KR20030073649A - Polymer cement composition for preventing corrosion and coating method using it - Google Patents

Polymer cement composition for preventing corrosion and coating method using it Download PDF

Info

Publication number
KR20030073649A
KR20030073649A KR1020020013311A KR20020013311A KR20030073649A KR 20030073649 A KR20030073649 A KR 20030073649A KR 1020020013311 A KR1020020013311 A KR 1020020013311A KR 20020013311 A KR20020013311 A KR 20020013311A KR 20030073649 A KR20030073649 A KR 20030073649A
Authority
KR
South Korea
Prior art keywords
cement
polymer
coating
coating method
corrosion
Prior art date
Application number
KR1020020013311A
Other languages
Korean (ko)
Other versions
KR100466828B1 (en
Inventor
조영국
소양섭
손강일
Original Assignee
영진콘크리트(주)
조영국
소양섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영진콘크리트(주), 조영국, 소양섭 filed Critical 영진콘크리트(주)
Priority to KR10-2002-0013311A priority Critical patent/KR100466828B1/en
Publication of KR20030073649A publication Critical patent/KR20030073649A/en
Application granted granted Critical
Publication of KR100466828B1 publication Critical patent/KR100466828B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00525Coating or impregnation materials for metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • C04B2111/723Repairing reinforced concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Paints Or Removers (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

PURPOSE: A polymer cement-based composition for coating reinforcing steel is provided to prevent corrosion of reinforcing steel in cement concrete, and improve durability and impact resistance. CONSTITUTION: The polymer cement-based composition comprises 10-80% of cement, 10-70% of polymer dispersion and 10-60% of water. The corrosion of reinforcing steel is prevented by coating polymer cement slurry comprising 50-100% of a polymer/ cement ratio, 50-200% of a water/cement ratio, 0.01-0.15% (based on the solids of polymer) of antifoaming agent, on the surface of steel in a thickness of 100-500micrometer, and curing at 80deg.C or lower for 2-3days. The used polymer is one or more of fatty acid amide, polyethylene glycol, ester amide, organic phosphate ester, dimethyl polysiloxane, etc., and the polymer is one or more of styrene butadiene rubber latex(SBR), polyacrylic acid ester(PAE), ethylene vinyl acetate(EVA), styrene-butyl acrylate(St/BA), epoxy emulsion, etc.

Description

시멘트 콘크리트 철근의 부식 방지를 위한 폴리머 시멘트계 조성물 및 이를 이용한 도포방법{Polymer cement composition for preventing corrosion and coating method using it}Polymer cement composition for preventing corrosion and coating method using it}

본 발명은 시멘트 콘크리트 철근의 부식을 방지하기 위한 폴리머 시멘트계 조성물 및 이를 이용한 도포방법에 관한 것으로, 더욱 상세하게는 폴리머 시멘트계 조성물을 제조한 다음 이를 철근에 코팅하여 내구성, 내충격성 및 부식 저항성이 우수한 폴리머 시멘트계 조성물 및 이를 이용한 도포방법에 관한 것이다.The present invention relates to a polymer cement composition and a coating method using the same to prevent corrosion of cement concrete reinforcing bars, and more specifically, to prepare a polymer cement composition and then coating it on the reinforcing bar polymer having excellent durability, impact resistance and corrosion resistance It relates to a cement composition and a coating method using the same.

일반적으로 철근은 철근콘크리트 구조물을 시공할 때 콘크리트 속에 보강재로 넣는 연강 선재로서, 그 구조물에 작용하는 전단, 반복인장 또는 반복하중에 항력을 갖도록 하고 콘크리트 구조물의 균열을 막아서 그 내구성과 수명을 향상시키고자하는 기술이 대부분 차지하고 있다.In general, rebar is a mild steel wire that is put as reinforcement in concrete when constructing a reinforced concrete structure.It has a drag on shear, cyclic tension or cyclic load acting on the structure and prevents cracking of the concrete structure to improve its durability and lifespan. Most of the skills are occupied.

상기 철근은 산, 알칼리, 또는 염 등에 의한 부식이 있을 경우는 점차 외력에 대한 저항 강도가 저하되고, 반복하중이 계속적으로 작용하는 교량 등의 구조물에서는 부식과 반복되는 하중에 의한 철근 피로현상이 증가하여 교량에 균열을 일으키고 그 수명을 단축시켜 심각한 장애를 일으킨다. 특히, 철근 콘크리트 구조물이 바닷가, 해양구조물, 교량, 폐수처리시설 등의 열악한 환경에 놓여 있는 경우에는 철근의 부식 정도가 더 심해지며, 이로 인해 구조물의 내구성이 현저하게 떨어진다.When the reinforcing bar is corroded by acid, alkali, or salt, the resistance to external force gradually decreases, and in structures such as bridges in which cyclic loads are continuously applied, reinforcing bar fatigue caused by corrosion and repeated loads increases. This can cause cracks in the bridge and shorten its lifespan, causing serious obstacles. In particular, when reinforced concrete structures are placed in poor environments such as beaches, offshore structures, bridges, and wastewater treatment facilities, the corrosion of the reinforcing bars becomes more severe, and the durability of the structures is significantly reduced.

따라서, 상기와 같은 철근 부식방지를 위하여 철근의 표면에 에폭시를 코팅하는 방법이 사용되고 있으나, 에폭시로 코팅 철근은 내충격성이 약하여 현장에서 약간의 충격과 굽힘에 대해서도 코팅부분이 깨지고, 콘크리트와의 부착성도 낮은 문제점이 있다. 또한, 철근에 비해 코팅에 필요한 부가적인 비용이 비싸 건설현장에서도 중요한 공정 및 구조를 제외하고는 일반제품에 적용하기가 곤란한 실정이다.Therefore, the method of coating the epoxy on the surface of the reinforcing bar to prevent the corrosion of the reinforcing bar is used, but the reinforcing bar coated with epoxy has a low impact resistance, so that the coating part is broken even for slight impact and bending at the site, and adheres to concrete There is also a problem of low grade. In addition, it is difficult to apply to general products except for important processes and structures in the construction site because the additional cost required for the coating is expensive compared to the rebar.

한편, 시멘트 콘크리트 2차 제품을 만들기 위해 많은 잔골재가 사용되고, 상기 잔골재로 강에서 채취하는 강모래를 주로 이용하고 있다. 그러나, 건설 경기의 호조로 잔골재 사용량이 많아지면서 강 모래의 고갈이 심각한 수준이며, 그 대안으로 바다모래인 해사가 사용되기도 한다. 그러나, 해사를 사용하기 위해서는 적당한제염처리 시설을 갖추어야 하며, 염분 함유에 따른 발생되는 문제, 즉 부식 발생이 큰 문제로 해사 속의 염분에 대한 관리가 철저히 이루어져야 하는 문제점이 있다.On the other hand, many fine aggregates are used to make cement concrete secondary products, and mainly use the steel sand collected from the river as the fine aggregates. However, as the use of fine aggregates increases due to the strong construction industry, the depletion of river sand is severe, and sea sand, which is an alternative, is used. However, in order to use sea sand, it is necessary to have a proper decontamination treatment facility, and there is a problem that occurs due to salt content, that is, a large problem of corrosion occurs.

상기와 같은 문제점을 해결하기 위해, 시멘트 혼화용 폴리머를 시멘트와 혼입한 조성물을 사용하여 내구성, 내충격성 및 부식 저항성이 우수한 시멘트 콘크리트 철근의 부식 방지를 위한 폴리머 시멘트계 조성물을 제공함에 있다.In order to solve the above problems, it is to provide a polymer cement-based composition for preventing corrosion of cement concrete reinforcing bars having excellent durability, impact resistance and corrosion resistance by using a composition incorporating a cement mixing polymer with cement.

또한, 상기 폴리머 시멘트 조성물을 철근 표면에 도포하여 경제적으로 저렴하고, 도포가 용이한 시멘트 콘크리트 철근의 부식 방지를 위한 폴리머 시멘트계 조성물을 이용한 도포방법을 제공함에 있다.In addition, by applying the polymer cement composition on the surface of the reinforcing bar is economically inexpensive, and provides a coating method using a polymer cement-based composition for preventing corrosion of cement concrete reinforcing easy to apply.

도 1은 본 발명의 염화나트륨 수용액 침지에 따른 녹발생 정도 사진1 is a photograph of the degree of rust generation according to the immersion of sodium chloride aqueous solution of the present invention

도 2는 본 발명의 염화나트륨 수용액 분무에 따른 녹발생 정도 그래프2 is a graph showing the degree of rust generation according to the spray of aqueous sodium chloride solution of the present invention

도 3은 본 발명의 염화나트륨 수용액 침투 시험용 시험편 단면 구조도Figure 3 is a cross-sectional structural view of the test piece for sodium chloride aqueous solution penetration test of the present invention

도 4는 본 발명의 염화나트륨 수용액 침투시험에 따른 녹발생 정도 그래프4 is a graph showing the degree of rust generation according to the sodium chloride aqueous solution penetration test of the present invention

도 5는 본 발명의 중성화 촉진 시험에 따른 녹발생 정도 그래프5 is a graph showing the degree of rust generation according to the neutralization promotion test of the present invention

도 6은 본 발명의 오토클레이브 양생 사이클을 나타내는 도면6 shows an autoclave curing cycle of the present invention.

상기 목적을 달성하기 위하여 본 발명은 폴리머 시멘트비를 50∼100%, 물시멘트비는 50∼ 200%, 소포제는 폴리머고형분에 대하여 0.01∼015%로 하여 폴리머 시멘트 슬러리를 만들고 이를 원형 및 이형철근의 표면에 100㎛-500㎛로 도포하여 양생한다.In order to achieve the above object, the present invention has a polymer cement ratio of 50 to 100%, a water cement ratio of 50 to 200%, and an antifoaming agent of 0.01 to 015% with respect to the polymer solids to form a polymer cement slurry, which is formed on the surface of circular and deformed steel bars. It is cured by applying to 100㎛-500㎛.

폴리시멘트비가 50%이하에서는 균열이 발생하기 쉽고, 100%이상에서는 철근이 일정한 두께로 도포되어야 하기 때문에 3회이상 반복하여 도포하여야 하는 문제점이 있다.If the polycement ratio is less than 50%, cracking is likely to occur, and since the rebar is to be applied to a predetermined thickness at 100% or more, there is a problem in that it is repeatedly applied three or more times.

양생방법은 상온에서 그냥 방치하기도 하고, 빠른 경화를 위해서는 고온으로 양생한다.The curing method is just left at room temperature, and curing at high temperature for fast curing.

이때, 슬러리에는 폴리머가 혼입되어 있기 때문에 폴리머가 굳으면서 막을형성해 시멘트경화를 느리게 한다. 물론, 폴리머 종류에 따라 약간의 차이가 있으나, 보통 상온에서 24시간 방치시키면 도포한 슬러리가 완전히 굳은 경우가 있고, 어떤 종류는 기본적으로 2∼3주 양생하기도 한다.At this time, since the polymer is mixed in the slurry, the polymer hardens to form a film to slow cement hardening. Of course, there is a slight difference depending on the type of polymer, but usually left at room temperature for 24 hours, the applied slurry may be completely hardened, and some types are basically cured for 2-3 weeks.

그러나 고온에서는 폴리머가 열에 약하므로 80℃이하로 양생을 하여야 하고 2∼3일정도면 양생된다.However, at high temperatures, the polymer is weak to heat, so it must be cured at 80 ℃ or lower and it will cure in about 2 to 3 days.

이하, 본 발명에 대해 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명의 철근 부식 방지용 폴리머 시멘트계 조성물은 시멘트 10∼80 %, 폴리머 디스퍼션잔 10∼70%, 물 10∼60%이고, 소포제는 폴리머를 극성과 분자량(분자량의 분포)을 조절하여 상용성과 비상용성 사이의 적절한 균형을 통해 만들어 사용하여야 하고, 또한, 폴리머 소포제들은 아주 상용성이 좋을 경우에도 기포를 안정화시키지 않는 특성을 가지고 있어 소포성이 매우 약하거나 존재하지 않는 것처럼 보이게 되므로 적절한 소포제를 선택하여 사용하여야 하는 것으로, 고급지방산아마이드, 고분자량의 폴리에틸렌글리콜(polyethylene glycol), 지방산저급알콜에텔, 폴리프로필렌글리콜(polypropylene glycol), 고급지방산의 에스테르아미드(ester amide), 유기인산에스텔, 고급지방산의 금속석검, tall oil(톨유), 실리콘계, 비실리콘계, 디메틸폴리실록산(dimethyl polysiloxane), 소수성실리카 등이 사용되며, 캐리어( carrier)성분으로서 광물유와 저급알콜이 사용된다.The polymer cement composition for preventing corrosion of the present invention is 10 to 80% of cement, 10 to 70% of polymer dispersion glass, and 10 to 60% of water, and an antifoaming agent controls the polarity and molecular weight (molecular weight distribution) of the polymer so that It is necessary to make and use a proper balance between solubility. Also, polymer antifoaming agents have properties that do not stabilize bubbles even when they are very compatible. High fatty acid amide, high molecular weight polyethylene glycol, fatty acid lower alcohol ether, polypropylene glycol, ester amide of higher fatty acid, ester of organic phosphate, metal of higher fatty acid Stone gum, tall oil, silicone, non-silicone, dimethyl polysiloxan e), hydrophobic silica, and the like, mineral oil and lower alcohol are used as carrier components.

여기서 실리콘계 소포제는 활성 성분이 매우 낮은 표면장력을 갖고 있는 폴리실록산의 용액이 사용된다. 이러한 폴리실록산을 선택할 때 그것의 화학 구조는매우 중요한 기준이 된다. 예를 들어 표면 조절용 첨가제로 쓰이는 것과 같은 짧은 사슬의 폴리실록산은 기포를 파괴하기보다는 오히려 기포를 안정화시키므로 좋지 않다.The silicone antifoaming agent here is a solution of polysiloxane having a very low surface tension of the active ingredient. When selecting such a polysiloxane, its chemical structure is a very important criterion. Short chain polysiloxanes, such as, for example, those used as surface control additives, are not good because they stabilize bubbles rather than destroy them.

즉, 저분자량의 실리콘은 기포 안정제의 역할을 하며, 분자량이 커질수록 고분자량 실리콘은 분화구 현상을 일으킬 정도로 비상용적이 되며 또한, 분자량이 너무 지나치게 커지게 되면 함마톤 실리콘이 되므로 완전하게 비상용성 물질이 되어 소포제로서는 좋지 않다.That is, low molecular weight silicon acts as a bubble stabilizer, and as the molecular weight increases, the high molecular weight silicon becomes incompatible enough to cause cratering phenomena. It is not good as antifoaming agent.

따라서, 폴리실록산의 상용성과 용해도를 조절하기 위해 실리콘의 분자량과 체인의 길이를 변화시켜 사용하게 되는데 다양한 유기계 체인을 실리콘 본체에 변성시킴으로서 상용성을 조정할 수 있는 것으로, 폴리에테르 체인을 부가할 경우 친수성이 증가하여 상용성이 좋아진다.Therefore, in order to control the compatibility and solubility of polysiloxane, the molecular weight of the silicone and the chain length are used to change the compatibility by modifying various organic chains in the silicone body, and when adding a polyether chain, Increasing compatibility.

시멘트 혼화용 폴리머는 스틸렌 부다디엔 고무 라텍스(SBR), 폴리 아크릴산 에스테르(PAE), 에칠렌 비닐 아세테이트(EVA), 스티렌-아크릴산 부틸(St/BA), 아크릴계 에멀젼(PA), 에폭시 에멀젼 등이 사용된다.Polymers for cement admixture include styrene budadiene rubber latex (SBR), polyacrylic acid ester (PAE), ethylene vinyl acetate (EVA), styrene-butyl acrylate (St / BA), acrylic emulsion (PA), epoxy emulsion and the like. .

또한, 시멘트는 포틀랜드 시멘트, 특수시멘트, 혼합시멘트가 사용된다.In addition, cement is used as portland cement, special cement, mixed cement.

상기와 같이 배합된 폴리머 시멘트계 조성물은 원형철근 및 이형철근 표면에 도장 두께 100㎛-500㎛로 도포하고, 슬러리 경화를 위해 상온(20℃) 및 80℃이하 온도에서 표면의 슬러리가 굳을 때까지 양생한다. 이때, 철근 표면에 도포하는 방법으로 폴리머 시멘트 슬러리 속에 철근을 침적시켜 꺼내는 방법, 압력 노즐을 통하여 분사시키는 방법, 붓등으로 바르는 방법 등을 사용한다.The polymer cement composition blended as described above is applied to the surface of circular and deformed rebars with a coating thickness of 100 μm-500 μm and cured until the slurry on the surface solidifies at room temperature (20 ° C.) and below 80 ° C. for curing the slurry. do. In this case, a method of coating on the surface of the reinforcing bar by depositing the reinforcing bar in the polymer cement slurry, spraying through a pressure nozzle, a method such as applying with a brush or the like is used.

상기와 같이 방식 처리된 철근은 제염처리를 거치지 않은 해사와 함께 원심력 철근 콘크리트 관(일명 흄관), 수로관, 콘크리트 파일, 전신주 등의 시멘트 콘크리트 2차 제품에 사용하여, 염분에 의한 부식 발생을 저하시킬 수 있다.Reinforcing bars processed as described above are used in cement concrete secondary products such as centrifugal reinforced concrete pipes (aka fume pipes), water pipes, concrete piles, and telephone poles, together with seawater that has not undergone decontamination treatment, to reduce the occurrence of corrosion caused by salinity. Can be.

시험예 1: 내수성 시험Test Example 1: Water Resistance Test

본 발명의 폴리머 시멘트를 철근에 도포한 다음 양생을 마친 철근과 도포하지 않은 철근의 내수성에 대해 알아본 결과 일반 수돗물에 7일, 14일, 28일 동안 침지한 후 철근의 녹 발생정도를 관찰하였다.After the polymer cement of the present invention was applied to the reinforcing bars, the water resistance of the cured and uncoated reinforcing bars was examined. After immersion in general tap water for 7 days, 14 days, and 28 days, the degree of rust occurrence of the steel bars was observed. .

관찰 결과, 보통 철근은 14일만에 철근 전면에 녹이 발생하였으나, 본 발명의 폴리머 시멘트를 도포한 철근은 28일 후에도 녹이 전혀 발생하지 않음을 알 수 있다.As a result, the reinforcing bars usually rust on the entire surface of the reinforcing bar in 14 days, the reinforcing bar coated with the polymer cement of the present invention can be seen that no rust after 28 days.

시험예 2: 염화나트륨 수용액 침지 도포 방법으로 인한 녹 발생 정도 관찰Test Example 2: Observation of Rust by Soaking Application Method

본 발명의 폴리머 시멘트는 스틸렌 부타디엔 고무 라텍스(SBR), 폴리 아크릴산 에스테르(PAE), 에칠렌 비닐 아세테이트(EVA), 스티렌-아크릴산 부틸(St/BA), 아크릴계 에멀젼(PA), 에폭시 에멀젼으로 달리하여 제조하고, 이를 철근에 도포한 다음 양생을 마친 철근과 도포하지 않은 철근에 대하여 녹 발생 정도에 대해 알아본 것으로, 염화나트륨(Nacl) 10% 수용액에 28일 동안 침지 하여 그 결과를 도 1에 나타내었다.The polymer cement of the present invention is prepared by differently from styrene butadiene rubber latex (SBR), polyacrylic acid ester (PAE), ethylene vinyl acetate (EVA), styrene-butyl acrylate (St / BA), acrylic emulsion (PA), epoxy emulsion Then, it was applied to the reinforcing bar, and then to determine the degree of rust generation for the reinforcing and non-coated reinforcing bar, soaked in sodium chloride (Nacl) 10% aqueous solution for 28 days, the results are shown in FIG.

도1에 나타난 바와 같이, 염화나트륨(Nacl) 10% 수용액에 28일 동안 침지 후 도포하지 않은 일반적인 철근(오른쪽 2개)은 철근 전면에 녹이 발생하였으나, 폴리머 시멘트 조성물로 도포한 철근(그 외 6개 철근)은 28일 후에도 녹이 전혀 발생하지 않음을 볼 수 있다.As shown in Figure 1, the general reinforcing bar (two on the right), which was not applied after soaking in a 10% aqueous solution of sodium chloride (Nacl) for 28 days, was rusted in front of the reinforcing bar. Rebar) can be seen that no rust occurs after 28 days.

시험예 3: 염화나트륨 수용액 분무 도포 방법으로 인한 녹 발생 정도 관찰Test Example 3 Observation of Rust Occurrence by Spray Application of Aqueous Sodium Chloride Solution

본 발명의 폴리머 시멘트 슬러리를 스티렌-아크릴산 부틸-1(St/BA-1), 스티렌-아크릴산 부틸-2(st/BA-2), 아크릴계 에멀젼(PA)으로 달리하여 제조하고, 이를 철근에 도포한 다음 양생을 마친 철근과 도포하지 않은 철근을 준비한다. 상기 철근에 수용액 분무장치를 사용하여 염화나트륨 10% 수용액을 일정한 양으로 철근 표면에 분무하고, 철근의 녹 발생 정도에 대해 도 2에 나타내었다. 이때, 시험기기의 조건은 1.0㎏/㎠ 분무압력으로, 습윤상태의 온도 47℃를 유지하여, 24시간, 48시간 분무 시험한다.The polymer cement slurry of the present invention is prepared by using styrene-butyl acrylate-1 (St / BA-1), styrene-butyl acrylate-2 (st / BA-2), or an acrylic emulsion (PA), and applying it to reinforcing bars. Then prepare hardened and uncoated bars. An aqueous solution spray device for the reinforcing bar was sprayed with a 10% aqueous solution of sodium chloride to the surface of the reinforcing bar, and the degree of rust generation of the bar is shown in FIG. At this time, the conditions of the test equipment is 1.0 kg / ㎠ spray pressure, maintaining the wet temperature of 47 ℃, spray test for 24 hours, 48 hours.

도2의 실험결과, 도포하지 않은 철근(Plain)은 24시간에는 78%, 48시간에는 100%의 녹이 발생한 반면, 본 발명의 폴리머 시멘트 슬러리로 도포한 철근은 약 3%정도로 녹이 발생하였다.As a result of the experiment of Figure 2, unapplied rebar (Plain) was rust of 78% at 24 hours, 100% at 48 hours, while rebar coated with the polymer cement slurry of the present invention was about 3% rust occurred.

시험예 4: 염분 침투 시험Test Example 4: Salt Penetration Test

본 발명의 폴리머 시멘트 슬러리를 스티렌-아크릴산 부틸-1(St/BA-1), 스티렌-아크릴산 부틸-2(st/BA-2), 아크릴계 에멀젼(PA)으로 달리하여 제조하고, 이를철근에 도포한 다음 양생을 마친 철근과 보통 철근에 대하여 염화나트륨(Nacl) 10% 수용액에서 침투 시험하여 녹 발생 정도에 대해 알아보았다.The polymer cement slurry of the present invention is prepared by differently using styrene-butyl acrylate-1 (St / BA-1), styrene-butyl acrylate-2 (st / BA-2), or acrylic emulsion (PA), which is applied to rebar. Then, the penetration rate of the cured and ordinary reinforcing bars in a 10% aqueous solution of sodium chloride (Nacl) was examined for rust formation.

염화나트륨 10% 수용액 침투 시험용 시편은 하기 도 3과 같이 물시멘트비30%, 시멘트:표준사=1:3(중량비)으로 배합하여 시멘트 모르타르를 준비하고, 상기 중앙에 폴리머 시멘트 조성물로 도포한 철근과 도포하지 않은 철근을넣어 시험편을 제작한다.Sodium chloride 10% aqueous solution penetration test specimen was prepared by mixing the cement ratio of 30% water cement: standard yarn = 1: 3 (weight ratio) as shown in Figure 3 below, the cement mortar, and coated with reinforcing bars coated with a polymer cement composition in the center Test pieces are made by inserting reinforcing bars.

상기 제작된 시험편을 28일간 양생한 후, 10기압에서 24시간 동안 염화나트륨 10% 수용액을 침투시키고, 시험편을 꺼내어 60℃에서 24시간 건조시켰다. 상기 과정을 각각 5회, 10회 반복시킨 후, 철근 표면의 녹 발생 정도에 대해 관찰하고, 그 결과를 도 4에 나타내었다.After curing the prepared test piece for 28 days, infiltrated with a 10% aqueous solution of sodium chloride for 24 hours at 10 atm, the test piece was taken out and dried at 60 ℃ for 24 hours. After repeating the above procedure 5 times and 10 times, the degree of rust generation on the surface of the rebar was observed, and the results are shown in FIG. 4.

도 4에 나타난 바와 같이, 5회, 10회 모두 도포하지 않은 철근의 부식은 현격하게 발견되었으나, 폴리머 시멘트 조성물로 도장한 철근은 녹의 발생이 아주 미미하게 나타남을 알 수 있다.As shown in FIG. 4, corrosion of reinforcing bars not applied to all five and ten times was found to be remarkable, but reinforcing bars coated with the polymer cement composition exhibited a slight occurrence of rust.

시험예 5: 중성화 촉진 시험Test Example 5: Neutralization Promotion Test

상기 시험예 4의 염분 침투 시험 후, 중성화 촉진 시험에 대한 녹 발생 정도를 알아보기 위해, 중성화 촉진 시험장치를 사용하여 온도 30℃, 습도 60% R.H, CO₂농도 5%의 조건으로 시험하고, 상기 과정을 각각 5회, 10회 반복시켜 그 결과를 도 5에 나타내었다.After the salt penetration test of Test Example 4, in order to determine the degree of rust generation for the neutralization promotion test, using a neutralization promotion test apparatus tested under the conditions of temperature 30 ℃, humidity 60% RH, CO 2 concentration 5%, The procedure was repeated five times and ten times, respectively, and the results are shown in FIG. 5.

도 5에 나타난 바와 같이, 도포하지 않은 철근은 녹의 발생이 크게 증가하였으나, 폴리머 시멘트 슬러로 도포한 철근은 아주 미세한 증가를 보였다.As shown in Figure 5, the unreinforced reinforcing bar significantly increased the occurrence of rust, the reinforcing bar coated with polymer cement sludge showed a very fine increase.

시험예 6: 오토클레비브 촉진 양생 시험Test Example 6: Autoclave accelerated curing test

본 발명의 폴리머 시멘트 슬러리를 스티렌-아크릴산 부틸-1(St/BA-1), 스티렌-아크릴산 부틸-2(st/BA-2), 아크릴계 에멀젼(PA)으로 달리하여 제조하고, 이를철근에 도포한 다음 양생을 마친 철근과 도포하지 않은 철근에 대하여 도 3과 같이 시험편을 제작하여 오토클레이브 촉진 양생에 의한 철근의 녹 발생 정도에 대해 알아보았다.The polymer cement slurry of the present invention is prepared by differently using styrene-butyl acrylate-1 (St / BA-1), styrene-butyl acrylate-2 (st / BA-2), or acrylic emulsion (PA), which is applied to rebar. Next, test specimens were prepared for the reinforcing bars and the non-coated bars as shown in FIG. 3 to examine the degree of rust generation of the bars due to autoclave-promoting curing.

상기 시험편 제작시, 염화나트륨을 잔골재의 절건중량에 대하여 0%, 0.02%, 0.04%, 0.1%, 0.135% 및 0.27% 혼입하고, 시험편 중앙에 폴리머 시멘트 조성물로 도포한 철근과 도포하지 않은 철근을 넣어 시험편을 제작하였다.When preparing the test piece, sodium chloride was mixed with 0%, 0.02%, 0.04%, 0.1%, 0.135% and 0.27% with respect to the dry weight of the fine aggregate, and the reinforcing bar coated with the polymer cement composition and the uncoated bar were placed in the center of the test piece. A test piece was produced.

상기 제작된 시험편을 28일 동안 양생하고, 오토클레이브 양생기를 이용하여 180℃, 10기압에서 도9와 같은 양생 방법으로 8회 실시하고, 그 결과를 도 6에 나타내었다.The prepared test piece was cured for 28 days, and was carried out eight times by the curing method as shown in FIG. 9 at 180 ° C. and 10 atm using an autoclave curing machine. The results are shown in FIG. 6.

도 6에 나타난 바와 같이, 도포하지 않은 보통 철근은 염분의 함유량이 증가하 수록 녹의 발생정도가 심한 반면, 폴리머 시멘트 슬러리로 도장한 철근은 염화나트륨 0.04% 이상일 때 약간의 녹이 발생하였으나, 그 정도는 아주 미세함을 알 수 있다.As shown in Figure 6, the unreinforced ordinary reinforcing bar is more severe in the occurrence of rust as the salt content increases, while the rebar coated with polymer cement slurry was slightly rust when the sodium chloride is more than 0.04%, but the degree is very The fineness can be seen.

이상에서 살펴본 바와 같이, 본 발명에 의한 시멘트 콘크리트 철근의 부식 방지를 위한 폴리머 시멘트을 철근 표면에 도포함으로서 내구성, 내충격성 및 부식 저항성을 향상시킨다. 또한, 상기 폴리머 시멘트 조성물을 도포한 철근과 해사를 제염처리 없이 시멘트 콘크리트 2차 제품에 사용하여 부식에 대한 저항성이 우수하면서, 제품의 수명을 크게 연장시키는 효과가 있다. 아울러, 해사를 그대로 사용함으로서 제염처리 시설 및 관리가 불필요하여 경제적인 효과가 있다.As described above, by coating the polymer cement for the corrosion protection of the cement concrete reinforcement according to the present invention on the surface of the reinforcement to improve the durability, impact resistance and corrosion resistance. In addition, the reinforcing bar and sea sand coated with the polymer cement composition are used in a cement concrete secondary product without decontamination, and thus, have excellent resistance to corrosion and greatly extend the life of the product. In addition, by using the sea as it is, there is no need for decontamination facilities and management, there is an economic effect.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구 범위에 의해 마련되는 본 발명의 정신이나 분야를 벗어나지 않는 한도 내에서본 발명이 다양하게 개조 및 변화될 수 있다는 것을 당업계에서 통상의 지식을 가진 자는 용이하게 알 수 있음을 밝혀두고자 한다.While the invention has been shown and described with respect to particular embodiments, it will be appreciated that the invention can be varied and modified without departing from the spirit or scope of the invention as set forth in the claims below. It will be appreciated that those skilled in the art can easily know.

Claims (4)

시멘트 , 폴리머 디스퍼션, 물로 조성된 코팅물에 있어서 , 폴리머 시멘트비를 50∼100%, 물시멘트비는 50∼ 200%,소포제는 폴리머고형분에 대하여 0.01∼0.15%로 하여 폴리머 시멘트 슬러리를 만들고 이를 원형 및 이형철근의 표면에 100㎛-500㎛로 도포, 양생하여 시멘트 콘크리트 철근의 부식을 방지하는 것을 특징으로 하는 도포방법.In coatings composed of cement, polymer dispersion, and water, the polymer cement ratio is 50 to 100%, the water cement ratio is 50 to 200%, and the antifoaming agent is 0.01 to 0.15% based on the polymer solids. The coating method characterized in that the coating on the surface of the deformed steel reinforcement with 100㎛-500㎛ to prevent corrosion of cement concrete rebar. 제 1항에 있어서,The method of claim 1, 상기 시멘트 혼화용 폴리머는 스틸렌 부다지엔 고무 라텍스(SBR), 폴리 아크릴산 에스테르(PAE), 에칠렌 비닐 아세테이트(EVA), 스티렌-아크릴산 부틸(St/BA), 아크릴계 에멀젼(PA), 에폭시 에멀젼 중에서 1종 내지 2종이상 혼합 사용하여 시멘트 콘크리트 철근의 부식을 방지하는 것을 특징으로 하는 도포방법.The cement admixture polymer is one of styrene butadiene rubber latex (SBR), polyacrylic acid ester (PAE), ethylene vinyl acetate (EVA), styrene-butyl acrylate (St / BA), acrylic emulsion (PA), epoxy emulsion The coating method characterized in that to prevent the corrosion of the cement concrete reinforcement using a mixture of two or more. 제 1항에 있어서,The method of claim 1, 소포제는 고급지방산아마이드, 고분자량의 폴리에틸렌글리콜(polyethylene glycol), 지방산저급알콜에텔, 폴리프로필렌글리콜(polypropylene glycol), 고급지방산의 에스테르아미드(ester amide), 유기인산에스텔, 고급지방산의 금속석검, 톨유, 실리콘계,비실리콘계,디메틸폴리실록산(dimethyl polysiloxane), 소수성실리카 광물유, 저급알콜 중에서 1종 내지 2종이상 혼합,사용하는 것을 특징으로 하는 시멘트 콘크리트 철근의 부식을 방지하는 것을 특징으로 하는 도포방법.Antifoaming agents include higher fatty acid amides, higher molecular weight polyethylene glycols, fatty acid lower alcohol ethers, polypropylene glycols, ester amides of higher fatty acids, organic phosphates, metal stone gums of higher fatty acids, and tall oils. , Silicone, non-silicone, dimethyl polysiloxane (dimethyl polysiloxane), hydrophobic silica mineral oil, a coating method, characterized in that to prevent corrosion of cement concrete reinforcement, characterized in that the mixture of one or two or more of the lower alcohol. 제1항에 있어서, 코팅물은 시멘트 10∼80 %, 폴리머 디스퍼션 10∼70%,물 10∼60% 조성하여 혼합하는 것을 특징으로 하는 시멘트 콘크리트 철근의 부식을 방지하는 것을 특징으로 하는 도포방법.The coating method according to claim 1, wherein the coating material is mixed with 10 to 80% of cement, 10 to 70% of polymer dispersion, and 10 to 60% of water. .
KR10-2002-0013311A 2002-03-12 2002-03-12 Polymer cement composition for preventing corrosion and coating method using it KR100466828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0013311A KR100466828B1 (en) 2002-03-12 2002-03-12 Polymer cement composition for preventing corrosion and coating method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0013311A KR100466828B1 (en) 2002-03-12 2002-03-12 Polymer cement composition for preventing corrosion and coating method using it

Publications (2)

Publication Number Publication Date
KR20030073649A true KR20030073649A (en) 2003-09-19
KR100466828B1 KR100466828B1 (en) 2005-01-17

Family

ID=32224455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0013311A KR100466828B1 (en) 2002-03-12 2002-03-12 Polymer cement composition for preventing corrosion and coating method using it

Country Status (1)

Country Link
KR (1) KR100466828B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670924B1 (en) * 2006-04-05 2007-01-19 (주)두영티앤에스 Composition of polymer cement paste and road pavement using the same
KR100791618B1 (en) * 2006-07-04 2008-01-03 조영국 Polymer cement paste and coating process thereof
KR100797757B1 (en) * 2006-11-20 2008-01-23 최대성 A composite of polymer cement mortar as a concrete surface finishing material and/or a concrete protection materials with water-proofing property and durability
KR100811802B1 (en) * 2006-08-14 2008-03-10 박석균 Rib materials for use in concrete reinforcing rod
KR100919428B1 (en) * 2007-03-02 2009-09-30 정경훈 a method for manufacturing of a channel block
KR100959764B1 (en) * 2010-02-23 2010-05-25 하태훈 Steel product having oxidation prevention layer
CN101633572B (en) * 2008-07-25 2013-03-06 深圳市海川实业股份有限公司 Modified cement mortar
CN104058656A (en) * 2014-05-30 2014-09-24 蚌埠华东石膏有限公司 Corrosion-resistant concrete and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975597B1 (en) 2010-03-10 2010-08-17 주식회사 이레하이테크이앤씨 Concrete composite containing hydrophobic polymer and repairing method of concrete structure using the composite
KR20230034499A (en) 2021-09-03 2023-03-10 한국해양대학교 산학협력단 concrete with seawater-seasand-polyethylene terephthalate and concrete composition thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136152A (en) * 1984-07-30 1986-02-20 ミサワホ−ム株式会社 Antirust composition for iron bar
KR940006419B1 (en) * 1990-12-29 1994-07-20 주식회사 금강 Composition of anticorrosive using autoclaved lightweight concrete
JPH07267703A (en) * 1994-03-29 1995-10-17 Asahi Bisou:Kk Admixture for concrete or mortar improved in waterproofness
KR0153086B1 (en) * 1995-12-06 1998-11-16 우덕창 An anticorrosion cement slurry containing cement and synthetic polymers
JP2001002460A (en) * 1999-06-18 2001-01-09 Ougi Seiko Kk Basic material coated with lightweight mortar and its production
KR100368880B1 (en) * 2000-04-18 2003-01-24 영진콘크리트(주) The method for lining of steel concrete pipe
KR100474166B1 (en) * 2001-10-15 2005-03-08 임기채 Method for carrying out water-proof and using thereof water-proof material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100670924B1 (en) * 2006-04-05 2007-01-19 (주)두영티앤에스 Composition of polymer cement paste and road pavement using the same
KR100791618B1 (en) * 2006-07-04 2008-01-03 조영국 Polymer cement paste and coating process thereof
KR100811802B1 (en) * 2006-08-14 2008-03-10 박석균 Rib materials for use in concrete reinforcing rod
KR100797757B1 (en) * 2006-11-20 2008-01-23 최대성 A composite of polymer cement mortar as a concrete surface finishing material and/or a concrete protection materials with water-proofing property and durability
KR100919428B1 (en) * 2007-03-02 2009-09-30 정경훈 a method for manufacturing of a channel block
CN101633572B (en) * 2008-07-25 2013-03-06 深圳市海川实业股份有限公司 Modified cement mortar
KR100959764B1 (en) * 2010-02-23 2010-05-25 하태훈 Steel product having oxidation prevention layer
CN104058656A (en) * 2014-05-30 2014-09-24 蚌埠华东石膏有限公司 Corrosion-resistant concrete and preparation method thereof

Also Published As

Publication number Publication date
KR100466828B1 (en) 2005-01-17

Similar Documents

Publication Publication Date Title
KR101832164B1 (en) Self-healing eco-friendly cement mortar composition for repairing structure and repairing method of structure therewith
KR101691845B1 (en) Mortar composition with cocos fiber for repairing concrete structure and repairing method of concrete structure therewith
KR101309612B1 (en) Composition for cross-section repairment of reinforced concrete structures and repairing method for cross-section of reinforced concrete structures using the same
KR101687672B1 (en) Coating material composition of improving chemical resistance and durability for protecting surface of concrete and steel structure, and construction method of protecting surface of concrete and steel structure using the same
KR100466828B1 (en) Polymer cement composition for preventing corrosion and coating method using it
KR101478946B1 (en) The waterproof construction method for concrete structure using the membrane agent
KR100220562B1 (en) Concrete composition
JP2020158371A (en) Polymer cement mortar and repair method of reinforced concrete
KR100791618B1 (en) Polymer cement paste and coating process thereof
KR100601882B1 (en) The concrete surface reinforcement and protect from burning construetion methodthereof
JP4593383B2 (en) Anticorrosive composite and process for producing the same
US10647616B2 (en) Non-invasive repair and retrofitting of hardened reinforced concrete structures
KR102600824B1 (en) Eco-friendly polymer mortar composition with high corrosion resistance, excellent workability and prevention of neutralization, and repair method of concrete section using the same
Yeomans Comparative studies of galvanized and epoxy coated steel reinforcement in concrete
CN113773686B (en) Preparation method and application of concrete wear-resistant corrosion inhibitor
CA2617163C (en) Cement-containing composition for use with alkali-resistant fiberglass and poles made therefrom
Jiesheng et al. Properties of polymer-modified mortar using silane as an integral additive
JP7014616B2 (en) Cement-based surface treatment materials, surface treatment materials, concrete structures, and concrete surface protection methods
KR102652036B1 (en) Repairing method of concrete structure using antimicrobial mortar
JP2009019354A (en) Repairing/reinforcing agent for concrete structure, and repairing/reinforcing method using the repairing/reinforcing agent
KR101750033B1 (en) Eco-friendly materials containing concrete surface treatment composition and surface treatment method using the same
KR20080071079A (en) Coating composition for surface treatment of concrete structure
RU2744612C2 (en) Surface-applied corrosion inhibitor
JP2012251055A (en) Epoxy resin composition
Bjegovic et al. Corrosion protection of existing concrete structures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130107

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191217

Year of fee payment: 16