KR20030084199A - A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge - Google Patents

A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge Download PDF

Info

Publication number
KR20030084199A
KR20030084199A KR1020020022767A KR20020022767A KR20030084199A KR 20030084199 A KR20030084199 A KR 20030084199A KR 1020020022767 A KR1020020022767 A KR 1020020022767A KR 20020022767 A KR20020022767 A KR 20020022767A KR 20030084199 A KR20030084199 A KR 20030084199A
Authority
KR
South Korea
Prior art keywords
tank
sludge
nitrifying bacteria
anaerobic
sewage
Prior art date
Application number
KR1020020022767A
Other languages
Korean (ko)
Other versions
KR100434858B1 (en
Inventor
김정철
문형극
송준상
이문호
조규성
Original Assignee
주식회사 디엠퓨어텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디엠퓨어텍 filed Critical 주식회사 디엠퓨어텍
Priority to KR10-2002-0022767A priority Critical patent/KR100434858B1/en
Publication of KR20030084199A publication Critical patent/KR20030084199A/en
Application granted granted Critical
Publication of KR100434858B1 publication Critical patent/KR100434858B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/10Temperature conditions for biological treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: An advanced wastewater treatment method using nitrifying bacteria is provided, which is characterized in that nitrifying bacteria are cultivated in extra anaerobic/aerobic sludge digestion chamber, and then nitrifying bacteria are supplied to anoxic tank or aeration tank in winter season so as to prevent the deterioration of wastewater treatment efficiency due to inactivation of nitrifying bacteria at low temperatures. CONSTITUTION: The advanced wastewater treatment method comprises the steps of returning excess sludge from a settling tank(4) to a digestion tank(5) where excess sludge is digested in anaerobic, anoxic or aerobic conditions so that cultivation liquid is obtained; cultivating such nitrifying bacteria as nitrosomonas and nitrobacter in a cultivation chamber(6); and supplying the nitrifying bacteria to an anoxic tank(2) or an aeration tank(3).

Description

슬러지의 혐기성 또는 호기성 소화액으로 배양한 질산화 미생물을 이용한 하수고도처리방법{A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge}A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge}

본 발명은 하수중에 함유된 질소와 인을 생물학적으로 제거하는 하수처리방법에 관한 것으로서, 특히 동절기에 질산화 미생물의 성장저하 특성으로 하수처리효율이 저하되는 현상을 방지하기 위하여 별도의 배양조에서 슬러지를 혐기성 또는 호기성으로 소화하여 얻은 분해액으로 배양한 질산화균을 무산소조 또는 폭기조로 공급하여 동절기 동안 하수처리 효율을 증가시키는 슬러지의 혐기성 또는 호기성 소화액으로 배양한 질산화 미생물을 이용한 하수 고도처리방법에 관한 것이다.The present invention relates to a sewage treatment method for biologically removing nitrogen and phosphorus contained in sewage, and in particular, sludge in a separate culture tank in order to prevent the deterioration of sewage treatment efficiency due to the growth deterioration characteristics of nitrifying microorganisms in winter. The present invention relates to a method for advanced sewage treatment using nitrifying microorganisms cultured with anaerobic or aerobic digestion liquid of sludge which is supplied to an anoxic tank or aeration tank to increase the efficiency of sewage treatment during winter season.

만약 하수가 고도처리 되지 않은 상태에서 질소를 다량 포함하여 상수원으로 유입되게 되면 수돗물에서 악취가 발생하게 되고, 하천으로 유입되게 되면 수중의 산소를 고갈시켜 물고기의 집단 폐사를 일으키며, 부영양화나 적조가 발생하는 등 국민의 건강에 많은 문제점을 일으키게 된다.If the sewage flows into a water supply source containing a large amount of nitrogen in the state where the sewage is not treated, odor occurs in the tap water, and when it enters the stream, it depletes the oxygen in the water, causing collective death of fish, eutrophication and red tide. It causes a lot of problems for the health of the people.

상기한 실정에 따라 세계적으로 수질환경기준의 강화 및 쾌적한 환경에 대한 요구에 부응할 수 있도록 점점 더 환경에 대한 규제가 강화되고 있는 추세이며, 특히 폐,하수의 처리기준은 점점더 강화되어 가고 있는 현실이다.In accordance with the above-mentioned situation, environmental regulations are increasingly being strengthened in order to strengthen the water quality standards and meet the demand for a pleasant environment. Particularly, the standards for treating waste and sewage are being strengthened. It is a reality.

상기한 각종 오염문제들을 해결하는 방안은 대기오염이나, 토지오염, 수질오염등 종류에 따라 여러가지가 있을 수 있는데 그 중에서 특히 하수를 처리하는 방법은 하수에 오염물질로서 포함된 유기물, 질소, 인을 제거하는 것이다.There are various ways to solve the above-mentioned pollution problems depending on the type of air pollution, land pollution, water pollution, etc. Among them, the sewage treatment method includes organic matter, nitrogen and phosphorus contained as pollutants in the sewage. To remove it.

하수를 처리하는 방법중 미생물에 의해 처리하는 방법은 종래부터 잘 알려져 있는 바, 하수에 오염물질로서 포함된 유기물, 질소, 인을 처리하는 종래의 방법을 도 1을 참조하여 설명한다.The method for treating by microorganisms among the methods for treating sewage is well known in the art, and a conventional method for treating organic matter, nitrogen, and phosphorus contained as contaminants in sewage will be described with reference to FIG. 1.

도 1에 있어서, 혐기조(1)에서는 인을 축적하는 미생물이 ATP(Adenosine TriPhosphate)를 분해하여 ADP(Adenosine DiPhosphate)를 생성하면서 에너지를 사용하는 과정에서 인을 방출하지 않으면서 인을 과잉 흡수하는 효소계인 폴리포스페이트(Poly- phosphate)등이 생성하지 못하여 폭기조(3)에서 인의 과잉흡수가 일어나지 않는다.In FIG. 1, in the anaerobic tank 1, a microorganism that accumulates phosphorus decomposes ATP (Adenosine TriPhosphate) to generate Adenosine DiPhosphate (ADP) while enzymatically absorbing phosphorus without releasing phosphorus in the process of using energy. Phosphorus polyphosphate (Poly-phosphate) or the like can not be produced in the aeration tank (3) does not occur excessive absorption of phosphorus.

질소를 제거하는 무산소조(2)에서 일어나는 탈질 과정은 질산염(NO3-)이 아질산염(NO2-)이 되고 산화질소(N2O)를 거쳐 최종적으로 질소가스(N2)의 형태로 환원시키는 과정으로, 탈질능력을 가지고 있는 미생물은 슈도모나스(Pseudomonas), 미크로코쿠스(Micrococus), 아크로모박터(Archromobacter), 티오바실루스(Thiobaci llus)와 바실루스(Bacillus) 종 등을 포함한 종속영양세균과 일부 독립화학영양세균 등이 있다. 탈질산화균은 하수 처리과정에서 충분히 존재하는 것으로서 적절한 조건만 이루어지면 탈질은 가능하게 된다. 그러나 동절기에는 암모니아성 질소가 질산성 질소로 충분히 산화되지 못하여 질소 처리효율은 저하하게 된다.The denitrification process occurs in the anoxic tank (2) that removes nitrogen, in which nitrate (NO 3- ) becomes nitrite (NO 2- ) and is finally reduced to nitrogen gas (N 2 ) via nitrogen oxide (N 2 O). As a process, denitrifying microorganisms are heterotrophic and some independent, including Pseudomonas, Micrococus, Archromobacter, Thiobaci llus and Bacillus species. Chemical nutrition bacteria. Denitrification bacteria are sufficiently present in the sewage treatment process, and denitrification is possible only if proper conditions are achieved. However, in winter, ammonia nitrogen is not sufficiently oxidized to nitrate nitrogen, so the nitrogen treatment efficiency is lowered.

