KR20010058541A - A method for forming metal wire in semiconductor device - Google Patents

A method for forming metal wire in semiconductor device Download PDF

Info

Publication number
KR20010058541A
KR20010058541A KR1019990065884A KR19990065884A KR20010058541A KR 20010058541 A KR20010058541 A KR 20010058541A KR 1019990065884 A KR1019990065884 A KR 1019990065884A KR 19990065884 A KR19990065884 A KR 19990065884A KR 20010058541 A KR20010058541 A KR 20010058541A
Authority
KR
South Korea
Prior art keywords
film
layer
forming
semiconductor device
aluminum
Prior art date
Application number
KR1019990065884A
Other languages
Korean (ko)
Inventor
이진욱
박현식
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990065884A priority Critical patent/KR20010058541A/en
Publication of KR20010058541A publication Critical patent/KR20010058541A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for metallization is to improve the reliability of a semiconductor device by preventing the short-circuit and the disconnection in forming a metal interconnection. CONSTITUTION: An aluminum layer(21) is formed on a semiconductor substrate(20). A Ti layer is formed on the aluminum layer. A TiAl3 layer(22) is formed at an interface between the Ti layer and the aluminum layer. An Si layer is formed on the Ti layer by using a PVD(Physical Vapor Deposition) method. A TiSi2 layer(25) is formed through an annealing process at the temperature of 400 to 600 deg.C for 0.5 to 3 hours. A SiON layer(26) is deposited on the TiSi2 layer by using a PE-CVD(Plasma Enhanced Chemical Vapor Deposition) method at the temperature of 350 to 600 deg.C. A photoresist pattern is formed on the SiON layer. Then, the SiON layer, the TiSi2 layer, the TiAl3 layer, and the aluminum layer are selectively etched by using the photoresist pattern as an etching mask, and then the photoresist pattern is removed.

Description

반도체 소자의 금속배선 형성방법{A method for forming metal wire in semiconductor device}A method for forming metal wire in semiconductor device

본 발명은 반도체 제조기술에 관한 것으로, 특히 반사방지막 깨짐 방지를 위한 금속배선 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing technology, and more particularly, to a method of forming metal wiring for preventing an antireflection film from breaking.

일반적으로 반도체 소자의 금속배선 공정에서는 금속막의 표면 반사율이 매우 높기 때문에 감광막 도포 전에 배선용 금속 상부에 반사방지막(Anti-Reflective Coating, 이하 ARC라 약칭함)을 사용하고 있다.In general, in the metal wiring process of the semiconductor device, since the surface reflectivity of the metal film is very high, an anti-reflective coating (abbreviated as ARC) is used on the wiring metal before the photosensitive film is applied.

일반적인 ARC의 재료로는 티타늄(Ti)막과 질화티타늄(TiN)막을 적층구조로 형성한 Ti/TiN막을 사용하고 있다.As a general ARC material, a Ti / TiN film having a laminated structure of a titanium (Ti) film and a titanium nitride (TiN) film is used.

도 1a 내지 도 1d는 종래 기술에 따른 금속배선 형성공정을 도시한 도면으로써, 이하 이를 참조하여 설명하기로 한다.1A to 1D illustrate a metal wiring forming process according to the prior art, which will be described below with reference to the drawings.

우선, 도 1a에 도시된 바와 같이 소정의 하부층 공정이 완료된 반도체 기판(10) 상부에 금속배선 형성을 위한 Al막(11)을 형성한다.First, as shown in FIG. 1A, an Al film 11 for forming metal wiring is formed on the semiconductor substrate 10 on which a predetermined lower layer process is completed.

다음으로, 도1b에 도시된 바와 같이 Al막(11) 상부에 Ti막(13) 및 TiN막(14)으로 이루어진 적층구조의 ARC를 형성한다. 이때, 상기 Ti막(13)과 상기 알루미늄막(11)과의 계면에 서로간의 반응으로 인하여 얇은 TiAl3막(12)이 형성된다.Next, as shown in FIG. 1B, an ARC having a laminated structure including a Ti film 13 and a TiN film 14 is formed on the Al film 11. At this time, a thin TiAl 3 film 12 is formed at the interface between the Ti film 13 and the aluminum film 11 by mutual reaction.

다음으로, 도1c에 도시된 바와 같이 TiN막(14)의 상부에 감광막 패턴(15)을 형성하고, 이를 마스크로 하여 도1d에 도시된 바와 같이 TiN막(14), Ti막(13) 및 알루미늄막(11)을 선택식각한 후 감광막 패턴(15)을 제거하여 금속배선 패턴을 형성한다.Next, as shown in FIG. 1C, a photosensitive film pattern 15 is formed on the TiN film 14, and as a mask, the TiN film 14, the Ti film 13, and After etching the aluminum film 11 selectively, the photosensitive film pattern 15 is removed to form a metal wiring pattern.

그러나, 이때 상기 Al막(11) 식각 후 고온에서의 감광막 패턴(15) 제거 시에 상기 Al막(11)과 적층구조의 ARC인 Ti막(13)/TiN막(14)과의 열팽창계수 차이에 의하여 TiN막(14)이 깨지거나 벗겨지는 현상이 발생하게 되는 문제점이 발생하게 된다.However, at this time, when the photoresist layer pattern 15 is removed at a high temperature after etching the Al layer 11, the thermal expansion coefficient difference between the Al layer 11 and the Ti layer 13 / TiN layer 14, which is ARC in a laminated structure, is different. This causes the problem that the TiN film 14 is broken or peeled off.

보다 구체적으로 설명하면, Al막(11)은 Ti막(13) 및 TiN막(14)에 비하여 열팽창계수가 3배정도 크기 때문에 감광막 패턴(15) 제거 시에 발생하는 고온에 의해 Al막(11)이 팽창을 하게되고, Al막(11)상부에 증착되어 있는 얇은 Ti막(13) 및 TiN막(14)이 인장응력을 받게 된다. 그러나, Al막(11)과 Ti막(13)은 서로의 접착력이 TiN막(14)에 비해서 우수하기 때문에, 인장응력을 받게될 경우 TiN막(14)이 벗겨지거나 깨지는 현상이 발생하게 된다.More specifically, the Al film 11 is about three times larger in thermal expansion coefficient than the Ti film 13 and the TiN film 14, and thus the Al film 11 is caused by the high temperature generated when the photosensitive film pattern 15 is removed. This expansion causes the thin Ti film 13 and the TiN film 14 deposited on the Al film 11 to undergo tensile stress. However, since the Al film 11 and the Ti film 13 have superior adhesion to each other than the TiN film 14, the TiN film 14 is peeled off or broken when tensile stress is applied.

이와 같은 문제는, 벗겨지거나 깨진 TiN막(14)이 금속배선에서 떨어져 나가 금속배선간의 단선 및 합선을 초래하는 문제점으로 대두되고 있다.Such a problem has arisen as a problem that the peeled or broken TiN film 14 falls out of the metal wiring and causes disconnection and short circuit between the metal wirings.

본 발명은 금속배선 형성 시 단선 및 합선을 방지할 수 있는 보다 안정된 반도체 소자 제조 방법을 제공하는 데 그 목적이 있다.An object of the present invention is to provide a more stable method for manufacturing a semiconductor device that can prevent disconnection and short-circuit when forming metal wiring.

도1a 내지 도1d는 종래 기술에 따른 금속배선 형성공정을 도시한 도면.1A to 1D illustrate a metal wiring forming process according to the prior art.

도2a 내지 도2e는 본 발명의 일실시예에 따른 금속배선 형성공정을 도시한 도면.2a to 2e are views illustrating a metal wiring forming process according to an embodiment of the present invention.

*도면의 주요부분에 대한 부호의 간단한 설명* Brief description of symbols for the main parts of the drawings

20 : 반도체 기판 21 : Al막20 semiconductor substrate 21 Al film

22 : TiAl3막 25 : TiSi222: TiAl 3 film 25: TiSi 2 film

26 : SiON막26: SiON film

상기 목적을 달성하기 위한 본 발명은, 소정의 하부층 상에 배선용 알루미늄막을 형성하는 제1 단계; 상기 알루미늄막 상에 티타늄실리사이드막을 형성하는 제2 단계; 상기 티타늄실리사이드막 상에 실리콘산화질화막을 형성하는 제3 단계; 상기 실리콘산화질화막 및 상기 티타늄실리사이드막을 반사방지막으로 사용한 상기 알루미늄막을 패터닝하는 제4 단계를 포함하여 이루어진다.The present invention for achieving the above object, the first step of forming a wiring aluminum film on a predetermined lower layer; Forming a titanium silicide film on the aluminum film; Forming a silicon oxynitride layer on the titanium silicide layer; And a fourth step of patterning the aluminum film using the silicon oxynitride film and the titanium silicide film as an anti-reflection film.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. do.

도 2a 내지 도 2e는 본 발명의 일실시예에 따른 금속배선 형성공정을 도시한 도면이다.2A to 2E are diagrams illustrating a metal wiring forming process according to an embodiment of the present invention.

