JPS58136718A - Manufacture of nonoriented electrical band steel with superior magnetic characteristic - Google Patents

Manufacture of nonoriented electrical band steel with superior magnetic characteristic

Info

Publication number
JPS58136718A
JPS58136718A JP1890982A JP1890982A JPS58136718A JP S58136718 A JPS58136718 A JP S58136718A JP 1890982 A JP1890982 A JP 1890982A JP 1890982 A JP1890982 A JP 1890982A JP S58136718 A JPS58136718 A JP S58136718A
Authority
JP
Japan
Prior art keywords
hot
temperature
rolled steel
steel strip
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1890982A
Other languages
Japanese (ja)
Inventor
Shigeo Kinoshita
木下 繁雄
Kazumi Morita
森田 和巳
Isao Matoba
的場 伊三夫
Yoshio Obata
小畑 良夫
Yozo Ogawa
小川 洋三
Junichi Takenaka
順一 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1890982A priority Critical patent/JPS58136718A/en
Publication of JPS58136718A publication Critical patent/JPS58136718A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture the titled band steel with high magnetic flux density and superior iron loss by finishing the hot rolling of a low carbon steel slab contg. specified chemical components at a gamma-phase temp. and coiling the resulting band steel at a specified temp. to make the ferrite grains coarse. CONSTITUTION:A low carbon steel slab contg. <=0.02% C, <=1.5% Si or Si+ Al and <=1.0% Mn or further contg. <=0.20% P is heated and hot rolled. The hot rolling is finished at a gamma-phase temp. in the range of the Ar3 point - 500 deg.C defined by the components in the steel. The resulting hot rolled band steel is coiled at 700 deg.C - the A3 point to make the ferrite grains of the strip coarse and to adjust the grain size No. to <=4. This hot rolled band steel is pickled and cold rolled once or subjected to cold rolling, process annealing and cold rolling in order, and it is annealed.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は磁気特性の優れた無方向性電磁銅帯の製造方
法に関し、とくに磁束密度が極めて高く、鉄損の低い、
フルプロセス、またはセミプロセス用無方向性電磁鋼帝
の製造を有利に成就することを可能ならしめようとする
本のである。 無方向性電磁銅帯は、各種のモーターなどの回転機や、
変圧器、安定器などの静止機器の鉄心材料として用いら
れ、これらの電気機器の効率向上、あるいは小型化のた
め、使用される電磁銅帯の磁束密度の向上および鉄損の
低減が益々必要とされる。 ところで、無方向性電磁鋼板の磁性を向上させるために
は、冷間圧延前の素材の結晶粒径をできるだけ大きく1
〜ておくことが有利であることはすでに知られていると
おりである。 発明者らは先に特願昭55−110814号にて、所定
範囲内の化学成分を有する電磁鋼素材を熱延鋼帯に熱間
圧延する際、熱間圧延全了温I#をその鋼の化学成分に
応じて次の(1)式にて表わされる温度すなわちAr8
変態点温度、 Ar8=(s9t−90o(0%)+50(Si%)−
88(Mn%)+11(P%)+880 (At%))
”0      ・・・・・・・・・・・・・・・・・
(1)以上とな1〜、ついでこの熱延鋼帯をA8変変態
度以下の温度で80秒以上15分以下の時間、焼鈍して
磁気特性の優れた無方向性電磁鋼帯を得る方法を提案し
た。この方法はAr8変態点温変以上の温度で、すなわ
ち、鋼組織がγ相の状態で熱間圧延全終了し、次いでA
8変態点温度以下の温度で焼鈍すると、その焼鈍が箱焼
鈍のような長時間焼鈍でなく、15分以下という短時間
で、しかも脱炭を必要とせずに比較的安価に熱延鋼帯の
結晶組織を粗大化できることの知見に由来している。 (7かるにこの場合には一般に、熱間圧延後、熱処理を
施すことなく直ちに酸洗、冷間圧延を行う通常の方法に
比1〜、短時間とは云え一工程が増加するため、若干コ
スト高となるのはやむを得ない。 そこでこの°発明は、冷間圧延前の熱延鋼帯の結晶粒径
を粗大化させることに関する限りは上掲の先行発明にお
ける研究成果を踏襲して磁気特性が優れた無方向性電磁
鋼帯の製造過程につき、該発明では不可欠と
The present invention relates to a method for manufacturing a non-oriented electromagnetic copper strip with excellent magnetic properties, and in particular, a method for producing a non-oriented electromagnetic copper strip with extremely high magnetic flux density and low core loss.
This book attempts to make it possible to advantageously achieve the production of non-oriented electrical steel for full process or semi-process use. Non-directional electromagnetic copper strips are used in rotating machines such as various motors,
It is used as core material for stationary equipment such as transformers and ballasts, and in order to improve the efficiency or downsize these electrical equipment, it is increasingly necessary to improve the magnetic flux density and reduce iron loss of the electromagnetic copper strips used. be done. By the way, in order to improve the magnetism of non-oriented electrical steel sheets, it is necessary to increase the grain size of the material before cold rolling by 1
It is already known that it is advantageous to keep The inventors previously disclosed in Japanese Patent Application No. 110814/1983 that when hot-rolling an electrical steel material having a chemical composition within a predetermined range into a hot-rolled steel strip, the final hot rolling temperature I# of the steel is The temperature expressed by the following formula (1) according to the chemical composition of Ar8
Transformation point temperature, Ar8=(s9t-90o(0%)+50(Si%)-
88 (Mn%) + 11 (P%) + 880 (At%))
”0 ・・・・・・・・・・・・・・・・・・
(1) A method for obtaining a non-oriented electrical steel strip with excellent magnetic properties by annealing the hot rolled steel strip at a temperature below A8 transformation state for a period of 80 seconds or more and 15 minutes or less. proposed. In this method, hot rolling is completed at a temperature higher than the Ar8 transformation point, that is, the steel structure is in the γ phase, and then A
When annealing is performed at a temperature below 8 transformation point temperature, the annealing process is not a long annealing like box annealing, but a short time of 15 minutes or less, and it is possible to produce hot rolled steel strips at a relatively low cost without the need for decarburization. This comes from the knowledge that it is possible to coarsen the crystal structure. (7) In this case, there is a slight increase in the number of steps compared to the usual method of pickling and cold rolling immediately after hot rolling without heat treatment, although it is a short time. It is unavoidable that the cost will be high.Therefore, this invention follows the research results of the above-mentioned prior invention and improves the magnetic properties as far as coarsening the grain size of the hot rolled steel strip before cold rolling is concerned. Regarding the manufacturing process of non-oriented electromagnetic steel strip with excellent

【−ていた
熱延鋼帯の焼鈍を省略L、より有利に、しかし磁気特性
においては何ら遜色のない無方向性電磁鋼板の製造方法
を確立したものである。 ちなみに無方向性電磁鋼板の製造法に関し特開昭54−
76422号公報によると熱間圧延後その熱廷板を75
0“0〜1000℃の温度でコイルに巻き取り、熱処コ
イル自身の保有熱で焼鈍することにより結晶粒度AST
M No、5〜6に再結晶でき、かくして従来の熱延後
別途行なう焼鈍を省略し、これと同等の効果を与えるこ
とはすでに提案されているが、これはsi 2.5〜4
.0%、A11.0%以下の材料に適用することを1指
して自己焼鈍をできるだけ筒い温度で行なうためにより
昼い温度で熱間圧延を終了しようという考えに基づいて
いる。 しかし、Si含有駿が2.5%以上ともなると商温でも
完全なγ相領域を有しない点で、この発明におけるよう
な完全にγ相を生じる素材について、そのAr8変態点
温度直上のγ相状態で熱延を終了することによって微細
結晶となし、ついでA8変態点温度以下700°C以上
の温度で巻取ることにより2次再結晶的に結晶粒’k 
No、4以下の大粒に成長させる発想とは自然法則の利
用のしかた技術的思想の本質を全く異にしている。 上記のように熱間圧延終了温度を、その鋼の化学成分に
応じ、(1)式にて算出されるAr8変態点温度と、そ
の温度より50”0商い温度との範囲内のγ相温度領域
に定めると、熱延鋼帯に加えた焼鈍過程での結晶粒の二
次杏結晶粒成長速度が、核温度領域より高い温度で熱間
圧延を終了した場合に比し、より早く、筐た低温で粒成
長することを、その後に知見した。 この特徴を有利に活用すべくさらに研究を進めて、熱間
圧延終了温度を上記の温度領域(Ar8〜Ara + 
50°0)内にシフ、シかもその後の巻取り温度をA8
変態点温度以下、700℃以上とすることにより、熱延
鋼帯の結晶粒を、フェライト粒度N0.4以下に、容易
に粗大化できることが見出され、ここに、熱延鋼帯の焼
鈍工程をとくに加えることなく安価に、そしてとくに成
品状態においてはもちろん、歪取り焼鈍が加えられた後
でも、磁束密度;鉄損に関1〜て磁気特性の優れた無方
向性電磁鋼帯の製造方法を完成させることができた。 この発明は、低次*鋼スラブを加熱し引続き熱間圧延を
加えて熱延鋼帯とし、この熱延鋼帯を通常の方法による
酸洗、1回の冷間圧延またけ中間焼鈍ヲ挾む2回の冷間
圧延およびその後の焼鈍各工程に供する無方向性電磁鋼
帯の製造方法において、 −に6己スラフ゛が、00.02%以下、Slもしくは
SlとAAの金剛の何れか1.5%以下、Ml 1.0
%以下、そしてPi含むとき0.20%以下を含有する
組成になるものとし、そのスラブ加熱に引続く熱間圧延
を、該スラブの鋼中成分に応じて定まるAr8変態点温
度より50℃を越えて高くはない範囲内のγ相温度領域
で終了(−1ついでこの熱延鋼帯をA8實態点温変以下
、711 (1℃以、ヒの潟i域で巻取ることにより、
熱延鋼帯のフェライト結晶粒を粒度N004以下の粗大
粒とする過程を経ること 全特徴とする磁気特性の優れた無方向性電磁鋼帯の製造
方法である。 さて、無方向性電磁鋼帯には、規定の磁気特性を付与し
て製鉄所から出荷されるいわゆるフルプロセス成品のほ
か、銅帯の打抜き、せん断などの加工後に、いわゆる歪
取り焼鈍を施すことにより所定の磁気%性が得られるよ
うにしたセミプロセス成品とがある。これらのフルプロ
セスあるいはセミプロセス用各電磁銅帯は倒れも製造工
程から1回の冷間圧延による場合と、中間焼鈍を挾む2
回の冷間圧延を行なう場合とに′□分けられ、1回の冷
間圧延による方法は磁束密度が高い特徴があゆ、2回の
冷間圧延による方法は、主として2回目の冷間圧下率が
20%以下の軽圧下とするもので、若干の磁束密度の低
下があるが、鉄損値が低い特徴がある。 この発明は熱延鋼帯のフェライト結晶粒径を粗大化させ
ることにより、上記冷延1回法および2回法の、フルプ
ロセスまたはセミプロセス成品の何れに適用しても、優
れた磁気特性を得ることができる。 この発明はγ相組織の温度領域で熱間圧延を終了し、熱
焼後の巻取り温度をA8変態点温変以下、700°0以
上とするが、この際0が0.02%より多いと、巻取り
後の結晶粒の粒成長を阻害する。 加えて無方向性電磁鋼帯では成品の磁気特性および磁気
時効による劣化の面から成品のC量を0.004%以下
とする必要があり、こ\に素材のOilが多すぎると焼
鈍時に脱炭させるに際(7て鋼帯表向に磁気的に有害な
酸化増を生成する。これらの理由からこの発明では素材
のG量f:0.02%以下とする。 この発明は、熱間圧延終了温度をその鋼のγ相領域とす
ることを基本とI2、こ\にSiまたは(Si + A
t)が1.5%をこえて多葉になるとγ相が存在する温
度が尚くなって、熱延終了温度を筒くする必要から事実
上熱間圧延が困難になる。したがってsi、または(s
:i+Az)itを1.5%以下とする。 Mnは脱酸剤としてまたSによる熱間脆性を抑制するた
めに添加されるが、1.0%より多いと磁気的に有害と
なるので1.0%以下とする。 Pは電磁鋼帯の硬度を高め、打抜性を向上させるために
添加されることがあるが、0.20%より多いと板が脆
くなるので、o、2o%以下とする必要がある。 この発明では熱間圧延終了温度を、その鋼素材の化学成
分に応じて、 (891−900(0%)+50(Si%)−88(M
n%)+190(P%)+880(11%)1℃ に従って算出されるムr8変態点温度より50℃を越え
て高くはない範囲内のγ相領域とする。熱間圧延終了温
度をその鋼のγ相領域のできるだけ低温域とすることで
熱間加工を容易にし、L7かも巻保りによる自己焼鈍作
用にてフェライト結晶粒を粒度N004以下に容易に粗
大化できる。この理由は上述のγ相領域の低温域で熱間
加工することにより、熱延後の結晶粒径がいちじるしく
微細となり、熱延鋼帯巻取り後の焼鈍作用で二次再結晶
的に粒成長が起るためである。 熱間圧延終了温度がAr8変態点温度より低いα+γ相
域、またはα相領域となると、それがたとえ850 ”
0以上の高温であったとしても熱間圧延後のフェライト
結晶粒が若干粗大化するが、この発明で所期したような
二次再結晶的粒成長は起らず、粒度N0.4以下の和大
粒を得ることはできない。 またAr8変態点温度より50′0を超える高い温度で
熱間圧延を終了させても萱だ二次再結晶的粒成長が起り
難くなり、高温巻取りを行なったと17でもこの発明に
よるような、粗大結晶の熱延鋼帯を得ることができない
。したがってこの発明では熱間圧延終了温度をその鋼素
材の化学成分より定壕るAr8変態点温度と、この温度
より50“0高い温度との範囲内のγ相領域とする。 この発明は上述のように熱間圧延終了温度′f特色のあ
る領域とすることによって、次の焼鈍過程での結晶粒の
成長性を容易に17たことが特徴であり、この特徴の故
に熱延鋼帯の巻取り温度を通常の場仕と比べてより筒め
ることて一層焼鈍効果を有利にかつ容易に発揮させるこ
とができる。巻取り温度がA8変態点温度より商いとき
は結晶粒の二次書結晶的粗大化が起らず、また700”
O,j、り低い場合も粒成長しにくい。したがって熱延
後の巻取り温度をA8変態点温度以下、7(](1’0
以上とする。 無方向性電磁銅帯の製造において、冷間圧延前の熱延鋼
帯の結晶粒径が大きいほど、磁束密度が高く鉄損(ti
が低い優れた成品が得られることは知られているとおり
であるが、とくに磁束密度B5゜値の極めて優れた成品
を得るためには冷延前のフェライト結晶粒の大きさが粒
度N0.4.5以下の大粒であることが必☆であるとこ
ろ、この発明により粒度N0.4以下の粗大粒を廟する
熱延鋼帯が確実に得られるのである。 つぎに本発明を実施例について説明する。。 実施例1 転炉で溶製L、RH式真空処理17た俗調を連紗1@造
にて、22(Jlnm厚みのスラブA 、 B 、 0
およびDを作った。それらの化学成分は(l’l il
も雨量%で、00.018%、si、o、27%、Mn
 (1,85%、P O,015%、80.004%、
AtO,(1(1(14%であった。 この素材の化学成分に従い計算式(1)にて求めたAr
8変態点温度は865℃である。 上記各スラブf1280°0に加熱し7、熱間圧延終了
温iを、’A 、 B 、材につきとくにそれぞれ89
0°0,915°0とし、2.8朋厚に熱延1−7、ま
たこの熱延後の巻取り温度をいずれも7 f3 (1’
Oとして巻取り、放冷した。比較のためにO材を巻取り
温度、仕上り厚みはA、B材と同様と【7たが熱間圧延
終了温度をAr8変態点泥匿よりも低い885℃とした
。萱だ最後にD材は全く通常の方法に従(ll  l い熱間圧延終了温度は800”0、巻取り温度を560
°0とした。 第1図にこれらのA、B、O,D材による各熱延&鋼帯
の結晶組織を示す顕微鋭写スを、フェライト結晶粒#N
O,VCあわせ示した。 ついで、これらの熱延鋼帯を通常の1同冷処法により成
品とした。すなわち、酸洗後(1,5(l mlA厚さ
に冷間圧延し、800°OS2分間の光輝焼鈍を行なっ
た。これらの成品および、需要家で打抜き等の力l1後
さらVC歪取り焼鈍を行なう場合を想定(−た750”
02時間の歪取焼鈍後の磁性を第1表に示す。 +  12 1 第1図の熱延鋼帯の結晶粒度は、この発明に従う人材が
No、 0.5で最も粒径が大きく、ついでB材はNo
、 8.5で次に大きいのに対し、比較品の01では比
較的大きい粒径であるがN005でありD材はNo、 
7.5でより小さい。この発明によるA、 B材は計算
式(1)に従うAr8変態点温度よりそれぞれ25℃、
50°C高い温度で熱間圧延f終了したものである。こ
れらを比較するとB材は人材より結晶粒径かや\小さく
なっていて、熱間圧延終了温度がAr8変態点よりも5
0℃を超えて高いとき結晶粒径が小さくなることの臨界
的々傾向が認められる。 第1衣の磁性をみると、この発明のA、B材によるもの
は比較材0.Dに比し、成品の磁中密度B、。値が極め
て高く、鉄損W 15150値も低い。又歪取焼鈍後で
は磁束密度とともに鉄損も極めて優れていることが明ら
かである。 実施例2 実施例1と同様な方法で、OO,(+ +1 (1%、
810.09%、Mn 11.22%、PO,(138
%、S T1 、004%、AtO,0007%を含む
250趨厚みのスラブE、F、Gを作った。これらの化
学成分により計算式(1)にて求めたAr8変態点温度
は877°Cである。 各スラブは1800“Cに加熱L、熱間圧延終了温度を
H材は895℃とし、これに対する比較のためにH材は
Ar8変態点温度よりも低い865℃で、しかし巻取源
Vはいずれも750〜760℃と同じにし、またG材に
ついては従来どおり熱焼終了温度を820℃、巻取温度
を560℃として(いずれもすべて2.3im厚みの熱
延鋼帯とした。 熱延鋼帯の結晶粒度は、フェライト粒1i NO,でE
は0.Fは5.Gは7であった。 これらの熱延コイルは放冷後、通常の冷延1同法工程に
より成品とした。すなわち酸洗後冷延にて0.5011
111厚さとし、連続焼鈍炉にて750°0.2分間の
光輝焼鈍を會なった。これらの成品および750℃、2
時間歪取焼鈍後の磁性を第2表に示す。 【 15 ゛ 116  ′ これらの結果から、この発明のH材では、熱延鋼帯の結
晶粒度がNO,(lで大きく、これに対1〜Ar8変態
点温度より低い865℃で熱延を終了した比較例のH材
によるものは粒度N015で粒径が小さく、また従来法
のG材によるものはさらに小粒であり、その結果発明品
は成品の磁束密度が高く鉄損が低い、歪取焼鈍後は磁束
密度とともに鉄損が極めて優れていることが明らかであ
る。 実施例3 実施例1と同様な方法で、OO,012%、810.8
4%、Mn 0.50%、po、oo7%、AtO,0
007%を含む220關厚みのスラブH,IおよびJを
製作した。これらの化学成分につき計算式(1)にて求
めたAr8変態点温度は880”0である。 各スラブを1280°Cに加熱し、H材は熱間圧延終了
温度をこの発明に従い900℃、巻取温度を770℃と
シフ、比較のため工材は熱間圧延終了温度をAr8変態
点温度より低い870℃と17、巻取温度は760°0
とし、J材については熱間圧延終了温度を従来どおり8
30°0と17、巻取温度も650℃とした。これらの
熱延鋼帯は伺れも2,81綿厚みに揃えである。 各熱延鋼帯の結晶粒度は、フェライト粒子m) No。 で、Hは2、工は5、Jは6であった。 次に各熱延鋼帯を通常の方法により、酸洗後0.50朋
に冷延し、850℃、2分間の連続焼鈍を行なって、フ
ルプロセス成品とした。成品の磁性を第8表に示す。 Ar8変態点温度より20°C高い温度で熱間圧延を終
了し、770°0で巻取った発明品は熱延鋼帯のフェラ
イト結晶粒度がNO,2で粒径が比較品より大きいため
、磁性が優れていることが明らかである。 ・ 19 ′ 実施例4 実施例】と同様な方法により、化学成分がCO,007
%、Si 0.32%、Mn o、a 5%、Po、0
21%、SQ、(105%、A/!、0.00 (15
%の22ommJ厚みのスラフに、Lを製作(〜だ。こ
の素材の化学成分より計算式(1)にて求めたAr8変
態温度は874℃である。 K、L両スラブf1280″Oに加熱し、K材はこの発
明に従って熱間圧延終了温匿全895°C1巻取温度を
760℃とした。1だ比較のためにL材は、従来どおり
熱間圧延終了温度を8()0℃、巻取温度を660°0
と(7、いずれも2.3編厚みの熱延鋼帯を作った。 熱延鋼帯の結晶粒紅は、K材がNO,1であったのに対
しL材はNO,8であった。 これらの熱延鋼帯を通常のいわゆる中間焼鈍を挾む2回
冷延法によりセミプロセス成品とした。 すなわち熱延鋼帯を酸洗後掲1回の冷間圧延後中間焼鈍
として750 ”O%2分間の連続焼鈍を行ない、第2
回の冷間圧下率を8%としてQ、5QIIII11厚さ
に120 ) 仕上げた。 両成品につき750”0.2時間の虫取り焼鈍を行なっ
た後の磁性を第4表に示E−た。 第4表 この結果から発明品は2回冷iA法セミプロセス用にお
いても磁束密興が高く、鉄損が極めて優れていることが
明らかである。 以上各実施例は、倒れも連続鋳造スラブを素材とする場
合について示したが、鋼塊の分塊圧延による素材を用い
ても、この発明の条件を満たすことにより、はソ同等の
効果が得られるのはいうまでもない。 かくしてこの発明によれば、化学成分を特定した熱延鋼
帯の熱間圧延終了温度を、該化学成分に応じて重重るA
r8変態点温度より50°0をこえて高くはない範囲内
のr相温度領域と17、この熱延後の巻取り温@、をA
8′&態点温度以下、700°C以−ヒの温度範囲と]
−で、熱延鋼帯を、別途焼鈍過程に付する安なく熱1g
銅帯のフェライト結晶粒を粒度N0.4以下の粗大粒と
することができ、これによって、フルプロセス、セミプ
ロセス用ヲ問わず、無方向性電磁鋼帯成品の磁気特性の
著しい改善に役立つ。
This method omitted the annealing of the hot-rolled steel strip, which had previously been used, and established a method for producing non-oriented electrical steel sheets that is more advantageous but comparable in magnetic properties. By the way, regarding the manufacturing method of non-oriented electrical steel sheets,
According to Publication No. 76422, after hot rolling, the hot rolled plate is
The crystal grain size of
It has already been proposed that it can be recrystallized to M No. 5 to 6, thereby omitting the conventional annealing that is performed separately after hot rolling, and giving the same effect.
.. 0%, A11.0% or less, and is based on the idea that hot rolling should be completed at a more moderate temperature in order to perform self-annealing at as low a temperature as possible. However, if the Si content is 2.5% or more, it does not have a complete γ phase region even at commercial temperature, so for materials that completely produce a γ phase as in the present invention, the γ phase region just above the Ar8 transformation point temperature does not exist. By finishing hot rolling in this state, fine crystals are formed, and then by winding at a temperature of 700°C or lower below the A8 transformation point temperature, crystal grains are formed by secondary recrystallization.
The essence of the technical idea of how to utilize natural laws is completely different from the idea of growing large grains of No. 4 or less. As mentioned above, the hot rolling end temperature is determined according to the chemical composition of the steel, and the γ phase temperature is within the range of the Ar8 transformation point temperature calculated by equation (1) and a temperature 50"0 quotient from that temperature. If the area is determined, the secondary apricot grain growth rate of the crystal grains during the annealing process applied to the hot rolled steel strip will be faster than when hot rolling is finished at a temperature higher than the core temperature area. It was subsequently discovered that grains grow at low temperatures.In order to take advantage of this feature, further research was carried out, and the end temperature of hot rolling was set in the above temperature range (Ar8~Ara +
The subsequent winding temperature may be within 50°0).
It has been found that the crystal grains of a hot rolled steel strip can be easily coarsened to a ferrite grain size of N0.4 or less by controlling the temperature to be below the transformation point temperature and above 700°C. A method for producing a non-oriented electrical steel strip that is inexpensive and has excellent magnetic properties in terms of magnetic flux density and iron loss, especially in the finished product state, and even after strain relief annealing, without adding any was able to complete it. This invention involves heating a low-order* steel slab and subsequently hot rolling it into a hot-rolled steel strip, pickling the hot-rolled steel strip by a conventional method, and subjecting it to one cold rolling step and intermediate annealing. In the method for producing a non-oriented electrical steel strip, which is subjected to two cold rolling steps and subsequent annealing steps, - 6 self-slough is 00.02% or less, and either one of Sl or a diamond of Sl and AA is used. .5% or less, Ml 1.0
% or less, and 0.20% or less when containing Pi, and the hot rolling following heating of the slab is performed at a temperature of 50°C below the Ar8 transformation point temperature determined according to the steel components of the slab. Finished in the γ-phase temperature range within a range not exceeding -1. Then, this hot rolled steel strip is wound in the A8 real state temperature range of 711 (1°C or higher),
This is a method for producing a non-oriented electrical steel strip with excellent magnetic properties, which is characterized by going through a process of making the ferrite crystal grains of the hot rolled steel strip into coarse grains with a grain size of N004 or less. Now, non-oriented electromagnetic steel strips include so-called full-process products that are shipped from steel mills with prescribed magnetic properties, as well as products that undergo so-called strain relief annealing after punching, shearing, etc. of copper strips. There are semi-processed products in which a predetermined magnetic percentage can be obtained. Each of these electromagnetic copper strips for full process or semi-process can be produced by one cold rolling process or two intermediate annealing processes.
There are two types of cold rolling: the one-time cold rolling method is characterized by high magnetic flux density, and the two-time cold rolling method mainly involves the second cold rolling reduction. Although the magnetic flux density is slightly reduced due to the light reduction of 20% or less, it is characterized by a low iron loss value. By coarsening the ferrite grain size of the hot-rolled steel strip, this invention provides excellent magnetic properties when applied to either full-process or semi-processed products of the one-step or two-step cold rolling method. Obtainable. In this invention, hot rolling is completed in the temperature range of the γ phase structure, and the coiling temperature after hot sintering is set to be below the A8 transformation point temperature change and above 700°0, but in this case, 0 is more than 0.02%. This inhibits grain growth of crystal grains after winding. In addition, for non-oriented electrical steel strips, it is necessary to keep the C content in the product to 0.004% or less in view of the product's magnetic properties and deterioration due to magnetic aging. When carbonizing (7), magnetically harmful oxidation is generated on the surface of the steel strip. For these reasons, in this invention, the G content f of the material is set to 0.02% or less. The basic idea is to set the rolling end temperature to the γ phase region of the steel, I2, where Si or (Si + A
When t) exceeds 1.5% and becomes multi-lobed, the temperature at which the γ phase exists becomes too low, making hot rolling practically difficult because the hot rolling end temperature needs to be controlled. Therefore si or (s
:i+Az)it is 1.5% or less. Mn is added as a deoxidizing agent and to suppress hot embrittlement caused by S, but if it exceeds 1.0%, it becomes magnetically harmful, so it is limited to 1.0% or less. P is sometimes added to increase the hardness of the electromagnetic steel strip and improve its punchability, but if it is more than 0.20%, the plate becomes brittle, so it must be kept at 20% or less. In this invention, the hot rolling end temperature is set according to the chemical composition of the steel material (891-900 (0%) + 50 (Si%) - 88 (M
n%) + 190 (P%) + 880 (11%) 1°C The γ phase region is within a range not higher than 50°C than the mr8 transformation point temperature calculated according to the following formula. By setting the hot rolling end temperature to the lowest possible range of the γ phase region of the steel, hot working is facilitated, and the ferrite crystal grains are easily coarsened to a grain size of N004 or less by the self-annealing effect of L7 winding and retaining. can. The reason for this is that hot working in the low temperature range of the γ phase region mentioned above makes the grain size after hot rolling extremely fine, and the annealing action after winding the hot rolled steel strip causes grain growth through secondary recrystallization. This is because If the hot rolling end temperature is in the α+γ phase region or α phase region lower than the Ar8 transformation point temperature, even if it is 850 ”
Even if the temperature is higher than 0.0, the ferrite crystal grains after hot rolling will become slightly coarser, but the secondary recrystallization grain growth as expected in this invention will not occur, and the grain size will be lower than 0.4. It is not possible to obtain large grains. Furthermore, even if the hot rolling is finished at a temperature higher than 50'0 above the Ar8 transformation temperature, it becomes difficult for secondary recrystallization grain growth to occur, and when high temperature winding is performed, the method according to the present invention It is not possible to obtain a hot-rolled steel strip with coarse crystals. Therefore, in this invention, the hot rolling end temperature is set in the γ phase region within the range of the Ar8 transformation point temperature determined by the chemical composition of the steel material and a temperature 50"0 higher than this temperature. By setting the hot rolling end temperature 'f in a characteristic range as shown in FIG. The annealing effect can be exerted even more advantageously and easily by setting the winding temperature to a higher temperature than in normal field processing.When the winding temperature is lower than the A8 transformation point temperature, the secondary crystal of the crystal grains 700" without target coarsening occurring.
Grain growth is also difficult when O,j, is low. Therefore, the coiling temperature after hot rolling should be below the A8 transformation point temperature, 7(](1'0
The above shall apply. In the production of non-oriented electromagnetic copper strips, the larger the grain size of the hot-rolled steel strip before cold rolling, the higher the magnetic flux density and the higher the iron loss (ti).
It is known that an excellent product with a low magnetic flux density B5° value can be obtained, but in particular, in order to obtain an extremely excellent product with a low magnetic flux density B5° value, the size of the ferrite crystal grains before cold rolling must be adjusted to a grain size of N0.4. Although large grains with a grain size of N0.5 or less are essential, the present invention reliably provides a hot rolled steel strip having coarse grains with a grain size of N0.4 or less. Next, the present invention will be explained with reference to examples. . Example 1 Slabs A, B, 0 with a thickness of 22 (Jlnm) were made by melting L and RH type vacuum processing in a converter at 17
and D. Their chemical composition is (l'l il
Also the rainfall percentage is 00.018%, si, o, 27%, Mn
(1,85%, P O,015%, 80.004%,
AtO, (1 (1 (14%). Ar calculated using formula (1) according to the chemical composition of this material
8 The transformation point temperature is 865°C. Each of the above slabs was heated to f1280°07, and the hot rolling end temperature i was set to 89 for each of 'A, B and material.
0°0,915°0, hot rolled 1-7 to a thickness of 2.8 mm, and the coiling temperature after this hot rolling was 7 f3 (1'
It was wound up as O and allowed to cool. For comparison, material O was rolled at the same temperature and finished thickness as materials A and B, but the hot rolling end temperature was 885° C., which is lower than the Ar8 transformation point. Finally, material D was rolled according to the usual method (the hot rolling end temperature was 800"0 and the coiling temperature was 560").
It was set to 0. Figure 1 shows microscopic photographs showing the crystal structures of each hot rolled and steel strip made of these A, B, O, and D materials.
O and VC are also shown. Then, these hot-rolled steel strips were made into finished products by a conventional cooling process. That is, after pickling, the products were cold rolled to a thickness of 1.5 (l mlA) and bright annealed at 800°OS for 2 minutes. (-750")
Table 1 shows the magnetism after strain relief annealing for 02 hours. + 12 1 The grain size of the hot-rolled steel strip in Fig. 1 is No. 0.5, which is the largest grain size for the personnel according to this invention, followed by No. 0.5 for material B.
, 8.5, which is the next largest, while the comparison product 01 has a relatively large particle size, but it is N005, and the D material is No.
It is smaller at 7.5. Materials A and B according to the present invention have temperatures of 25°C and 25°C, respectively, from the Ar8 transformation temperature according to formula (1).
Hot rolling f was completed at a temperature 50°C higher. Comparing these, material B has a slightly smaller grain size than human material, and the hot rolling end temperature is 55% lower than the Ar8 transformation point.
There is a critical tendency for the grain size to become smaller when the temperature exceeds 0°C. Looking at the magnetism of the first coating, those made of materials A and B of this invention are 0.0% of the comparison material. Compared to D, the magnetic density of the finished product is B. The value is extremely high, and the iron loss W 15150 value is also low. It is also clear that after strain relief annealing, both magnetic flux density and iron loss are extremely excellent. Example 2 In the same manner as in Example 1, OO, (+ +1 (1%,
810.09%, Mn 11.22%, PO, (138
%, S T1 , 004%, AtO, 0007%, and 250 mm thick slabs E, F, and G were made. The Ar8 transformation point temperature determined by formula (1) from these chemical components is 877°C. Each slab was heated to 1800"C, and the hot rolling end temperature for H material was 895°C. For comparison, the H material was 865°C, which is lower than the Ar8 transformation point temperature. However, the winding source V was Also, for material G, the heat-sintering finish temperature was 820°C and the coiling temperature was 560°C (both were hot-rolled steel strips with a thickness of 2.3 mm). The crystal grain size of the band is ferrite grain 1i NO, and E
is 0. F is 5. G was 7. These hot-rolled coils were left to cool and then subjected to the usual cold-rolling step 1 to form finished products. That is, 0.5011 after pickling and cold rolling.
111, and bright annealing was performed at 750° for 0.2 minutes in a continuous annealing furnace. These products and 750℃, 2
The magnetism after time strain relief annealing is shown in Table 2. [15゛116' From these results, it can be seen that in material H of this invention, the grain size of the hot-rolled steel strip is large at NO, (l, and hot rolling is completed at 865°C, which is lower than the transformation point temperature of 1 to Ar8. The comparative example made of H material has a grain size of N015 and is small, and the conventional method made of G material has even smaller grains.As a result, the invented product has a high magnetic flux density and low iron loss, and is stress relief annealed. It is clear that the iron loss as well as the magnetic flux density are extremely excellent.Example 3 Using the same method as Example 1, OO, 012%, 810.8
4%, Mn 0.50%, po, oo7%, AtO, 0
Slabs H, I and J having a thickness of 220 mm and containing 0.007% were manufactured. The Ar8 transformation point temperature determined using formula (1) for these chemical components is 880"0. Each slab was heated to 1280°C, and the H material was heated to a hot rolling end temperature of 900°C according to the present invention. The coiling temperature is 770°C, and for comparison, the hot rolling end temperature of the work material is 870°C, which is lower than the Ar8 transformation point temperature.The coiling temperature is 760°C.
As for J material, the hot rolling end temperature is kept at 8.
30° 0 and 17, and the winding temperature was also 650°C. These hot-rolled steel strips have a uniform thickness of 2.81 mm. The grain size of each hot rolled steel strip is ferrite grain m) No. So, H was 2, Engineering was 5, and J was 6. Next, each hot-rolled steel strip was pickled and cold-rolled to a thickness of 0.50 mm by a conventional method, and then continuously annealed at 850° C. for 2 minutes to obtain a full-processed product. The magnetic properties of the products are shown in Table 8. In the invented product, which finished hot rolling at a temperature 20°C higher than the Ar8 transformation point temperature and was wound at 770°0, the ferrite crystal grain size of the hot rolled steel strip was NO.2, and the grain size was larger than that of the comparative product. It is clear that the magnetism is excellent.・19' Example 4 By the same method as in Example], the chemical component was CO,007.
%, Si 0.32%, Mno, a 5%, Po, 0
21%, SQ, (105%, A/!, 0.00 (15
% of the slough with a thickness of 22 omJ (~). The Ar8 transformation temperature determined from the chemical composition of this material using formula (1) is 874°C. Both the K and L slabs were heated to f1280″O. According to the present invention, the temperature at the end of hot rolling for material K was 895°C, and the winding temperature was 760°C. Winding temperature 660°0
and (7), hot-rolled steel strips with a thickness of 2.3 knits were made in both cases. These hot-rolled steel strips were made into semi-processed products by the usual two-time cold rolling method with so-called intermediate annealing in between. That is, the hot-rolled steel strips were pickled, then cold rolled once, and then intermediate annealed to produce a semi-processed product. "O%Continuous annealing for 2 minutes,
The cold rolling rate was set to 8% and the thickness was 120mm. Table 4 shows the magnetism of both products after 750" 0.2 hour annealing. Table 4 From the results, the invented product has a high magnetic flux density even in the double cooling iA method semi-process. It is clear that the iron loss is high and the iron loss is extremely excellent.Although each of the above examples shows the case where the material is made of a continuously cast slab with no collapse, it is also possible to use a material made by blooming a steel ingot. It goes without saying that by satisfying the conditions of this invention, an effect equivalent to that of SO can be obtained.Thus, according to this invention, the hot rolling end temperature of a hot rolled steel strip whose chemical composition has been specified can be determined by A weighs heavily depending on chemical composition
The r-phase temperature region is within a range not exceeding 50°0 higher than the r8 transformation point temperature, and the winding temperature after hot rolling is A.
Temperature range below 8'& freezing point temperature and above 700°C]
-, the hot-rolled steel strip is subjected to a separate annealing process at a low cost of 1 g.
The ferrite crystal grains of the copper strip can be made into coarse grains with a grain size of N0.4 or less, which helps to significantly improve the magnetic properties of non-oriented electrical steel strip products, regardless of whether they are used for full process or semi-process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱延鋼帯のフェライト結晶粒度を、この発明の
方法と比較法および従来法とについて対比t−だ金属顕
微暁写真である。 A  オ立度N005(X30)    B #L度ぬ
3.5 (30うCM度No、 s、o (x3o> 
   D mtxNo、75 tx3or1、明細書第
4頁第18行の「Si 2.5〜4.0%」手続補正書 1、事件の表示 昭和57年 特 許 願第189(HJ 号・の製造方
法 3、補正をする者 事件との関係 特許出願人 (125)川崎製鉄株式会社 2、同第5頁第10〜11行の「自然法則の利用のしか
た技術思想」を「自然法則の利用のしかた、つまり技術
的思想」に訂正する。 8、同第6頁第9行の「磁束密度;鉄損に関して」を「
磁束密度、鉄損に関して」に訂正する。 4、第1図を別紙訂正図のとおりに訂正する。
FIG. 1 is a metal microscopic photograph comparing the ferrite grain size of a hot-rolled steel strip using the method of the present invention, a comparative method, and a conventional method. A Standing degree No. 005 (X30) B #L degree No. 3.5 (30 degrees CM No., s, o (x3o>
D mtx No., 75 tx3or1, “Si 2.5-4.0%” on page 4, line 18 of the specification, procedural amendment 1, case description 1982 Patent Application No. 189 (HJ No. 3) , Relationship with the person making the amendment Patent applicant (125) Kawasaki Steel Co., Ltd. 2, page 5, lines 10-11 of ``technical thought on how to use the laws of nature'' was changed to ``how to use the laws of nature''. In other words, it is corrected to ``technical thought.''
Regarding magnetic flux density and iron loss.'' 4. Correct Figure 1 as shown in the attached correction diagram.

Claims (1)

【特許請求の範囲】 L 低炭素鋼スラブを加熱し引続き熱間圧延を加えて熱
延鋼帯とし、この熱延鋼帯を通常の方法による酸洗、1
回の冷間圧延または中間焼鈍を挾む2回の冷間圧延およ
びその後の焼鈍各工程に供する無方向性電磁銅帯の製造
方法において、 上記スラブが、(30,02%以下、SiもしくはSi
とAtの合計の何れか1.5%以下、Mn1.0%以下
、そしてPを含むとき0.20%以下をそれぞれ含有す
る組成になるものとし、そのスラブ加熱に引続く熱間圧
延を、該スラブの鋼中成分に応じて定まるAr8変態点
温度より50℃を越えて高くはない範囲内のγ相温度領
域で終了し、ついでこの熱延鋼帯をA8変態点温度以下
、700℃以上の温度域で巻取ることにより、熱延鋼帯
の7工クイト結晶粒を粒度NO,,4以下の粗大粒とす
る過程を経ること を特徴とする特許 銅帯の製造方法。
[Claims] L A low carbon steel slab is heated and subsequently hot rolled to form a hot rolled steel strip, and this hot rolled steel strip is pickled by a normal method.
In the method for manufacturing a non-oriented electromagnetic copper strip, which is subjected to two cold rolling steps or intermediate annealing steps, and the subsequent annealing steps, the slab contains (30.02% or less, Si or Si
The composition shall contain 1.5% or less of any of the sums of and At, 1.0% or less of Mn, and 0.20% or less when P is included, and the hot rolling subsequent to slab heating shall be performed. The hot-rolled steel strip is heated to a temperature range of γ phase within a range not more than 50°C higher than the Ar8 transformation point temperature, which is determined depending on the steel components of the slab, and then the hot-rolled steel strip is heated to a temperature below the A8 transformation point temperature and above 700°C. A method for producing a patented copper strip, which comprises a process of converting the 7-kuite crystal grains of the hot-rolled steel strip into coarse grains with a grain size of NO. 4 or less by winding the strip at a temperature of
JP1890982A 1982-02-10 1982-02-10 Manufacture of nonoriented electrical band steel with superior magnetic characteristic Pending JPS58136718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1890982A JPS58136718A (en) 1982-02-10 1982-02-10 Manufacture of nonoriented electrical band steel with superior magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1890982A JPS58136718A (en) 1982-02-10 1982-02-10 Manufacture of nonoriented electrical band steel with superior magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS58136718A true JPS58136718A (en) 1983-08-13

Family

ID=11984723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1890982A Pending JPS58136718A (en) 1982-02-10 1982-02-10 Manufacture of nonoriented electrical band steel with superior magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS58136718A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717874A (en) * 1984-02-10 1988-01-05 Kabushiki Kaisha Sg Reluctance type linear position detection device
EP0367831A1 (en) * 1988-03-07 1990-05-16 Nkk Corporation Process for producing nonoriented electric steel sheet
JPH0331420A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH046220A (en) * 1990-04-23 1992-01-10 Nippon Steel Corp Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
EP0513837B1 (en) * 1991-05-17 1995-10-18 Kabushiki Kaisha Sg Rodless cylinder apparatus
WO1996000306A1 (en) * 1994-06-24 1996-01-04 Nippon Steel Corporation Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
US6743304B2 (en) 2000-12-11 2004-06-01 Nippon Steel Corporation Non-oriented electrical steel sheet with ultra-high magnetic flux density and production method thereof
KR100544584B1 (en) * 2001-12-22 2006-01-24 주식회사 포스코 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
US9897468B2 (en) 2014-02-26 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Position detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717874A (en) * 1984-02-10 1988-01-05 Kabushiki Kaisha Sg Reluctance type linear position detection device
EP0367831A1 (en) * 1988-03-07 1990-05-16 Nkk Corporation Process for producing nonoriented electric steel sheet
US5062906A (en) * 1988-03-07 1991-11-05 Nkk Corporation Method of making non-oriented electrical steel sheets
JPH0331420A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH046220A (en) * 1990-04-23 1992-01-10 Nippon Steel Corp Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH0742500B2 (en) * 1990-04-23 1995-05-10 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
EP0513837B1 (en) * 1991-05-17 1995-10-18 Kabushiki Kaisha Sg Rodless cylinder apparatus
WO1996000306A1 (en) * 1994-06-24 1996-01-04 Nippon Steel Corporation Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
US5803989A (en) * 1994-06-24 1998-09-08 Nippon Steel Corporation Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
CN1047207C (en) * 1994-06-24 1999-12-08 新日本制铁株式会社 Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
US6743304B2 (en) 2000-12-11 2004-06-01 Nippon Steel Corporation Non-oriented electrical steel sheet with ultra-high magnetic flux density and production method thereof
KR100544584B1 (en) * 2001-12-22 2006-01-24 주식회사 포스코 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
US9897468B2 (en) 2014-02-26 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Position detection device

Similar Documents

Publication Publication Date Title
JP2006501361A5 (en)
JPS58136718A (en) Manufacture of nonoriented electrical band steel with superior magnetic characteristic
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPH0567683B2 (en)
JPS6254023A (en) Manufacture of high-grade nonoriented electrical steel sheet
KR960011799B1 (en) Method of producing non-oriented electrical steel sheet having good magnetic properties
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JPH02163322A (en) Manufacture of nonoriented silicon steel sheet
JP3331401B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties all around
JPS60125325A (en) Production of non-directionally oriented electrical steel strip
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
GB2060697A (en) Grain-oriented silicon steel production
JP7288215B2 (en) Non-oriented electrical steel sheet
JPH01198427A (en) Production of non-oriented electrical steel sheet having excellent magnetic characteristic
JPS58204126A (en) Production of nondirectional electrical steel strip having excellent magnetic characteristic
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH06336609A (en) Production of non-oriented silicon steel sheet extremely excellent in magnetic property
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS5855210B2 (en) Method for manufacturing non-oriented electrical steel strip with extremely excellent magnetic properties
JPH06240360A (en) Production of nonoriented silicon steel sheet extremely excellent in magneticc property