유기물의 제거와 질산화가 일어나는 폭기조(3)에서 미생물과 영양적으로 균형을 이룬 하폐수를 공기로 폭기 혼합하면 여러 가지 호기성 미생물이 폐수 중에 유기오탁물을 분해하고 암모니아성 질소를 산화하면서 증식한다. 미생물에 의해 유기 무기의 부유입자가 응집하며, 이때 침강성이 좋은 활성슬러지가 형성된다.In the aeration tank (3) where organic matters are removed and nitrified, aerobic mixing of wastewater, which is nutritionally balanced with microorganisms, causes various aerobic microorganisms to decompose organic pollutants in the wastewater and oxidize ammonia nitrogen. Floating particles of organic inorganic particles aggregate by microorganisms, and active sludge with good sedimentation is formed at this time.

도 1에 도시한 바와 같이 유기물과 질소 및 오염물질을 함유한 하수는 혐기조(1)로 유입되고, 혐기조(1)의 배출수는 무산소조(2)로, 무산소조(2)의 배출수는 폭기조(3)로 순차 유입 배출되며, 폭기조(3)의 배출수는 일부가 침전조(4)로 유입됨과 더불어 나머지 일부가 상기 무산소조(2)로 내부반송되고, 상기 침전조(4)로 부터는 생물학적으로 정화처리된 처리수가 배출됨과 더불어 슬러지를 상기혐기조(1)로 반송시키면서 하수를 처리하게 된다.As shown in FIG. 1, sewage containing organic matter, nitrogen, and pollutants flows into the anaerobic tank 1, and the discharged water of the anaerobic tank 1 is an anaerobic tank 2, and the wastewater of the anaerobic tank 2 is the aeration tank 3. And the discharged water of the aeration tank 3 is sequentially introduced into the settling tank 4, and the remaining part is returned to the anoxic tank 2, and the biologically purified treated water from the settling tank 4. In addition to being discharged, the sludge is returned to the anaerobic tank 1 to treat sewage.

상기 혐기조(1)에서는 미생물이 인을 방출하며, 무산소조(2)에서는 질산염(NO3-)이 유기물과 반응하여 N2로 가스화 되어 탈질되며, 호기 상태인 폭기조(3)에서는 질산화균의 작용으로 암모니아(NH3)가 NO3로 되어 상기 무산소조(2)로 반송된다. 또한 상기 폭기조(3)에서는 무산소조(2)로부터 배출수가 유입되어 그 중에 함유된 미생물이 인을 과잉섭취하게 되고, 유기물질을 분해하게 된다.The anaerobic tank (1), and the microorganisms emits a, the anoxic tank (2), nitrate (NO 3 -) in this and the denitrification is gasified to N 2 by reaction with organic material, aerobic conditions in the aeration tank (3) by the action of nitrifying bacteria Ammonia (NH 3 ) becomes NO 3 and is returned to the oxygen-free tank 2. In addition, in the aeration tank (3), the discharge water flows from the anoxic tank (2), and the microorganisms contained therein excessively ingest phosphorus and decompose organic substances.

다음으로 침전조(4)에서는 폭기조(3)로부터 배출되는 배출수가 유입되어 고액분리로 유입수중의 고형물질을 제거하여 방류한다.Next, in the settling tank 4, the discharged water discharged from the aeration tank 3 flows in and removes the solid matter in the influent water by solid-liquid separation.

상기한 바와 같이 하여 하수를 생물학적으로 정화처리하는 종래의 방법은 미생물의 성장조건을 조절하여 생화학적 산소요구량인 BOD(Biochemical Oxygen Demand), 질소, 인 등의 오염물질을 처리하게 된다. 그러나, BOD 제거에 주로 관여하는 유기영양세균의 비증식 속도는 30∼60 day-1정도인데 질산화균인 니트로소모나스(Nitrosomonas)의 비증식 속도는 1∼2 day-1로서 질산화균의 증식속도가 매우 느리고 수온의 영향을 많이 받으므로 수온이 낮은 동절기에는 증식속도가 느린 질산화균이 폭기조(3)에서 증식하기 전에 외부로 유출(wash-out)되어 폭기조(3)의 질산화균을 유지할 수 없다고 하는 문제점이 있었다.The conventional method of biologically purifying sewage as described above is to control the growth conditions of microorganisms to treat contaminants such as biochemical oxygen demand (BOD), nitrogen, and phosphorus, which are biochemical oxygen demands. However, the specific growth rate of organotrophic bacteria, which are mainly involved in BOD removal, is about 30 to 60 day -1 , whereas the growth rate of nitrosomonas, nitrifying bacteria, is 1 to 2 day -1 . Is very slow and affected by the water temperature, so in winter, when the water temperature is low, the nitrifying bacteria that have slow growth rate are washed out before they proliferate in the aeration tank (3), so that the nitrification bacteria in the aeration tank (3) cannot be maintained. There was a problem.

이러한 현상을 방지하는 방법으로서 시스템내의 슬러지 체류시간(SRT)을 증가시키는 방법이 있다. 그러나 체류시간을 증가시키는 방법은 폭기조(3)내에서 인을 과잉흡수한 미생물이 시스템내에 장기간 체류하게 되어 미생물내의 인을 다시 방출하게 되는 문제가 발생한다.One way to prevent this phenomenon is to increase the sludge residence time (SRT) in the system. However, the method of increasing the residence time causes a problem in that the microorganisms that have excessively absorbed phosphorus in the aeration tank 3 stay in the system for a long time to release the phosphorus in the microorganism again.

본 발명은 상기한 실정을 감안하여 종래 미생물에 의해 하수를 처리하는 방법이 갖는 각종 문제점 및 결점들을 해결하고자 발명한 것이다.The present invention has been invented to solve various problems and drawbacks of the conventional method for treating sewage by microorganisms.

본 발명의 목적은 폭기조에서 질산화균수가 감소하는 동절기에 질산화균을 배양 공급하여 질산화균수를 일정하게 유지시켜 줌으로서 동절기 동안 하수처리 효율을 증가시키는 것이다.An object of the present invention is to increase the efficiency of sewage treatment during the winter season by keeping the nitrification bacteria constant by supplying cultured nitrifiers in the winter when the nitrification bacteria number decreases in the aeration tank.

본 발명의 다른 목적은 잉여슬러지를 분해하여 질산화균 배양에 사용함으로써 폐기되는 슬러지를 감량화하여 슬러지 처리비용을 절감하는 것이다.Another object of the present invention is to reduce the sludge waste by reducing the sludge to be used by cultivating the excess sludge to nitrate bacteria culture.