본 실시예에 따른 공정은 우선, 도 2a에 도시된 바와 같이 소정의 하부층 공정이 완료된 반도체 기판(20) 상부에 금속배선 형성을 위한 알루미늄막(21)을 물리 기상 증착(Physical Vapor Deposition, PVD)법을 사용하여 형성한다.In the process according to the present embodiment, physical vapor deposition (PVD) is performed on the aluminum film 21 for forming metal wiring on the semiconductor substrate 20 on which the predetermined lower layer process is completed, as shown in FIG. 2A. Form using the law.

다음으로, 도 2b에 도시된 바와 같이 알루미늄막(21)의 상부에 접착층 역할을 할 수 있는 Ti막(23)을 100Å 내지 200Å정도 형성한다. 이때, 상기 Ti막(23)과 상기 알루미늄막(11)과의 계면에 서로간의 반응으로 인해 얇은 TiAl3막(22)이 형성된다. 또한, 상기 Ti막(23)의 형성을 인-시츄(IN-SITU)가 아닌 익스-시츄(EX-SITU)로 진행할 경우에는 Ti막(23) 형성 전에 알루미늄막(21) 상부에 남아있을지도 모르는 자연산화막의 제거를 위해서 RF-스퍼터 식각(RF-sputter etch) 공정을 실시한 후 Ti막(23)을 형성한다.Next, as shown in FIG. 2B, a Ti film 23, which may serve as an adhesive layer, is formed on the upper portion of the aluminum film 21 to about 100 μs to 200 μs. At this time, a thin TiAl 3 film 22 is formed at the interface between the Ti film 23 and the aluminum film 11 by mutual reaction. In addition, when the formation of the Ti film 23 proceeds to EX-SITU instead of IN-SITU, the Ti film 23 may remain above the aluminum film 21 before the Ti film 23 is formed. In order to remove the native oxide film, the Ti film 23 is formed after the RF-sputter etching process.

계속하여, 인-시츄로 Ti막(23)상부에 PVD법으로 Si막(24)을 50Å 내지 150Å정도 형성한다. 여기서, Si막(24)을 PVD법으로 형성하는 이유는 화학 기상 증착(Chemical Vapor Deposition, CVD)법은 고온공정으로 이루어지기 때문에 알루미늄막(21)의 플로우(Flow)가 발생할 수 있기 때문이고, 공정시간을 단축하기 위함이다.Subsequently, the Si film 24 is formed on the Ti film 23 by the PVD method by about 50 mV to 150 mV in-situ. Here, the reason why the Si film 24 is formed by the PVD method is that since the chemical vapor deposition (CVD) method is performed at a high temperature process, a flow of the aluminum film 21 may occur. This is to shorten the process time.

다음으로, 도2c에 도시된 바와 같이 400℃ 내지 600℃정도의 온도조건에서N2를 가하면서 0.5 ~ 3시간 동안 열처리(Annealing)을 실시하면, Ti막(23)과 Si막(24)이 반응하여 TiSi2막(25)을 형성하게 된다.Next, as shown in FIG. 2C, when annealing is performed for 0.5 to 3 hours while applying N 2 at a temperature of 400 ° C. to 600 ° C., the Ti film 23 and the Si film 24 are formed. React to form the TiSi 2 film 25.

다음으로, 도2d에 도시된 바와 같이 TiSi2막(25) 상부에 SiON막(26)을 350 ~ 600℃의 온도조건에서 플라즈마여기 화학기상증착(Plasma Enhanced Chemical Vapor Deposition, PE-CVD)법으로 증착한 후 SiON막(26)의 상부에 감광막 패턴(27)을 형성한다.Next, as shown in FIG. 2D, the SiON film 26 is deposited on the TiSi 2 film 25 by a plasma enhanced chemical vapor deposition (PE-CVD) method at a temperature of 350 to 600 ° C. After the deposition, a photosensitive film pattern 27 is formed on the SiON film 26.

다음으로, 도2e에 도시된 바와 같이 감광막 패턴(27)을 식각마스크로 하여 SiON막(26), TiSi2막(25), TiAl3막(22) 및 Al막(21)을 선택식각한 후 감광막 패턴(27)을 제거하여 금속배선 형성공정을 완료한다. 여기서, 상기 선택식각은 건식식각법을 사용하되, SiON막(25) 및 TiSi2막(25)의 식각은 C2F6와 CHF3가스 또는 CF4가스를 단독 혹은 혼합으로 사용하여 식각하고, TiAl3막(22) 및 Al막(21)의 식각은 식각조건을 변경하여 Cl2가스 또는 BCl2가스를 단독 혹은 혼합으로 사용하여 식각한다.Next, as illustrated in FIG. 2E, the SiON film 26, the TiSi 2 film 25, the TiAl 3 film 22, and the Al film 21 are selectively etched using the photoresist pattern 27 as an etching mask. The photosensitive film pattern 27 is removed to complete the metallization forming process. Here, the selective etching is a dry etching method, the etching of the SiON film 25 and the TiSi 2 film 25 is etched using C 2 F 6 and CHF 3 gas or CF 4 gas alone or in combination, The TiAl 3 film 22 and the Al film 21 are etched by changing the etching conditions and using Cl 2 gas or BCl 2 gas alone or in combination.

이렇듯 본 발명은, 종래의 Ti/TiN의 적층구조로 이루어진 ARC 대신에 Ti/Si층을 형성하고, 이를 열처리하여 TiSi2층을 형성한 후 다시 SiON을 증착한 구조의 ARC를 사용하여 이루어진다. 이와 같은 구조로써, 고온공정 시 발생할 수 있는 금속배선과 ARC간의 분리 또는 ARC의 깨짐 등의 현상을 방지할 수 있다. 이는, 통상적인 금속배선 재료인 Al과 TiSi2와는 우수한 결합력을 가지고 있고, TiSi2와 SiON과도 우수한 결합력을 가지고 있기 때문이다.As described above, the present invention is achieved by using an ARC having a structure in which a Ti / Si layer is formed instead of an ARC formed of a conventional Ti / TiN layer, and then heat-treated to form a TiSi 2 layer and then depositing SiON. With such a structure, it is possible to prevent a phenomenon such as separation between metal wiring and ARC or cracking of ARC, which may occur during a high temperature process. This is because Al and TiSi 2 , which are common metal wiring materials, have excellent bonding strength, and TiSi 2 and SiON also have excellent bonding strength.

또한, TiSi2형성을 위한 열처리 동안 금속배선인 Al도 어닐링됨에 따라 그레인 크기(Grain size)가 커지게 되어 금속배선의 응력유도 이탈과 전자이탈효과를 방지할 수 있게 된다.In addition, as the Al wire, which is a metal wiring, is also annealed during the heat treatment for forming TiSi 2 , the grain size becomes large, thereby preventing the stress induced release and electron escape effect of the metal wiring.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

본 발명은 금속배선 형성 시 단선 및 합선을 방지할 수 있는 효과를 얻을 수 있다.The present invention can obtain the effect of preventing the disconnection and short-circuit when forming the metal wiring.

Claims (6)

소정의 하부층 상에 배선용 알루미늄막을 형성하는 제1 단계;Forming a wiring aluminum film on a predetermined lower layer; 상기 알루미늄막 상에 티타늄실리사이드막을 형성하는 제2 단계;Forming a titanium silicide film on the aluminum film; 상기 티타늄실리사이드막 상에 실리콘산화질화막을 형성하는 제3 단계;Forming a silicon oxynitride layer on the titanium silicide layer; 상기 실리콘산화질화막 및 상기 티타늄실리사이드막을 반사방지막으로 사용한 상기 알루미늄막을 패터닝하는 제4 단계A fourth step of patterning the aluminum film using the silicon oxynitride film and the titanium silicide film as an anti-reflection film 를 포함하여 이루어지는 반도체 소자의 금속배선 형성 방법.Metal wiring forming method of a semiconductor device comprising a. 제1항에 있어서,The method of claim 1, 상기 제2 단계는,The second step, 티타늄막을 형성하는 제5 단계;A fifth step of forming a titanium film; 상기 티타늄막 상에 실리콘막을 형성하는 제6 단계; 및A sixth step of forming a silicon film on the titanium film; And 열처리를 실시하는 제7 단계로 이루어진 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.And a seventh step of performing heat treatment. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 제1 단계 수행 후, 상기 알루미늄막 상의 자연산화막을 제거하기 위한 RF-스퍼터링을 실시하는 제8 단계를 더 포함하는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.And performing an RF-sputtering to remove the native oxide film on the aluminum film after performing the first step. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 실리콘산화질화막은 350 ~ 600℃에서 PE-CVD법으로 형성하는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The silicon oxynitride film is a metal wiring formation method of a semiconductor device, characterized in that formed by PE-CVD at 350 ~ 600 ℃. 제2항에 있어서,The method of claim 2, 상기 티타늄막은 100 ~ 200Å, 상기 실리콘막은 50 ~ 150Å의 두께로 형성하는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The titanium film is 100 ~ 200Å, the silicon film is a metal wire forming method of the semiconductor device, characterized in that formed in a thickness of 50 ~ 150Å. 제2항에 있어서,The method of claim 2, 상기 열처리는 400 ~ 600℃의 N2분위기에서 0.5 ~ 3시간 동안 실시하는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The heat treatment is a metal wiring forming method of a semiconductor device, characterized in that performed for 0.5 to 3 hours in an N 2 atmosphere of 400 ~ 600 ℃.
KR1019990065884A 1999-12-30 1999-12-30 A method for forming metal wire in semiconductor device KR20010058541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990065884A KR20010058541A (en) 1999-12-30 1999-12-30 A method for forming metal wire in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990065884A KR20010058541A (en) 1999-12-30 1999-12-30 A method for forming metal wire in semiconductor device

Publications (1)

Publication Number Publication Date
KR20010058541A true KR20010058541A (en) 2001-07-06

Family

ID=19633044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990065884A KR20010058541A (en) 1999-12-30 1999-12-30 A method for forming metal wire in semiconductor device

Country Status (1)

Country Link
KR (1) KR20010058541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800819B1 (en) * 2006-12-27 2008-02-01 동부일렉트로닉스 주식회사 Method for providing rework of semiconductor metal pattern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253256A (en) * 1988-03-31 1989-10-09 Nec Corp Formation of wiring
JPH06275574A (en) * 1993-03-18 1994-09-30 Sony Corp Dry etching method
JPH07201859A (en) * 1993-12-29 1995-08-04 Sony Corp Wiring formation method and semiconductor device
KR970052340A (en) * 1995-12-23 1997-07-29 김주용 Metal wiring formation method of semiconductor device
KR970052431A (en) * 1995-12-29 1997-07-29 김주용 Metal wiring formation method of semiconductor device
KR19980031847A (en) * 1996-10-31 1998-07-25 김영환 Metal wiring formation method of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253256A (en) * 1988-03-31 1989-10-09 Nec Corp Formation of wiring
JPH06275574A (en) * 1993-03-18 1994-09-30 Sony Corp Dry etching method
JPH07201859A (en) * 1993-12-29 1995-08-04 Sony Corp Wiring formation method and semiconductor device
KR970052340A (en) * 1995-12-23 1997-07-29 김주용 Metal wiring formation method of semiconductor device
KR970052431A (en) * 1995-12-29 1997-07-29 김주용 Metal wiring formation method of semiconductor device
KR19980031847A (en) * 1996-10-31 1998-07-25 김영환 Metal wiring formation method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800819B1 (en) * 2006-12-27 2008-02-01 동부일렉트로닉스 주식회사 Method for providing rework of semiconductor metal pattern

Similar Documents

Publication Publication Date Title
JPH01252763A (en) Formation of metal silicide
US5633210A (en) Method for forming damage free patterned layers adjoining the edges of high step height apertures
US4745089A (en) Self-aligned barrier metal and oxidation mask method
JP3202657B2 (en) Method for manufacturing semiconductor device
US6057230A (en) Dry etching procedure and recipe for patterning of thin film copper layers
US6103639A (en) Method of reducing pin holes in a nitride passivation layer
KR20010058541A (en) A method for forming metal wire in semiconductor device
US6740471B1 (en) Photoresist adhesion improvement on metal layer after photoresist rework by extra N2O treatment
JP2001210606A (en) Method of manufacturing semiconductor device
JPH1064916A (en) Method for manufacturing metal wiring of semiconductor device
KR0149572B1 (en) Copper film etching method
KR100307827B1 (en) Metal wiring contact formation method of semiconductor device
JP3288010B2 (en) Method for forming metal wiring of semiconductor device
KR0138864B1 (en) The fabrication method of metal interconnector in ics
JP4207284B2 (en) Manufacturing method of semiconductor device
KR100252843B1 (en) Method for forming diffusion barrier film of semiconductor device
KR100187675B1 (en) Method of forming barrier metal layer in a semiconductor device
KR100403354B1 (en) Method for forming contact hole of semiconductor device
KR0137813B1 (en) Metal wiring method of mosfet
JP2991176B2 (en) Method for manufacturing semiconductor device
KR20020055179A (en) Method for aluminium-alloy in semiconductor device
JPH08288255A (en) Manufacture of semiconductor device
JP3252582B2 (en) Method for manufacturing semiconductor device
KR100406676B1 (en) Method for forming barrier metal of semiconductor device
KR100241507B1 (en) Bit-line formation method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application