KR20020095273A - Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same - Google Patents

Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same Download PDF

Info

Publication number
KR20020095273A
KR20020095273A KR1020010033353A KR20010033353A KR20020095273A KR 20020095273 A KR20020095273 A KR 20020095273A KR 1020010033353 A KR1020010033353 A KR 1020010033353A KR 20010033353 A KR20010033353 A KR 20010033353A KR 20020095273 A KR20020095273 A KR 20020095273A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
coating material
polyvinylidene fluoride
weight
coating
Prior art date
Application number
KR1020010033353A
Other languages
Korean (ko)
Other versions
KR100437093B1 (en
Inventor
김명수
우원준
이방원
송희석
Original Assignee
김명수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김명수 filed Critical 김명수
Priority to KR10-2001-0033353A priority Critical patent/KR100437093B1/en
Publication of KR20020095273A publication Critical patent/KR20020095273A/en
Application granted granted Critical
Publication of KR100437093B1 publication Critical patent/KR100437093B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients

Abstract

PURPOSE: Provided is a coating material for shielding electromagnetic waves using polyvinylidene fluoride, polyvinyl pyrrolidone resin as a binder and carbon nano tube as a filler. The material has excellent processability, bonding property as well as the good property of shielding electromagnetic waves and conductivity and is used for interior coating of buildings and the housing of electronic products. CONSTITUTION: The coating material comprises 3-7wt.% of polyvinylidene fluoride, 3-7wt.% of polyvinyl pyrrolidone, 81-92wt.% of N-methyl pyrrolidone and 2-5wt.% of carbon nano tube. The method of preparing the coating material comprises the steps of: mixing 3-7wt.% of polyvinylidene fluoride, 3-7wt.% of polyvinyl pyrrolidone and 81-92wt.% of N-methyl pyrrolidone for 30 minutes to 1 hour to make a resin solution; mixing 95-98wt.% of the above solution with 2-5wt.% of carbon nano tube; and stirring at room temperature to 60deg.C for 30 minutes to 1 hour in order to homogenously disperse and impregnate the carbon nano tube.

Description

폴리비닐리덴플로라이드 및 폴리비닐피롤리돈 수지와 탄소나노튜브를 포함한 전자파 차폐용 코팅재 및 그 코팅재를 제조하는 방법 {Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same}Carbon Nanotubes Filled PVDF / PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same} Polyvinylidene fluoride and polyvinylpyrrolidone resin and carbon nanotubes

본 발명은 전기 제품이나 전자 제품에서 발생하는 전자파를 차폐하기 위한 전자파 차폐용 코팅재 및 그 코팅재를 제조하는 방법에 관한 것이다. 좀더 구체적으로는 본 발명은 폴리비닐리덴플로라이드 및 폴리비닐피롤리돈 수지를 바인더(매트릭스)로 사용하고 전도성이 우수한 탄소나노튜브를 충전제로 사용하여 제조되는 전자파 차폐용 코팅재 및 그 코팅재를 제조하는 방법에 관한 것이다. 본 발명에 따라 제조된 코팅재는 대전 방지용 코팅재, 전자파 차폐용 코팅재 또는 필름 등으로 사용할 수 있다.The present invention relates to a coating material for shielding electromagnetic waves for shielding electromagnetic waves generated from electrical appliances and electronic products, and a method of manufacturing the coating material. More specifically, the present invention uses a polyvinylidene fluoride and a polyvinylpyrrolidone resin as a binder (matrix) and to prepare a coating material for electromagnetic shielding and a coating material prepared by using a carbon nanotube having excellent conductivity as a filler It is about a method. The coating material prepared according to the present invention may be used as an antistatic coating material, electromagnetic wave shielding coating material or film.

최근 전자 제품의 사용이 증가함에 따라 전자파 장해(electromagnetic interference)는 현대 사회에서 중요한 환경 문제로 대두되고 있으며, 이러한 장해현상을 차단시키기 위해 전자파 차폐 재료의 개발이 필요하게 되었다. 이를 위해 전자파 차폐 재료로 전도성이 우수한 금속 재료나 투자율이 큰 자성 재료가 많이사용되고 있다. 현재 대부분의 전자 제품의 외장 재료는, 소형화, 경량화 추세와 대량 생산에 의한 저렴한 가격 및 디자인의 용이성 등을 고려해서, 표면에 박막을 적층시키거나 금속 분말 또는 탄소 섬유 등을 도전성 충전제로서 합성 수지와 혼합한 플라스틱을 사용하고 있다. 금속 분말 또는 탄소 섬유 등을 도전성 충전제로서 합성 수지와 혼합한 플라스틱을 전자파 차폐용 재료로 사용하는 경우에 있어서, 최근에는 바인더(매트릭스)로는 폴리에스테르, 에폭시, 폴리우레탄, 폴리카보네이트, 폴리아닐린 등이 사용되고 있으나, 가공성, 안정성, 경제성 등에 문제점이 있다. 충전제로는 카본블랙, 탄소 섬유, 금속 등이 사용되고 있으나, 고분자 매트릭스에 이들을 충전제로 첨가하여 제조한 전자파 차폐용 복합재는 기계적 물성이 떨어지는 단점이 있다.With the recent increase in the use of electronic products, electromagnetic interference has emerged as an important environmental problem in the modern society, and the development of electromagnetic shielding materials is required to block such interference. For this purpose, metal materials having excellent conductivity or magnetic materials having high permeability are frequently used as electromagnetic shielding materials. Currently, the exterior materials of most electronic products, in consideration of the trend toward miniaturization, light weight, low price and ease of design due to mass production, thin films are laminated on the surface, metal powder or carbon fiber, etc. Mixed plastic is used. In the case of using a plastic material mixed with a synthetic resin with a metal powder or carbon fiber as a conductive filler as an electromagnetic shielding material, polyester, epoxy, polyurethane, polycarbonate, polyaniline, etc. have recently been used as a binder (matrix). However, there are problems such as workability, stability, economy. Carbon black, carbon fiber, metal and the like are used as fillers, but the electromagnetic wave shielding composite prepared by adding them as a filler to the polymer matrix has a disadvantage in that mechanical properties are poor.