도 1은 종래 하수처리시스템의 구성도,1 is a block diagram of a conventional sewage treatment system,

도 2는 본 발명의 일 실시예로서 채용한 하수처리 시스템의 구성도,2 is a block diagram of a sewage treatment system employed as an embodiment of the present invention;

도 3은 본 발명의 또다른 일실시예로서 채용한 하수처리 시스템의 구성도이다.3 is a block diagram of a sewage treatment system adopted as another embodiment of the present invention.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1 : 혐기조 2 : 무산소조1: anaerobic tank 2: anaerobic tank

3 : 폭기조 4 : 침전조3: aeration tank 4: sedimentation tank

5 : 분해조 6 : 질산화균 배양조5: digestion tank 6: nitrifying bacteria culture tank

7 : 분배조7: dispensing tank

상기한 목적을 달성하기 위한 본 발명은 잉여슬러지를 분해하고, 그 분해액을 기질로 하여 배양한 질산화균을 무산소조(2) 또는 폭기조(3)로 공급하여 하수처리 효율저하를 방지하는 방법으로서 미생물이 인을 방출하는 혐기조(1)와, 질산염(NO3-)을 N2가스로 환원시키는 무산소조(2)와, 질산화균의 작용으로 암모니아(NH3)를 NO3로 산화시켜 상기 무산소조(2)로 반송하고 미생물이 인을 과잉섭취함과 더불어 유기물질을 분해하는 폭기조(3)와, 고액분리로 유입수중의 고형물질을 제거하는 침전조(4)와, 상기 침전조(4)로부터 폐기되는 잉여슬러지를 질산화균의 배양기질로 사용하기 위하여 혐기, 호기 또는 간헐포기로 분해하는 분해조(5)와, 분해액을 기질로 사용하여 질산화균을 배양하는 질산화균 배양조(6)를 구비하여 달성된다.The present invention for achieving the above object is a microorganism as a method for decomposing the excess sludge, and supplying the nitrifying bacteria cultured using the decomposition liquid as a substrate to an anaerobic tank (2) or aeration tank (3) to prevent the decrease in sewage treatment efficiency. and the anaerobic tank (1) for emitting a person, nitrate (NO 3 -) to the anoxic tank (2) for the reduction of a N 2 gas, ammonia (NH 3) by the action of nitrifying bacteria is oxidized to NO 3 the anoxic tank (2 A) aeration tank (3), which is returned to the wastewater and microorganisms excessively ingest phosphorus, and decomposes organic substances, a sedimentation tank (4) for removing solid matter in the influent water by solid-liquid separation, and surplus discarded from the precipitation tank (4). In order to use sludge as a culture substrate for nitrifying bacteria, a digestion tank (5) which decomposes into anaerobic, aerobic or intermittent aeration is used, and a nitrifying bacteria culture tank (6) which cultures nitrifying bacteria using the decomposition solution as a substrate. do.

본 발명은 혐기조(1)와 무산소조(2), 폭기조(3) 및 침전조(4)를 구비하여 생물학적으로 하수를 정화처리하는 하수처리방법에 있어서, 상기 침전조(4)로 부터 폐기되는 잉여 슬러지를 질산화균의 배양기질로 사용하기 위하여 분해조(5)에서 혐기, 호기 또는 간헐포기로 분해하여 분해액을 얻는 단계와; 질산화균 배양조(6)에서 분해액을 기질로 사용하여 질산화균을 배양하는 단계와; 상기 질산화균 배양조(6)에서 배양된 질산화균을 상기 무산소조(2) 또는 폭기조(3)로 투입하는 단계로 이루어져 별도의 배양조에서 질산화균을 배양하여 지속적으로 공급해 주는 것을 특징으로 한다.The present invention is provided with an anaerobic tank (1), an anaerobic tank (2), aeration tank (3) and sedimentation tank (4) in the sewage treatment method for biologically purifying sewage, the excess sludge disposed from the sedimentation tank (4) Dissolving with anaerobic, aerobic or intermittent aeration in a digestion tank (5) for use as a culture substrate of nitrifying bacteria; Culturing the nitrifying bacteria using the digestion solution as a substrate in the nitrifying bacteria culture tank 6; The nitrifying bacteria cultured in the nitrifying bacteria culture tank 6 are introduced into the anoxic tank 2 or the aeration tank 3 to cultivate the nitrifying bacteria in a separate culture tank and continuously supply them.

상기 분해조(5)에서의 잉여슬러지의 유입량은 유입 하수량의 1∼3%이고, 25 ∼50℃의 온도에서 혐기, 호기 또는 간헐포기 방식으로 슬러지를 분해하여 질산화균 배양에 기질로서 이용되는 배양액을 얻으며, 배양액의 체류기간은 1∼3일이다.The amount of excess sludge in the digestion tank 5 is 1 to 3% of the amount of inflow sewage, and is used as a substrate for nitrifying culture by decomposing the sludge at an anaerobic, aerobic or intermittent aeration at a temperature of 25 to 50 ° C. The retention period of the culture solution is 1 to 3 days.

또한 상기 질산화균 배양조(6)에서의 슬러지의 체류기간은 3∼6일이며, 연속포기 또는 간헐포기를 실시하여 질산화균 배양조(6)에 산소를 공급하며, 분해조(5)에서 얻은 슬러지 분해액 중에 생성된 암모니아성 질소를 이용하여 니트로소모나스(Nitrosomonas), 니트로박터(Nitrobactor)와 같은 질산화 미생물을 증식시켜 무산소조(2) 또는 폭기조(3)로 공급한다.In addition, the residence period of the sludge in the nitrifying bacteria culture tank 6 is 3 to 6 days, and oxygen is supplied to the nitrifying bacteria culture tank 6 by performing continuous aeration or intermittent aeration, which is obtained from the decomposition tank 5. The ammonia nitrogen generated in the sludge decomposition solution is used to multiply nitrifying microorganisms such as nitrosomonas and nitrobacter and feed them to the anoxic tank 2 or the aeration tank 3.

이하 본 발명 슬러지 분해액으로 배양한 질산화균을 무산소조(2) 또는 폭기조(3)로 공급하여 하수처리 효율저하를 방지하는 방법을 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, a method of supplying nitrifying bacteria cultured with the sludge digestion solution of the present invention to an anoxic tank (2) or an aeration tank (3) to prevent a decrease in sewage treatment efficiency will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에서 일실시예로서 채용한 하수처리 시스템의 구성도로서, 먼저 분해조(5)와 배양조(6)에 대하여 설명한다.2 is a configuration diagram of a sewage treatment system employed as an embodiment in the present invention. First, the digestion tank 5 and the culture tank 6 will be described.

〈분해조〉<Decomposition tank>

분해조(5)는 침전조(4)로부터 폐기되는 잉여 슬러지를 질산화균의 배양기질로 사용하기 위하여 분해액을 얻는 것으로서, 그 특징은 다음과 같다.The decomposition tank 5 obtains a decomposition solution for using the excess sludge discarded from the precipitation tank 4 as a culture substrate of the nitrifying bacteria, the characteristics of which are as follows.

1) 분해조 내에서의 슬러지의 분해온도 25∼50℃를 유지하기 위해 분해조(5)의 외부를 단열 처리한 구조로 한다.1) In order to maintain the decomposition temperature of sludge in a decomposition tank 25-50 degreeC, the exterior of the decomposition tank 5 shall be heat-insulated.

슬러지의 분해온도가 25℃보다 낮으면 슬러지의 분해가 거의 되지 않아 질산화균의 배양에 적합한 분해액을 얻을 수 없고, 50℃보다 높으면 배양액중의 COD, BOD, 암모니아성질소(NH3-N) 농도가 높아 질산화균의 배양에 적합하지 않으므로 분해조(5) 내에서의 슬러지의 분해온도는 25∼50℃가 바람직하다.If the sludge decomposition temperature is lower than 25 ℃, the sludge is hardly decomposed, so that it is not possible to obtain a decomposition solution suitable for cultivation of nitrifying bacteria. If it is higher than 50 ℃, COD, BOD, and ammonia nitrogen (NH 3 -N) Since the concentration is high and not suitable for culturing nitrifying bacteria, the decomposition temperature of the sludge in the decomposition tank 5 is preferably 25 to 50 ° C.

2) 분해조(5)에 투입하는 잉여슬러지의 양은 하수유입량의 1∼3%로 하여 적정한 양의 질산화균을 배양할수 있는 분해액을 생산하고 부수적으로 폐기되는 슬러지양을 감량하여 슬러지 처리비용도 절감하도록 한다.2) The amount of excess sludge to be added to the digestion tank 5 is 1 to 3% of the amount of sewage inflow, which produces a decomposition solution capable of cultivating an appropriate amount of nitrifying bacteria, and also reduces the amount of sludge that is disposed of as a result of sludge treatment. To save.

3) 분해조(5)는 혐기, 호기 또는 폭기와 정지를 반복하는 간헐포기 방식으로 운영하고 분해조(5)에서의 슬러지 체류시간은 1∼3일로 한다.3) The digestion tank 5 is operated by intermittent aeration method which repeats anaerobic, exhalation or aeration and stop, and the sludge residence time in the digestion tank 5 is 1-3 days.

4) 분해조(5)내에서는 투입된 슬러지로부터 암모니아성질소(NH3-N), BOD성분이 용출되는데 암모니아성질소(NH3-N)는 질산화균 배양조(6)에서 질산화균 증식에 이용하고, BOD 성분은 무산소조(2)에서 탈질반응시 탄소원으로 이용한다.4) In the digestion tank (5), ammonia nitrogen (NH 3 -N) and BOD components are eluted from the introduced sludge. Ammonia nitrogen (NH 3 -N) is used for the growth of nitrifiers in the nitrifier culture tank (6). The BOD component is used as a carbon source in the denitrification reaction in the anoxic tank (2).

〈질산화균 배양조〉<Nitric Oxide Bacteria Culture Tank>

질산화균 배양조(6)에서는 분해액 중에 포함되어 있는 암모니아성질소(NH3-N)를 에너지원으로 이용하여 질산화균을 배양하는 것으로서, 그 특징은 다음과 같다.In the nitrifying bacteria culture tank 6, the nitrifying bacteria are cultured using ammonia nitrogen (NH 3 -N) contained in the decomposition solution as an energy source, and the characteristics thereof are as follows.

1) 니트로소모나스(Nitrosomonas), 니트로박터(Nitrobactor)와 같은 질산화 미생물은 호기성 미생물인 관계로 산소를 공급하기 위해 연속포기 또는 간헐포기를 실시한다.1) Nitrifying microorganisms such as Nitrosomonas and Nitrobactor are aerobic microorganisms, and thus aeration or intermittent aeration is performed to supply oxygen.

2) 질산화균은 증식속도가 느려 슬러지의 체류기간이 3일미만이면, 필요로 하는 균수의 질산화균이 배양되지 않고, 6일을 초과하면 폭기조(3)내에서 인을 과잉흡수한 미생물이 미생물내의 인을 방출하여 바람직하지 않으므로 질산화균 배양조(6)에서의 슬러지의 체류기간을 3∼6일로 한다.2) Nitrifying bacteria have a slow growth rate, so if the sludge stays less than 3 days, nitrifying bacteria of the required number of bacteria are not cultured, and if it exceeds 6 days, the microorganisms that excessively absorb phosphorus in the aeration tank (3) are microorganisms. Since the phosphorus inside is not released, the residence period of the sludge in the nitrifying culture medium 6 is 3 to 6 days.

3) 질산화균 배양조(6)의 유출수가 하수처리장 방류수의 수질에 영향을 미치지 않도록 하기 위해 질산화균 배양조(6)의 유출유량은 유입유량의 1∼3%로 한다.3) In order for the effluent from the nitrifying bacteria culture tank 6 not to affect the water quality of the sewage treatment plant effluent, the flow rate of the nitrifying bacteria culture tank 6 is 1 to 3% of the inflow flow.

일반적으로 하수처리시스템에 있어서 동절기에는 유입하수의 수온이 8∼9℃까지 내려가게 된다. 그러면 도 1에 도시한 종래 하수처리 시스템의 폭기조(3)는10∼15℃ 정도로 수온이 낮아지게 된다.In general, in the sewage treatment system, the temperature of influent sewage is lowered to 8 ~ 9 ℃ during the winter season. Then, the aeration tank 3 of the conventional sewage treatment system shown in FIG. 1 will have a low water temperature of about 10 to 15 ° C.

이와 같이 수온이 저하하면 폭기조(3) 내 질산화균의 성장저하로 질산화균수가 감소하여 동절기에는 하수에 함유된 질소의 제거효율을 유지하기가 어렵게 된다.As such, when the water temperature decreases, the number of nitrifying bacteria decreases due to the growth of nitrifying bacteria in the aeration tank 3, and thus it is difficult to maintain the removal efficiency of nitrogen contained in the sewage during the winter season.

상기한 바와 같이 동절기에 하수의 수온이 낮아지므로서 폭기조(3) 내 질산화균의 성장저하로 질산화균수가 감소하여 질소 제거효율이 저하할 때 도 2에 도시한 바와같이 본 발명에서는 분해조(5)와 질산화균 배양조(6)를 통해 질산화균을 배양하여 공급하게 된다.As described above, when the temperature of the sewage is lowered in winter, the number of nitrifying bacteria decreases due to the decrease in the growth of the nitrifying bacteria in the aeration tank 3, and the nitrogen removal efficiency is lowered. And nitrifying bacteria through the nitrifying culture medium (6).

즉, 침전조(4)로부터 폐기되는 잉여 슬러지를 분해조(5)로 유입하여 혐기, 호기 또는 간헐포기를 통해 슬러지 분해액을 얻으며, 분해조(5)에서의 슬러지의 체류시간은 1∼3일로 한다. 체류시간이 1일 미만이면, 질산화균 배양에 필요로 하는데 충분한 분해액을 얻을 수 없고, 3일을 초과할 경우 분해액 중에 COD, BOD, 암모니아성질소(NH3-N) 농도가 높아 질산화균 배양에 적합하지 않다.That is, excess sludge discarded from the settling tank 4 is introduced into the decomposition tank 5 to obtain sludge decomposition liquid through anaerobic, aerobic or intermittent aeration, and the residence time of the sludge in the decomposition tank 5 is 1 to 3 days. do. If the residence time is less than 1 day, sufficient decomposition solution cannot be obtained, which is required for nitrifying bacteria culture. If it exceeds 3 days, the concentration of COD, BOD, and ammonia nitrogen (NH 3 -N) in the decomposition solution is high. Not suitable for cultivation

질산화균 배양조(6)에서 상기 분해액을 기질로 사용하여 질산화균을 배양한 후 배양된 질산화균을 상기 무산소조(2) 또는 폭기조(3)로 투입한다.After culturing the nitrifying bacteria using the digestion solution as the substrate in the nitrifying bacteria culture tank 6, the cultured nitrifying bacteria are introduced into the anoxic tank 2 or the aeration tank 3.

도 3은 본 발명의 또다른 실시예로서 채용한 하수처리 시스템의 구성도로서 상기 도 2에 나타낸 실시예와 비교하면 도 2의 실시예에 잉여슬러지를 분해조(5)와 질산화균 배양조(6)로 분배하여 공급하기 위해 분배조(7)를 더 포함하는 점이 상이하며, 이와 같이 분배조(7)를 두어 잉여슬러지를 분해조(5)와 질산화균 배양조(6)로 분배하여 공급하는 것은 질산화균의 배양효율을 높이기 위한 것이며, 그외는 도 2의 실시예와 동일하므로 그 설명을 생략한다.FIG. 3 is a schematic diagram of a sewage treatment system employed as another embodiment of the present invention, compared to the embodiment shown in FIG. 2, in the embodiment of FIG. 6) is different in that it further comprises a distribution tank (7) for distributing and supplying, and thus, by dispensing the distribution tank (7) to distribute the excess sludge to the digestion tank (5) and nitrifying bacteria culture tank (6) It is to increase the culture efficiency of the nitrifying bacteria, and elsewhere the same as in the embodiment of Figure 2, the description thereof will be omitted.

질산화균의 배양정도는 질산화균의 활성도를 측정함으로써 확인할 수 있는바, 그 원리는 다음과 같다.The degree of culture of nitrifying bacteria can be confirmed by measuring the activity of nitrifying bacteria, the principle of which is as follows.

수중의 암모니아가 아질산으로 산화되고 아질산이 질산으로 산화되는 반응을 질산화라 한다. 이러한 2가지 반응을 촉매하는 균이 질산화균이다. 따라서 질산화균의 활성도는 암모니아를 얼마나 빨리 아질산과 질산으로 변화시키는가 하는 정도가 질산화균의 활성도이며, 질산화균의 활성도는 시료 속의 질산화균의 수와 대체로 비례하기 때문에 간단하게 측정이 가능한 질산화균 활성도를 측정하여 분석함으로써 질산화균의 배양정도를 알 수 있다.The reaction in which ammonia in water is oxidized to nitrous acid and nitrous acid to nitrate is called nitrification. The bacterium that catalyzes these two reactions is nitrifying bacteria. Therefore, the activity of nitrifying bacteria is the activity of nitrifying bacteria how fast ammonia is converted to nitrous acid and nitric acid, and the nitrifying bacteria activity can be easily measured because the nitrifying bacteria activity is generally proportional to the number of nitrifying bacteria in the sample. By measuring and analyzing, the culture degree of nitrifying bacteria can be known.

<비교예 1>Comparative Example 1

본 발명의 방법을 실시하는 하수처리방법과 종래의 하수처리방법에서의 질산화균의 활성도를 측정하여 하기 표1에 나타냈다. 질산화균의 활성도는 종래의 경우를 대조구로 하고, 본 발명에서는 폭기조(3)와 질산화균 배양조(6)에서의 질산화균의 활성도를 측정했다.The activity of the nitrifying bacteria in the sewage treatment method for carrying out the method of the present invention and the conventional sewage treatment method was measured and shown in Table 1 below. In the present invention, the activity of nitrifying bacteria was used as a control, and in the present invention, the activity of nitrifying bacteria in the aeration tank 3 and the nitrifying bacteria culture tank 6 was measured.

질산화균의 활성도는 시료인 1㎖의 질산화균이 1시간 동안에 몇 ㎍의 암모니아를 아질산으로 변화시키는가를 측정하는 것이다.The activity of nitrifying bacteria is a measure of how many micrograms of ammonia is changed to nitrous acid during 1 hour.

따라서 측정방법은 암모니아가 일정농도(50㎎/ℓ)함유되어 있는 용액에 질산화균이 존재하는 시료를 혼합하여 25℃의 일정온도에서 진탕배양기로 진탕해 주면서 공기를 공급하여 반응시킨 후 여과장치로 여과하여 암모니아에서 생성되는 아질산의 농도를 11±1.5℃에서 측정하여 활성도를 계산하였다. 아질산의 농도측정은 흡광도계로 측정하였다.Therefore, the measuring method is to mix a sample containing nitric oxide in a solution containing a certain concentration (50mg / ℓ), and supply the reaction by shaking with a shaker incubator at a constant temperature of 25 ℃ and then reacted with a filtration device The activity was calculated by filtering the concentration of nitrous acid produced in ammonia at 11 ± 1.5 ℃. Measurement of the concentration of nitrous acid was measured with an absorbance meter.

측정시 아질산에서 질산으로 변화하는 정도는 따로 측정하지 않았으며, 이는 질산화 반응에서 율속반응(rate limiting reaction)은 암모니아에서 아질산으로의 산화이기 때문이다. 즉 암모니아가 아질산으로 산화되면 아질산에서 질산으로의 산화는 쉽고 빠르게 이루어지기 때문이다.In the measurement, the degree of change from nitrous acid to nitric acid was not measured separately because the rate limiting reaction in nitrification was oxidation from ammonia to nitrous acid. That is, when ammonia is oxidized to nitrous acid, oxidation of nitrous acid to nitric acid is easy and quick.

[표 1]TABLE 1

본 발명의 방법과 종래방법의 질산화균 활성도Nitric Oxide Activity of the Method of the Present Invention and the Conventional Method

구 분division 질산화균 활성도(㎍/㎖/hr)Nitrifier Activity (㎍ / mL / hr) 비율(대조구 기준)Rate (Control Base) 대조구(A2/O 공법)Control (A 2 / O method) 5.3 ∼ 5.55.3 to 5.5 1One 본발명Invention 질산화균배양조Nitrifying bacteria culture tank 15.5 ∼ 16.715.5-16.7 3 ∼ 43 to 4 폭기조Aeration tank 6.48 ∼ 8.96.48-8.9 1.1 ∼ 1.71.1 to 1.7

상기 표1과 같이 종래 방법인 대조구의 경우 질산화균의 활성도가 폭기조(3)에서 5.3 ∼ 5.5(㎍/㎖/hr)로 측정된 반면에 본 발명의 방법인 경우 질산화균의 활성도가 질산화균 배양조(6)에서 15.5∼16.7(㎍/㎖/hr), 폭기조(3)에서 6.48∼8.9(㎍/㎖/hr)로 대조구 보다 높게 나타나 본 발명의 방법에 의해 동절기 하수처리과정에서 발생되는 질산화균수의 감소를 보충할 수 있음을 알 수 있다.In the control method of the conventional method as shown in Table 1, the activity of the nitrifying bacteria was measured in 5.3 ~ 5.5 (㎍ / ㎖ / hr) in the aeration tank (3) while the activity of the nitrifying bacteria in the method of the present invention cultured nitrifying bacteria Nitrification occurred in the sewage treatment process during the winter season by the method of the present invention, which was higher than the control group at 15.5-16.7 (㎍ / ml / hr) in the tank (6) and 6.48∼8.9 (µg / ml / hr) in the aeration tank (3). It can be seen that the decrease in the number of bacteria can be compensated for.

<비교예 2>Comparative Example 2

본 발명에 의한 하수처리 방법과 종래의 하수처리 방법에서의 질산화균수를 수온이 10∼13℃일 때 측정하여 하기 표2에 나타냈다. 종래의 경우를 대조구로 하고, 각각의 처리 공정중 폭기조(3)에서의 질산화균수를 측정했다. 상기한 바와 같이 수온이 낮은 동절기에는 질산화균의 증식속도가 매우느려 폭기조(3)에서 증식하기 전에 외부로 유출(Wash Out)되어 폭기조(3)내의 질산화균수가 감소하게 되고, 그에 따라 암모니아성 질소의 질산화가 이루어지지 않기 때문에 폭기조(3)내의 질산화균수는 매우 중요한 지표가 된다. 질산화균수의 측정방법은 수질오염 공정시험법상의 MPN법으로 실시하였다.The nitrified bacteria water in the sewage treatment method according to the present invention and the conventional sewage treatment method were measured when the water temperature was 10 to 13 ° C and are shown in Table 2 below. Using the conventional case as a control, the number of nitrifying bacteria in the aeration tank 3 during each treatment step was measured. As described above, during the winter season when the water temperature is low, the growth rate of the nitrifying bacteria is very slow, and then outwards before the growth in the aeration tank (3), the number of nitrifying bacteria in the aeration tank (3) is reduced, and thus ammonia nitrogen Since nitrification is not carried out, the number of nitrifiers in the aeration tank 3 is a very important indicator. Nitrogenated bacterial count was measured by MPN method of water pollution process test method.

[표 2]TABLE 2

본 발명의 방법과 종래방법의 폭기조내의 질산화균수Nitric Oxide Bacteria in Aeration Tanks of the Method of the Present Invention and the Conventional Method

※ 표 2에서 수치는 log값임.※ Figure 2 shows log values.

구 분division 질산화균수(MPN/100㎖)Nitrifying bacteria count (MPN / 100ml) 대조구(A2/O공정)Control (A2 / O process) 2,300,000 ± 150,0002,300,000 ± 150,000 본 발명The present invention 46,000,000 ± 1,000,00046,000,000 ± 1,000,000

상기 표2와 같이 종래 방법인 대조구의 경우보다 본 발명의 경우 폭기조내 질산화균수가 약 20배 정도 많이 있는 것으로 확인 되었다. 따라서 본 발명의 방법에 의한 하수처리방법을 채택할 경우 폭기조(3)내 질산화균수를 종래방법에 의한 처리방법보다 월등하게 많이 유지할수 있어 질소제거 효율을 향상시킬수 있음을 알 수 있다.As shown in Table 2, in the present invention, the number of nitrifying bacteria in the aeration tank was found to be about 20 times higher than that of the control method. Therefore, when adopting the sewage treatment method according to the method of the present invention it can be seen that the nitrification bacteria in the aeration tank (3) can be maintained much more than the conventional treatment method can improve the nitrogen removal efficiency.

<비교예 3>Comparative Example 3

본 발명의 방법에 의한 하수처리방법과 종래의 하수처리방법에서의 처리수의 수질을 비교하여 하기 표 3에 나타냈다. 종래의 경우를 대조구로 하여 수질오염 공정시험방법에 따라 생물 화학적 산소요구량(BOD)과, 화학적 산소요구량(COD), 부유물질량(SS), 총질소량(T-N), 총인량(T-P)을 측정하여 비교분석하였다.The water quality of the treated water in the sewage treatment method according to the method of the present invention and the conventional sewage treatment method is shown in Table 3 below. Using the conventional case as a control, biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) were measured according to the water pollution process test method. Comparative analysis.

[표 3]TABLE 3

하수처리수의 수질비교표Comparison of Water Quality of Sewage Treatment Water

※ ±는 표준편차를 나타낸다.※ ± indicates standard deviation.

BOD(㎎/ℓ)BOD (mg / l) COD(㎎/ℓ)COD (mg / L) SS(㎎/ℓ)SS (mg / l) T-N(㎎/ℓ)T-N (mg / L) T-P(㎎/ℓ)T-P (mg / l) 109±35109 ± 35 64±564 ± 5 96±4396 ± 43 32±332 ± 3 3.8±1.63.8 ± 1.6 대 조 구(A2/O공법)Control tool (A2 / O method) 농 도Concentration 13±513 ± 5 17±617 ± 6 7±37 ± 3 20±720 ± 7 1.6±1.21.6 ± 1.2 제거율(%)% Removal 87±687 ± 6 73±1173 ± 11 92±592 ± 5 37±2237 ± 22 50±1350 ± 13 본발명Invention 농 도Concentration 10±410 ± 4 13±513 ± 5 6±36 ± 3 11±311 ± 3 1.0±0.41.0 ± 0.4 제거율(%)% Removal 92±592 ± 5 83±883 ± 8 94±394 ± 3 65±1065 ± 10 73±673 ± 6

상기 표3으로부터 알수 있는 바와 같이 생물 화학적 산소요구량(BOD), 화학적 산소요구량(COD), 부유물질량(SS), 총질소량(T-N), 총인량(T-P) 각각의 경우 종래의 방법보다 본 발명의 방법이 농도 3±1, 4±1, 1±0, 9±4, 0.6±0.8 만큼 씩 낮아 본발명의 방법이 종래의 방법보다 하수처리 능력이 월등하게 개선됨을 확인할수 있었다.As can be seen from Table 3, the biochemical oxygen demand (BOD), the chemical oxygen demand (COD), the suspended solids amount (SS), the total nitrogen amount (TN), and the total phosphorus amount (TP) are respectively higher than those of the conventional method. The concentration of the method was lowered by 3 ± 1, 4 ± 1, 1 ± 0, 9 ± 4, 0.6 ± 0.8, and the present invention showed that the sewage treatment capacity was significantly improved over the conventional method.

다음으로 상기 표3에 나타낸 본 발명의 방법에서의 처리수의 수질 측정값을 하기 표4에 나타낸 수질환경보존법상에서 규정하고 있는 하수처리장 방류수의 수질기준과 비교하여 보았다.Next, the measured water quality values of the treated water in the method of the present invention shown in Table 3 were compared with the water quality standards of the sewage treatment plant effluent prescribed by the Water Quality Preservation Act shown in Table 4 below.

[표 4]TABLE 4

하수처리장 방류수의 수질기준표Water quality standard list of sewage treatment plant discharged water

BOD(㎎/ℓ)BOD (mg / l) COD(㎎/ℓ)COD (mg / L) SS(㎎/ℓ)SS (mg / l) T-N(㎎/ℓ)T-N (mg / L) T-P(㎎/ℓ)T-P (mg / l) 하수종말처리시설Sewage Terminal Treatment Facility 특별대책지역 및 잠실수중보권역Special Measures Area and Jamsil Underwater Area 10이내Within 10 40이내Within 40 10이내Within 10 20이내Within 20 2이내Within 2 기타지역Other Area 20이내Within 20 40이내Within 40 20이내Within 20 60이내Within 60 8이내Within 8 30이내Within 30 40이내Within 40 30이내Within 30 60이내Within 60 8이내Within 8

본 발명의 경우 처리수의 생물 화학적 산소요구량(BOD)의 농도는 10±4로서 표준편차를 제외하면 수질기준 규정상의 최저농도가 요구되는 특별대책지역 및 잠실수중보권역의 농도 10이내의 범위내이고, 나머지 화학적산소요구량(COD), 부유물질량(SS), 총질소량(T-N), 총인량(T-P)의 농도는 본 발명의 경우가 하수처리장 방류수의 수질기준보다 월등하게 낮아 본 발명의 방법을 하수처리장에 채용할 경우 처리수의 수질을 향상시킬 수 있음이 확인되었다.In the present invention, the concentration of biochemical oxygen demand (BOD) of the treated water is 10 ± 4, except for the standard deviation, which is within the range of 10 or less in the special measures area and Jamsil submerged area where the minimum concentration is required according to the standard of water quality. The concentrations of the remaining chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) are significantly lower than the water quality standards of the sewage treatment plant effluent. It has been confirmed that the water quality of the treated water can be improved when employed in the treatment plant.

상기한 바와 본 발명은 잉여슬러지를 분해하여 질산화균을 배양하는 기질로사용할 수 있도록 하는 분해조와 상기 분해액을 이용하여 질산화균을 증식시키는 질산화균 배양조를 별도로 설치하여 배양된 질산화균을 무산소조 또는 폭기조로 공급해 주기 때문에 시스템내의 슬러지 체류시간(SRT)이 짧아도 질산화가 가능하여 하수처리장 신설시 폭기조의 크기를 줄일 수 있고, 수온이 낮은 동절기에도 질산화균수를 일정하게 유지시켜 줌으로서 총질소 및 총인의 배출을 허용기준치 이하로 안정적인 하수처리가 가능하다.As described above, the present invention provides an anaerobic tank or nitrifier cultured by separately installing a nitrifier for culturing nitrifier bacteria using the digestion tank for dissolving excess sludge and using it as a substrate for culturing nitrifying bacteria. Since it is supplied to the aeration tank, nitrification is possible even if the sludge residence time (SRT) in the system is short. Sewage treatment is possible with the discharge below the allowable standard value.

그리고 본 발명의 방법을 채용한 분해조와 질산화균 배양조를 페키지화 하여 기존의 모든 하수처리장에 설치할 경우 간단한 시설보완으로 처리수의 수질을 향상시킬 수 있는 효과가 있다.And packaging the decomposition tank and the nitrifying bacteria culture tank employing the method of the present invention when installed in all existing sewage treatment plants has the effect of improving the water quality of the treated water with a simple facility supplement.

또한 본 발명은 잉여슬러지를 분해하여 질산화균 배양에 사용함으로써 폐기되는 슬러지를 감량화하여 슬러지 처리비용을 절감할 수 있는 장점이 있다.In addition, the present invention has the advantage of reducing the sludge treatment cost by reducing the sludge to be discarded by using the decomposed excess sludge to nitrate bacteria culture.

Claims (4)

혐기조(1)에서 미생물이 인을 방출하고, 무산소조(2)에서 질산염(NO3-)을 유기물과 반응시켜 N2가스로 탈질하며, 폭기조(3)에서 질산화균의 작용으로 암모니아(NH3)를 NO3로 산화시켜 상기 무산소조(2)로 반송함과 더불어 침전조(4)에서 유입수를 고액분리하여 유입수중의 고형물질을 제거하는 생물학적으로 하수를 정화처리하는 하수처리방법에 있어서, 상기 침전조(4)로 부터 폐기되는 잉여 슬러지를 질산화균의 배양기질로 사용하기 위하여 분해조(5)에서 혐기, 호기 또는 간헐포기로 분해하여 분해액을 얻는 단계와; 질산화균 배양조(6)에서 분해액을 기질로 사용하여 질산화균을 배양하는 단계와; 상기 질산화균 배양조(6)에서 배양된 질산화균을 상기 무산소조(2) 또는 폭기조(3)로 투입하는 단계로 이루어져 별도의 배양조에서 질산화균을 배양하여 지속적으로 공급해 주는 것을 특징으로 하는 슬러지의 혐기성 또는 호기성 소화액으로 배양한 질산화 미생물을 이용한 하수고도처리방법.In the anaerobic tank (1), microorganisms release phosphorus, and in the anoxic tank (2), nitrates (NO 3- ) are reacted with organic matter to denitrate with N 2 gas, and in the aeration tank (3), ammonia (NH 3 ) In the sewage treatment method for biologically treating the sewage to remove the solid matter in the influent by separating the influent from the settling tank (4) by oxidizing to NO 3 and returned to the anoxic tank (2), the sedimentation tank ( Dissolving the excess sludge discarded from 4) as anaerobic, aerobic or intermittent aeration in the digestion tank 5 to use as a culture substrate of the nitrifying bacteria; Culturing the nitrifying bacteria using the digestion solution as a substrate in the nitrifying bacteria culture tank 6; Sludge of the nitrifying bacteria cultured in the nitrifying bacteria culture tank (6) comprising the step of injecting into the anoxic tank (2) or aeration tank (3) to cultivate the nitrifying bacteria in a separate culture tank to continuously supply Sewage treatment method using nitrifying microorganisms cultured with anaerobic or aerobic digestion. 제 1항에 있어서, 분배조(7)를 더 구비하여 분배조(7)로 유입되는 전체 슬러지의 30∼70%를 분해조(5)에, 30∼70%를 질산화균 배양조(6)에 배분 투입하는 것을 특징으로 하는 슬러지의 혐기성 또는 호기성 소화액으로 배양한 질산화 미생물을 이용한 하수고도처리방법.The apparatus of claim 1, further comprising a dispensing tank (7), wherein 30 to 70% of the total sludge flowing into the dispensing tank (7) is in the digestion tank (5), and 30 to 70% in the nitrifying culture medium (6). Sewage advanced treatment method using nitrified microorganisms cultured with anaerobic or aerobic digestion of sludge, characterized in that the input to distribute. 제 1항 또는 제2항에 있어서, 상기 분해조(5)에서의 잉여슬러지의 유입량을 유입 하수량의 1∼3%로 하고, 25∼50℃의 온도에서 혐기, 호기 또는 간헐포기 방식으로 슬러지를 분해하여 질산화균 배양에 기질로서 이용되는 배양액을 얻으며, 슬러지의 체류기간을 1∼3일로 하여 폐기되는 슬러지를 감량화 하는 것을 특징으로 하는 슬러지의 혐기성 또는 호기성 소화액으로 배양한 질산화 미생물을 이용한 하수고도처리방법.3. The sludge according to claim 1 or 2, wherein the amount of excess sludge in the decomposition tank 5 is 1 to 3% of the amount of inflow sewage, and the sludge is subjected to anaerobic, aerobic, or intermittent aeration at a temperature of 25 to 50 ° C. Decomposition to obtain a culture medium used as a substrate for nitrifying bacteria culture, and to reduce the sludge discarded with a sludge retention period of 1 to 3 days, sewage altitude treatment using nitrified microorganisms cultured with anaerobic or aerobic digestion of sludge Way. 제 1항 또는 제2항에 있어서, 상기 질산화균 배양조(6)에서의 슬러지의 체류기간을 3∼6일로 하고, 연속포기 또는 간헐포기를 실시하여 질산화균 배양조(6)에 산소를 공급하는 것을 특징으로 하는 슬러지의 혐기성 또는 호기성 소화액으로 배양한 질산화 미생물을 이용한 하수고도처리방법.The oxygen supply is carried out according to claim 1 or 2, wherein the sludge retention period in the nitrifying bacteria culture tank 6 is 3 to 6 days, and continuous aeration or intermittent aeration is performed. Sewage advanced treatment method using nitrified microorganisms cultured with anaerobic or aerobic digestion of sludge.
KR10-2002-0022767A 2002-04-25 2002-04-25 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge KR100434858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0022767A KR100434858B1 (en) 2002-04-25 2002-04-25 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0022767A KR100434858B1 (en) 2002-04-25 2002-04-25 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge

Publications (2)

Publication Number Publication Date
KR20030084199A true KR20030084199A (en) 2003-11-01
KR100434858B1 KR100434858B1 (en) 2004-06-07

Family

ID=32380433

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0022767A KR100434858B1 (en) 2002-04-25 2002-04-25 A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge

Country Status (1)

Country Link
KR (1) KR100434858B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433259B1 (en) * 2002-09-23 2004-05-24 박주석 Method for treating a wastewater using a system for wastewater treatment including a bioactivator reactor
KR100438099B1 (en) * 2002-07-04 2004-07-02 승익건설 주식회사 Biological Sewage/Wastewater Treatment Methodology By Using Soil Microoganisms
WO2011110905A1 (en) * 2010-03-10 2011-09-15 Cyklar-Stulz Abwassertechnik Gmbh Method for the biological purification of ammonium-containing wastewater
KR101405008B1 (en) * 2012-10-08 2014-06-10 대림산업 주식회사 Advanced Sewage Treatment System Combined Inducing Sludge Reduction Tank
KR101405009B1 (en) * 2012-10-08 2014-06-10 대림산업 주식회사 Advanced Sewage Treatment System Combined Inducing Sludge Reduction Tank with Membrane
CN110498557A (en) * 2019-03-01 2019-11-26 四川天府泓源环保科技有限公司 Oligodynamic sewage treatment system and its technique for altitude environment
KR102095467B1 (en) * 2019-07-29 2020-03-31 (주)화인테크워터 Water treatment system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861319B1 (en) 2008-06-02 2008-10-01 한명완 Foul and waste water treating method using reaction vessel having floating and fixed carrier
KR101430722B1 (en) 2014-03-03 2014-08-18 (주)전테크 Sewage and Wastewater Treatment Method and System for Energy Saving
KR102110250B1 (en) 2019-04-05 2020-05-13 (주)상산 The Biological advanced wastewater treatment apparatus
KR102155071B1 (en) 2019-12-06 2020-09-11 (주)상산 Effluent inspection device for wastewater treatment facility

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220792A (en) * 1985-03-27 1986-10-01 Japan Organo Co Ltd Biological treatment of organic waste water
KR100242795B1 (en) * 1997-12-13 2000-02-01 김진영 Microbial denitrification and phosphorous removal process
KR100304544B1 (en) * 1998-06-30 2002-01-09 최의소 Method for removing nitrogen and phosphorus using anaerobic digestion
KR100312820B1 (en) * 1998-10-17 2002-02-19 한상배 Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge
JP2000334490A (en) * 1999-05-27 2000-12-05 Japan Organo Co Ltd Biological denitrification and dephosphorization apparatus
KR100277597B1 (en) * 1999-06-25 2000-12-15 임동혁 Deodorize and nutrients removal from wastewater by soil microorganisms

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438099B1 (en) * 2002-07-04 2004-07-02 승익건설 주식회사 Biological Sewage/Wastewater Treatment Methodology By Using Soil Microoganisms
KR100433259B1 (en) * 2002-09-23 2004-05-24 박주석 Method for treating a wastewater using a system for wastewater treatment including a bioactivator reactor
WO2011110905A1 (en) * 2010-03-10 2011-09-15 Cyklar-Stulz Abwassertechnik Gmbh Method for the biological purification of ammonium-containing wastewater
EP2366673A1 (en) * 2010-03-10 2011-09-21 Cyklar-stulz Abwassertechnik GmbH Method for biological purification of wastewater containing ammonium
CN102791641A (en) * 2010-03-10 2012-11-21 齐克拉-斯图尔茨污水处理技术有限公司 Method for the biological purification of ammonium-containing wastewater
KR101412298B1 (en) * 2010-03-10 2014-06-25 데몬 게엠베하 Method for the biological purification of ammonium-containing wastewater
US8911628B2 (en) 2010-03-10 2014-12-16 Demon Gmbh Method for the biological purification of ammonium-containing wastewater
KR101405008B1 (en) * 2012-10-08 2014-06-10 대림산업 주식회사 Advanced Sewage Treatment System Combined Inducing Sludge Reduction Tank
KR101405009B1 (en) * 2012-10-08 2014-06-10 대림산업 주식회사 Advanced Sewage Treatment System Combined Inducing Sludge Reduction Tank with Membrane
CN110498557A (en) * 2019-03-01 2019-11-26 四川天府泓源环保科技有限公司 Oligodynamic sewage treatment system and its technique for altitude environment
KR102095467B1 (en) * 2019-07-29 2020-03-31 (주)화인테크워터 Water treatment system

Also Published As

Publication number Publication date
KR100434858B1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
WO2012067453A2 (en) Apparatus and method for treating sewage/wastewater using biofilms and aerobic granular sludge
KR100436186B1 (en) Municipal Wastewater Treatment Apparatus and Process with a Continuous Feed and Cyclic Aeration
KR101444642B1 (en) Wastewater Treating Apparatus for Saving Energy Using Microalgae
KR100434858B1 (en) A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge
KR20100046745A (en) Methods of advanced wastewater treatment
KR20010025386A (en) Biological, pysical and chemical treatment method of waste water from livestock
US10384965B2 (en) Sewage treatment system using granule
CN100460498C (en) Sequencing batch active sludge process for eliminating ammonia nitrogen from sewage
KR100942053B1 (en) Method and apparatus for biological advanced treatment of sewage and wastewater using sequencing batch reactor
KR100236650B1 (en) A plant for biologically denitrifying and removing phosphorus in sewage using denitrifying phosphorous removing bacteria
KR900011673A (en) Biological nitrogen and phosphorus removal method and processing device
CN100542978C (en) Activated sludge process is removed the method for sewage ammonia nitrogen
KR100436043B1 (en) Method for removing nitro-oxides in waste water
KR100517095B1 (en) Wastewater Treatment Apparatus and Method
KR100745444B1 (en) Waste water treatment system using eco media(em)
KR101129292B1 (en) Apparatus and method for recycling of processed waste water
KR100519263B1 (en) Sewage treatment system
KR102052163B1 (en) Wastewater treatment apparatus and method
KR100817792B1 (en) Advanced swage and waste water treatment method and apparatus use of micro filter, and cultured bacillus species bacteria etc
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
JP2003103296A (en) Biological treatment apparatus
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
CN1986449A (en) Sequencing batch active sludge process for eliminating ammonia nitrogen from sewage
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120524

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130521

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee