KR20030053139A - Method for manufacturing non-oriented electrical steel sheet with low iron loss - Google Patents

Method for manufacturing non-oriented electrical steel sheet with low iron loss Download PDF

Info

Publication number
KR20030053139A
KR20030053139A KR1020010083190A KR20010083190A KR20030053139A KR 20030053139 A KR20030053139 A KR 20030053139A KR 1020010083190 A KR1020010083190 A KR 1020010083190A KR 20010083190 A KR20010083190 A KR 20010083190A KR 20030053139 A KR20030053139 A KR 20030053139A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
annealing
iron loss
temperature
Prior art date
Application number
KR1020010083190A
Other languages
Korean (ko)
Other versions
KR100544584B1 (en
Inventor
배병근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010083190A priority Critical patent/KR100544584B1/en
Publication of KR20030053139A publication Critical patent/KR20030053139A/en
Application granted granted Critical
Publication of KR100544584B1 publication Critical patent/KR100544584B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for manufacturing non-oriented electrical steel sheet with low iron loss suitable for use in the manufacture of motor and transformer is provided. CONSTITUTION: The method includes the steps of heating a steel slab comprising 0.008 wt.% or less of C, 3.5 wt.% or less of Si, 0.6 wt.% or less of Mn, 0.15 wt.% or less of P, 0.01 wt.% or less of S, Al 0.15 to 1.5 wt.%, 0.004 wt.% or less of N, 0.005 wt.% or less of O, a balance of Fe and incidental impurities; hot rolling the steel slab in ferrite phase region; coiling the hot rolled steel sheet at 550 to 750°C; annealing the hot coil at 800 to 1000 deg.C, followed by pickling; cold rolling the steel sheet; reheating the cold rolled steel sheet to the temperature range of 700 to 1050 deg.C at a temperature elevation rate of 10 to 35 deg.C/sec; and annealing it within the temperature range of 700 to 1050 deg.C.

Description

저 철손 무방향성 전기강판의 제조방법{Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss}Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss

본 발명은 모터, 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판의 제조방법에 관한 것으로서, 보다 상세하게는, 철손이 낮은 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing non-oriented electrical steel sheet used as an iron core of an electric device such as a motor, a transformer, and more particularly, to a method for manufacturing a non-oriented electrical steel sheet with low iron loss.

무방향성 전기강판은 전기기기에서 철심으로 가공되어 전기에너지가 운동에너지 등으로 변환되는데 사용되며, 이때 전량 운동에너지 등으로 원하는 용도로 사용되지 못하고 손실이 발생된다.Non-oriented electrical steel sheet is used to convert the electrical energy into kinetic energy, etc. is processed into an iron core in the electric equipment, at this time, the total amount of kinetic energy, etc. can not be used for the intended use and loss occurs.

이러한 손실은 모터 전체의 손실중 철심에 의해 발생될 경우 철손으로 평가될 수 있다.This loss can be assessed as iron loss if it is caused by an iron core during the loss of the entire motor.

무방향성 전기강판에서 철손은 결정립의 크기에 가장 큰 영향을 받는다.Iron loss in non-oriented electrical steel sheet is most affected by grain size.

결정립이 크게 성장되면 철손중 이력손실이 낮아져 동일한 성분의 강에서도 철손이 낮아질 수 있다.Large grain growth results in lower hysteresis losses in iron loss, which can lead to lower iron losses in steels of the same composition.

저 철손 무방향성 전기강판과 관련하여 일본 특허공개 (소) 63-137122호에는 냉간압연판을 소둔한 후 냉각시 냉각속도를 10℃/sec로 실시하는 방법이 제시되어 있다.In connection with low iron loss non-oriented electrical steel sheet, Japanese Patent Laid-Open No. 63-137122 discloses a method of performing a cooling rate of 10 ° C./sec upon cooling after annealing a cold rolled sheet.

그러나, 이 방법의 경우에는 냉각 장치가 길어야 함으로 한정된 공간에서는 적용하기 어렵고, 생산성이 떨어지는 문제점이 있다.However, this method is difficult to apply in a limited space because the cooling device must be long, there is a problem that the productivity is low.

또한, 일본특허공개 소61-136626호에는 성분중 sol.Al을 0.009~0.1%로 제어하는 방법에 제시되어 있다.In addition, Japanese Patent Laid-Open No. 61-136626 discloses a method of controlling sol.Al in the component to 0.009 to 0.1%.

그러나, 이 방법에 제어하고 있는 Al의 범위에서는 Al과 N가 결합하여 AlN의 석출물을 만들어 결정립성장을 억제할 수 있다.However, in the range of Al controlled by this method, Al and N combine to form precipitates of AlN, which can suppress grain growth.

본 발명자는 상기한 종래기술의 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 N과의 결합관계를 고려하여 Al의 량을 적절히 제어하고 적절한 제조조건으로 처리하므로써 보다 낮은 저 철손 무방향성 전기강판을 제조하는 방법을 제공하고자 하는데, 그 목적이 있는 것이다.The present inventors have conducted research and experiments to solve the above problems of the prior art, and based on the results, the present invention has been proposed, and the present invention properly controls the amount of Al in consideration of the coupling relationship with N and It is an object of the present invention to provide a method for manufacturing a low iron loss non-oriented electrical steel sheet by treating with an appropriate manufacturing condition.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로 C:0.008%이하, Si:3.5%이하, Mn:0.6%이하, P:0.15%이하, S:0.01%이하, Al:0.15~1.5%, N:0.004%이하, O:0.005%이하, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되는 슬라브를 가열하고, 페라이트상에서 열간압연하고, 550~750℃의 온도에서 권취한 다음, 열연판을 소둔하고 산세한 후, 냉간압연하거나 열연판 소둔없이 열연판을 산세하고 냉간압연한 다음, 냉연판을 10~35℃/sec의 승온(가열)속도로 700~1050℃의 온도로 가열하여 이 온도범위에서 소둔하여 저 철손 무방향성 전기강판을 제조하는 방법에 관한 것이다.In the present invention, C: 0.008% or less, Si: 3.5% or less, Mn: 0.6% or less, P: 0.15% or less, S: 0.01% or less, Al: 0.15 to 1.5%, N: 0.004% or less, O : Less than 0.005%, the slab composed of the balance Fe and other inevitable impurities are heated, hot rolled on ferrite, wound at a temperature of 550-750 ° C., followed by annealing and pickling, followed by cold rolling. The hot rolled plate is pickled and cold rolled without hot annealing, and then the cold rolled plate is heated to a temperature of 700 to 1050 ° C. at an elevated temperature (heating) rate of 10 to 35 ° C./sec, and then annealed in this temperature range to prevent low iron loss It relates to a method of manufacturing electrical steel sheet.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에서는 Si함량을 3.5%이하로 하고, 자성을 크게 향상시키는 Al을 첨가하되, N와 결합하여 미세한 석출물인 AlN을 만들지 않는 Al의 함량을 설정한 것이다.In the present invention, the Si content is 3.5% or less, and Al is added to greatly improve the magnetism, but the content of Al which does not form AlN as a fine precipitate by combining with N is set.

또한, 본 발명에서는 제조조건중에서 열간압연중에 결정립을 조대화할 수 있는 방법을 제안하고, 열간압연후 권취온도를 조정하여 결정립성장을 최대화 한 것이다.In addition, the present invention proposes a method of coarsening grains during hot rolling in manufacturing conditions, and maximizes grain growth by adjusting the coiling temperature after hot rolling.

마지막으로, 본 발명에서는 냉간압연판을 소둔시 소둔조건을 조절하여 제품의 결정립을 최대화할 수 있도록 한다.Finally, in the present invention, by controlling the annealing conditions during annealing the cold rolled plate to maximize the grains of the product.

본 발명자들은 열간압연시 페라이트상에서 열간압연하고, 열연판을 권취시 본 성분계에 맞는 권취온도범위를 찾고, 냉연판 소둔시 승온속도(소둔속도)를 높게 설정함으로서 결정립을 조대화 할 수 있음을 확인하였다.The present inventors have confirmed that the crystal grains can be coarsened by hot rolling on a ferrite phase during hot rolling, finding a winding temperature range suitable for this component system when winding the hot rolled sheet, and setting a high temperature rising rate (annealing rate) during cold annealing. It was.

이하, 본 발명의 강 성분계의 수치한정이유등에 대하여 설명한다.The reason for numerical limitation of the steel component system of the present invention will be described below.

상기 C은 최종제품에서 자기시효를 일으켜서 사용중 자기적 특성을 저하시키므로 슬라브에서는 0.008%이하로 하되, 바람직하게는 0.005%이하로 하며, 제품에서는 0.003%이하로 한다.The C is less than 0.008% in the slab, preferably less than 0.005%, and less than 0.003% in the product because it causes magnetic aging in the final product to reduce the magnetic properties during use.

상기 Si은 비저항을 증가시켜 철손중 와류손실을 낮추는 원소로서, 압연성을 고려하여 3.5%이하로 첨가하는 것이 바람직하다.The Si is an element that increases the specific resistance to lower the eddy current loss during iron loss, it is preferable to add less than 3.5% in consideration of the rolling property.

상기Mn은 많이 첨가하여도 자성을 향상시키지 않으므로 S와 결합하여 미세한 석출물인 MnS를 형성함으로 그 첨가량은 0.6%이하로 억제하는 것이 바람직하다.Since the Mn does not improve the magnetism even when a large amount of Mn is added, it is preferable to suppress the addition amount to 0.6% or less by combining with S to form a fine precipitate, MnS.

상기 P는 타발가공성을 향상시킴으로 0.15%이하로 첨가할 수 있다.The P may be added to 0.15% or less by improving punchability.

상기 S는 미세한 석출물인 MnS를 형성하여 자기적 성질에 나쁜 영향을 미치므로 0.01%이하로 함유토록 하는 것이 바람직하다.S forms a fine precipitate, MnS, which adversely affects its magnetic properties, so it is preferably contained at 0.01% or less.

보다 바람직하게는 0.003%이하로 함유토록 한다.More preferably, the content is 0.003% or less.

상기 Al은 비저항을 증가시켜 와류손실을 낮추는 역할을 하는 원소로서, AlN의 미세한 석출물 형성을 억제하기 위하여 0.15%이상 첨가하며, 너무 많이 첨가하여도 효과의 증가가 적으므로, 그 함량은 0.15~1.5%로 한정하는 것이 바람직하다.The Al is an element that increases the specific resistance and lowers the vortex loss, and is added in an amount of 0.15% or more in order to suppress the formation of fine precipitates of AlN. It is preferable to limit to%.

상기 N는 미세하고 긴 AlN석출물을 형성함으로 가능한한 억제하며, 본 발명에서는 0.004%이하로 한정하는 것이 바람직하다. 보다 바람직하게는 0.0015%이하로 한다. 상기 O는 강중에서 산화물을 형성하여 불순물로 잔존하게 됨으로서 결정립의 성장을 억제한다.N is suppressed as much as possible by forming a fine and long AlN precipitate, in the present invention is preferably limited to 0.004% or less. More preferably, it is 0.0015% or less. O forms an oxide in the steel and remains as an impurity, thereby inhibiting the growth of crystal grains.

본 발명에서는 Al에 의한 탈산으로 크게 줄어들 수 있으며, O의 함량은 0.005%이하로 한다. 보다 바람직하게는 O의 함량은 0.0020%이하로 한다.In the present invention can be greatly reduced by the deoxidation by Al, the content of O is less than 0.005%. More preferably, the content of O is made 0.0020% or less.

이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated.

상기와 같이 조성되는 강 슬라브는 제강공정에서 용융된 강으로 제조된 후 연속주조공정에서 강 슬라브로 응고시킨다.The steel slab formed as described above is made of molten steel in the steelmaking process and then solidified into the steel slab in the continuous casting process.

응고된 슬라브는 가열로에 넣어서 가열후 열간압연하고, 550~750℃로 권취하는 것이 바람직하다.The solidified slab is placed in a heating furnace, hot rolled after heating, and preferably wound at 550 to 750 ° C.

권취는 결정립을 크게 형성시키기 위해서는 가능한 높은 온도에서 행하는 것이 바람직하며, 권취온도가 550℃이하인 경우에는 결정립성장이 적고, 750℃이상인 경우에는 공기중 고온냉각으로 인하여 강판에 산화물이 과다하고, 강판내부로 O등이 침입하여 산화층을 만들 수 있으므로, 상기 권취온도는 550~750℃의 범위로 설정하는 것이 바람직하다.In order to form large grains, it is preferable to carry out at a high temperature as possible. If the coiling temperature is 550 ° C. or lower, grain growth is small. If the coil temperature is 750 ° C. or higher, the oxide is excessively contained in the steel sheet due to high temperature cooling in the air. Since O can invade and make an oxide layer, it is preferable to set the said coiling temperature in the range of 550-750 degreeC.

다음에, 상기와 같이 권취냉각된 열연판을 소둔하고 산세한 후, 냉간압연하거나 또는 열연판 소둔없이 열연판을 산세하고 냉간압연한다.Next, after the annealing and pickling of the wound cold rolled sheet as described above, the hot rolled sheet is pickled and cold rolled without cold rolling or hot rolled sheet annealing.

결정립을 보다 성장시키기 위해서는 산세하기전에 소둔온도 800~1150℃의 온도범위에서 소둔하는 것이 바람직하다.In order to grow a grain more, it is preferable to anneal in the temperature range of annealing temperature 800-1150 degreeC before pickling.

상기 열연판의 소둔온도가 800℃ 보다 낮으면 소둔의 효과가 적으며, 1100℃ 보다 높으면 판형상이 나빠져 냉간압연성이 나빠진다.When the annealing temperature of the hot rolled sheet is lower than 800 ℃, the effect of the annealing is less, higher than 1100 ℃ plate shape is worse, cold rolling property is worse.

다음에, 냉간압연된 냉연판을 소둔하는데, 소둔시 초당 10~35℃의 승온온도(소둔온도)의 속도로 소둔온도인 700~1050℃로 가열한 후, 이 온도에서 10초 내지 5분간 소둔을 실시하는 것이 바람직하다.Next, the cold rolled cold rolled sheet is annealed, which is heated to 700-1050 ° C., which is the annealing temperature at a rate of 10-35 ° C. per second (annealing temperature), and then annealed at this temperature for 10 seconds to 5 minutes. It is preferable to carry out.

상기 소둔온도가 700℃ 보다 낮으면 결정립성장이 미흡하고, 1050℃ 보다 높아도 결정립성장이 크지 않으므로, 상기 소둔온도는 700~1050℃로 제한하는 것이 바람직하다.If the annealing temperature is lower than 700 ℃ grain growth is insufficient, even if higher than 1050 ℃ grain growth is not large, the annealing temperature is preferably limited to 700 ~ 1050 ℃.

상기 승온속도(가열속도)는 초당 10~35℃로 함으로서 결정립이 크게 성장될 수 있다.The temperature increase rate (heating rate) is 10 ~ 35 ℃ per second crystal grains can be greatly grown.

상기 가열속도가 초당 10℃이하로 가열시 결정립의 성장이 적어서 철손이 나빠지고, 가열속도가 초당 35℃이상인 경우에는 제품의 판형상이 나빠지고, 결정립의 형상이 나빠질 수 있다.When the heating rate is less than 10 ℃ per second when the grain growth is small, the iron loss is worse, when the heating rate is 35 ℃ or more per second plate shape of the product may be worse, the shape of the crystal grain may be worse.

상기 소둔분위기는 수소, 질소 또는 그 혼합분위기로 할 수 있으며, 산소가 함유되지 않는 비산화성분위기에서 실시한다.The annealing atmosphere may be hydrogen, nitrogen, or a mixed atmosphere thereof, and is performed in a non-oxidizing atmosphere containing no oxygen.

소둔판은 절연피막을 도포 또는 도포없이 수요가로 출하된다.Annealed plates are shipped at demand without or with insulation coating.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1) ( Example 1)

하기 표1과 같은 성분을 갖는 강 슬라브를 연속주조하여 제조하고, 1200℃에서 가열하고, 2.5mm로 하기 표 2에서와 같이 열간압연하고, 권취후 대기중에서 냉각하였다. 냉각된 열연판은 하기 표2와 같이 소둔없이 산세하고 0.50mm의 두께로 냉간압연하고, 소둔하고, 소둔판을 절단한 후 자기적 특성 및 결정립 크기를 조사하고, 그 결과를 하기 표 2에 나타내었다.Steel slabs having the components shown in Table 1 below were manufactured by continuous casting, heated at 1200 ° C., hot rolled to 2.5 mm as shown in Table 2 below, and cooled in air after winding. The cooled hot rolled sheet was pickled without annealing as shown in Table 2 below, cold rolled to a thickness of 0.50 mm, annealed, and cut off the annealed sheet to investigate magnetic properties and grain size, and the results are shown in Table 2 below. It was.

상기 냉연판소둔시 소둔분위기는 수소30%와 질소 70%의 분위기에서 30초간 실시되었다.The annealing atmosphere during cold rolling annealing was performed for 30 seconds in an atmosphere of 30% hydrogen and 70% nitrogen.

강 종River bell CC SiSi MnMn PP SS AlAl NN OO 발명강aInventive Steel a 0.0030.003 0.960.96 0.250.25 0.0150.015 0.00250.0025 0.350.35 0.00120.0012 0.00200.0020 발명강bInventive Steel b 0.0030.003 0.950.95 0.240.24 0.0150.015 0.00260.0026 0.160.16 0.00130.0013 0.00210.0021 발명강cInvention steel c 0.0030.003 0.940.94 0.450.45 0.0150.015 0.00240.0024 0.350.35 0.00120.0012 0.00240.0024 비교강aComparative Steel a 0.0030.003 0.950.95 0.260.26 0.0150.015 0.00240.0024 0.360.36 0.00120.0012 0.00550.0055 비교강bComparative Steel b 0.0030.003 0.930.93 0.260.26 0.0160.016 0.00230.0023 0.0020.002 0.00130.0013 0.00220.0022 비교강cComparative Steel c 0.0030.003 0.940.94 0.920.92 0.0140.014 0.00260.0026 0.350.35 0.00120.0012 0.00380.0038

시료번호Sample Number 페라이트개시온도 Ar1(℃)Ferrite Start Temperature Ar1 (℃) 열연판 압연온도(℃)Hot Rolled Sheet Rolling Temperature (℃) 열연판권취온도(℃)Hot Rolled Sheet Winding Temperature (℃) 냉연판가열속도(℃/sec)Cold Rolled Plate Heating Rate (℃ / sec) 냉연판소둔온도(℃)Cold Rolled Annealing Temperature (℃) 철손(W15/50)W/kg Iron loss (W 15/50 ) W / kg 결정립크기(㎛)Crystal grain size (㎛) 강 종River bell 비교재1Comparative Material 1 925925 950950 730730 2020 900900 4.524.52 4848 발명강aInventive Steel a 비교재2Comparative Material 2 925925 900900 500500 2020 900900 4.614.61 5050 발명강aInventive Steel a 발명재1Invention 1 925925 900900 650650 2020 900900 3.933.93 6868 발명강aInventive Steel a 발명재2Invention 2 925925 900900 730730 2020 900900 3.853.85 7272 발명강aInventive Steel a 발명재3Invention 3 925925 900900 730730 3030 900900 3.553.55 8585 발명강aInventive Steel a 비교재3Comparative Material 3 925925 900900 730730 88 900900 4.284.28 5959 발명강aInventive Steel a 비교재4Comparative Material 4 925925 900900 730730 3030 11001100 4.134.13 5252 발명강aInventive Steel a 발명재4Invention 4 924924 920920 730730 2525 950950 4.014.01 6464 발명강bInventive Steel b 발명재5Invention 5 924924 920920 730730 2525 950950 3.653.65 7878 발명강cInvention steel c 비교재5Comparative Material 5 924924 900900 730730 2020 900900 4.724.72 4646 비교강aComparative Steel a 비교재6Comparative Material 6 901901 900900 730730 2020 900900 5.105.10 4040 비교강bComparative Steel b 비교재7Comparative Material7 916916 900900 730730 2020 900900 4.724.72 6060 비교강cComparative Steel c

상기 표 2에서 W15/50는50Hz에서 1.5Tesla로 자화했을 때의 발생되는 손실로서 철손이다. 결정립은 광학현미경으로 찍은 조직사진에서 측정한 결과이다.In Table 2, W 15/50 is an iron loss generated when magnetized to 1.5 Tesla at 50 Hz. Grain grains were measured on a tissue photograph taken with an optical microscope.

상기 표 1에서 비교강(a)는 발명강 대비 O가 높으며, 비교강(b)는 Al이 낮았으며, 비교강(c)는 발명강 대비 Mn이 높은 것이다.In Table 1, the comparative steel (a) has a higher O than the inventive steel, the comparative steel (b) has a low Al, and the comparative steel (c) has a higher Mn than the inventive steel.

상기 표 2에서 비교재(1)은 열간압연시 압연온도가 오스테나이트상에서 압연되어 철손이 높고, 비교재(2)는 열연후 권취온도가 600℃이하로 낮아 철손이 높고, 비교재(3)은 가열속도가 발명재 대비 느려 철손이 높고, 비교재(4)는 냉연판 소둔시 소둔온도가 과도하게 높아서 철손이 높고, 비교재(5~6)은 성분이 발명의 범위를 벗어남에 따라 철손이 높게 나타났다.In Table 2, the comparative material (1) has a high iron loss due to the rolling temperature is rolled on the austenite phase during hot rolling, and the comparative material (2) has a high iron loss because the coiling temperature after hot rolling is less than 600 ℃, the comparative material (3) Silver heating rate is slower than the invention material, so the iron loss is high, and the comparative material (4) has high iron loss due to excessively high annealing temperature during cold annealing, and the comparative material (5 ~ 6) has iron loss as the component is out of the scope of the invention. Appeared high.

한편, 본 발명에 부합되는 조성 및 제조조건으로 제조된 발명재(1-5)의 경우에는 철손이 낮고 결정립 크기가 큼을 알 수 있다.On the other hand, in the case of the invention material (1-5) manufactured with the composition and manufacturing conditions according to the present invention it can be seen that the iron loss is low and the grain size is large.

(실시예 2)(Example 2)

중량%로 C:0.0030%, Si:0.5%, Mn:0.48%, P:0.072%, S:0.0028%, Al:0.26%, N:0.0013%, O:0.0014%, 잔부 Fe 및 기타 불순물로 조성되는 슬라브를 가열한후Ar1온도가 870℃인 강을 열간압연시 압연온도가 860℃와 900℃로 달리 열간압연하여 2.2mm의 두께로 열간압연하고, 700℃온도에서 권취하고, 850℃에서 열연판을 소둔후 산세하고, 0.5mm의 두께로 냉간압연하였다.By weight% C: 0.0030%, Si: 0.5%, Mn: 0.48%, P: 0.072%, S: 0.0028%, Al: 0.26%, N: 0.0013%, O: 0.0014%, balance Fe and other impurities After the slab is heated, the steel with Ar1 temperature of 870 ℃ is hot rolled at the rolling temperature of 860 ℃ and 900 ℃, hot rolled to a thickness of 2.2mm, wound at 700 ℃, and hot rolled at 850 ℃. The plate was annealed, pickled, and cold rolled to a thickness of 0.5 mm.

냉연판은 가열속도 30℃/sec의 가열속도로 소둔온도 900℃에서 1분간 수소25%와 질소75%의 분위기에서 소둔하였다.The cold rolled sheet was annealed in an atmosphere of 25% hydrogen and 75% nitrogen for 1 minute at 900 ° C annealing at a heating rate of 30 ° C / sec.

열간압연의 온도가 860℃인 페라이트상에서 압연한 결과에서는 철손(W15/50)이 3.83W/kg이었고 자화용이도를 나타내는 투자율이 4800이었으며, 결정립은 65㎛로 성장되었다. 오스테나이트상인 900℃에서 압연한 결과는 철손(W15/50)이 4.18W/kg이었고, 투자율(μ1.5)이 2800이었으며, 결정립은 55㎛이었다.As a result of hot rolling at ferrous phase with a temperature of 860 ° C, the iron loss (W 15/50 ) was 3.83 W / kg, the magnetic permeability was 4800, and the grain was grown to 65 탆. The result of rolling at 900 ° C. in austenite phase was 4.18 W / kg in iron loss (W 15/50 ), permeability (μ1.5) of 2800, and crystal grains of 55 μm.

(실시예 3)(Example 3)

중량%로 C:0.0034%, Si:3.2%, Mn:0.18%, P:0.012%, S:0.0021%, Al:1.2%, N:0.0013%, O:0.0018%, 잔부 Fe 및 기타 불순물로 조성되는 슬라브를 가열한 후 열간압연시 압연온도가 페라이트상인 900℃에서 열간압연하여 2.0mm의 두께로 열간압연하고, 650℃온도에서 권취하고, 열연판을 1000℃에서 6분간 소둔후 산세하고, 0.5mm의 두께로 냉간압연하였다.By weight% C: 0.0034%, Si: 3.2%, Mn: 0.18%, P: 0.012%, S: 0.0021%, Al: 1.2%, N: 0.0013%, O: 0.0018%, balance Fe and other impurities After the slab is heated, the hot rolling is carried out at 900 ° C in a ferritic state and hot rolled to a thickness of 2.0 mm, wound at 650 ° C, and the hot rolled sheet is annealed at 1000 ° C for 6 minutes and then pickled. Cold rolled to a thickness of mm.

냉연판은 가열속도 8℃/sec와 25℃/sec의 가열속도로 소둔온도 1030℃에서 3분간 수소45%와 질소 55%의 분위기에서 소둔후 자성을 측정하였다.The cold rolled sheet was measured for annealing in an atmosphere of 45% hydrogen and 55% nitrogen at an annealing temperature of 1030 ° C. at a heating rate of 8 ° C./sec and 25 ° C./sec, and then measured for magnetic properties.

가열속도가 8℃/sec인 경우에는 철손이 2.41W/kg이었으나, 가열속도가 25℃/sec 인 경우에는 철손(W15/50)이 2.18W/kg로 낮았으며 결정립도 168㎛로 크게 성장되었다.The iron loss was 2.41 W / kg at the heating rate of 8 ℃ / sec, but the iron loss (W 15/50 ) was low at 2.18W / kg and the grain size was greatly increased to 168㎛ at the heating rate of 25 ℃ / sec. .

상술한 바와 같이, 본 발명은 강 조성 및 제조조건을 적절히 제어하므로써 보다 낮은 철손을 갖는 무방향성 전기강판을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention has the effect of providing a non-oriented electrical steel sheet having a lower iron loss by appropriately controlling the steel composition and manufacturing conditions.

Claims (3)

무방향성 전기강판을 제조하는 방법에 있어서,In the method for producing a non-oriented electrical steel sheet, 중량%로, C:0.008%이하, Si:3.5%이하, Mn:0.6%이하, P:0.15%이하, S:0.01%이하, Al:0.15~1.5%, N:0.004%이하, O:0.005%이하, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성되는 슬라브를 가열하고, 페라이트상에서 열간압연하고, 550~750℃의 온도에서 권취한 다음, 열연판을 소둔하고 산세한 후, 냉간압연하거나 열연판 소둔없이 열연판을 산세하고 냉간압연한 다음, 냉연판을 10~35℃/sec의 승온(가열)속도로 700~1050℃의 온도로 가열하여 이 온도범위에서 소둔하는 것을 특징으로 하는 저 철손 무방향성 전기강판의 제조방법By weight%, C: 0.008% or less, Si: 3.5% or less, Mn: 0.6% or less, P: 0.15% or less, S: 0.01% or less, Al: 0.15 to 1.5%, N: 0.004% or less, O: 0.005 % Or less, remainder Fe and other unavoidably added slabs are heated, hot rolled on ferrite, wound at a temperature of 550-750 ° C., followed by annealing and pickling, followed by cold rolling or hot rolling Low iron loss characterized in that the hot rolled plate is pickled and cold rolled without plate annealing, and then the cold rolled plate is heated to a temperature of 700 to 1050 ° C. at an elevated temperature (heating) rate of 10 to 35 ° C./sec. Manufacturing method of non-oriented electrical steel sheet 제1항에 있어서, C:0.005%이하, S:0.003%이하, 및 N:0.0015%이하인 것을 특징으로 하는 저 철손 무방향성 전기강판의 제조방법The method for producing a low iron loss non-oriented electrical steel sheet according to claim 1, wherein C: 0.005% or less, S: 0.003% or less, and N: 0.0015% or less. 제1항 또는 제2항에 있어서, 열연판 소둔을 행하는 경우에는 열연판의 소둔온도가 800~1100℃인 것을 특징으로 하는 저 철손 무방향성 전기강판의 제조방법The method for producing a low iron loss non-oriented electrical steel sheet according to claim 1 or 2, wherein when the hot rolled sheet is subjected to annealing, the annealing temperature of the hot rolled sheet is 800 to 1100 ° C.
KR1020010083190A 2001-12-22 2001-12-22 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss KR100544584B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083190A KR100544584B1 (en) 2001-12-22 2001-12-22 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083190A KR100544584B1 (en) 2001-12-22 2001-12-22 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss

Publications (2)

Publication Number Publication Date
KR20030053139A true KR20030053139A (en) 2003-06-28
KR100544584B1 KR100544584B1 (en) 2006-01-24

Family

ID=29577751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083190A KR100544584B1 (en) 2001-12-22 2001-12-22 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss

Country Status (1)

Country Link
KR (1) KR100544584B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890812B1 (en) * 2006-12-29 2009-03-31 주식회사 포스코 A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR101119960B1 (en) * 2004-12-28 2012-03-13 주식회사 포스코 Method for manutacturing non-Oriented Electrical steel sheet having good properties
KR20160078076A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Non-orientied electrical steel sheet and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902438B1 (en) 2016-12-19 2018-09-28 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101901313B1 (en) 2016-12-19 2018-09-21 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136718A (en) * 1982-02-10 1983-08-13 Kawasaki Steel Corp Manufacture of nonoriented electrical band steel with superior magnetic characteristic
JPH0623410B2 (en) * 1984-06-05 1994-03-30 株式会社神戸製鋼所 Method for manufacturing non-oriented electric iron plate with high magnetic flux density
JPS61136626A (en) * 1984-12-06 1986-06-24 Nippon Kokan Kk <Nkk> Manufacture of nonoriented electrical steel sheet
JPH062907B2 (en) * 1988-03-11 1994-01-12 日本鋼管株式会社 Non-oriented electrical steel sheet manufacturing method
KR100268853B1 (en) * 1996-12-23 2000-10-16 이구택 The manufacturing method of non oriented electric steel sheet with excellent magnetic properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119960B1 (en) * 2004-12-28 2012-03-13 주식회사 포스코 Method for manutacturing non-Oriented Electrical steel sheet having good properties
KR100890812B1 (en) * 2006-12-29 2009-03-31 주식회사 포스코 A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR20160078076A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Non-orientied electrical steel sheet and method for producing the same

Also Published As

Publication number Publication date
KR100544584B1 (en) 2006-01-24

Similar Documents

Publication Publication Date Title
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100340503B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR100544612B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
KR20000043790A (en) Method for producing non-oriented electric strip with low iron loss
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR100825560B1 (en) Method for Manufacturing Nonoriented Electrical Steel Sheet
KR100650554B1 (en) A method for manufacturing thick gauge grain-oriented electrical steel sheet
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR100940714B1 (en) Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
KR19980052510A (en) Manufacturing method of high magnetic flux density oriented electrical steel sheet by slab low temperature heating
KR101077167B1 (en) Method for manufacturing non-oriented electrical steel sheets with improved magnetic property
KR19980051154A (en) Manufacturing method of non-oriented electrical steel sheet excellent in pickling and magnetic properties of hot rolled sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 15