본 발명의 발명자가 2000년 7월 20일자로 대한민국 특허청에 특허 출원한 발명의 명칭이 "전자파 차폐용 코팅재의 제조방법"인 특허 출원번호 제10-2000-0040267호에는, 상기와 같은 고분자 화합물을 매트릭스로 사용하는 데 따르는 가공상의 난점, 열적 안정성, 대기 안정성, 경제성 등의 문제점을 해결하기 위하여 폴리비닐알코올을 수용액 상태로 제조한 후 여기에 "탄소 나노 섬유(carbon nano fiber)"를 분산시킴으로써 전자파 차폐용 코팅재를 제조하는 방법에 대하여 개시되어 있다.Patent Application No. 10-2000-0040267, entitled "Method for Producing Electromagnetic Shielding Coating Material," which the inventor of the present invention filed with the Korean Intellectual Property Office on July 20, 2000, discloses a polymer compound as described above. In order to solve the problems of processing, thermal stability, atmospheric stability, and economics of using as a matrix, polyvinyl alcohol is prepared in an aqueous solution state, and then the "carbon nano fibers" are dispersed therein for electromagnetic waves. A method for producing a shielding coating is disclosed.

이이지마(Iijima)에 의해 탄소나노튜브가 최초로 발견된 후로[S. Iijima, Nature Vol. 354, P. 56 (1991년)] 최근에는 그에 대한 많은 연구가 진행되고 있다. 탄소나노튜브는 높은 전기 전도도, 균일한 세공 분포 및 높은 기계적 강도 등의 많은 장점을 가지므로, 정전기 방지용 전도성 코팅제, 전자파 차폐재, 필터 등 많은 분야에서 활용이 가능하다.Since the first discovery of carbon nanotubes by Iijima [S. Iijima, Nature Vol. 354, P. 56 (1991)] Recently, a great deal of research has been conducted. Carbon nanotubes have many advantages such as high electrical conductivity, uniform pore distribution, and high mechanical strength, and thus can be utilized in many fields such as antistatic conductive coatings, electromagnetic shielding materials, and filters.

따라서, 본 발명자는 상기 특허 출원번호 제10-2000-0042267호의 발명에서 사용되는 "탄소나노섬유"와는 또 다른 우수한 전기, 기계적 물성을 갖고 있는 "탄소나노튜브"를 사용하여 전자파 차폐 성능을 보다 더 향상시키려는 의도를 가지고 연구한 결과로서 본 발명을 완성하기에 이른 것이다.Therefore, the present inventors further improve the electromagnetic wave shielding performance by using "carbon nanotubes" which have other excellent electrical and mechanical properties than the "carbon nanofibers" used in the invention of Patent Application No. 10-2000-0042267. As a result of research with the intention of improving, the present invention has been completed.

탄소나노튜브의 제조 방법으로는 화학 증착법, 아크 방전법, 플라즈마 토치법, 이온 충격법(ion bombardment) 등이 개시되어 있다. 화학 증착법(CVD: chemical vapor deposition)은 탄소나노튜브의 대량 생산과 성장 제어에 있어 많은 가능성을 가진 방법으로 인식되고 있다. 촉매 화학증착법은, 상기 화학증착법(CVD)에서 사용되고 있는 바와 같이 기질 위에 촉매 입자를 담지시킨 후 반응시키는 대신에 촉매를 함유한 물질을 사용하여 반응기 내부로 분사시켜 탄소나노튜브를 제조하는 것이다. 그러나 아직까지 탄소나노튜브를 대량으로 생산하는 방법은 일반화 되어 있지 아니하다. 하지만 이미 언급한 바와 같이, 탄소나노튜브는 높은 전기 전도도, 균일한 세공 분포 및 높은 기계적 강도 등의 많은 장점을 가지고 있기 때문에 앞으로 정전기 방지용 전도성 코팅제, 전자파 차폐재, 필터 등 많은 분야에서 연구 개발이 활발히 이루어질 것으로 기대된다.As a method of manufacturing carbon nanotubes, chemical vapor deposition, arc discharge, plasma torch, ion bombardment, and the like are disclosed. Chemical vapor deposition (CVD) has been recognized as a method that has many possibilities for mass production and growth control of carbon nanotubes. Catalytic chemical vapor deposition is a method of producing carbon nanotubes by spraying catalyst particles onto a substrate using a substance containing a catalyst, instead of carrying the catalyst particles on a substrate and reacting them, as used in the chemical vapor deposition (CVD) method. However, the method of mass production of carbon nanotubes is not common yet. However, as already mentioned, carbon nanotubes have many advantages such as high electrical conductivity, uniform pore distribution, and high mechanical strength. Therefore, research and development will be actively conducted in many fields such as antistatic conductive coatings, electromagnetic wave shields, filters, etc. It is expected to be.

본 발명은, 종래의 전자파 차폐용 재료가 갖고 있는 가공성 및 안정성의 문제점과 기계적 물성이 떨어지는 단점을 해결하고, 전자파 차폐 효과가 우수한 전자파 차폐 코팅재 및 그 제조방법을 제공하려는 것이다. 본 발명은 충전제로서 종래의 금속이나 탄소나노섬유 대신에 최근 우수한 특성이 입증되고 있는 "탄소나노튜브"를 사용함으로써 종래보다 전자파 차폐 효과가 뛰어나고 기계적 물성이 우수한 전자파 차폐용 코팅재를 얻을 수 있었다.The present invention is to solve the disadvantages of workability and stability and mechanical properties of the conventional electromagnetic shielding material, and to provide an electromagnetic shielding coating material excellent in the electromagnetic shielding effect and its manufacturing method. The present invention was able to obtain an electromagnetic shielding coating material having superior electromagnetic shielding effect and superior mechanical properties by using "carbon nanotube" which has been proved in recent years excellent properties instead of conventional metal or carbon nanofibers as a filler.

또한, 본 발명은 바인더(매트릭스)로서 폴리비닐리덴플로라이드 및 폴리비닐피롤리돈을 사용함으로써 종래의 가공성, 안정성 및 밀착성의 문제점을 해결하였다.In addition, the present invention solves the problems of conventional workability, stability and adhesion by using polyvinylidene fluoride and polyvinylpyrrolidone as binders (matrix).

이에 따라, 본 발명에서는 우수한 전기 전도성, 균일한 세공 분포 및 높은 기계적 강도를 갖는 탄소나노튜브와 폴리비닐리덴플로라이드 및 폴리비닐피롤리돈으로 이루어지는 전자파 차폐성이 우수한 코팅재 및 그 코팅재를 제조하는 방법이 제공된다. 추가로, 본 발명의 목적은 폴리아크릴, 폴리카보네이트, PET 등을 사용한 각종 플라스틱이나 필름 위에 코팅액을 도포하여 전자파 차폐 도막을 제공하기 위한 것이다.Accordingly, in the present invention, a coating material having excellent electromagnetic shielding properties, comprising a carbon nanotube, polyvinylidene fluoride, and polyvinylpyrrolidone having excellent electrical conductivity, uniform pore distribution, and high mechanical strength, and a method of manufacturing the coating material Is provided. In addition, an object of the present invention is to provide an electromagnetic shielding coating film by applying a coating liquid on various plastics or films using polyacryl, polycarbonate, PET and the like.

상기 목적을 달성하기 위한 본 발명에 따르면, 우수한 전기적, 기계적 물성을 갖는 탄소나노튜브를 충전제로 이용하여 제조되는 전자파 차폐용 코팅재(또는 조성물), 즉 폴리비닐리덴플로라이드(polyvinylidenefluoride; PVDF) 3∼7중량%, 폴리비닐피롤리돈(polyvinylpyrrolidon; PVP) 3∼7중량%, N-메틸피롤리돈(N-methylpyrrolidon; NMP) 81∼92중량%, 및 탄소나노튜브(CNT) 2∼5중량%로 이루어진 전자파 차폐용 코팅재가 제공된다.According to the present invention for achieving the above object, an electromagnetic shielding coating material (or composition), that is, using a carbon nanotube having excellent electrical and mechanical properties as a filler, that is, polyvinylidene fluoride (PVDF) 3 ~ 7 wt%, polyvinylpyrrolidon (PVP) 3-7 wt%, N-methylpyrrolidon (NMP) 81-92 wt%, and carbon nanotube (CNT) 2-5 wt% Provided is a coating for electromagnetic shielding consisting of%.

본 발명에서는 탄소나노튜브와 상용성이 우수하고 전기화학적 및 물리적 성질이 우수한 폴리비닐리덴플로라이드와 폴리비닐피롤리돈을 바인더(매트릭스)로 사용한다. 이러한 바인더는 이제까지 개시된 바 없는 혼합결합제로서 폴리비닐리덴플로라이드는 유연성이 우수하고 폴리비닐피롤리돈은 가교결합력이 우수하고 환경친화적인 재료로서 기계적 강도와 접착력이 우수하다. 폴리비닐리덴플로라이드와 폴리비닐피롤리돈의 조성비는 각각 7:3 내지 3:7로 조성되는데 이는 폴리비닐리덴플로라이드의 유연성과 폴리비닐피롤리돈의 가교결합력에 기인한 접착력의 향상을 도모하기 위한 것이다. 폴리비닐피롤리돈의 함량이 30중량% 미만일 경우는 접착력이 떨어져 밀착력 및 안정성에 문제가 발생하고, 70중량%를 초과하게 되면 유연성이 부족하여 기계적 강도에 문제점이 발생한다. N-메틸피롤리돈을 용매로 사용하였는데, 본 발명에 사용할 수 있는 용매로는 아세톤, 테트라하이드로퓨란, 메틸에틸케톤, N-메틸피롤리돈 등을 사용할 수 있으나 N-메틸피롤리돈을 제외한 용매는 폴리비닐리덴플로라이드에 대한 용해도가 매우 낮고 메틸에틸케톤의 경우 상분리에 의한 미세공이 많이 형성된다. 반면 N-메틸피롤리돈은 상분리도 제한적이고 제조 공정중 증발도 많이 발생하지 않는 장점이 있다.In the present invention, polyvinylidene fluoride and polyvinylpyrrolidone having excellent compatibility with carbon nanotubes and excellent electrochemical and physical properties are used as a binder (matrix). Such a binder is a mixed binder that has not been disclosed so far, polyvinylidene fluoride has excellent flexibility and polyvinylpyrrolidone has excellent crosslinking force and environmentally friendly material, and has excellent mechanical strength and adhesion. The composition ratio of polyvinylidene fluoride and polyvinylpyrrolidone is 7: 3 to 3: 7, respectively, which improves adhesion due to the flexibility of polyvinylidene fluoride and the crosslinking force of polyvinylpyrrolidone. It is to. If the content of the polyvinylpyrrolidone is less than 30% by weight, the adhesive force is poor, causing problems in adhesion and stability, and in excess of 70% by weight, there is a problem in mechanical strength due to lack of flexibility. N-methylpyrrolidone was used as a solvent, but acetone, tetrahydrofuran, methyl ethyl ketone, N-methylpyrrolidone, etc. may be used as the solvent, but except for N-methylpyrrolidone. The solvent has very low solubility in polyvinylidene fluoride, and in the case of methyl ethyl ketone, many fine pores are formed by phase separation. N-methylpyrrolidone, on the other hand, has the advantage of limited phase separation and no evaporation during the manufacturing process.

탄소나노튜브의 함량이 2중량% 미만이면 전기 전도도가 현저하게 떨어져 일반적으로 전기 전도도와 비례 관계에 있는 전자파 차폐 효과가 떨어지며, 5중량%를 초과하면 점도가 너무 높아 코팅 시에 문제가 발생한다.When the content of the carbon nanotubes is less than 2% by weight, the electrical conductivity is remarkably dropped, and the electromagnetic shielding effect, which is generally proportional to the electrical conductivity, is lowered.

또한, 본 발명에 따르면, 폴리비닐리덴플로라이드, 폴리비닐피롤리돈 및 탄소나노튜브를 이용하여 전자파 차폐용 코팅재를 제조하는 방법으로서, 폴리비닐리덴플로라이드 3∼7중량%, 폴리비닐피롤리돈 3∼7중량%, N-메틸피롤리돈 81∼92중량%를 혼합하여 30분 내지 1시간 동안 교반하여 수지액을 제조하는 단계와, 이 수지액에 탄소나노튜브 2∼5중량%를 혼합하여 상온 내지 60℃의 온도에서 1시간 정도 교반시켜, 탄소나노튜브를 균일하게 분산·함침시킴을 특징으로 하는 전자파 차폐용 코팅재의 제조 방법이 제공된다. 상기 수지액을 제조하는 단계에서 N-메틸피롤리돈을 용매로 사용하여 폴리비닐리덴플로라이드와 폴리비닐피롤리돈을 용해시킨다. 또한, 상기 수지액에 탄소나노튜브를 혼합하여 교반할 때의 온도는 상온 내지 60℃로 유지시키는 것이 좋다. 60℃ 이상의 온도에서 교반을 하면 용매의 과도한 증발 우려와 비용상의 문제가 발생할 수 있다.In addition, according to the present invention, as a method of manufacturing a coating material for shielding electromagnetic waves using polyvinylidene fluoride, polyvinylpyrrolidone and carbon nanotubes, 3 to 7% by weight of polyvinylidene fluoride, polyvinylpyrroly 3-7% by weight of Don and 81-92% by weight of N-methylpyrrolidone were mixed and stirred for 30 minutes to 1 hour to prepare a resin solution, and 2-5% by weight of carbon nanotubes were added to the resin solution. Provided is a method for producing a coating material for shielding electromagnetic waves, wherein the mixture is stirred at a temperature of from room temperature to 60 ° C. for about 1 hour to uniformly disperse and impregnate carbon nanotubes. In preparing the resin solution, N-methylpyrrolidone is used as a solvent to dissolve polyvinylidene fluoride and polyvinylpyrrolidone. In addition, the temperature at the time of mixing and stirring the carbon nanotubes in the resin solution is preferably maintained at room temperature to 60 ℃. Stirring at temperatures above 60 ° C. can cause excessive evaporation of solvents and cost problems.

본 발명에서 사용되는 탄소나노튜브는 공지의 촉매 화학증착법과 같은 제조 방법에 따라 제조하여 사용하거나, 미국의 하이페리온 카탈리시스 인터내셔널사(Hyperion Catalysis International Inc.)의 "그래파이트 피브릴"과 같은 이미 상품화 되어 있는 제품을 구입하여 사용할 수 있다.Carbon nanotubes used in the present invention may be prepared and used according to a known production method such as catalytic chemical vapor deposition, or already commercialized, such as "graphite fibrils" of Hyperion Catalysis International Inc. of the United States. The product can be purchased and used.

상기 촉매 화학증착법은 기존의 화학증착법(CVD법)에서 사용한 방법인 기질 위에 촉매 입자를 담지시킨 후 반응시키는 것이 아니고, 촉매를 함유한 물질을 사용하여 반응로 내부로 분사시켜 탄소나노튜브를 제조하는 방법[S. Fan et al., Science Vol. 283, P. 461(1999)]이다. 촉매로는 일반적으로 니켈, 철, 코발트 등의 합금 촉매가 사용되는데, 본 발명에서는 철 촉매를 함유한 메탈로센(페로센)을 사용한다.[R. Andrews et al., Chem. Phys. Letters, Vol. 303, 467 (1999)]. 상기 촉매 화학증착법에 따른 탄소나노튜브를 제조하는 방법의 개략을 설명하면 다음과 같다.The catalyst chemical vapor deposition method is not carried out by supporting the catalyst particles on the substrate, which is a method used in the conventional chemical vapor deposition (CVD method), and then reacting the carbon nanotubes by spraying them into the reactor using a catalyst-containing material. Method [S. Fan et al., Science Vol. 283, P. 461 (1999). As the catalyst, alloy catalysts such as nickel, iron and cobalt are generally used. In the present invention, metallocene (ferrocene) containing an iron catalyst is used. [R. Andrews et al., Chem. Phys. Letters, Vol. 303, 467 (1999). Referring to the outline of the method for producing carbon nanotubes according to the catalytic chemical vapor deposition method as follows.

먼저 메탈로센(페로센)을 크실렌(자일렌)에 녹인다. Fe/C 비가 0.75% 이상인 용액을 얻기 위해서는 상기 메탈로센은 6.5 mol% 이상이 되어야 한다. 열분해 온도가 약 190℃인 메탈로센은 탄소나노튜브의 성장 역할을 하는 철 촉매 입자를 공급하는 전구체로서 사용하고, 탄소나노튜브 생성 물질로는 끓는점이 약 140℃인 크실렌(o-, m-, p-크실렌의 혼합물)을 사용한다. 메탈로센과 크실렌의 혼합 용액을 25㎖의 실린지를 이용하여 주입한 후 펌프를 이용해 반응로 안으로 연속적으로 주입한다. 주입에 있어 주입부의 온도가 매우 중요하므로 주입부의 온도를 측정하여 약 200℃가 되도록 유지한다. 메탈로센과 크실렌을 운반하는 가스는 수소와 질소를 사용하는데, 질소의 유량은 일정하게 고정시킨 상태에서 수소의 유량을 5∼25 SCCM으로 변화시켜 탄소나노튜브를 제조하는 것이다. 여기서, 반응기는 2중 석영관을 사용하여 100 SCCM으로 질소를 흘려보내면서 반응기 내부의 온도를 650∼800℃의 범위에서 가열하여 3시간 동안 수소와 질소를 흘려보내면서 반응시킨다.First, dissolve the metallocene (ferrocene) in xylene (xylene). The metallocene should be at least 6.5 mol% to obtain a solution having a Fe / C ratio of at least 0.75%. Metallocene having a pyrolysis temperature of about 190 ° C is used as a precursor for supplying iron catalyst particles that play a role of growing carbon nanotubes, and a carbon nanotube-producing material xylene having a boiling point of about 140 ° C (o-, m- , a mixture of p-xylene). The mixed solution of metallocene and xylene is injected with a 25 ml syringe and then continuously injected into the reactor using a pump. Since the temperature of the injection part is very important in the injection, the temperature of the injection part is measured and maintained at about 200 ° C. The gas carrying metallocene and xylene uses hydrogen and nitrogen, and the carbon flow is produced by changing the flow rate of hydrogen to 5 to 25 SCCM while the nitrogen flow rate is fixed. Here, the reactor is heated in a range of 650 ~ 800 ℃ while flowing nitrogen to 100 SCCM using a double quartz tube to react with flowing hydrogen and nitrogen for 3 hours.

탄소나노튜브의 제조방법은 탄소나노튜브를 최초로 발견한 일본국 이이지마가 발명자이고 일본국 엔이씨(NEC)사에 1998년 11월 3일 허여된 미국 특허 제 5830326호에 상세히 개시되어 있다. 이외에 2000년 11월 21일 허여된 미국 특허 제 6149775호 등 다수의 문헌에 그 제조방법이 기술되어 있다.The method for producing carbon nanotubes is disclosed in detail in U.S. Patent No. 5830326, which is the inventor of Iijima, the first to discover carbon nanotubes, and was issued on November 3, 1998 by NEC, Japan. In addition, a number of documents, such as US Pat. No. 6,149,775 issued November 21, 2000, describe the preparation method.

상기한 바와 같은 방법으로 제조되거나 상품화된 탄소나노튜브는 본 발명의 전자파 차폐용 코팅재의 충전제로서 사용될 수 있는데, 이러한 탄소나노튜브의 우수한 전기적 및 기계적 특성으로 본 발명에서 제조되는 전자파 차폐용 코팅재는 우수한 전자파 차폐 성능을 갖게 된다.Carbon nanotubes manufactured or commercialized in the above-described manner may be used as fillers for the electromagnetic wave shielding coating material of the present invention, and the electromagnetic wave shielding coating material prepared in the present invention is excellent due to the excellent electrical and mechanical properties of such carbon nanotubes. It has electromagnetic shielding performance.

또한, 상기 제조된 코팅재를 코팅기를 이용하여 폴리에틸렌테레프탈레이트 필름, 폴리카보네이트 패널, 플라스틱 하우징과 같은 기질 표면 위에 코팅한 후 40∼60℃의 온도의 오븐에서 약 3시간 동안 건조하게 되면 전자파 차폐 성능을 갖는 코팅막이 형성된다. 이렇게 제조된 코팅막은 우수한 대전 방지 효과 및 전자파 차폐 효과를 나타낸다. 50℃ 정도에서 건조할 경우 가장 우수한 코팅막을 형성할 수 있으며, 상온에서 건조 처리할 경우 많은 시간이 걸리고 80℃이상의 온도에서 처리할 경우 용매의 급속한 증발에 의한 불균일한 코팅막이 형성될 우려가 있다.In addition, after coating the prepared coating material on the substrate surface such as polyethylene terephthalate film, polycarbonate panel, plastic housing using a coater and dried in an oven at a temperature of 40 ~ 60 ℃ for about 3 hours to improve the electromagnetic shielding performance The coating film which has is formed. The coating film thus prepared exhibits excellent antistatic effect and electromagnetic wave shielding effect. When dried at about 50 ℃ can form the most excellent coating film, when the drying treatment at room temperature takes a lot of time, if the treatment at a temperature of 80 ℃ or more there is a fear that a non-uniform coating film due to the rapid evaporation of the solvent is formed.

이하에서는 본 발명의 실시예와 비교예에 대해 설명한다. 이로부터 본 발명의 특징 및 이점들을 보다 더 명확하게 파악할 수 있을 것이다.Hereinafter, examples and comparative examples of the present invention will be described. From this, the features and advantages of the present invention will be more clearly understood.

[실시예 1]Example 1

먼저 폴리비닐리덴플로라이드 3그램(g)과 폴리비닐피롤리돈 7그램(g)을 N-메틸피롤리돈 86그램(g)에 가하여 50℃에서 30분 동안 교반하여 수지액 96그램(g)을 얻었다. 상기 수지액 96그램에 충전제로 4그램의 탄소나노튜브를 투입하여 1시간 동안 교반하여 100그램(g)의 균일한 코팅액을 제조하였다. 상기 코팅액을 코팅기(대한민국 시엔아이로보틱사 오토필름코팅기)를 이용하여 0.10mmT(두께)×210mmW(폭)×300mmL(길이)의 폴리에틸렌 테레프탈레이트 필름 위에 500㎛의 두께로 코팅시킨 후 50℃의 오븐에서 3시간 동안 건조시켰다. 건조 후 50㎛~55㎛ 두께의 코팅막이 형성되었다. 이를 하기와 같이 물성을 측정하였다.First, 3 grams (g) of polyvinylidene fluoride and 7 grams (g) of polyvinylpyrrolidone were added to 86 grams (g) of N-methylpyrrolidone, followed by stirring at 50 ° C for 30 minutes. ) 4 grams of carbon nanotubes were added to 96 grams of the resin solution as a filler and stirred for 1 hour to prepare a uniform coating solution of 100 grams (g). The coating solution was coated on a polyethylene terephthalate film having a thickness of 0.10 mmT (thickness) × 210 mmW (width) × 300 mmL (length) using a coating machine (Korea Cien Irobotics Co., Ltd. autofilm coating machine) and then oven at 50 ° C. Dried for 3 hours. After drying, a coating film having a thickness of 50 μm to 55 μm was formed. The physical properties were measured as follows.

<막균일성><Film uniformity>

상기 코팅막의 표면의 요철 상태를 육안으로 관찰하여 주름이나 핀홀(pinhole)이 발생한 상태를 "불량"으로, 주름이나 핀홀이 발생하지 않은 상태를 "양호"로 평가하여 그 결과를 표1에 나타내었다.The uneven state of the surface of the coating film was visually observed to evaluate the state in which wrinkles or pinholes were generated as "bad" and the state in which wrinkles or pinholes were not generated as "good", and the results are shown in Table 1. .

<전기 전도도><Electric conductivity>

상기 코팅막에 1.0mA의 전류를 인가하여 디지털 멀티미터(Digital Multimeter, Keithly 236)를 이용하여 전압과 전류의 변화량으로 측정하여 그 결과를 표1에 나타내었다.A current of 1.0 mA was applied to the coating film to measure the change in voltage and current using a digital multimeter (Kissly 236). The results are shown in Table 1 below.

<밀착력><Adhesiveness>

상기 코팅막을 바둑판식 절개법 2.0mm ×2.0mm의 정사각형을 만들고 KS-0254호의 당겨벗기기 시험법 중 테이프 시험방법에 따라 측정하여 퍼센트(%)화 한 결과를 표1에 나타내었다.Table 1 shows the results of the coating film made of a tile cutting method of 2.0mm × 2.0mm square and measured according to the tape test method of the pull-out test method of KS-0254.

[실시예 2 내지 실시예 3][Examples 2 to 3]

폴리비닐리덴플로라이드와 폴리비닐피롤리돈의 조성만을 표1에 나타낸 바와 같이 실시예 1과 달리 구성하여 실시예 1과 같은 방법으로 수지액 및 코팅막을 제조하고 실시예 1과 같은 방법으로 막균일성, 전기 전도도, 밀착력 및 전자파 차폐율을 측정하고 그 결과를 표1에 나타내었다.As shown in Table 1, only the composition of polyvinylidene fluoride and polyvinylpyrrolidone was prepared in the same manner as in Example 1 to prepare a resin solution and a coating film in the same manner as in Example 1, and the film uniformity in the same manner as in Example 1. The properties, electrical conductivity, adhesion and electromagnetic shielding rate were measured and the results are shown in Table 1.

[비교예 1 내지 비교예 2][Comparative Example 1 to Comparative Example 2]

코팅막의 밀착력 특성을 평가하기 위하여 표1에 나타낸 바와 같이 폴리비닐리덴플로라이드를 첨가하지 않고 폴리비닐피롤리돈만을 바인더로 한 경우(비교예 1)와, 폴리비닐피롤리돈을 첨가하지 않고 폴리비닐리덴플로라이드만을 바인더로 한경우(비교예 2)로 하여 실시예 1과 같은 방법으로 코팅막을 제조하여 막균일성, 밀착력, 전기 전도도를 측정하고, 그 결과를 하기 표1에 나타내었다.In order to evaluate the adhesion characteristics of the coating film, as shown in Table 1, when only polyvinylpyrrolidone was added without the polyvinylidene fluoride (Comparative Example 1), the polyvinyl without the polyvinylpyrrolidone was added. In the case of using only vinylidene fluoride as a binder (Comparative Example 2) to prepare a coating film in the same manner as in Example 1 to measure the film uniformity, adhesion, and electrical conductivity, the results are shown in Table 1 below.

[비교예 3]Comparative Example 3

표1에 나타낸 바와 같이 실시예 2의 조성중 탄소나노튜브를 "탄소나노섬유"로 대체 조성하여 실시예 1과 같은 방법으로 코팅막을 제조한 후 그 특성을 측정하였고, 그 결과를 하기 표1에 나타내었다.As shown in Table 1, the carbon nanotubes of the composition of Example 2 were replaced with "carbon nanofibers," and then the coating films were manufactured in the same manner as in Example 1, and the properties thereof were measured. The results are shown in Table 1 below. It was.

구 분division PVDF/PVP/NMP/충전제(중량%)PVDF / PVP / NMP / Fillers (wt%) 충전제Filler 막균일성Membrane uniformity 밀착력Adhesion 전기 전도도(S/cm)Electrical conductivity (S / cm) 실시예 1Example 1 3/7/86/43/7/86/4 탄소나노튜브Carbon nanotubes 양호Good 100100 17.817.8 실시예 2Example 2 5/5/86/45/5/86/4 상동Same as above 양호Good 100100 26.726.7 실시예 3Example 3 7/3/86/47/3/86/4 상동Same as above 양호Good 9696 13.313.3 비교예 1Comparative Example 1 0/10/86/40/10/86/4 상동Same as above 양호Good 100100 9.59.5 비교예 2Comparative Example 2 10/0/86/410/0/86/4 상동Same as above 양호Good 00 9.89.8 비교예 3Comparative Example 3 5/5/86/45/5/86/4 탄소나노섬유Carbon Nano Fiber 양호Good 100100 0.70.7

상기 표1에서 알 수 있는 바와 같이, 본 발명의 조성에 따른 실시예를 비교예와 비교해 보면 전기 전도도에 있어서 향상된 전기 전도도를 나타내고 있음을 알 수 있다. 특히 "탄소나노튜브"를 각각 동일한 비율로 사용한 본 발명의 실시예 1 내지 실시예 3과 "탄소나노섬유"를 사용한 비교예 3을 비교해 보면, "탄소나노튜브"를 사용한 본 발명의 실시예 1 내지 실시예 3이 전기 전도도에 있어서 "탄소나노섬유"를 사용한 비교예 3보다 월등히 우수한 전기 전도도를 나타내고 있음을 알 수 있다. "탄소나노섬유"를 사용한 비교예 3은 막균일성은 양호했지만, 전기 전도도는 "탄소나노튜브"를 사용한 것에 비해 크게 낮았다.As can be seen in Table 1, when comparing the embodiment according to the composition of the present invention with the comparative example, it can be seen that the improved electrical conductivity in the electrical conductivity. In particular, comparing Example 1 to Example 3 of the present invention using "carbon nanotubes" in the same ratio and Comparative Example 3 using "carbon nanofibers", Example 1 of the present invention using "carbon nanotubes" It can be seen that Example 3 shows much better electrical conductivity than Comparative Example 3 using "carbon nanofibers" in electrical conductivity. Comparative Example 3 using "carbon nanofibers" had good film uniformity, but the electrical conductivity was significantly lower than that using "carbon nanotubes".

또한, 폴리비닐피롤리돈을 첨가하지 않을 경우(비교예 2) 밀착력은 0%를 나타냈으며, 폴리비닐피롤리돈의 조성을 증가시킬수록 밀착력은 우수하게 나타났다.In addition, when the polyvinylpyrrolidone was not added (Comparative Example 2), the adhesion was 0%, and the adhesion was excellent as the composition of the polyvinylpyrrolidone was increased.

[실시예 4 내지 실시예 6][Examples 4 to 6]

바인더인 폴리비닐리덴플로라이드(PVDF) 및 폴리비닐피롤리돈(PVP)을 5:5로 구성하고 N-메틸피롤리돈(NMP)과 탄소나노튜브(CNT)의 조성만을 표2와 같이 달리 구성하여 실시예 1과 같은 방법으로 제조한 코팅막의 막균일성과 전기 전도도를 측정하고 그 결과를 표2에 나타내었다.The binder polyvinylidene fluoride (PVDF) and polyvinylpyrrolidone (PVP) is composed of 5: 5 and only the composition of N-methylpyrrolidone (NMP) and carbon nanotubes (CNT) is shown in Table 2. The film uniformity and electrical conductivity of the coating film prepared in the same manner as in Example 1 were measured, and the results are shown in Table 2.

[비교예 4 내지 비교예 6][Comparative Example 4 to Comparative Example 6]

표2에 나타낸 바와 같이 바인더인 폴리비닐리덴플로라이드(PVDF) 및 폴리비닐피롤리돈(PVP)을 5:5로 구성하고, N-메틸피롤리돈(NMP)과 탄소나노튜브(CNT)의 조성만을 달리 구성하여 실시예 1과 같은 방법으로 코팅막을 제조하여 그 특성을 실시예 1과 같은 방법으로 측정하고 그 결과를 하기 표2에 나타내었다.As shown in Table 2, binders polyvinylidene fluoride (PVDF) and polyvinylpyrrolidone (PVP) are composed of 5: 5, and N-methylpyrrolidone (NMP) and carbon nanotubes (CNT) The coating composition was prepared in the same manner as in Example 1 by differently configuring only the composition, and its properties were measured in the same manner as in Example 1, and the results are shown in Table 2 below.

구 분division PVDF/PVP/NMP/CNT(중량%)PVDF / PVP / NMP / CNT (wt%) 막균일성Membrane uniformity 전기 전도도(S/cm)Electrical conductivity (S / cm) 실시예 4Example 4 5/5/88/25/5/88/2 양호Good 6.76.7 실시예 5Example 5 5/5/87/35/5/87/3 양호Good 16.316.3 실시예 6Example 6 5/5/85/55/5/85/5 양호Good 27.227.2 비교예 4Comparative Example 4 5/5/89.5/0.55/5 / 89.5 / 0.5 불량Bad 0.10.1 비교예 5Comparative Example 5 5/5/89/15/5/89/1 불량Bad 0.560.56 비교예 6Comparative Example 6 5/5/84/65/5/84/6 코팅불가능Coating impossible --

상기 표2의 결과로부터 알 수 있는 바와 같이, 본 발명의 실시예는 비교예보다 우수한 막균일성과 전기 전도도를 나타냄을 알 수 있으며, 충전제인 탄소나노튜브(CNT)가 증가할 수록 전기 전도도가 우수해짐을 알 수 있다.As can be seen from the results of Table 2, it can be seen that the embodiment of the present invention exhibits excellent film uniformity and electrical conductivity than the comparative example, and the electrical conductivity is excellent as the carbon nanotube (CNT) as the filler is increased. It can be seen that.

또한, 탄소나노튜브(CNT)의 함량이 0.5중량%와 1중량%의 경우에는 상분리가 발생하여 막균일성이 불량하였고, 6중량%는 점도가 너무 커서 교반시킬 수 없었다.In addition, when the content of the carbon nanotubes (CNT) is 0.5% by weight and 1% by weight, phase separation occurred, resulting in poor membrane uniformity, and 6% by weight of the carbon nanotube (CNT) was too large to be stirred.

[실시예 7 내지 실시예 8][Examples 7 to 8]

실시예 7에서는 열처리 하지 않은 탄소나노튜브를 충전제로 사용하고, 실시예 8에서는 열처리한 탄소나노튜브를 충전제로 사용하여, 실시예 1과 동일한 조성 및 방법으로 코팅막을 형성시켰다.In Example 7, a carbon nanotube that was not heat-treated was used as a filler, and in Example 8, the carbon nanotubes that were heat-treated were used as a filler, and a coating film was formed in the same composition and method as in Example 1.

상기 코팅막을 ASTM D 4935호의 시험법에 따라 전자파 차폐율을 측정하고 그 결과를 표3에 나타내었다.The coating film was measured for electromagnetic shielding rate according to the test method of ASTM D 4935 and the results are shown in Table 3.

[비교예 7]Comparative Example 7

실시예 1의 탄소나노튜브를 "탄소나노섬유"로 대체 사용하고, 실시예 1과 동일한 조성 및 방법으로 코팅막을 제조하여 상기 실시예 7과 동일한 방법으로 전자파 차폐율을 측정하였다. 그 결과를 표3에 나타내었다.The carbon nanotubes of Example 1 were replaced with “carbon nanofibers”, and a coating film was prepared by the same composition and method as in Example 1, and the electromagnetic shielding rate was measured in the same manner as in Example 7. The results are shown in Table 3.

구 분division PVDF/PVP/NMP/충전제(중량%)PVDF / PVP / NMP / Fillers (wt%) 충 전 제Filler 전자파 차폐율(dB)Electromagnetic shielding rate (dB) 실시예 7Example 7 3/7/86/43/7/86/4 탄소나노튜브Carbon nanotubes 15-2315-23 실시예 8Example 8 3/7/86/43/7/86/4 탄소나노튜브(열처리)Carbon Nanotubes (Heat Treatment) 13-1813-18 비교예 7Comparative Example 7 3/7/86/43/7/86/4 탄소나노섬유Carbon Nano Fiber 4-54-5

상기 표3에서 알 수 있는 바와 같이, "탄소나노튜브"를 사용한 본 발명의 실시예 7 및 실시예 8은 "탄소나노섬유"를 사용한 비교예 7보다 향상된 전자파 차폐율을 나타내고 있음을 알 수 있다.As can be seen in Table 3, it can be seen that Example 7 and Example 8 of the present invention using the "carbon nanotube" shows an improved electromagnetic shielding rate than Comparative Example 7 using the "carbon nanofiber" .

이상의 상세한 설명으로부터 알 수 있는 바와 같이, 본 발명에 따른 폴리비닐리덴플로라이드, 폴리비닐피롤리돈수지 및 탄소나노튜브로 이루어진 전자파 차폐용 코팅재는 밀착력이 우수하고 균일한 코팅막을 제공할 뿐만 아니라 우수한 전기 전도도와 전자파 차폐율을 제공한다. 따라서, 본 발명에 따른 코팅재를 사용하게 되면, 탁월한 전자파 차폐 효과와 대전 방지효과를 나타낼 수 있다. 한편, 본 발명의 코팅재는 건물 내부의 전자파 차폐용 도료나 전기, 전자 제품의 하우징재로도 사용할 수 있다.As can be seen from the above detailed description, the electromagnetic wave shielding coating material consisting of polyvinylidene fluoride, polyvinylpyrrolidone resin and carbon nanotube according to the present invention not only provides excellent adhesion and uniform coating film but also excellent Provides electrical conductivity and electromagnetic shielding rate. Therefore, when using the coating material according to the present invention, it can exhibit an excellent electromagnetic shielding effect and antistatic effect. On the other hand, the coating material of the present invention can also be used as a housing material for electromagnetic shielding paint, electrical, electronic products inside the building.

Claims (2)

탄소나노튜브를 포함하는 전자파 차폐용 코팅재에 있어서,In the electromagnetic shielding coating material comprising carbon nanotubes, 폴리비닐리덴플로라이드 3∼7중량%, 폴리비닐피롤리돈 3∼7중량%, N-메틸피롤리돈 81∼92중량%, 및 탄소나노튜브 2∼5중량%로 이루어지는 전자파 차폐용 코팅재.A coating material for electromagnetic shielding, comprising 3 to 7% by weight of polyvinylidene fluoride, 3 to 7% by weight of polyvinylpyrrolidone, 81 to 92% by weight of N-methylpyrrolidone, and 2 to 5% by weight of carbon nanotubes. 탄소나노튜브를 포함하는 전자파 차폐용 코팅재를 제조하는 방법에 있어서,In the method for producing a coating material for shielding electromagnetic waves containing carbon nanotubes, 폴리비닐리덴플로라이드 3∼7중량%, 폴리비닐피롤리돈 3∼7중량%, N-메틸피롤리돈 81∼92중량%를 혼합하여 30분 내지 1시간 교반하여 수지액을 제조하는 단계와, 상기 수지액(95~98중량%)에 탄소나노튜브 2∼5중량%를 혼합하여 상온 내지 60℃의 온도에서 30분 내지 1시간 교반시켜 탄소나노튜브를 균일하게 분산·함침시켜서 전자파 차폐용 코팅재를 제조하는 방법.3 to 7% by weight of polyvinylidene fluoride, 3 to 7% by weight of polyvinylpyrrolidone, and 81 to 92% by weight of N-methylpyrrolidone are mixed and stirred for 30 minutes to 1 hour to prepare a resin solution. 2 to 5% by weight of carbon nanotubes are mixed with the resin solution (95 to 98% by weight) and stirred at a temperature of room temperature to 60 ° C. for 30 minutes to 1 hour to uniformly disperse and impregnate carbon nanotubes for electromagnetic wave shielding. Method of manufacturing the coating material.
KR10-2001-0033353A 2001-06-14 2001-06-14 Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same KR100437093B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0033353A KR100437093B1 (en) 2001-06-14 2001-06-14 Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0033353A KR100437093B1 (en) 2001-06-14 2001-06-14 Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20020095273A true KR20020095273A (en) 2002-12-26
KR100437093B1 KR100437093B1 (en) 2004-06-26

Family

ID=27709058

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0033353A KR100437093B1 (en) 2001-06-14 2001-06-14 Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same

Country Status (1)

Country Link
KR (1) KR100437093B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090063A (en) * 2002-05-21 2003-11-28 (주)이엠피테크놀로지 Cover tape for chip transportation
KR100425630B1 (en) * 2001-06-14 2004-04-03 오원춘 Electromagnetic wave-shielding composition comprising metal treated carbon nanotube
US7393475B2 (en) * 2001-07-11 2008-07-01 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
US8771878B2 (en) 2011-07-28 2014-07-08 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326783B1 (en) * 2021-08-31 2021-11-16 주식회사 우성어패럴 a fiber coating composition for electromagnetic shielding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482517A (en) * 1990-07-25 1992-03-16 Toshiba Corp Cooking vessel for microwave oven
JP2000063726A (en) * 1998-08-19 2000-02-29 Ise Electronics Corp Electroconductive paste
KR100370069B1 (en) * 2000-07-10 2003-01-30 엘지전자 주식회사 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby
KR100782259B1 (en) * 2000-11-16 2007-12-04 엘지전자 주식회사 EMI shielding heat sink using carbon nanotube and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425630B1 (en) * 2001-06-14 2004-04-03 오원춘 Electromagnetic wave-shielding composition comprising metal treated carbon nanotube
US7393475B2 (en) * 2001-07-11 2008-07-01 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
US7998369B2 (en) 2001-07-11 2011-08-16 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
KR20030090063A (en) * 2002-05-21 2003-11-28 (주)이엠피테크놀로지 Cover tape for chip transportation
US8771878B2 (en) 2011-07-28 2014-07-08 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
KR100437093B1 (en) 2004-06-26

Similar Documents

Publication Publication Date Title
CA2454493C (en) Method of forming conductive polymeric nanocomposite materials and materials produced thereby
JP4513783B2 (en) Transparent conductive polymer
KR101294596B1 (en) Composition and method of carbon nanotube paste for flat heating element device
KR20110078265A (en) Thermoplastic resin composition having good emi shielding property
US8309226B2 (en) Electrically conductive transparent coatings comprising organized assemblies of carbon and non-carbon compounds
Zhu et al. Fabrication and microwave absorption properties of BaTiO3 nanotube/polyaniline hybrid nanomaterials
CN107354752B (en) Surface-coated silver F-12 conductive fiber and preparation method thereof
Bhadra et al. Advances in blends preparation based on electrically conducting polymer
JP2012056789A (en) Double-walled carbon nanotube dispersion
KR100437093B1 (en) Carbon Nanotubes Filled PVDF/PVP Coating Material for Electromagnetic Interference Shielding, Method for Preparing the Same
KR20170001340A (en) Electrically Conductive Polyetherimide Nanofibers and Method for Manufacturing the same
JP4318414B2 (en) Method for synthesizing conductive polymer by gas phase polymerization method and product thereof
KR102222425B1 (en) Method for producing polymer fiber with functional properties derived from carbon material therein using benzoxazine-modified carbon material
WO2024037617A1 (en) Polymer films, methods for preparing thereof, and composite current collectors thereof
KR100939278B1 (en) Atmospheric Pressure Plasma Apparatus and Method for Atmospheric Pressure Plasma Treatment of Conductive Polymer Compositions
KR20120096350A (en) Pem fuel cell bipolar plate comprising composite layer comprising cnts grown on the carbon fiber and method for fabricating the same
KR20160044325A (en) Method of manufacturing stretchable conductor
CN115341386B (en) Flexible conductive composite nanofiber film and preparation method thereof
KR20200072934A (en) Humidity sensing film for humidity sensor including carbon doped with nano metal and method for manufacturing the same
KR20030015818A (en) Conductive polymer film and method for preparing the same
KR100977410B1 (en) manufacturing method of electron emitters containing carbon nanotubes and binders and the carbon nanotube electron emitters manufactured thereby
RU2373246C2 (en) Method of producing heat-resistant material for protective coating
KR101200466B1 (en) Highly dispersible carbon nano structure and method for preparation thereof, and polymer composite comprising the carbon nano structure
KR100688658B1 (en) Cathode current collector primer solution for lithium secondary cell and lithium secondary cell comprising its
WO2022265586A1 (en) A method for preparing graphene oxide fibers by wet spinning

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130418

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140612

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee