KR20030057886A - Method of forming a isolation layer in semiconductor device - Google Patents

Method of forming a isolation layer in semiconductor device Download PDF

Info

Publication number
KR20030057886A
KR20030057886A KR1020010087988A KR20010087988A KR20030057886A KR 20030057886 A KR20030057886 A KR 20030057886A KR 1020010087988 A KR1020010087988 A KR 1020010087988A KR 20010087988 A KR20010087988 A KR 20010087988A KR 20030057886 A KR20030057886 A KR 20030057886A
Authority
KR
South Korea
Prior art keywords
forming
trench
layer
amorphous silicon
silicon layer
Prior art date
Application number
KR1020010087988A
Other languages
Korean (ko)
Other versions
KR100733693B1 (en
Inventor
한상규
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020010087988A priority Critical patent/KR100733693B1/en
Publication of KR20030057886A publication Critical patent/KR20030057886A/en
Application granted granted Critical
Publication of KR100733693B1 publication Critical patent/KR100733693B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE: A method for forming an isolation layer of a semiconductor device is provided to be capable of restraining moats from being generated at the corner portion of a trench by carrying out a rounding oxidation process after forming an amorphous silicon layer instead of a pad nitride layer. CONSTITUTION: After sequentially forming a pad oxide layer and an amorphous silicon layer on the upper portion of a semiconductor substrate(100), a plurality of trenches are formed at the resultant structure by selectively etching the resultant structure. An oxidation process is carried out for forming a wall oxide layer(108) and a silicon oxide layer at the inner surface of the trench and the amorphous silicon layer, respectively. After depositing a trench insulating layer on the resultant structure, the trench insulating layer is separated by carrying out a planarization process. After removing the amorphous silicon layer, a plurality of isolation layers(114) are formed by carrying out a cleaning process.

Description

반도체 소자의 소자 분리막 형성 방법{Method of forming a isolation layer in semiconductor device}Method of forming a isolation layer in semiconductor device

본 발명은 반도체 소자의 소자 분리막 형성 방법에 관한 것으로, 특히 STI(Shallow Trench Isolation) 구조에서 발생되는 모트(Moat)를 억제할 수 있는 반도체 소자의 소자 분리막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a device isolation film of a semiconductor device, and more particularly, to a method of forming a device isolation film of a semiconductor device capable of suppressing a moat generated in a shallow trench isolation (STI) structure.

일반적으로, 반도체 기판 상에 트랜지스터와 커패시터 등을 형성하기 위해 반도체 기판에는 전기적으로 통전이 가능한 활성 영역(Active Region)과 전기적으로 통전되는 것을 방지하고, 소자를 서로 분리하기 위한 소자 분리 영역(Isolation Region)을 형성한다.In general, in order to form transistors, capacitors, and the like on the semiconductor substrate, an isolation region for preventing electrically conduction from an electrically conducting active region and an isolation region for separating the elements from each other. ).

반도체 소자 분리 방법으로는 LOCOS(Local Oxidation Of Silicon) 소자 분리 방식이 이용되고 있다. LOCOS 소자 분리 방식은 질화막을 마스크로 해서 반도체 기판 자체를 열산화시키기 때문에 공정이 간소해서 산화막의 소자 응력 문제가 적고, 생성되는 산화막 질이 좋다는 큰 이점이 있다. 그러나, LOCOS 소자 분리 방식을 이용하면 소자 분리 영역이 차지하는 면적이 크기 때문에 미세화에 한계가 있을 뿐만 아니라, 버즈 비크(bird's beak)가 발생하는 문제가 있다.LOCOS (Local Oxidation Of Silicon) device isolation method is used as a semiconductor device isolation method. Since the LOCOS device isolation method thermally oxidizes the semiconductor substrate itself using a nitride film as a mask, the process is simple and there is a great advantage that the element stress problem of the oxide film is small, and the oxide film quality produced is good. However, when the LOCOS device isolation method is used, the area of the device isolation region is large, thereby limiting the miniaturization and causing a bird's beak.

이러한, 문제를 해결하기 위해 LOCOS 소자 분리 방식을 대체하는 소자 분리 기술로서 최근에는 0.25㎛ 테크놀로지(Technology) STI(Shallow Trench Isolation) 소자 분리 방식이 널리 사용되고 있다. STI 소자 분리 방식은 반응성 이온 식각(Reactive Ion Etching; RIE)이나 플라즈마 식각과 같은 건식 식각 기술을 사용하여 반도체 기판 내에 트랜치를 형성하고, 이 트랜치에 절연막을 채우는 방법으로, 반도체 기판 내에 트랜치를 만들어 절연물을 집어 넣기 때문에 버즈 비크와 관련된 문제가 없어진다. 또한, 절연막이 채워진 트랜치는 표면을 평탄하게 하므로 소자 분리 영역이 차지하는 면적이 작아서 미세화에 유리한 방법이다.In order to solve such a problem, a 0.25 μm technology STI (Shallow Trench Isolation) device isolation method has been widely used as a device isolation technology to replace the LOCOS device isolation method. STI device isolation is a method of forming trenches in a semiconductor substrate by using dry etching techniques such as reactive ion etching (RIE) or plasma etching, and filling the trench with an insulating film. The problem is eliminated because of the Buzz Beek. In addition, since the trench filled with the insulating film has a flat surface, the area occupied by the device isolation region is small, which is advantageous for miniaturization.

도 1a 내지 1g는 종래 기술에 따른 반도체 소자의 소자 분리막 형성 방법을 설명하기 위해 도시한 반도체 소자의 단면도이다.1A to 1G are cross-sectional views of a semiconductor device for explaining a method of forming a device isolation film of a semiconductor device according to the prior art.

도 1a를 참조하면, 반도체 기판(10) 상부 표면의 결정 결함 및 표면 처리를 위해 고온에서 건식 또는 습식 산화방식을 실시하여 반도체 기판(10) 상에 140Å의 두께로 패드 산화막(12)을 형성한다. 이어서, 상기 패드 산화막(12) 상에 LP-CVD(Low Pressure Chemical Vapor Deposition) 방법으로 1000Å 정도의 두께로 패드 질화막(14)을 형성한다. 한편, 반도체 기판(10)에 대해 패드 산화막(12)을 형성하기전 DHF(Diluted HF; 50:1의 비율로 H20로 희석된 HF용액)을 이용한 전처리 세정공정을 실시하여 반도체 기판(10)을 세정한다.Referring to FIG. 1A, a pad oxide film 12 is formed on the semiconductor substrate 10 to have a thickness of 140 Å by performing dry or wet oxidation at a high temperature for crystal defects and surface treatment of the upper surface of the semiconductor substrate 10. . Subsequently, the pad nitride layer 14 is formed on the pad oxide layer 12 by a low pressure chemical vapor deposition (LP-CVD) method with a thickness of about 1000 GPa. Before the pad oxide film 12 is formed on the semiconductor substrate 10, a pretreatment cleaning process using DHF (diluted HF; HF solution diluted with H 2 0 at a ratio of 50: 1) is performed to perform the semiconductor substrate 10. )).

도 1b를 참조하면, 아이솔레이션(ISO) 마스크를 이용한 STI 공정을 실시하여 상기 패드 질화막(14) 및 패드 산화막(12)을 포함한 반도체 기판(10)의 소정 부위를 식각하여 반도체 기판(10) 내에 3500Å의 깊이로 트랜치(16)를 형성한다. 이로써, 반도체 기판(10)은 활성 영역과 소자 분리 영역으로 분리된다.Referring to FIG. 1B, a predetermined portion of the semiconductor substrate 10 including the pad nitride layer 14 and the pad oxide layer 12 is etched by performing an STI process using an isolation (ISO) mask to produce 3500 내에 in the semiconductor substrate 10. Form trench 16 to a depth of. As a result, the semiconductor substrate 10 is separated into an active region and an element isolation region.

도 1c를 참조하면, 트랜치(16) 저면의 모서리 부위와 패드 산화막(12)과 접촉되는 모서리 부위를 라운딩(Rounding) 처리하기 위해 건식 또는 습식 산화방식으로 트랜치(16)의 내부면의 실리콘을 산화시켜 월 산화막(18)을 형성한다. 한편, 월산화막(18)을 형성하기 전에 트랜치(16)의 내부면에 형성된 자연산화막을 제거하기 위해 DHF 용액을 이용한 전처리 세정공정을 실시한다.Referring to FIG. 1C, silicon of the inner surface of the trench 16 is oxidized by dry or wet oxidation to round the corner portions of the bottom surface of the trench 16 and the corner portions contacting the pad oxide layer 12. To form a month oxide film 18. Meanwhile, before forming the monthly oxide film 18, a pretreatment cleaning process using a DHF solution is performed to remove the native oxide film formed on the inner surface of the trench 16.

도 1d 및 1e를 참조하면, 전체 구조 상부에 트랜치(16) 내부에 보이드(Void)가 발생하지 않도록 갭 필링(Gap filling) 공정으로 실시하여 HDP(High Density Plasma) 산화막(20)을 형성한다. 이어서, 패드 질화막(14)을 식각 베리어층(Stop barrier)으로 평탄화 공정(CMP; Chemical mechanical pholishing)을 실시하여 HDP 산화막(20)을 연마하여 패드 질화막(14)을 경계로 HDP 산화막(20)을 고립시킨다.1D and 1E, the HDP (High Density Plasma) oxide film 20 is formed by performing a gap filling process so that voids do not occur inside the trench 16 over the entire structure. Subsequently, the pad nitride layer 14 is subjected to a planarization process (CMP; chemical mechanical pholishing) with an etch barrier layer, thereby polishing the HDP oxide layer 20 so that the HDP oxide layer 20 is bordered on the pad nitride layer 14. Isolate.

도 1f 및 1g를 참조하면, 전체 구조 상부에 패드 산화막(12)을 식각 베리어층으로 H3PO4(인산) 딥 아웃(Dip out)을 이용한 스트립공정을 실시하여 패드 질화막(14)을 제거한다. 이로써, 상부 구조가 돌출 형태를 갖는 HDP 산화막(20)이 형성된다. 이어서, 전체 구조 상부에 HF 딥 아웃을 이용한 세정공정을 실시하여 패드 산화막(12)을 제거하는 동시에 HDP 산화막(20)의 돌출부를 소정 폭을 갖도록 식각하여 소자 분리막(22)을 형성한다.Referring to FIGS. 1F and 1G, the pad nitride layer 14 is removed by using a pad oxide layer 12 on the entire structure by using H 3 PO 4 (phosphate) dip out as an etch barrier layer. . As a result, the HDP oxide film 20 having the upper structure protruding is formed. Subsequently, a cleaning process using an HF dip out is performed on the entire structure to remove the pad oxide layer 12 and to etch the protrusion of the HDP oxide layer 20 to have a predetermined width to form the device isolation layer 22.

이와 같이, 종래 기술의 STI 소자 분리 방식에서는 모든 공정 전에 HF 용액을 이용한 전처리 세정공정이 실시됨에 따라 트랜치 모서리 부위의 HDP 산화막이 오버 식각(Over Etch)되어 침식되는 현상이 발생한다. 이렇게 침식된 트랜치 모서리 부위로 전기장(Electric Field; EF)이 집중되어 소자의 비정상적인 동작, 예를 들어, 험프(Hump) 및 역 좁은 폭 효과(Inverse narrow width effect)를 유발한다.As described above, in the prior art STI device isolation method, as the pretreatment cleaning process using the HF solution is performed before all the processes, the HDP oxide layer of the trench edge portion is over-etched and eroded. The electric field (EF) is concentrated at the eroded trench edges, causing abnormal operation of the device, for example, the Hump and Inverse narrow width effects.

따라서, 본 발명은 상기의 문제를 해결하기 위해 안출된 것으로, 아이솔레이션(Isolation)을 위해 사용되는 패드 질화막 대신에 비정질 실리콘층을 형성한 후 라운딩 산화공정을 실시하여 트랜치 모서리 부위의 실리콘을 충분히 산화시켜 트렌치 모서리 부위에서 발생하는 모트(Moat)를 억제함으로써 소자의 비 정상적인 동작에 따른 소자 특성을 개선할 수 있는 반도체 소자의 소자 분리막 형성 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problem, and instead of forming a pad nitride film used for isolation, an amorphous silicon layer is formed, followed by a rounding oxidation process to sufficiently oxidize silicon in the trench corners. It is an object of the present invention to provide a method for forming a device isolation layer of a semiconductor device capable of improving device characteristics due to abnormal operation of the device by suppressing a moat generated at a corner of a trench.

도 1a 내지 1g는 종래 기술에 따른 반도체 소자의 소자 분리막 형성 방법을 설명하기 위해 도시한 반도체 소자의 단면도이다.1A to 1G are cross-sectional views of a semiconductor device for explaining a method of forming a device isolation film of a semiconductor device according to the prior art.

도 2a 내지 2g는 본 발명에 따른 반도체 소자의 소자 분리막 형성 방법을 설명하기 위해 도시한 반도체 소자의 단면도이다.2A through 2G are cross-sectional views of a semiconductor device for explaining the method of forming a device isolation film of the semiconductor device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10, 100 : 반도체 기판 12, 102 : 패드 산화막10, 100: semiconductor substrate 12, 102: pad oxide film

14 : 패드 질화막 16, 106 : 트랜치14 pad nitride film 16, 106 trench

18, 108 : 월 산화막 20, 112 : HDP 산화막18, 108: month oxide film 20, 112: HDP oxide film

22, 114 : 소자 분리막 104 : 비정질 실리콘층22, 114: device isolation film 104: amorphous silicon layer

110 : 실리콘 산화막110: silicon oxide film

본 발명은 반도체 기판 상에 패드 산화막을 형성하는 단계; 상기 패드 산화막 상에 비정질 실리콘층을 형성하는 단계; 상기 반도체 기판에 트랜치를 형성하는 단계; 상기 트랜치의 내부면과 상기 비정질 실리콘층에 산화막을 형성하기 위해 산화공정을 실시하는 단계; 전체 구조 상부에 트랜치 절연막을 증착한 후 평탄화 공정을 실시하여 상기 트랜치 절연막을 고립시키는 단계; 및 상기 비정질 실리콘층을 제거한 후 세정공정을 실시하여 소자 분리막을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다.The present invention comprises the steps of forming a pad oxide film on a semiconductor substrate; Forming an amorphous silicon layer on the pad oxide film; Forming a trench in the semiconductor substrate; Performing an oxidation process to form an oxide film on the inner surface of the trench and the amorphous silicon layer; Depositing a trench insulating film over the entire structure and performing a planarization process to isolate the trench insulating film; And removing the amorphous silicon layer to perform a cleaning process to form an isolation layer.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2g는 본 발명의 실시예에 따른 STI 소자 분리 방식을 이용한 반도체 소자의 소자 분리막 형성 방법을 설명하기 위해 도시한 반도체 소자의 단면도이다2A through 2G are cross-sectional views of a semiconductor device for explaining a method of forming a device isolation layer of a semiconductor device using an STI device isolation method according to an exemplary embodiment of the present invention.

도 2a를 참조하면, 반도체 기판(100) 상부 표면의 결정 결함 및 표면 처리를 위해 고온에서 건식 또는 습식 산화방식을 실시하여 반도체 기판(100) 상에 80Å 내지 200Å의 두께로 패드 산화막(12)을 형성한다. 이어서, 상기 패드 산화막(12) 상에 반도체 기판(100)의 실리콘(Si)보다 산화율(Oxidation Rate)이 빠른 비정질 실리콘층(104)을 1200 내지 2000Å의 두께로 형성한다.Referring to FIG. 2A, the pad oxide layer 12 is formed on the semiconductor substrate 100 at a thickness of 80 kPa to 200 kPa by performing a dry or wet oxidation method at a high temperature for crystal defects and surface treatment of the upper surface of the semiconductor substrate 100. Form. Subsequently, an amorphous silicon layer 104 having an oxidation rate faster than that of silicon (Si) of the semiconductor substrate 100 is formed on the pad oxide layer 12 to a thickness of 1200 to 2000 GPa.

한편, 반도체 기판(100)에 대해 패드 산화막(102)을 형성하기전 DHF(Diluted HF; 50:1의 비율로 H20로 희석된 HF용액)을 이용한 전처리 세정공정을 실시하여 반도체 기판(100)을 세정한다.Before the pad oxide layer 102 is formed on the semiconductor substrate 100, a pretreatment cleaning process using DHF (Diluted HF; HF solution diluted with H 2 0 at a ratio of 50: 1) is performed to perform the semiconductor substrate 100. )).

도 2b를 참조하면, 아이솔레이션(ISO) 마스크를 이용한 STI 공정을 실시하여 상기 비정질 실리콘층(104) 및 패드 산화막(102)을 포함한 반도체 기판(100)의 소정 부위를 식각하여 반도체 기판(100) 내에 3500Å의 깊이로 트랜치(106)를 형성한다. 이로써, 반도체 기판(100)은 활성 영역과 소자 분리 영역으로 분리된다.Referring to FIG. 2B, a predetermined portion of the semiconductor substrate 100 including the amorphous silicon layer 104 and the pad oxide layer 102 is etched by performing an STI process using an isolation (ISO) mask to etch the inside of the semiconductor substrate 100. The trench 106 is formed to a depth of 3500 kPa. As a result, the semiconductor substrate 100 is separated into an active region and a device isolation region.

도 2c를 참조하면, 트랜치(106) 저면의 모서리 부위와 패드 산화막(102)과 접촉되는 모서리 부위를 라운딩(Rounding) 처리하여 200Å의 두께로 측벽 산화막(108)을 형성하는 동시에 상기 비정질 실리콘층(104) 상에 실리콘 산화막(110)을 형성하기 위해 산소(O2)를 이용한 건식 산화방식을 실시한다. 한편,측벽 산화막(108)을 형성하기 전에 트랜치(106)의 내부면에 형성된 자연산화막을 제거하기 위해 DHF 용액을 이용한 전처리 세정공정을 실시한다.Referring to FIG. 2C, the edge portion of the bottom surface of the trench 106 and the edge portion in contact with the pad oxide layer 102 are rounded to form a sidewall oxide layer 108 having a thickness of 200 μs. In order to form the silicon oxide film 110 on the 104, a dry oxidation method using oxygen (O 2 ) is performed. On the other hand, before the side wall oxide film 108 is formed, a pretreatment cleaning process using a DHF solution is performed to remove the native oxide film formed on the inner surface of the trench 106.

도 2d를 참조하면, 전체 구조 상부에 트랜치(106) 내부에 보이드(Void)가 발생하지 않도록 HDPCVD(High Density Plasma Chemical Vapor Deposition) 방식으로 갭 필링(Gap filling)하여 트랜치 절연막용으로 HDP(High Density Plasma) 산화막(112)을 형성한다.Referring to FIG. 2D, gap filling is performed by HDPCVD (High Density Plasma Chemical Vapor Deposition) to prevent voids from occurring in the trench 106 in the upper portion of the entire structure. Plasma) oxide film 112 is formed.

도 2e를 참조하면, CMP(Chemical mechanical pholishing)를 이용한 평탄화 공정을 실시하여 비정질 실리콘층(104)이 600 내지 1400Å의 두께로 잔재하도록 HDP 산화막(112), 실리콘 산화막(110) 및 비정질 실리콘층(104)을 연마하여 비정질 실리콘층(104)을 경계로 HDP 산화막(112)을 고립시킨다.Referring to FIG. 2E, the planarization process using chemical mechanical pholishing (CMP) is performed to leave the amorphous silicon layer 104 at a thickness of 600 to 1400 Pa. 104 is polished to isolate the HDP oxide film 112 at the boundary of the amorphous silicon layer 104.

도 2f를 참조하면, 전체 구조 상부에 패드 산화막(102)을 식각 베리어층으로 H3PO4(인산) 딥 아웃(Dip out)을 이용한 스트립공정을 실시하여 비정질 실리콘층(104)을 제거한다. 이로써, 상부 구조가 돌출 형태를 갖는 HDP 산화막(112)이 형성된다.Referring to FIG. 2F, the amorphous silicon layer 104 is removed by performing a strip process using a H 3 PO 4 (phosphate) dip out as an etch barrier layer using the pad oxide layer 102 on the entire structure. As a result, the HDP oxide film 112 having the upper structure protruding is formed.

도 2g를 참조하면, 전체 구조 상부에 HF 딥 아웃을 이용한 세정공정을 실시하여 패드 산화막(102)을 제거하는 동시에 HDP 산화막(112)의 돌출부를 식각하여 도시된 'B'와 같은 프로파일(Profile)을 갖는 소자 분리막(114)을 형성한다.Referring to FIG. 2G, a cleaning process using HF dip out is performed on the entire structure to remove the pad oxide layer 102 and simultaneously etch a protrusion of the HDP oxide layer 112. An isolation film 114 having a film is formed.

상기에서 설명한 바와 같이, 본 발명은 아이솔레이션(Isolation)을 위해 사용되는 패드 질화막 대신에 비정질 실리콘층을 형성한 후 라운딩 산화공정을 실시하여 트랜치 모서리 부위의 실리콘을 충분히 산화시켜 트렌치 모서리 부위에서 발생하는 모트(Moat)를 억제함으로써 소자의 비 정상적인 동작에 따른 소자 특성을 개선할 수 있다.As described above, the present invention forms an amorphous silicon layer instead of the pad nitride film used for isolation, and then performs a rounding oxidation process to sufficiently oxidize silicon in the trench corners to generate a mortity in the trench corners. By suppressing (Moat), it is possible to improve device characteristics due to abnormal operation of the device.

Claims (7)

반도체 기판 상에 패드 산화막을 형성하는 단계;Forming a pad oxide film on the semiconductor substrate; 상기 패드 산화막 상에 비정질 실리콘층을 형성하는 단계;Forming an amorphous silicon layer on the pad oxide film; 상기 반도체 기판에 트랜치를 형성하는 단계;Forming a trench in the semiconductor substrate; 상기 트랜치의 내부면과 상기 비정질 실리콘층에 산화막을 형성하기 위해 산화공정을 실시하는 단계;Performing an oxidation process to form an oxide film on the inner surface of the trench and the amorphous silicon layer; 전체 구조 상부에 트랜치 절연막을 증착한 후 평탄화 공정을 실시하여 상기 트랜치 절연막을 고립시키는 단계; 및Depositing a trench insulating film over the entire structure and performing a planarization process to isolate the trench insulating film; And 상기 비정질 실리콘층을 제거한 후 세정공정을 실시하여 소자 분리막을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 소자 분리막 형성 방법.And removing the amorphous silicon layer to perform a cleaning process to form a device isolation film. 제 1 항에 있어서,The method of claim 1, 상기 비정질 실리콘층은 1200 내지 2000Å의 두께로 형성되는 것을 특징으로 하는 반도체 소자의 소자 분리막 형성 방법.The amorphous silicon layer is a device isolation film forming method of a semiconductor device, characterized in that formed in a thickness of 1200 to 2000Å. 제 1 항에 있어서,The method of claim 1, 상기 산화공정은 산소를 이용한 건식 산화방식으로 실시하는 것을 특징으로 하는 반도체 소자의 소자 분리막 형성 방법.The oxidation process is a device isolation film forming method of a semiconductor device, characterized in that the dry oxidation method using oxygen. 제 1 항에 있어서,The method of claim 1, 상기 산화막은 상기 세정공정시 상기 트랜치 절연막에 모트가 형성되지 않도록 200Å의 두께로 형성되는 것을 특징으로 하는 반도체 소자의 소자 분리막 형성 방법.And the oxide film is formed to a thickness of 200 Å so that no mott is formed in the trench insulating film during the cleaning process. 제 1 항에 있어서,The method of claim 1, 상기 트랜치 절연막은 상기 트랜치 내부에 보이드가 발생하지 않도록 HDPCVD방식으로 갭 필링하여 형성된 HDP 산화막으로 이루어지는 것을 특징으로 하는 반도체 소자의 소자 분리막 형성 방법.And the trench insulating layer is formed of an HDP oxide film formed by gap filling by an HDPCVD method so that voids do not occur in the trench. 제 1 항에 있어서,The method of claim 1, 상기 평탄화 공정은 CMP 공정을 이용하여 상기 비정질 실리콘층이 600 내지 1400Å의 두께로 잔재하도록 실시하는 것을 특징으로 하는 반도체 소자의 소자 분리막 형성 방법.And the planarization process is performed such that the amorphous silicon layer remains at a thickness of 600 to 1400 kV using a CMP process. 제 1 항에 있어서,The method of claim 1, 상기 비정질 실리콘층 제거공정은 상기 패드 산화막을 식각 베리어층으로 H3PO4딥 아웃을 이용한 스트립공정으로 실시하는 것을 특징으로 하는 반도체 소자의 소자 분리막 형성 방법.The amorphous silicon layer removing process is a method of forming a device isolation film of a semiconductor device, characterized in that the pad oxide film is an etching barrier layer using a strip process using H 3 PO 4 deep out.
KR1020010087988A 2001-12-29 2001-12-29 Method of forming a isolation layer in semiconductor device KR100733693B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010087988A KR100733693B1 (en) 2001-12-29 2001-12-29 Method of forming a isolation layer in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010087988A KR100733693B1 (en) 2001-12-29 2001-12-29 Method of forming a isolation layer in semiconductor device

Publications (2)

Publication Number Publication Date
KR20030057886A true KR20030057886A (en) 2003-07-07
KR100733693B1 KR100733693B1 (en) 2007-06-28

Family

ID=32215644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010087988A KR100733693B1 (en) 2001-12-29 2001-12-29 Method of forming a isolation layer in semiconductor device

Country Status (1)

Country Link
KR (1) KR100733693B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519648B1 (en) * 2003-12-10 2005-10-07 동부아남반도체 주식회사 Method For Manufacturing Semiconductor Devices
KR100671667B1 (en) * 2004-06-14 2007-01-18 주식회사 하이닉스반도체 Method of forming an isolation layer in a semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0146629B1 (en) * 1994-12-29 1998-11-02 김주용 Method for forming field oxide film of semiconductor device
KR19980084300A (en) * 1997-05-22 1998-12-05 윤종용 Device isolation film formation method using a reflection suppression film
KR100318461B1 (en) * 1998-10-13 2002-02-19 박종섭 Semiconductor device isolation method
KR100559042B1 (en) * 1999-10-07 2006-03-10 주식회사 하이닉스반도체 Method of shallow trench isolation film in a semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519648B1 (en) * 2003-12-10 2005-10-07 동부아남반도체 주식회사 Method For Manufacturing Semiconductor Devices
KR100671667B1 (en) * 2004-06-14 2007-01-18 주식회사 하이닉스반도체 Method of forming an isolation layer in a semiconductor device

Also Published As

Publication number Publication date
KR100733693B1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
US6191000B1 (en) Shallow trench isolation method used in a semiconductor wafer
KR20010046153A (en) Method of manufacturing trench type isolation layer in semiconductor device
KR100733693B1 (en) Method of forming a isolation layer in semiconductor device
KR100559590B1 (en) Method for forming device isolation layer of semiconductor device
KR20010068644A (en) Method for isolating semiconductor devices
KR100895824B1 (en) Method for forming isolation layer of semiconductor device
KR20000044885A (en) Method for forming isolation film of semiconductor device
KR100455093B1 (en) Method of forming an isolation layer in a semiconductor device
KR100779398B1 (en) Method of forming a device isolation film in a semiconductor device
KR19980060506A (en) Device Separator Formation Method of Semiconductor Device
KR100944667B1 (en) Method for preventing edge moat of sti
KR20030052663A (en) method for isolating semiconductor device
KR20040059998A (en) Method for manufacturing isolation layer in semiconductor device
KR100561974B1 (en) A Manufacturing Method of Semiconductor Element
KR100289658B1 (en) Semiconductor Device Separation Method
KR20010002305A (en) Shallow trench isolation manufacturing method
KR100750047B1 (en) Method for manufacturing an isolation layer in a semiconductor device
KR100430582B1 (en) Method for manufacturing semiconductor device
KR20000045908A (en) Method for forming device isolation layer of trench structure of semiconductor device
KR20080062560A (en) Method for forming isolation to semiconductor device
KR20050012652A (en) Method for forming element isolation layer of semiconductor device
KR19990000070A (en) Device Separation Method of Semiconductor Device
KR20040004876A (en) Method for forming trench type isolation layer in semiconductor device
KR20050063338A (en) Method for manufacturing isolation of semiconductor device
KR20000045911A (en) Forming method of isolation layer having consolidated structure of locos and trench

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140519

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee