くおいて上記検知が行
えて、かつそのための構成が比較的簡単な電気泳動分析
装置を提供するものである。
The present invention has been made in view of the above circumstances, and provides an electrophoresis analyzer that can perform the above detection at any predetermined position in the migration tube and has a relatively simple configuration. It is something to do.

すなわち、この発明は、定−流電源回路の両端にそれぞ
れ接続されたター電ナル液電極檜とリーディング液電極
槽の間に試料注入部と検出器とが順に管路にて連結され
た電気泳動分析装置において、試料注入部と検出器の間
の管路に管路径急変部を形成すると共に電源回路に供給
電圧の時間的変化を測定する電圧変化測定手段を接続し
てなる電気泳動分析装置を提供する。
That is, the present invention provides an electrophoresis system in which a sample injection part and a detector are sequentially connected by a conduit between a terminal liquid electrode tank and a leading liquid electrode tank, which are respectively connected to both ends of a constant current power supply circuit. An electrophoretic analyzer is used in which an electrophoretic analyzer is formed by forming a pipe diameter abruptly changing part in the pipe between the sample injection part and the detector, and connecting a voltage change measuring means to measure the temporal change in the supply voltage to the power supply circuit. provide.

上記管路径急変部は、具体的には例えば管路径がその位
置だけ小になるくびれ部や大になる膨出部であり、また
、試料注入部と検出器の間の管路が管路径の太いプレチ
ューブと管路径の報いキャピラリーチューブとを段状部
を介して直列に連結した2段チューブである場合にはそ
の段状部である。
Specifically, the above-mentioned sudden change in pipe diameter is a constriction part where the pipe diameter becomes smaller or a bulge part where the pipe diameter becomes larger. In the case of a two-stage tube in which a thick pre-tube and a capillary tube of different diameter are connected in series via a stepped portion, this is the stepped portion.

また、上記電圧変化測定手段は、具体的には例えはムー
Dコンバータとマイクロコンピュータとにより構成され
るものである。この場合、例えば、マイクロコンピュー
タは、ムーDコンバータヲ介して電源回路の両端間の電
圧を所定短時間ごとに測定し、前の測定値との差を電圧
変化分として得るものである。
Further, the voltage change measuring means is specifically constituted by, for example, a MuD converter and a microcomputer. In this case, for example, the microcomputer measures the voltage between both ends of the power supply circuit via the MuD converter at predetermined short intervals, and obtains the difference from the previous measurement value as the voltage change.

この電圧変化分は、前記管路径急変部を任意のひとつの
イオン成分ゾーンが電気泳動しているときはほぼ一定値
であるが、各々異なるふたつのイオン成分ゾーンの境界
面が電気泳動するときには特異な変化をする。
This voltage change is a nearly constant value when any one ion component zone is electrophoresing in the part where the diameter of the pipe suddenly changes, but it is unusual when the interface between two different ion component zones is electrophoresing. make a change.

したがって、この特異な変化を検知することにより成る
種のイオン成分1−ンが前記管路径急変部に入ったこと
を知ることができ、また、同じ原理により出たことを知
ることができる。そこでそのタイミングにより例えば分
取操作を行えば、好適に分取を行える。
Therefore, by detecting this specific change, it is possible to know that the ionic component 1-1 has entered the pipe diameter abruptly changing section, and it can also be known that it has exited based on the same principle. Therefore, if, for example, a preparative separation operation is performed at that timing, the preparative separation can be carried out suitably.

ところで、試料注入部と検出器の閣の管路が前記2段チ
ューブである場合、電導度の大きな液がキャピラリーチ
ューブ内にあるとぎは定電流値を大きな値としてもよい
が、電導度の小さな液がキャピラリーチューブ内に入っ
たときに同じ大きな電流にしておくと、管路径か細くな
ることにより抵抗値が増大するので、供給電圧が異常に
高くなったり、ジュール熱の発生が大きくなったり、ま
たその熱によりキャピラリーチューブ内に気泡が発生し
たりする不都合を生じる。かといって定電流値をはじめ
から小さくしておくと泳動時間が長くなってしまうので
、電導度の小さな液がプレカラム内にあるときには大き
な電流とし、キャピラリーカラム内に入ったときに小さ
な電流に切換え゛この発明は、この切換えを自動的に行
いうる手段を備えた電気泳動分析装置をまた提供するも
のであって、前′i電圧変化測定手段の出力の特異な変
化を検知して電源手段から供給される定電流の電流値を
切換える電流切換手段をさらに具備してなる電気泳動分
析装置を提供する。
By the way, if the conduit between the sample injection part and the detector is the two-stage tube described above, the constant current value may be set to a large value if there is a liquid with high conductivity in the capillary tube, but if the liquid with low conductivity If the same large current is used when the liquid enters the capillary tube, the resistance value will increase as the tube diameter becomes smaller, resulting in abnormally high supply voltage, increased Joule heat generation, and The heat causes problems such as generation of bubbles inside the capillary tube. However, if the constant current value is set small from the beginning, the migration time will become longer, so when a liquid with low conductivity is in the pre-column, a large current is used, and when the liquid enters the capillary column, the current is switched to a small current. The present invention also provides an electrophoresis analyzer equipped with means capable of automatically performing this switching, which detects a peculiar change in the output of the voltage change measuring means and supplies power from the power supply means. The present invention provides an electrophoresis analyzer further comprising current switching means for switching the current value of a constant current.

上記電流切換手段は、具体的には例えば前記マイクロコ
ンピュータとリレ一手段とであり、例えば前記電圧変化
分の特異な変化をマイクロコンピュータが検知してリレ
一手段を作動し、電源回路の電流制限抵抗を切換えるも
のである。
The current switching means is specifically, for example, the microcomputer and the relay means. For example, the microcomputer detects a peculiar change in the voltage change and operates the relay means to limit the current of the power supply circuit. This is to switch the resistance.

以下、図に示す実施例に基いて、この発明をさらに詳説
する。
Hereinafter, the present invention will be explained in further detail based on embodiments shown in the drawings.

第1図に示す(1)はこの発明の電気泳動分析装置の一
実施例である。定電流電ms路(2)の両端にそれぞれ
ターミナル液電極槽(3)とリーディング液電極槽(4
)とが接続され、これらの間に試料注入部(5)と検出
器(6)とが管路(7)にて連結されて基本的な分析部
が構成されている。定電流回路(2)は直列接続された
電流制限抵抗(RO) (R1)を有し、そこでの電圧
降下を一定とすることにより定電流を供給する。試料注
入部(5)と検出器(6)の間の管路(7)は、管路径
の太いプレチューブ(7a)と管路径の細いキャピラリ
ーチューブ(7b)が段状部(8)を介して直列に連結
された2I9チユーブであり、その段状部(8)が管路
径急変部に相当する。
(1) shown in FIG. 1 is an embodiment of the electrophoretic analysis apparatus of the present invention. A terminal liquid electrode tank (3) and a leading liquid electrode tank (4) are installed at both ends of the constant current current path (2), respectively.
) are connected, and a sample injection section (5) and a detector (6) are connected between these through a pipe (7) to constitute a basic analysis section. The constant current circuit (2) has a current limiting resistor (RO) (R1) connected in series, and supplies a constant current by keeping the voltage drop there constant. The pipe line (7) between the sample injection part (5) and the detector (6) consists of a pre-tube (7a) with a large pipe diameter and a capillary tube (7b) with a small pipe diameter via a stepped part (8). The tubes are 2I9 tubes connected in series, and the stepped portion (8) corresponds to the sudden change in pipe diameter.

αQはムーDコンバータであって、電源回路(2)から
の供給電圧をデジタル量に変換してマイクロコンピュー
タ(ロ)に出力する。マイクロコンピュータ(6)は内
蔵するクロックに基いて所定の短い時間ごとにムーDコ
ンバータ(至)をすンプリングし、その値から前回のサ
ンプリング時の値を減算する。これにより得られる差値
は供給電圧の時間変化である。従って、ムーDコンバー
タQ□およびマイクロコンピュータ(ロ)が電圧変化測
定手段に相当する。
αQ is a MuD converter which converts the voltage supplied from the power supply circuit (2) into a digital quantity and outputs it to the microcomputer (b). The microcomputer (6) samples the Mu-D converter (to) at predetermined short intervals based on a built-in clock, and subtracts the value at the previous sampling from the sampled value. The resulting difference value is the time variation of the supply voltage. Therefore, the MuD converter Q□ and the microcomputer (b) correspond to voltage change measuring means.

マイクロコンピュータ(ロ)は、さらに、上記差値から
その前の減算によって得られていた差値を減算する。そ
してその2重の差値がある限界値を越えた時に、リレー
Q81#C開信号を与える。リレー(2)の接点は、電
気泳動のスタート時から前記開信号が与えられる時まで
閉じていて前記電流制限抵抗(R1)を短絡しているが
、開信号によって開く。定電流回路(2)は前述のよう
に電流制限抵抗(IIOXIm)での電圧降下を一定と
するよう動作するので、今仮に電流制限抵抗(BD)と
(也)とが同じ抵抗値であるとすると、リレー(2)の
接点が開いた時には閉じていた時の半分の値の電流を供
給するようになる。
The microcomputer (b) further subtracts the difference value obtained by the previous subtraction from the above difference value. Then, when the double difference value exceeds a certain limit value, relay Q81#C open signal is given. The contacts of the relay (2) are closed from the start of electrophoresis to the time when the open signal is applied, short-circuiting the current limiting resistor (R1), but are opened by the open signal. As mentioned above, the constant current circuit (2) operates to keep the voltage drop across the current limiting resistor (IIOXIm) constant, so if the current limiting resistor (BD) and (ya) have the same resistance value, Then, when the contacts of relay (2) open, they supply half the current as when they are closed.

例えはリレー(2)の接点が閉じていた時に200μム
の電流が供給されていれは、リレー四の接点が開いた後
は100μムの電流が供給されることになる。このよう
に、マイクロコンピュータ(ロ)およびリレー(2)は
、電流切換手段に相当する。
For example, if a current of 200 μm is supplied when the contact of relay (2) is closed, a current of 100 μm will be supplied after the contact of relay 4 is opened. In this way, the microcomputer (b) and the relay (2) correspond to current switching means.

次にこの電気泳動分析装置(1)において、試料の成る
イオン成分ゾーンが管路径急変部を通過していることを
検知する作動原理について説明する。
Next, the operating principle of this electrophoresis analyzer (1) for detecting that the ion component zone of the sample passes through a sudden change in pipe diameter will be explained.

説明の都合上、第2図に示すように、試料はただ1種の
イオン成分ゾーン0から成るものとし、リーディング液
(ハ)→試料→ターミナル液■の順に電導度が小さくな
るものとする。また、マイクロコンピュータ(ロ)が取
り扱う値はデジタル量であるが、説明の都合上、第8図
に示すように、アナログ量で表現する。すなわち、前記
供給電圧の時間変化である差値な供給電圧υの一次微分
間として、前記2重の差値な二次微分ごとして示す。こ
の置換が何ら本質的変化をもたらすものでないことは明
らかであろう。
For convenience of explanation, as shown in FIG. 2, it is assumed that the sample consists of only one type of ionic component zone 0, and that the conductivity decreases in the order of leading liquid (c) → sample → terminal liquid (2). Further, although the values handled by the microcomputer (b) are digital quantities, for convenience of explanation, they will be expressed as analog quantities as shown in FIG. That is, it is shown as a first-order differential of the differential supply voltage υ, which is a temporal change in the supply voltage, and as a second-order differential of the double differential. It should be clear that this substitution does not result in any essential change.

さて、定電流で電気泳動を行うと、第2図(a)(b)
(e)(d)の順に電気泳動が進行する。このとき、電
流値の切換えを行わないとすると、供給電・圧■は第8
図に)のように変化する。ここで時刻(tl)は第2図
(b)の瞬間tこ相当し、時刻(t2)は第2図(0)
の瞬間に相当する。そにで供給電圧(至)の時間変化は
第8図(ハ)に示す一次微分間のようになる。さらにそ
の二次微分(至)は第8゛図0のようになる。そこで二
次微分菌の値について限界値(α)を設けておくと、時
刻(tX)および(t2)を極めて容易に検知すること
ができる。
Now, when electrophoresis is performed with a constant current, Figures 2 (a) and (b)
Electrophoresis proceeds in the order of (e) and (d). At this time, if the current value is not changed, the supplied voltage/voltage
(in the figure). Here, the time (tl) corresponds to the instant t in Figure 2(b), and the time (t2) corresponds to the instant t in Figure 2(b).
corresponds to the moment of Therefore, the time variation of the supply voltage (to) becomes as shown in the first derivative shown in FIG. 8(c). Furthermore, the second derivative (to) is as shown in Fig. 8.0. Therefore, if a limit value (α) is set for the value of the second-order differential bacteria, the times (tX) and (t2) can be detected extremely easily.

第2図および第8図に示す例に限定されず、試料が多種
のイオン成分ゾーンから成っている場合でも、1114
度の大きさが進行順に並んでいない場合でも、異なるイ
オン成分ゾーンの境界面が管路径急変部を通過するとき
は必ず供給電圧の変化が特異な変化を示す。換言すれば
、ひとつのイオン成分ゾーンが通過しているときは供給
電圧の変化は定常的変化である。従って、供給電圧の時
間的変化を測定すれは、任麓のイオン成分ゾーンの通過
が検知できるわけである。
Not limited to the examples shown in FIGS. 2 and 8, even when the sample consists of zones of various ionic components, 1114
Even if the magnitudes are not arranged in the order of progression, the change in supply voltage always shows a peculiar change when the interface between different ion component zones passes through a sudden change in pipe diameter. In other words, the change in supply voltage is a steady change when one ionic component zone is passing through. Therefore, by measuring the temporal change in the supply voltage, it is possible to detect the passage of the ion component zone at the base of the supply voltage.

説明を第8図0にもどすと、もし、イオン成分シー“ン
(8)の電導度がリーディング液0に近くてキャピラリ
ーチューブ(7b)内で特に問題を起さないようであれ
ば、時刻(t2)において電流を切換えるようマイクロ
コンピュータαMをプログラムしておけは、ターミナル
液のの電導度が小さいことによる前記不都曾の発生を防
止できる。また、イオン成分ゾーン(8)の電導度が問
題になるくらい小さければ、時刻(tl)において電流
を切換えるようプログラムしておけ−ばよい。
Returning the explanation to Figure 80, if the conductivity of the ionic component scene (8) is close to 0 in the leading liquid and does not cause any particular problem in the capillary tube (7b), then the time ( If the microcomputer αM is programmed to switch the current at t2), it is possible to prevent the above-mentioned disadvantage from occurring due to the low conductivity of the terminal liquid.Also, if the conductivity of the ionic component zone (8) is a problem, If the current is small enough to be, it is sufficient to program the current to be switched at time (tl).

このようにこの電気泳動分析装置i!t (1)によれ
ば、電気泳動する各ゾーンが段状部(8)を通過してい
ることを適確かつ容易に刈ることかでき、それにより最
適の電流値に最適のタイミングで切換えることができる
から、極め蔓好−な電気泳動分析を行うことができる。
In this way, this electrophoresis analyzer i! According to (1), it is possible to accurately and easily determine that each zone undergoing electrophoresis passes through the stepped portion (8), and thereby to switch to the optimal current value at the optimal timing. This makes it possible to perform extremely convenient electrophoretic analysis.

しかも、比較的に構成が容易である。Furthermore, the configuration is relatively easy.

この発明の電気泳動分析装置の他の変形例としては、管
路径急変部を第4図に示すくびれ部(至)としたもの、
あるいは第5図に示す膨出部鵠としたものが挙げられる
Other modifications of the electrophoretic analyzer of the present invention include one in which the pipe diameter abruptly changes part as shown in FIG.
Alternatively, the bulge shown in FIG. 5 may be used.

また、電圧変化測定手段をアナログ微分回路としたもの
が挙げられる。
Another example is one in which the voltage change measuring means is an analog differential circuit.

さらに応用例としては、所定のイオン成分ゾーンの通過
を検知して、自動的に何らかの分取手段を作動させるよ
うにしたもの、あるいは第6図に示すように、はじめは
ターミナル液電極槽Qlと第1のリーディング液電極槽
(至)との間に鉛いて管路径の太いチューブQノで大き
な値の定電流により電気泳動を行い、所定のイオン成分
ゾーンが管路径急変部(至)に来たときにそれを検知し
て電源回路を切換えて、ターミナル液電極槽(至)と第
2のリーディング液電極槽Qleの間でキャピラリーチ
ューブ員により電気泳動を行うものが挙げられる。ここ
でvlは試料注入部、′■は検出器である。
Furthermore, as an example of application, it is possible to detect passage of a predetermined ion component zone and automatically activate some kind of separation means, or as shown in Fig. 6, initially the terminal liquid electrode tank Ql Electrophoresis is performed using a large constant current in a tube Q with a large pipe diameter that is connected to the first leading liquid electrode tank (to), and a predetermined ion component zone comes to the part where the pipe diameter suddenly changes (to). One example is one that detects this and switches the power supply circuit to perform electrophoresis using a capillary tube member between the terminal liquid electrode tank (to) and the second leading liquid electrode tank Qle. Here, vl is a sample injection part, and '■ is a detector.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の電気泳動分析装置の一実施例の構成
説明図、第2図は電気泳動の進行の説明図、第8図に)
は供給電圧の時間的変化を示す図、(ロ)はその−次微
分の時間的変化を示す図、0はさらに二次微分の時間的
変化を示す一図、第4図および第6図は管路径急変部の
構成例を示す図、第6図はこの発明の電気泳動分析装置
の一応用例の要部説明図である。 (1)−電気泳動分析装置、(2)一定電流電源回路、
(3)−・ターミナル液電極槽、(4)−リーディング
液電極槽、(6)−・試料注入部s   (s) ”’
検出器、(7)−管路、(8)一段状部、 αQ−@ムーDコンバータ、  (2)−マイクロコン
ピュータ1、(2)・−リレー、     (BOXB
I) −・電流制限抵抗;(至)−くびれ部、   (
ロ)−膨出部。 ^   ^   へ  ^ 03     D     u    0ゝ′    
  ν      〜−Nノ第 第 第 二il、11 4図 5図 6図 9
(Fig. 1 is an explanatory diagram of the configuration of an embodiment of the electrophoresis analyzer of the present invention, Fig. 2 is an explanatory diagram of the progress of electrophoresis, and Fig. 8)
(b) is a diagram showing the temporal variation of the supply voltage, (b) is a diagram showing the temporal variation of its −th order derivative, 0 is a diagram showing the temporal variation of the second derivative, and FIGS. 4 and 6 are FIG. 6, which is a diagram showing an example of the configuration of a sudden change in pipe diameter section, is an explanatory view of the main part of an example of application of the electrophoretic analyzer of the present invention. (1) - electrophoresis analyzer, (2) constant current power supply circuit,
(3)--Terminal liquid electrode tank, (4)-Leading liquid electrode tank, (6)--Sample injection part s (s) '''
Detector, (7) - Pipeline, (8) Single-stage section, αQ-@MuD converter, (2) - Microcomputer 1, (2) - Relay, (BOXB
I) - Current limiting resistance; (to) - Narrow part, (
b) - bulge. ^ ^ To ^ 03 D u 0ゝ'
ν ~-N second il, 11 4 Figure 5 Figure 6 Figure 9

Claims (1)

【特許請求の範囲】 1、定電流電源回路の両端にそれぞれ接続されたターミ
ナル液電極檜とリーディング液電極檜の間に試料注入部
と検出器とが順に管路にて連結試料注入部と検出器の間
の管路に管路径急変部を形成すると共に電源回路に供給
電圧の時間的変化を測定する電圧変化測定手段を接続し
たことを特徴とする電気泳動分析装置。 2、管路径急変部が、その位置だけ管路径が小になるく
びれ部である請求の範囲第1項記載の電気泳動分析装置
。 8、管路径急資部が、その位置だけ管路径が大に4る膨
出部である請求の範囲第1項記載の電気泳動分析装置。 t 試料注入部と検出器の間の管路が、管、路長の太い
プレチューブと管路径の細いキャピラリーチューブとを
段状部を介して直列に連結した2段チューブであり、管
路径急変部がその段状部であ葛請求の範囲第1項記載の
電気泳動分析装置。 5、定電流電源回路の両端にそれぞれ接続されたターミ
ナル液電極檜とリーディング液電極檜の間に試料注入部
と検出器とが順に管路にて連結された電気泳動分析装置
において、 試料注入部と検出器の間の管路に管路径急変部を形成す
ると共にKm回路に供給電圧の時間的変化を測定する電
圧変化測定手段を接続し、さらに前記管路径急変部を異
なるイオン成分ゾーンの境界面が通過するとき生じる前
記電圧変化測定手段の出力の特異な変化を検知して前記
電源回路から供給される定電流の電流値を切換える電流
切換手段を備えたことを特徴とする電気泳動分析装置。
[Claims] 1. A sample injection section and a detector are connected in order through a pipe between a terminal liquid electrode and a leading liquid electrode connected to both ends of a constant current power supply circuit, respectively. 1. An electrophoresis analyzer, characterized in that a pipe diameter abruptly changing section is formed in a pipe between the containers, and a voltage change measuring means for measuring temporal changes in supply voltage is connected to a power supply circuit. 2. The electrophoretic analyzer according to claim 1, wherein the sudden change in pipe diameter is a constriction where the pipe diameter becomes smaller at that position. 8. The electrophoretic analyzer according to claim 1, wherein the conduit diameter increasing portion is a bulge portion in which the conduit diameter increases by 4 at that position. t The pipe between the sample injection part and the detector is a two-stage tube in which a pre-tube with a thick path length and a capillary tube with a small pipe diameter are connected in series via a stepped section, and the pipe diameter does not change suddenly. 2. The electrophoretic analyzer according to claim 1, wherein the portion is a stepped portion. 5. In an electrophoresis analyzer in which a sample injection section and a detector are sequentially connected by a conduit between a terminal liquid electrode and a leading liquid electrode connected to both ends of a constant current power supply circuit, the sample injection section A sudden change in pipe diameter is formed in the pipe between the An electrophoresis analyzer characterized by comprising a current switching means for detecting a peculiar change in the output of the voltage change measuring means that occurs when a surface passes and switches the current value of the constant current supplied from the power supply circuit. .
JP56118056A 1981-07-27 1981-07-27 Electrophoresis analyzer Granted JPS5819552A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56118056A JPS5819552A (en) 1981-07-27 1981-07-27 Electrophoresis analyzer
US06/361,738 US4459198A (en) 1981-07-27 1982-03-23 Electrophoretic apparatus
DE8282102577T DE3270957D1 (en) 1981-07-27 1982-03-26 Electrophoretic apparatus
EP82102577A EP0070963B1 (en) 1981-07-27 1982-03-26 Electrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118056A JPS5819552A (en) 1981-07-27 1981-07-27 Electrophoresis analyzer

Publications (2)

Publication Number Publication Date
JPS5819552A true JPS5819552A (en) 1983-02-04
JPS6258462B2 JPS6258462B2 (en) 1987-12-05

Family

ID=14726920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118056A Granted JPS5819552A (en) 1981-07-27 1981-07-27 Electrophoresis analyzer

Country Status (1)

Country Link
JP (1) JPS5819552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496977B1 (en) * 2002-07-10 2005-06-23 주식회사 옵트론-텍 Multifunction injectin system for a capillary electrophoresis microchip
JP2016218070A (en) * 2015-05-18 2016-12-22 努 升島 Electric field capture, free separation and molecular detection method of 1-cell or ultra-micro molecule

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051225A (en) 2020-09-18 2022-03-31 チタン工業株式会社 Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496977B1 (en) * 2002-07-10 2005-06-23 주식회사 옵트론-텍 Multifunction injectin system for a capillary electrophoresis microchip
JP2016218070A (en) * 2015-05-18 2016-12-22 努 升島 Electric field capture, free separation and molecular detection method of 1-cell or ultra-micro molecule

Also Published As

Publication number Publication date
JPS6258462B2 (en) 1987-12-05

Similar Documents

Publication Publication Date Title
US3514377A (en) Measurement of oxygen-containing gas compositions and apparatus therefor
US5587520A (en) Thermal conductivity detector
EP0070963B1 (en) Electrophoretic apparatus
CN106053616B (en) Preparative separation chromatograph
EP2706353B1 (en) Gas chromatograph with thermal conductivity detectors in series
JPS5819552A (en) Electrophoresis analyzer
CN205643261U (en) Be used for online liquid chromatograph of water quality analysis
JPH0418264B2 (en)
JP4898544B2 (en) Sensor control device
US4416762A (en) Electrophoretic apparatus
CN107422061B (en) Thermal conductivity detector and gas chromatograph
SU1404917A1 (en) Girgometer
JPS60138449A (en) Apparatus for isotachophoresis analysis
JPH0342369Y2 (en)
JPS6260021B2 (en)
JP2017161221A (en) Thermal conductivity detector
JP2779272B2 (en) Insulation oil deterioration detector
SU1582366A1 (en) Device for measuring informative values of current harmonics of three-phase arc electric furnace arc
JPS6334427B2 (en)
RU2266534C2 (en) Thermal conductivity detector for gas chromatography
JPH0351741Y2 (en)
JPH06308071A (en) Heat conduction type detector
US3474006A (en) Detection of water in halogenated hydrocarbon streams
JPS6242369Y2 (en)
SU373651A1 (en) IEOBSTS'NI5: