JP2003103296A - Biological treatment apparatus - Google Patents

Biological treatment apparatus

Info

Publication number
JP2003103296A
JP2003103296A JP2001298980A JP2001298980A JP2003103296A JP 2003103296 A JP2003103296 A JP 2003103296A JP 2001298980 A JP2001298980 A JP 2001298980A JP 2001298980 A JP2001298980 A JP 2001298980A JP 2003103296 A JP2003103296 A JP 2003103296A
Authority
JP
Japan
Prior art keywords
aeration
biological treatment
concentration
tank
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001298980A
Other languages
Japanese (ja)
Inventor
Hironobu Ueda
博信 上田
Susumu Harada
原田  進
Seiji Nomura
聖次 野村
Tasuke Akaana
太介 赤穴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industries Co Ltd filed Critical Hitachi Ltd
Priority to JP2001298980A priority Critical patent/JP2003103296A/en
Publication of JP2003103296A publication Critical patent/JP2003103296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological treatment apparatus suitable for preventing bulking in biological treatment, especially scum generation by denitrification in a solid-liquid separation tank, by a relatively simple control. SOLUTION: A biological treatment means 3 comprising a plurality of means for treating waste water containing various organic substances by microorganisms is composed of a turbidity meter 7 located at the latest stage of the means and measuring the turbidity of a solid-liquid separation means 4, concentration meters 5, 6 located before the solid-liquid separation means 4 and respectively measuring the concentration of nitrous acid (nitrite nitrogen) and the concentration of nitric acid (nitrate nitrogen) in an aeration tank, an aeration means 9 capable of controlling aeration volume in the aeration tank, a nitrification inhibitor adding means 10 for adding a nitrification inhibitor to the aeration tank, and a control means 8 for controlling the aeration means and the adding means base on the measured turbidity, nitrous acid concentration, and nitric acid concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は種々有機物を含有し
た排水を生物学的に除去するための生物処理装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological treatment apparatus for biologically removing wastewater containing various organic substances.

【0002】[0002]

【従来の技術】生物処理法の種類は、例えば初歩から学
ぶ水処理技術(工業調査会1999年9月)や廃水の活
性汚泥処理(恒星社厚生閣版平成8年8月)等に記載し
てあるように種々あり、一般的には生物処理は高温・高
圧を必要とせず、微生物の酵素による反応でBOD成分
(有機成分)を分解してくれる最も合理的な方法で、こ
のような生物処理法の代表的なものに活性汚泥法があ
る。
2. Description of the Related Art The types of biological treatment methods are described in, for example, water treatment technology (industrial research committee September 1999) and activated sludge treatment of wastewater (Koseisha Koseisha edition August 1996), which are learned from the beginning. There are various types as described above, and in general, biological treatment does not require high temperature and high pressure, and is the most rational method of degrading BOD components (organic components) by the reaction of microorganism enzymes. The activated sludge method is a typical treatment method.

【0003】活性汚泥法とは曝気槽,沈殿槽(固液分離
槽),返送汚泥ラインの三条件を満たしたプロセスによ
り、通常、排水を好気性下で微生物処理し、浄化する方
法である。
The activated sludge method is a method in which wastewater is usually treated by microorganisms under aerobic conditions and purified by a process satisfying the three conditions of an aeration tank, a precipitation tank (solid-liquid separation tank) and a returning sludge line.

【0004】活性汚泥法は前述したように、自然環境と
同様、排水中の有機性成分を微生物により分解除去する
最も合理的な方法であるが、活性汚泥法の操作条件や、
排水の負荷変動により一旦処理が不安定になった場合、
元の安定な状態に復帰させるのに時間を要する欠点を抱
えている。
As mentioned above, the activated sludge method is the most rational method of decomposing and removing organic components in wastewater by microorganisms, as in the natural environment. However, the operating conditions of the activated sludge method and
If the treatment becomes unstable due to fluctuations in the wastewater load,
It has the drawback that it takes time to return to its original stable state.

【0005】活性汚泥法のトラブルとしては曝気槽の異
常発泡,沈殿槽の処理水白濁,スカムの発生及び汚泥界
面の膨化(バルキング)などがあるが、特に、バルキン
グが発生した場合、汚泥の分離は悪化し、適正な処理が
困難となる。上記トラブルは各々が個別の原因で発生す
る訳ではなく、操作条件や、排水の負荷変動に密接な関
係がある。例えば、微生物の活性が阻害される毒物の混
入による異常、長期間の低負荷運転によるトラブルなど
の例外を除き、曝気槽が高負荷(高BOD濃度)の場合、
有機物分解過程の中間産物である有機酸が多量に残留し
たり石鹸成分が残留することによる石鹸状の白泡が発生
したり、これの対策として送風量の増加による過曝気
(高DO濃度)により、糸状性細菌の増殖が促進され粘
性のある褐色の発泡が発生する場合がある。また、曝気
槽の後段に当る沈殿槽では同様に高負荷,過曝気を原因
とする白濁や過曝気,糸状性細菌によるスカムの発生が
生じ、最終的に沈殿槽のバルキングが生じる。更に、負
荷の増加に対応した後曝気槽の操作により微生物が増殖
(汚泥の増加)することで、固液分離槽に汚泥が堆積し
すぎてバルキングを起こす場合もある。
Problems with the activated sludge method include abnormal foaming of the aeration tank, clouding of treated water in the sedimentation tank, generation of scum, and expansion of the sludge interface (bulking). Particularly, when bulking occurs, sludge separation occurs. Deteriorates and proper treatment becomes difficult. The above troubles do not occur individually, but are closely related to operating conditions and drainage load fluctuations. For example, when the aeration tank is under high load (high BOD concentration), with exceptions such as abnormalities due to poisonous substances that inhibit the activity of microorganisms and troubles due to long-term low load operation,
A large amount of organic acid, which is an intermediate product of the organic matter decomposition process, remains or soap-like white bubbles are generated due to the remaining soap components. As a countermeasure against this, excessive aeration (high DO concentration) due to an increase in air flow , The growth of filamentous bacteria may be promoted and viscous brown foaming may occur. Similarly, in the sedimentation tank, which is the latter stage of the aeration tank, cloudiness and overaeration due to high load and overaeration, scum due to filamentous bacteria occur, and bulking of the sedimentation tank eventually occurs. Further, after the aeration tank is operated in response to the increase in load, microorganisms grow (increase in sludge), which may cause bulking due to excessive accumulation of sludge in the solid-liquid separation tank.

【0006】一方、低負荷の場合でも細菌類が自己酸化
し、細胞質(蛋白質)が溶出して褐色のスカム状の発泡
を起こしたり、原水の栄養バランスや自己酸化により窒
素成分が増加し、硝酸化が進み曝気液が固液分離槽で滞
留する間に脱窒反応が起りスカムが発生する場合があ
る。
On the other hand, even when the load is low, bacteria auto-oxidize, the cytoplasm (protein) elutes to cause brown scum-like foaming, and the nitrogen component increases due to the nutritional balance of the raw water and auto-oxidation, resulting in nitric acid. The denitrification reaction may occur and scum may occur while the aeration liquid is accumulated in the solid-liquid separation tank.

【0007】このようなバルキングを防止する方法とし
て、例えば初歩から学ぶ水処理技術(工業調査会199
9年9月)には原水の栄養バランスチェック,選択的に
糸状細菌を殺す薬剤投与などの古典的方法,嫌気的処理
と好気的処理を併用した「嫌気・好気活性汚泥法」によ
り、過曝気を押え、糸状性細菌の増殖を抑制する技術の
事例が紹介されている。また同様な特許事例としては、
特開平9−1172号公報には、生物処理槽の栄養バラ
ンスを適正に制御し、生物処理の安定な運転を維持する
ことで、延いてはバルキングを防止する事例、特開平6
−63589号公報には嫌気的処理と好気的処理を併用
した方法により、BOD成分や窒素成分を十分に除去
し、嫌気処理効果による糸状性細菌の増殖を抑制しバル
キングを防止する事例が開示してある。
As a method for preventing such bulking, for example, water treatment technology learned from the beginning (Industrial Research Committee 199
In September 9), the nutritional balance check of raw water, classical methods such as drug administration that selectively kills filamentous bacteria, and "anaerobic / aerobic activated sludge method" that combines anaerobic and aerobic treatment Examples of technologies that suppress excessive aeration and suppress the growth of filamentous bacteria have been introduced. In addition, as a similar patent case,
Japanese Unexamined Patent Publication No. 9-1172 discloses a case in which bulking is prevented by appropriately controlling the nutritional balance of a biological treatment tank and maintaining stable operation of biological treatment.
JP-A-63589 discloses a case in which a method in which anaerobic treatment and aerobic treatment are used in combination to sufficiently remove BOD components and nitrogen components to suppress the growth of filamentous bacteria due to the anaerobic treatment effect and prevent bulking. I am doing it.

【0008】[0008]

【発明が解決しようとする課題】上記公知技術は生物処
理槽の処理を安定化させることで、バルキングの防止、
特に糸状性細菌に由来するバルキングを防止する効果が
あると考えるが、生物処理槽の操作条件,負荷の変動に
起因する比較的初期段階で発生するトラブルの対応に関
する配慮がされていなかった。すなわち、良好に処理さ
れた曝気液に混入する亜硝酸(亜硝酸性窒素),硝酸
(硝酸性窒素)が固液分離槽で脱窒されスカム化される
トラブルに関する配慮がされていなかった。
The above-mentioned known technique is to prevent the bulking by stabilizing the treatment of the biological treatment tank.
In particular, it is considered to have the effect of preventing bulking derived from filamentous bacteria, but no consideration was given to dealing with troubles that occur relatively early in the process due to operating conditions of the biological treatment tank and changes in load. That is, no consideration was given to the trouble that nitrite (nitrite nitrogen) and nitric acid (nitrate nitrogen) mixed in the well-treated aeration liquid are denitrified in the solid-liquid separation tank to form scum.

【0009】本発明の目的は生物処理のバルキング、特
に、固液分離槽の脱窒によるスカム発生などのトラブル
を比較的簡単な制御で未然に防止するのに好適な生物処
理装置を提供することにある。
An object of the present invention is to provide a biological treatment apparatus suitable for preventing the bulking of biological treatment, in particular, troubles such as scum generation due to denitrification of a solid-liquid separation tank with relatively simple control. It is in.

【0010】[0010]

【課題を解決するための手段】本課題を解決すべく請求
項1は、種々有機物を含有した排水を微生物により処理
する複数の手段からなる生物処理手段において、該手段
の最終段に位置する固液分離手段の濁度を測定する濁度
計と、該固液分離手段の前段に位置する曝気槽の亜硝酸
(亜硝酸性窒素)濃度,硝酸(硝酸性窒素)濃度を測定
する各濃度計と、該曝気槽の曝気量を制御可能な曝気手
段と、該曝気槽に硝化抑制剤を添加する硝化抑制剤添加
手段と、測定した濁度,亜硝酸濃度及び硝酸濃度により
該曝気手段,該添加手段を制御する制御手段から達成で
きる。
In order to solve this problem, the first aspect of the present invention is to provide a biological treatment means comprising a plurality of means for treating wastewater containing various organic substances with microorganisms. Turbidity meter for measuring the turbidity of the liquid separating means, and densitometers for measuring the nitrite (nitrite nitrogen) concentration and the nitric acid (nitrite nitrogen) concentration in the aeration tank located before the solid-liquid separating means And an aeration means capable of controlling the aeration amount of the aeration tank, a nitrification inhibitor addition means for adding a nitrification inhibitor to the aeration tank, the aeration means according to the measured turbidity, nitrite concentration and nitric acid concentration, This can be achieved by a control means that controls the addition means.

【0011】請求項2は、請求項1において、前記生物
処理手段の少なくとも一つが、担体を固定した濾床と曝
気下で生物処理する曝気槽と該曝気槽内の処理水の一部
を濾床に散水する循環・散水手段で構成される散水濾床
手段とすることで達成できる。
According to a second aspect of the present invention, at least one of the biological treatment means according to the first aspect has a filter bed on which a carrier is fixed, an aeration tank for biological treatment under aeration, and a part of the treated water in the aeration tank. This can be achieved by using a sprinkling filter means composed of circulation / sprinking means for sprinkling water on the floor.

【0012】請求項3は、請求項1において、原水のC
OD濃度を測定するCOD濃度計を付加し、該COD濃
度と前記測定値(濁度,亜硝酸濃度及び硝酸濃度)によ
り曝気手段,硝化抑制剤添加手段を制御することで達成
できる。
A third aspect of the present invention is the same as the first aspect, wherein the raw water is C
This can be achieved by adding a COD densitometer for measuring the OD concentration and controlling the aeration means and the nitrification inhibitor addition means by the COD concentration and the measured values (turbidity, nitrite concentration and nitric acid concentration).

【0013】[0013]

【発明の実施の形態】本発明の実施例を図1,図2によ
り以下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.

【0014】種々有機物を含有した原水1はpH調整槽
2において、撹拌装置20で均一に撹拌され、pH測定
器21のpH値を基に、中和剤添加装置22から中和剤
が添加される。例えば原水1がアルカリ性の場合、中和
剤は硫酸等が用いられ、原水1が酸性の場合は苛性ソー
ダ等を添加し、pH5〜9、好ましくはpH6〜8に調
整する。pH調整された略中性の原水1は生物処理手段
3を経由して、沈殿槽4に流入する。
Raw water 1 containing various organic substances is uniformly stirred in a pH adjusting tank 2 by a stirring device 20, and a neutralizing agent is added from a neutralizing agent adding device 22 based on the pH value of a pH measuring device 21. It For example, when the raw water 1 is alkaline, sulfuric acid or the like is used as the neutralizing agent, and when the raw water 1 is acidic, caustic soda or the like is added to adjust the pH to 5 to 9, preferably 6 to 8. The pH-adjusted substantially neutral raw water 1 flows into the settling tank 4 via the biological treatment means 3.

【0015】生物処理手段3はBOD除去細菌および汚
泥菌が添加され、好気性下で有機物を処理する例えば、
複数の曝気槽からなる調整槽31,分解槽32,後曝気
槽33から構成される。また各々の槽・手段には散気管
310,320,330が設置され、前記散気管へ、曝
気装置9から曝気流量調整バルブ91,92,93を介
して空気が送気される。尚、BOD除去細菌や汚泥菌の
起源は限定されず、例えばBOD除去細菌としてはシュ
ードモナス属,バチルス属などが使用できる。また、曝
気装置9は、少なくとも1台から各槽・手段個別に設置
(各槽・手段個別の場合、本実施例では3台設置するこ
とになる)され、各々の槽・手段別に曝気流量調整バル
ブ(大気放出弁付き)で曝気量を調整することが好まし
い。
The biological treatment means 3 is added with BOD removing bacteria and sludge bacteria and treats organic matter under aerobic conditions.
It is composed of an adjusting tank 31, which is composed of a plurality of aeration tanks, a decomposition tank 32, and a rear aeration tank 33. Air diffusers 310, 320, 330 are installed in the respective tanks / means, and air is sent to the air diffusers from the aeration device 9 through aeration flow rate adjusting valves 91, 92, 93. The origins of BOD-removing bacteria and sludge bacteria are not limited, and examples of BOD-removing bacteria include Pseudomonas spp. And Bacillus spp. Further, at least one aeration device 9 is installed for each tank / means individually (in the case of each tank / means, three units are installed in this embodiment), and the aeration flow rate is adjusted for each tank / means. It is preferable to adjust the aeration amount with a valve (with an atmospheric release valve).

【0016】生物処理手段3と沈殿槽4を連結する経路
には分岐したサンプリング用配管51,61が設けら
れ、各々の配管に亜硝酸濃度計5,硝酸濃度計6が接続
される。また、沈殿槽4には濁度計7が接続される。亜
硝酸濃度計5,硝酸濃度計6,濁度計7は任意のもので
よく、例えば市販のセンサー,亜硝酸濃度計5,硝酸濃
度計6はフォトメータ(吸光光度法)やイオンメータ、
濁度計7は散乱光測定法式の濁度計が利用でき、各々連
続測定でもバッチ(回分)測定でも良い。制御装置8は
演算機能を有し、亜硝酸濃度計5,硝酸濃度計6,濁度
計7の入力信号を元に、生物処理手段3に具備される曝
気装置9(又は曝気流量調整バルブ)、硝化抑制剤添加
装置10を制御可能なように連結されている。
In the path connecting the biological treatment means 3 and the settling tank 4, branched sampling pipes 51 and 61 are provided, and a nitrite concentration meter 5 and a nitric acid concentration meter 6 are connected to the respective pipes. A turbidimeter 7 is connected to the settling tank 4. The nitrous acid concentration meter 5, the nitric acid concentration meter 6, and the turbidity meter 7 may be arbitrary. For example, a commercially available sensor, the nitrous acid concentration meter 5 and the nitric acid concentration meter 6 are a photometer (absorptiometry), an ion meter,
As the turbidimeter 7, a scattered light measuring method turbidimeter can be used, and each may be continuous measurement or batch (batch) measurement. The control device 8 has a calculation function, and based on the input signals of the nitrite concentration meter 5, the nitrate concentration meter 6, and the turbidity meter 7, the aeration device 9 (or the aeration flow rate adjustment valve) included in the biological treatment means 3 The nitrification inhibitor addition device 10 is controllably connected.

【0017】沈殿槽4では液の撹拌混合がなく静置状態
なので、固液分離され、上澄みが放流水11として溢流
する。一方、沈殿槽4で沈降濃縮した余剰汚泥12の一
部または全量は返送ポンプ13により生物処理手段3に
返送され、再び原水1の有機物の除去作業を繰返す。
In the settling tank 4, since the liquid is not agitated and mixed and is allowed to stand, it is solid-liquid separated, and the supernatant overflows as discharged water 11. On the other hand, a part or the whole of the excess sludge 12 settled and concentrated in the settling tank 4 is returned to the biological treatment means 3 by the return pump 13, and the work of removing the organic matter from the raw water 1 is repeated again.

【0018】以下、本実施例の主要部分に関する動作を
詳細に説明する。pH調整槽2で略中性に調整された原
水1は、生物処理手段3で以下のように処理される。
The operation of the main part of this embodiment will be described in detail below. The raw water 1 adjusted to be substantially neutral in the pH adjusting tank 2 is treated by the biological treatment means 3 as follows.

【0019】調整槽31は、原水の栄養バランスが例え
ばBOD(生物化学的酸素要求量):N(窒素):P
(燐)=100:5:1の割合、好ましくは、細菌類の
自己酸化により生成される窒素分を考慮して、100:
3:1程度に調整される他、有機性成分を積極的に加水
分解(例えば脂質を脂肪酸とグリセリン),酸化分解
(二酸化炭素)する。
The adjustment tank 31 has a nutrient balance of raw water such as BOD (biochemical oxygen demand): N (nitrogen): P.
(Phosphorus) = 100: 5: 1, preferably 100: 5, taking into account the nitrogen content produced by the autooxidation of bacteria.
In addition to being adjusted to about 3: 1, the organic components are actively hydrolyzed (for example, lipids are fatty acids and glycerin) and oxidatively decomposed (carbon dioxide).

【0020】分解槽32では調整槽31で調整・分解さ
れた調整水を更に分解・酸化するもので、調整槽31並
びに分解槽32で原水の70%以上、好ましくは90%
以上の炭水化物,脂質,蛋白質などの有機物を加水分解
・酸化分解されるよう細菌の菌体数並びに曝気流量を調
整されている。また、調整槽31から分解槽32への送
液,分解槽32から後曝気槽33への送液は、各槽水面
に滞留するスカムが次手段へ直接送液されないように、
前段槽の水中より、例えば図2の調整槽31に示したよ
うな水中ポンプ311等の強制送液手段、図2の分解槽
32に示したような水中から次手段へ送液出来るようパ
イプ321を連結するような自然放流手段を用いること
が好ましい。更に、各槽水面に滞留するスカムは個々の
槽の排水を汲み上げ、散水することで消泡するのが好ま
しい。
In the decomposition tank 32, the adjusted water adjusted and decomposed in the adjusting tank 31 is further decomposed and oxidized. In the adjusting tank 31 and the decomposition tank 32, 70% or more, preferably 90% of the raw water is used.
The bacterial cell number and aeration flow rate are adjusted so that the above organic substances such as carbohydrates, lipids and proteins are hydrolyzed and oxidatively decomposed. Further, the liquid transfer from the adjusting tank 31 to the decomposition tank 32 and the liquid transfer from the decomposition tank 32 to the rear aeration tank 33 are such that scum accumulated on the water surface of each tank is not directly transferred to the next means.
A pipe 321 for allowing liquid to be delivered from the water in the former tank to, for example, a forced liquid delivery means such as an underwater pump 311 as shown in the adjustment tank 31 in FIG. 2 or from water as shown in the decomposition bath 32 in FIG. 2 to the next means. It is preferable to use a natural discharge means for connecting. Further, it is preferable that the scum staying on the water surface of each tank is defoamed by pumping up and sprinkling the waste water of each tank.

【0021】調整槽31並びに分解槽32で十分に有機
性成分が除去された排水は後曝気槽33で更に分解・酸
化されるが、有機性成分が十分に分解・酸化されている
(一般的には有機性成分の指標とされるBOD成分が1
00mg/L以上存在すると硝酸化は進行し難いと言わ
れている)と、無機栄養細菌である硝酸化細菌(亜硝酸
菌,硝酸菌)が増殖し、排水中の蛋白質や細菌由来の蛋
白質等が加水分解され生じる窒素成分(アミノ酸,アミ
ノ基,アンモニウム塩など)を硝酸化(亜硝酸・硝酸,
亜硝酸・硝酸性窒素など)する。また、曝気槽下部の安
息角に自然沈殿する汚泥内部では脱窒菌などが生息し、
硝酸化された排水を窒素還元(脱窒)し、大気中へ放散
させる。尚、硝酸化,脱窒は後曝気槽33のみで行われ
ているのではなく、調整槽31並びに分解槽32でも、
有機性成分の除去程度により徐々に硝酸化・脱窒が進行
している。また、亜硝酸菌,硝酸菌や脱窒菌の起源は限
定されず、例えば亜硝酸菌はニトロゾモナス属、硝酸菌
はニトロバクター属、脱窒菌はシュードモナス族等の土
壌・環境中の一般細菌である。
Wastewater from which the organic components have been sufficiently removed in the adjusting tank 31 and the decomposition tank 32 is further decomposed and oxidized in the rear aeration tank 33, but the organic components are sufficiently decomposed and oxidized (generally Has 1 BOD component as an index of organic components
It is said that nitrification is difficult to proceed when it is present in an amount of 00 mg / L or more) and nitrifying bacteria (nitrite bacteria, nitric acid bacteria) that are inorganic nutrient bacteria proliferate, and proteins in wastewater and proteins derived from bacteria, etc. Nitrogen components (amino acids, amino groups, ammonium salts, etc.) generated by hydrolysis of
Nitrous acid, nitrate nitrogen, etc.). In addition, denitrifying bacteria inhabit sludge that naturally precipitates at the angle of repose at the bottom of the aeration tank,
Nitrogen-reduced wastewater is nitrogen-reduced (denitrification) and diffused into the atmosphere. The nitrification and denitrification are not performed only in the rear aeration tank 33, but in the adjustment tank 31 and the decomposition tank 32,
Nitrification / denitrification is gradually progressing depending on the degree of removal of organic components. Further, the origin of nitrite bacteria, nitric acid bacteria and denitrifying bacteria is not limited. For example, nitrite bacteria are genus Nitrozomonas, nitric acid bacteria are genus Nitrobacter, denitrifying bacteria are general bacteria in soil and environment such as Pseudomonas.

【0022】このように有機成分,無機成分が十分に除
去された排水の判断指標として筆者らの経験では、亜硝
酸が0.02〜0.2mg/L(好ましくは0.02〜0.
1;試薬では淡いピンク)、硝酸が1mg/L以下(好
ましくは、試薬利用による判断では無色)の状態の時、
良好な排水浄化が行われている。また、後曝気槽33は
次手段である沈殿槽4の固液分離を円滑にするもので、
菌体のフロック形成を促進させ、沈殿槽4の浮遊懸濁物
の抑制を図っている。
In the experience of the authors as a judgment index for wastewater from which organic and inorganic components have been sufficiently removed, nitrous acid is 0.02 to 0.2 mg / L (preferably 0.02 to 0.2).
1; when the reagent is light pink) and nitric acid is 1 mg / L or less (preferably colorless according to the judgment of reagent use),
Good wastewater purification is done. The post-aeration tank 33 facilitates solid-liquid separation in the precipitation tank 4 which is the next means.
The floc formation of the bacterial cells is promoted to suppress the suspended suspension in the settling tank 4.

【0023】本発明の実施例は、この様な環境を維持す
るため、生物処理手段3の後曝気槽33と沈殿槽4を連
結する経路に亜硝酸濃度計5,硝酸濃度計6を、また、
沈殿槽4には濁度計7を接続し、例えば、亜硝酸・硝酸
濃度が増加傾向を示す場合、曝気装置9の曝気量を減量
させると共に、沈殿槽4の濁度の変化(濁度の増加傾
向)により硝化抑制剤添加装置10の硝化抑制剤を添加
するよう制御することで、沈殿槽4で発生するスカムを
未然に防止する。尚、硝化抑制剤としてはN−アリルチ
オ尿素,トリクロロメチルピリジン等が使用でき、添加
量は各々排水1m3 当り2g,10g程度添加すれば良
く、筆者らの経験では、チオ尿素を添加した場合、排水
1m3 当り1g程度の添加で硝酸化を抑制できた。
In the embodiment of the present invention, in order to maintain such an environment, a nitrous acid concentration meter 5 and a nitric acid concentration meter 6 are provided in the path connecting the rear aeration tank 33 and the precipitation tank 4 of the biological treatment means 3, and ,
A turbidimeter 7 is connected to the settling tank 4, and, for example, when the nitrous acid / nitric acid concentration tends to increase, the aeration amount of the aeration device 9 is decreased and the turbidity of the settling tank 4 is changed (turbidity By controlling the addition of the nitrification inhibitor of the nitrification inhibitor addition device 10 according to the increasing tendency), scum generated in the precipitation tank 4 is prevented in advance. In addition, N-allyl thiourea, trichloromethyl pyridine, etc. can be used as nitrification inhibitors, and the addition amount may be about 2 g and 10 g per 1 m 3 of wastewater, respectively. In our experience, when thiourea was added, It was possible to suppress nitrification by adding about 1 g per 1 m 3 of waste water.

【0024】一方、亜硝酸・硝酸濃度が減少傾向を示す
場合、生物処理槽3での酸化・分解が良好に行われてい
ない(BOD負荷が多い)ことを示唆しており、曝気装
置9の曝気量を増量させ、酸化・分解を促進するよう制
御する。
On the other hand, when the concentration of nitrous acid / nitric acid tends to decrease, it means that the oxidation / decomposition in the biological treatment tank 3 is not being performed well (the BOD load is large), and the aeration device 9 has The amount of aeration is increased and controlled to promote oxidation and decomposition.

【0025】次に、本発明のその他の実施例である生物
処理手段のフローの一例を図3に示す。構成,動作は図
1,図2の実施例と同様で、本実施例の特徴は生物処理
手段3に散水濾床手段34を付加することで、前段での
有機性成分の分解・酸化,脱窒を促進させ、後曝気槽3
3の制御を安定化させたことにある。以下、散水濾床手
段の構成及び機能、並びに効果につき説明する。
Next, an example of the flow of the biological treatment means which is another embodiment of the present invention is shown in FIG. The structure and operation are the same as those of the embodiment shown in FIGS. 1 and 2. The feature of this embodiment is that the sprinkling filter means 34 is added to the biological treatment means 3 to decompose, oxidize and desorb the organic components in the preceding stage. Post-aeration tank 3 to promote nitriding
This is because the control of 3 was stabilized. Hereinafter, the structure and function of the sprinkling filter means and the effect will be described.

【0026】散水濾床手段34は例えば濾床341が曝
気槽342より上方へ位置し、分解槽32より濾床34
1或いは曝気槽342へ排水が供給され、曝気槽342
では好気性下で排水を酸化分解する一方、曝気槽342
内の処理排水を循環・散水ポンプ343により濾床34
1へ散水管344を用い前面均一に散水することで、濾
床341に積載された担体に各種菌が担持(活着)され
るとともに、その活着菌が排水を酸化分解し、自然落下
水345が曝気槽342へ戻される。また、曝気槽34
2で曝気される空気の一部は排水中に溶存し、その他は
曝気槽342から濾床341を通過し、濾床341に積
載された担体表面を強制的に好気性下にならしめ、系外
に排出される。尚、循環・散水ポンプ343から散気管
344を介して供給される散水量(m3/h)と曝気槽3
42の実質容量(貯水量:m3)の比は単位時間当たり
0.4 以上とすることが好ましい。また、濾床341に
積載された担体としては、砕石,プラスチック系の充填
物などが使用できるが、好ましくはSiO2 が80〜8
5%、AL23が5〜10%、K2O が4〜6%、その
他Fe23,CaO,TiO2 ,MnOなどの組成を持
つ石英粗面岩等が有効である。濾床100に砕石された
担体が例えば前記石英粗面岩とした場合、石英粗面岩は
内部がポーラス状となっているため、実質表面積が広
く、通気の悪い内部では主に嫌気性菌が繁殖し、好気性
下にたもたれた表面では主に好気性菌が繁殖する。この
ため、濾床341では比増殖速度の小さい微生物(硝
化,脱窒細菌,嫌気細菌等)も生息できるため、滞留時
間を長くすることなく脱窒性能を高めることが出来る。
また、濾床内の菌体濃度が高いため、原水1の水質変動
に強く安定した運転が可能である。更に、細菌の細胞構
成元素はC,O,N,H,Pの主要元素の他、K,S,
Na,Ca,Mg,Cl,Fe等の微量元素で構成され
るため、原水1で不足した成分は、石英粗面岩から得る
ことが出来る。また、嫌気的環境を有する濾床341と
好気的環境を有する曝気槽342を循環するサイクルを
備えているため、嫌気下での燐放出,好気下でのリン過
剰摂取をする現象が働き脱燐効果もある。
In the sprinkling filter bed means 34, for example, the filter bed 341 is located above the aeration tank 342, and the filter bed 34 is installed from the decomposition tank 32.
1 or the aeration tank 342 is supplied with wastewater, and the aeration tank 342
Then, while the wastewater is oxidatively decomposed under aerobic conditions, the aeration tank 342
The treated wastewater inside is circulated / filtered by the water sprinkling pump 343.
By uniformly spraying water to the front surface using the water sprinkling pipe 344 to 1, the various types of bacteria are carried (activated) on the carrier loaded on the filter bed 341, and the living bacteria oxidize and decompose the wastewater, so that the free fall water 345 is generated. It is returned to the aeration tank 342. In addition, the aeration tank 34
Part of the air aerated in 2 is dissolved in the waste water, and the other passes through the filter bed 341 from the aeration tank 342, and the carrier surface loaded on the filter bed 341 is forced to be aerobic, It is discharged outside. The amount of water (m 3 / h) supplied from the circulation / water pump 343 through the air diffuser 344 and the aeration tank 3
It is preferable that the ratio of the real capacity of 42 (reservoir capacity: m 3 ) is 0.4 or more per unit time. Further, as the carrier loaded on the filter bed 341, crushed stone, plastic-based packing, etc. can be used, but SiO 2 is preferably 80 to 8
5%, AL 2 O 3 is 5 to 10%, K 2 O is 4 to 6%, and quartz trachyte having a composition such as Fe 2 O 3 , CaO, TiO 2 , MnO is effective. If the carrier crushed in the filter bed 100 is, for example, the above-mentioned quartz trachyte, since the inside of the quartz trachyte has a porous shape, the substantial surface area is large, and anaerobic bacteria are mainly present in the interior with poor ventilation. Breeding and aerobic bacteria are mainly propagated on the surface leaning under aerobic conditions. For this reason, since microorganisms having a low specific growth rate (nitrification, denitrifying bacteria, anaerobic bacteria, etc.) can also live in the filter bed 341, the denitrifying performance can be enhanced without increasing the residence time.
Moreover, since the bacterial cell concentration in the filter bed is high, stable operation is possible due to fluctuations in the water quality of the raw water 1. In addition to the major elements of C, O, N, H, and P, the constituent elements of bacteria include K, S, and
Since it is composed of trace elements such as Na, Ca, Mg, Cl and Fe, the components lacking in the raw water 1 can be obtained from quartz trachyte. In addition, since a cycle of circulating the filter bed 341 having an anaerobic environment and the aeration tank 342 having an aerobic environment is provided, the phenomenon of phosphorus release under anaerobic condition and excessive intake of phosphorus under aerobic condition works. It also has a dephosphorization effect.

【0027】図4は本発明のその他の実施例である生物
処理装置のフローの一例を示したもので、構成,動作は
図1の実施例と同様で、本実施例の特徴は曝気装置9,
硝化抑制剤添加装置10の制御要素に原水1のCOD濃
度を測定するCOD濃度計14を付加したことにある。
例えば、原水1のCOD濃度が著しく高い負荷の排水
(設計仕様の数倍)が一時的に流入した場合、後段の槽
への影響は時間差があるとともに、その悪化は急激であ
るため、通常の制御では有機性成分の除去が困難にな
る。このため、曝気量は過曝気状態のまま制御せず、後
曝気槽33での硝酸化が促進された時のみ、硝化抑制剤
添加装置10の硝化抑制剤を添加するよう制御する。
FIG. 4 shows an example of the flow of a biological treatment apparatus which is another embodiment of the present invention. The constitution and operation are the same as those of the embodiment of FIG. ,
A COD concentration meter 14 for measuring the COD concentration of the raw water 1 is added to the control element of the nitrification inhibitor addition device 10.
For example, when wastewater with a significantly high COD concentration in the raw water 1 (several times the design specifications) temporarily flows in, the influence on the subsequent tanks is different with a time lag, and its deterioration is rapid, so Control makes removal of organic components difficult. Therefore, the aeration amount is not controlled in the overaeration state, but is controlled so that the nitrification inhibitor of the nitrification inhibitor addition device 10 is added only when the nitrification in the post-aeration tank 33 is promoted.

【0028】この様な制御を行うことで、高負荷排水に
よる排水処理の悪化を未然に防止するとともに、硝酸化
・脱窒によるスカムも防止できる。
By carrying out such control, deterioration of wastewater treatment due to high-load wastewater can be prevented and scum due to nitrification and denitrification can be prevented.

【0029】[0029]

【発明の効果】本発明では生物処理のバルキング、特
に、固液分離槽の脱窒によるスカム発生などのトラブル
を比較的簡単な制御で未然に防止出来る効果がある。
INDUSTRIAL APPLICABILITY The present invention has the effect of preventing the bulking of biological treatment, in particular, troubles such as scum generation due to denitrification of the solid-liquid separation tank, with relatively simple control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による生物処理装置の一実施例を示すフ
ロー図である。
FIG. 1 is a flow chart showing an embodiment of a biological treatment apparatus according to the present invention.

【図2】本発明による生物処理装置の他の実施例を示す
フロー図である。
FIG. 2 is a flowchart showing another embodiment of the biological treatment apparatus according to the present invention.

【図3】本発明による生物処理装置の他の実施例を示す
フロー図である。
FIG. 3 is a flowchart showing another embodiment of the biological treatment apparatus according to the present invention.

【図4】本発明による生物処理装置の他の実施例を示す
フロー図である。
FIG. 4 is a flowchart showing another embodiment of the biological treatment apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…原水、2…pH調整槽、3…生物処理手段、4…沈
殿槽、5…亜硝酸濃度計、6…硝酸濃度計、7…濁度
計、8…制御装置、9…曝気装置、10…硝化抑制剤添
加装置、11…放流水、12…余剰汚泥、13…返送ポ
ンプ。
1 ... Raw water, 2 ... pH adjusting tank, 3 ... Biological treatment means, 4 ... Precipitation tank, 5 ... Nitrite concentration meter, 6 ... Nitric acid concentration meter, 7 ... Turbidity meter, 8 ... Control device, 9 ... Aeration device, 10 ... Nitrification inhibitor addition device, 11 ... Discharge water, 12 ... Excess sludge, 13 ... Return pump.

フロントページの続き (72)発明者 原田 進 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸事業所内 (72)発明者 野村 聖次 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸事業所内 (72)発明者 赤穴 太介 山口県下松市大字東豊井794番地 日立テ クノエンジニアリング株式会社笠戸事業所 内 Fターム(参考) 4D003 AA02 AB02 BA02 CA07 CA08 EA14 EA23 EA30 4D028 BB02 BB07 BC01 BC13 BC17 BC18 BD16 CA09 CD00 4D040 BB51 BB91 Continued front page    (72) Inventor Susumu Harada             Yamaguchi Prefecture Kudamatsu City Oita Toyoi 794 Stock Association             Inside Hitachi Kasado Works (72) Inventor Seiji Nomura             Yamaguchi Prefecture Kudamatsu City Oita Toyoi 794 Stock Association             Inside Hitachi Kasado Works (72) Inventor Taisuke Akaana             Hitachite             Kuno Engineering Co., Ltd. Kasado Office             Within F-term (reference) 4D003 AA02 AB02 BA02 CA07 CA08                       EA14 EA23 EA30                 4D028 BB02 BB07 BC01 BC13 BC17                       BC18 BD16 CA09 CD00                 4D040 BB51 BB91

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】種々有機物を含有した排水を微生物により
処理する複数の手段からなる生物処理手段において、該
手段の最終段に位置する固液分離手段の濁度を測定する
濁度計と、該固液分離手段の前段に位置する曝気槽の亜
硝酸または亜硝酸性窒素の濃度を測定する亜硝酸濃度計
と、硝酸または硝酸性窒素の濃度を測定する硝酸濃度計
と、該曝気槽の曝気量を制御可能な曝気手段と、該曝気
槽に硝化抑制剤を添加する硝化抑制剤添加手段と、測定
した濁度,亜硝酸濃度及び硝酸濃度により該曝気手段、
該添加手段を制御する制御手段を備えたことを特徴とし
た生物処理装置。
1. A biological treatment means comprising a plurality of means for treating wastewater containing various organic substances with microorganisms, and a turbidimeter for measuring the turbidity of a solid-liquid separation means located at the final stage of the means, A nitrite densitometer for measuring the concentration of nitrous acid or nitrite nitrogen in the aeration tank located before the solid-liquid separation means, a nitric acid concentration meter for measuring the concentration of nitric acid or nitrate nitrogen, and aeration of the aeration tank An aeration means capable of controlling the amount, a nitrification inhibitor addition means for adding a nitrification inhibitor to the aeration tank, the aeration means according to the measured turbidity, nitrite concentration and nitric acid concentration,
A biological treatment apparatus comprising control means for controlling the addition means.
【請求項2】請求項1記載の生物処理装置において、前
記生物処理手段の少なくとも一つが、担体を固定した濾
床と曝気下で生物処理する曝気槽と該曝気槽内の処理水
の一部を濾床に散水する循環・散水手段で構成される散
水濾床手段からなることを特徴とした生物処理装置。
2. The biological treatment apparatus according to claim 1, wherein at least one of the biological treatment means is a filter bed on which a carrier is fixed, an aeration tank for biological treatment under aeration, and a part of treated water in the aeration tank. A biological treatment device comprising a sprinkling filter unit composed of a circulation / sprinking unit for sprinkling water onto a filter bed.
【請求項3】請求項1記載の生物処理装置において、原
水のCOD濃度を測定するCOD濃度計を付加し、該C
OD濃度計,亜硝酸濃度計および硝酸濃度計により測定
された各濃度により曝気手段,硝化抑制剤添加手段を制
御することを特徴とした生物処理装置。
3. The biological treatment apparatus according to claim 1, further comprising a COD densitometer for measuring the COD concentration of raw water,
A biological treatment device characterized by controlling an aeration means and a nitrification inhibitor addition means by each concentration measured by an OD concentration meter, a nitrite concentration meter, and a nitric acid concentration meter.
JP2001298980A 2001-09-28 2001-09-28 Biological treatment apparatus Pending JP2003103296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298980A JP2003103296A (en) 2001-09-28 2001-09-28 Biological treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298980A JP2003103296A (en) 2001-09-28 2001-09-28 Biological treatment apparatus

Publications (1)

Publication Number Publication Date
JP2003103296A true JP2003103296A (en) 2003-04-08

Family

ID=19119802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298980A Pending JP2003103296A (en) 2001-09-28 2001-09-28 Biological treatment apparatus

Country Status (1)

Country Link
JP (1) JP2003103296A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225693A (en) * 2002-02-05 2003-08-12 Sumitomo Heavy Ind Ltd Method for drainage treatment
JP2006198548A (en) * 2005-01-21 2006-08-03 Hitachi Plant Technologies Ltd Method and apparatus for purifying oil in soil and underground water
JP2017154107A (en) * 2016-03-03 2017-09-07 住友精密工業株式会社 Waste-water treatment system and waste-water treatment method
CN107848849A (en) * 2015-04-02 2018-03-27 K·英格尔 The biological wastewater purification method of removal with phosphorus
JP2018069183A (en) * 2016-10-31 2018-05-10 王子ホールディングス株式会社 Device for treating water and method for managing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225693A (en) * 2002-02-05 2003-08-12 Sumitomo Heavy Ind Ltd Method for drainage treatment
JP2006198548A (en) * 2005-01-21 2006-08-03 Hitachi Plant Technologies Ltd Method and apparatus for purifying oil in soil and underground water
CN107848849A (en) * 2015-04-02 2018-03-27 K·英格尔 The biological wastewater purification method of removal with phosphorus
JP2018510064A (en) * 2015-04-02 2018-04-12 インゲルレ、クルトINGERLE, Kurt Method for purification of biological wastewater with phosphorus removal
JP2017154107A (en) * 2016-03-03 2017-09-07 住友精密工業株式会社 Waste-water treatment system and waste-water treatment method
JP2018069183A (en) * 2016-10-31 2018-05-10 王子ホールディングス株式会社 Device for treating water and method for managing the same

Similar Documents

Publication Publication Date Title
US6555002B2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
US8845900B2 (en) Apparatus and methods for control of waste treatment processes
US7429328B2 (en) Apparatus and methods for control of waste treatment processes
CN101626983A (en) Processing contains the method and apparatus of the waste water of sulfide and ammonium
US20120175302A1 (en) Apparatus and methods for control of waste treatment processes
JPH1157762A (en) Aerobic treating method of sewage
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
KR100434858B1 (en) A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge
US7850850B2 (en) Apparatus and methods for control of waste treatment processes
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JP2003103296A (en) Biological treatment apparatus
KR100403864B1 (en) A wastewater treatment methods
JP2009214035A (en) Treatment method of water-base paint booth circulating water
CA2425147A1 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
KR100817792B1 (en) Advanced swage and waste water treatment method and apparatus use of micro filter, and cultured bacillus species bacteria etc
KR100465524B1 (en) System and Method for wastewater treatment using membrane and Bacillus sp.
JP2003266096A (en) Wastewater treatment apparatus
US10336633B2 (en) Microorganism sustenance in an activated sludge unit
US10239773B2 (en) Systems for microorganism sustenance in an activated sludge unit
KR100753993B1 (en) Advanced swage and waste water treatment method and apparatus use of selected and cultured bacillus species bacteria etc
SU1000420A1 (en) Process and apparatus for biologically purifying effluents containing synthetic fatty acids
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JP2007098230A (en) Method and apparatus for treating organic waste water biologically
JPH03202195A (en) Waste water treatment method and apparatus
JP2002018458A (en) Method for treating wastewater containing animal and vegetable oil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070330