KR20010056056A - A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer - Google Patents

A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer Download PDF

Info

Publication number
KR20010056056A
KR20010056056A KR1019990057472A KR19990057472A KR20010056056A KR 20010056056 A KR20010056056 A KR 20010056056A KR 1019990057472 A KR1019990057472 A KR 1019990057472A KR 19990057472 A KR19990057472 A KR 19990057472A KR 20010056056 A KR20010056056 A KR 20010056056A
Authority
KR
South Korea
Prior art keywords
compound
ethylene
supported catalyst
polymerization
olefin
Prior art date
Application number
KR1019990057472A
Other languages
Korean (ko)
Other versions
KR100436493B1 (en
Inventor
장호식
노성균
황교현
Original Assignee
유현식
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 삼성종합화학주식회사 filed Critical 유현식
Priority to KR10-1999-0057472A priority Critical patent/KR100436493B1/en
Priority to AU20292/01A priority patent/AU2029201A/en
Priority to PCT/KR2000/001455 priority patent/WO2001044312A1/en
Priority to AU20293/01A priority patent/AU2029301A/en
Publication of KR20010056056A publication Critical patent/KR20010056056A/en
Application granted granted Critical
Publication of KR100436493B1 publication Critical patent/KR100436493B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE: A preparation method of supported catalyst for polymerizing ethylene and copolymerizing ethylene/alpha-olefin is provided to give polymer having particle size adjusted to narrow range, broad molecular weight distribution, and increased apparent density, and produce catalyst having high activity in the slurry and vapor polymerization. CONSTITUTION: The method comprises reacting organic magnesium compound having composition of MgPh2.nMgCl2.mR2O(wherein, Ph="phenyl"; n="0.37-0.7"; m is at least one; R2O="ether"), and mixture of organic chlorine compound and silicone compound at temperature of -20 to 80deg.C, and treating the resulting carrier with vanadium compound alone or in combination with titanium compound. In the reaction, the mole ratio of organic chlorine compound/Mg is at least 0.5, and the mole ratio of silicone compound/Mg is at least 0.001. Thus the obtained catalyst has narrow particle size, broad molecular weight distribution, and increased apparent density.

Description

에틸렌 중합 및 에틸렌/알파-올레핀 공중합용 담지촉매의 제조방법{A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer}A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene / alpha-olefin copolymer}

본 발명은 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합에 사용되는 촉매의 제조방법에 관한 것으로서, 보다 상세하게는 입자크기가 제어된 마그네슘 함유 담체상에 바나듐화합물 또는 바나듐화합물과 티타늄화합물을 포함하는 담지촉매(supported catalyst)의 제조방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for use in ethylene polymerization and copolymerization of ethylene and α-olefin, and more particularly, comprising a vanadium compound or a vanadium compound and a titanium compound on a magnesium-containing carrier having a controlled particle size. The present invention relates to a method for preparing a supported catalyst.

담체상에 전이금속화합물을 피복하는 방법에 의해, 즉 MgmClnCpHg(여기서, m=0.8~0.95; n=1.60~1.90; p=0.8~1.6; g=1.4~3.4)의 담체상에 전이금속화합물을 포함하는 에틸렌 중합용 담지촉매를 제조하는 방법이 공지되어 있다(미국특허 제 726702호 ; 미국특허 제 1400657호). 담체는 분말 마그네슘과 알킬클로라이드를 RCl/Mg>2의 몰비로 탄화수소를 매개로 하여 반응시킴으로써 제조된다.By coating a transition metal compound on a carrier, i.e., Mg m Cl n C p H g (wherein m = 0.8-0.95; n = 1.60-1.90; p = 0.8-1.6; g = 1.4-3.4) A method for preparing a supported catalyst for ethylene polymerization containing a transition metal compound on a carrier is known (US Pat. No. 726702; US Pat. No. 1400657). The carrier is prepared by reacting powdered magnesium and alkylchloride via a hydrocarbon in a molar ratio of RCl / Mg> 2.

상기 공지의 방법에 의해 제조된 촉매의 주요 문제점은 넓은 입자크기 분포(1~100㎛)를 갖는 촉매분말의 입자크기 조성이 조절되지 않는다는 점이다. 또한 상기 방법에 의해 제조된 촉매를 이용하여 얻어진 폴리머 분말 역시 넓은 입자크기 분포와 비교적 낮은 겉보기 밀도(0.22∼0.30g/㎤)를 갖게 된다.The main problem of the catalyst prepared by the above known method is that the particle size composition of the catalyst powder having a wide particle size distribution (1-100 μm) is not controlled. In addition, the polymer powder obtained using the catalyst prepared by the above method also has a wide particle size distribution and a relatively low apparent density (0.22 to 0.30 g / cm 3).

좁은 입자크기 분포와 증가된 겉보기 밀도를 갖는 폴리머를 제조함으로써 중합공정을 향상시킬 수 있음은 공지되어 있다. 이 목적을 위하여, 좁은 입자크기 분포와 형상(morphology)을 갖는 중합용 촉매가 사용되었다. 그런데, 이와 같은 경우 폴리머 적용분야에 따라 각각 다른 중합기술이 적용되므로, 이에 따라 다양한 평균입자크기를 갖는 촉매가 각각 요구된다. 예를 들면, 에틸렌의 슬러리 중합반응의 경우에는 10~20㎛의 입자가 요구되고, 기체상 중합반응의 경우에는 25~50㎛의 입자들로 된 촉매가 요구된다.It is known that the polymerization process can be improved by preparing polymers having a narrow particle size distribution and increased apparent density. For this purpose, a catalyst for polymerization with narrow particle size distribution and morphology was used. However, in this case, since different polymerization techniques are applied according to the polymer application field, a catalyst having various average particle sizes is required. For example, in the case of slurry polymerization of ethylene, particles of 10 to 20 µm are required, and in the case of gas phase polymerization, a catalyst of particles of 25 to 50 µm is required.

담체로서 염화마그네슘을 포함하며 좁은 입자크기분포를 갖는 촉매는 전자공여화합물(예를 들면, 에틸벤조에이트, 에틸아니세이트 등)의 존재하에 탄화수소용매내에서 MgCl2.3i-C8H17OH 화합물과 TiCl4와의 반응에 의해 얻어질 수 있다(일본특허출원 제 59-53511호). 이 방법에 의해 제조된 촉매는 5∼15㎛ 크기의 입자를 가지며, 활성이 높아서(35Kg-PE/g-Ti,hr,C2H4기압), 좁은 입자크기 분포와 높은 겉보기 밀도를 갖는 폴리에틸렌 분말을 제조할 수 있게 한다. 그러나, 상기 방법은 낮은 온도(-20℃까지)의 적용, 반응매체로서 액체 TiCl4의 과량 사용 그리고 촉매의 합성과정중에 다량의 염화수소의 생성 등과 같은 단점들을 갖는다. 또한, 상기 방법에 의하면 15㎛ 이상의 입자크기를 갖는 촉매를 제조할 수 없다.Catalysts containing magnesium chloride as a carrier and having a narrow particle size distribution may contain MgCl 2 .3i-C 8 H 17 OH compounds in a hydrocarbon solvent in the presence of an electron donating compound (eg, ethylbenzoate, ethyl aniseate, etc.). It can be obtained by the reaction of with TiCl 4 (Japanese Patent Application No. 59-53511). The catalyst prepared by this method has particles of 5-15 μm size and is highly active (35Kg-PE / g-Ti, hr, C 2 H 4 atm), so that polyethylene having a narrow particle size distribution and high apparent density To make powder. However, the method has disadvantages such as application of low temperature (up to -20 ° C), excessive use of liquid TiCl 4 as the reaction medium, and generation of large amounts of hydrogen chloride during the synthesis of the catalyst. In addition, according to the above method, a catalyst having a particle size of 15 µm or more cannot be prepared.

마그네슘-알루미늄-알킬화합물 RMgR1-nA1R2-mD과 염화탄화수소를 반응시킨후, 얻어진 고체생성물(담체)을 티타늄 또는 바나듐 할라이드와 반응시켜 촉매를 제조하는 방법이 알려져 있다(독일 특허 제 3636060호; 프랑스특허 제 2529207호). 이 방법에서는 탄화수소내에 용해된 (n-Bu)Mg(i-Bu) 또는 (n-Bu)Mg(Oct)가 유기마그네슘화합물 RMgR'로 사용되고, tert-BuCl이 염화탄화수소로 사용된다. 이 방법에 의해 제조된 촉매의 주요 단점은 촉매활성이 충분하지 않다는 것이다.A method of preparing a catalyst by reacting a magnesium-aluminum-alkyl compound RMgR 1 -nA1R 2 -mD with hydrogen chloride, followed by reacting the obtained solid product (carrier) with titanium or vanadium halide (German Patent No. 3636060; French Patent No. 2529207). In this method, (n-Bu) Mg (i-Bu) or (n-Bu) Mg (Oct) dissolved in a hydrocarbon is used as the organic magnesium compound RMgR ', and tert-BuCl is used as hydrocarbon chloride. The main disadvantage of the catalyst produced by this method is that the catalytic activity is insufficient.

유럽 특허 공개 제 155,770호에 따르면 전자 공여체 화합물을 함유하는 생성물을 포함하는 염화마그네슘의 타원체 지지상에 바나듐 화합물을 침전시키므로써 촉매를 제조한다고 공지되어 있다. 촉매는 넓은 분자량 분포를 갖는 에틸렌 중합체 제조에 사용된다. 그러나, 상기 방법에서는 단지 소량만이 지지체상에 고정되는데 다량의 바나듐 화합물을 사용할 필요가 있다. 촉매 세척 조작에서는 일반적으로 지지체상에 고정되지 않은 과량의 바나듐 화합물을 제거시킬 필요가 있으며, 바나듐 화합물의 독성 및 부식성 때문에 고가의 비용이 들고 어려움이 있다.According to European Patent Publication No. 155,770 it is known to prepare a catalyst by precipitating a vanadium compound on an ellipsoidal support of magnesium chloride comprising a product containing an electron donor compound. Catalysts are used to prepare ethylene polymers with a broad molecular weight distribution. However, in this method only a small amount is immobilized on the support and it is necessary to use a large amount of vanadium compound. Catalytic washing operations generally require the removal of excess vanadium compounds that are not immobilized on the support, and are expensive and difficult due to the toxicity and corrosiveness of the vanadium compounds.

본 발명의 목적은 좁은 범위로 조절된 입자크기 및 넓은 분자량분포와 증가된 겉보기 밀도를 갖는 폴리머의 제조를 가능하게 하며, 슬러리 및 기상중합에서 모두 높은 활성을 갖는 에틸렌 중합과 에틸렌/α-올레핀 공중합에 유용한 촉매의 제조방법을 제공하는 것이다.It is an object of the present invention to enable the preparation of polymers having a narrow controlled particle size and wide molecular weight distribution and increased apparent density, ethylene polymerization and ethylene / α-olefin copolymerization having high activity in both slurry and gas phase polymerization. It is to provide a method for preparing a catalyst useful for.

본 발명의 촉매 제조방법은 유기마그네슘화합물 MgPh2.nMgCl2.mR2O(여기서,Ph=페닐 ; n=0.37~0.7 ; m≥1 ; R2O=에테르)을 유기염소화합물과 실리콘화합물의 혼합물과 반응시켜 얻어진 담체를 바나듐화합물 또는 바나듐화합물과 티타늄화합물을 혼합한 활성물질로 처리하는 것을 특징으로 한다.In the catalyst preparation method of the present invention, the organic magnesium compound MgPh 2 .nMgCl 2 .mR 2 O (here, Ph = phenyl; n = 0.37 to 0.7; m≥1; R 2 O = ether) The carrier obtained by reacting with the mixture is characterized by treating with a vanadium compound or an active substance mixed with a vanadium compound and a titanium compound.

본 발명을 구체적으로 설명하면 다음과 같다.The present invention will be described in detail as follows.

본 발명의 촉매제조방법에서는 마그네슘 함유 담체의 생성단계에서 유기마그네슘화합물 착체[MgPh2.nMgCl2.mR2O]가 클로로벤젠, 에테르(R2O) 또는 클로로벤젠과 에테르의 혼합물, 클로로벤젠과 지방족 또는 방향족 화합물의 혼합물에 용해된 용액의 상태로 사용된다. 그리고 상기 용액 상태의 유기마그네슘화합물을 탄화수소 용매내에서 -20∼80℃에서 유기염소화합물, 바람직하게는 카본테트라클로라이드와 실리콘화합물, 바람직하게는 실리콘에톡사이드를 유기염소화합물/Mg≥0.5의 몰비와 실리콘화합물/Mg≥0.001의 몰비로 반응시킴으로써 고체분말 마그네슘이 함유된 담체의 현탁액이 제조된다. 유기염소화합물/Mg<0.5인 경우에는 미반응 그리냐드 시약(MOC)이 남아서 촉매에 나쁜 영향을 미치고, 실리콘화합물/Mg≥0.001로 한정한 이유는 촉매입자크기 조절효과를 얻기 위해서이다. 이 방법에 의해 얻어진 담체는 좁은 입자크기 분포와 조절된 입자크기를 갖는다. 담체와 촉매입자의 크기는 유기마그네슘 화합물의 조성, 실리콘화합물과 유기마그네슘화합물의 몰비, 그리고 유기염소화합물과의 반응조건에 의하여 5∼100㎛으로 조절될 수 있다. 상기와 같이 얻어진 마그네슘 함유 담체는 주로 마그네슘 디클로라이드(80∼90중량%), 에테르(7∼15중량%) 및 탄화수소 착화물(1∼5중량%)을 포함한다.In the catalyst preparation method of the present invention, the organic magnesium compound complex [MgPh 2 .nMgCl 2 .mR 2 O] in the production step of the magnesium-containing carrier is chlorobenzene, ether (R 2 O) or a mixture of chlorobenzene and ether, chlorobenzene and It is used in the form of a solution dissolved in a mixture of aliphatic or aromatic compounds. The organic magnesium compound in the solution state is an organic chlorine compound, preferably carbon tetrachloride and silicon compound, preferably silicon ethoxide, at -20 to 80 ° C. in a hydrocarbon solvent. A suspension of a carrier containing solid powder magnesium is prepared by reacting with a molar ratio of silicon compound / Mg ≧ 0.001. In the case of organochlorine compound / Mg <0.5, unreacted Grignard reagent (MOC) remains, which adversely affects the catalyst, and the reason for limiting the silicon compound / Mg ≧ 0.001 is to obtain a catalyst particle size control effect. The carrier obtained by this method has a narrow particle size distribution and controlled particle size. The size of the carrier and the catalyst particles can be adjusted to 5 to 100㎛ by the composition of the organic magnesium compound, the molar ratio of the silicon compound and the organic magnesium compound, and the reaction conditions of the organic chlorine compound. The magnesium-containing carrier thus obtained mainly contains magnesium dichloride (80 to 90% by weight), ether (7 to 15% by weight) and hydrocarbon complex (1 to 5% by weight).

본 발명에서 마그네슘 함유 담체의 제조시 사용되는 유기마그네슘화합물은 하나 이상의 전자공여체 화합물, 바람직하게는 디부틸에테르 또는 디이소아밀에테르의 존재하에 분말 마그네슘과 클로로벤젠을 반응시킴으로써 제조된다. 이때 전자 공여체로는 지방족 에테르 및 환상 에테르가 포함될 수 있다. 지방족 에테르는 R2및 R3가 동일하거나 다른 탄소수 2∼8의 알킬 라디칼인 구조식 R2OR3의 구조를 갖는 것으로서, 바람직하게는 탄소수 4∼5의 지방족 에테르이다. 환상 에테르는 탄소수 3∼4의 환상 에테르이다.The organomagnesium compound used in the preparation of the magnesium containing carrier in the present invention is prepared by reacting powdered magnesium with chlorobenzene in the presence of one or more electron donor compounds, preferably dibutyl ether or diisoamyl ether. At this time, the electron donor may include aliphatic ether and cyclic ether. Aliphatic ethers are those having the structure of R 2 OR 3 wherein R 2 and R 3 are the same or different alkyl radicals of 2 to 8 carbon atoms, and are preferably aliphatic ethers of 4 to 5 carbon atoms. The cyclic ether is a cyclic ether having 3 to 4 carbon atoms.

본 발명에서 사용되는 유기염소화합물로는 바람직하게는 R'가 탄소수 1∼12의 알킬 라디칼인 일반식 CR'nCl(4-n)(여기서, n은 0∼3의 정수)의 화합물이 사용되며, 바람직한 유기염소화합물은 카본테트라클로라이드이다.As the organic chlorine compound used in the present invention, a compound of the general formula CR ' n Cl (4-n) wherein R' is an alkyl radical having 1 to 12 carbon atoms (where n is an integer of 0 to 3) is used. Preferred organochlorine compounds are carbon tetrachloride.

본 발명에서 사용되는 실리콘화합물은 Si(OR)aX4-a의 일반식을 갖는다. 여기에서 R은 탄소수 1∼14의 지방족 또는 방향족 탄화수소기 또는 COR'(여기서, R'는 탄소수 1∼14의 지방족 또는 방향족 탄화수소기임)이고, X는 Cl, Br 또는 I이며, a는 0, 1, 2, 3 또는 4이다. 바람직한 실리콘화합물은 실리콘알콕사이드로서 이들 화합물의 예로는 Si(OC2H5)4, Si(OC2H5)2Cl2, Si(OC2H5)Cl3, Si(OC2H5)3Cl가 있다.The silicon compound used in the present invention has a general formula of Si (OR) a X 4-a . Wherein R is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms or COR 'wherein R' is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms, X is Cl, Br or I, and a is 0, 1 , 2, 3 or 4. Preferred silicon compounds are silicon alkoxides, examples of which include Si (OC 2 H 5 ) 4 , Si (OC 2 H 5 ) 2 Cl 2 , Si (OC 2 H 5 ) Cl 3 , Si (OC 2 H 5 ) 3 There is Cl.

본 발명의 촉매는 상기와 같이 제조된 마그네슘 함유 담체를 하나 이상의 바나듐화합물과 하나 이상의 티타늄화합물로, V/Mg=0.01∼1.0의 몰비로, V/Ti=0.5∼200의 몰비로 탄화수소용매내에서 20∼100℃의 온도로 처리하므로써 얻어진다. 이러한 비율의 바나듐화합물 및 티타늄화합물을 사용하여 촉매를 제조하면, 바나듐화합물만을 사용하였을 때보다 1.2∼2배까지 높은 g-촉매당 활성을 높이고, 이 촉매로부터 얻어진 에틸렌 중합체 또는 공중합체는 티타늄화합물만을 사용하여 얻어진 중합체보다 넓은 분자량 분포를 지니며, 사용된 티타늄화합물의 양에 따라서 그 정도가 조절됨을 발견하였다. 또한 본 발명의 촉매는 담지체에 바나듐화합물을 담지한 후 티타늄화합물을 담지하는 방법, 담지체에 티타늄화합물을 담지하고 바나듐화합물을 담지하는 방법, 담지체에 티타늄화합물과 바나듐화합물의 혼합물을 담지하는 방법중 어느 하나의 방법으로 제조된다.The catalyst of the present invention is a magnesium-containing carrier prepared as described above in at least one vanadium compound and at least one titanium compound in a hydrocarbon solvent at a molar ratio of V / Mg = 0.01 to 1.0 and a molar ratio of V / Ti = 0.5 to 200. It is obtained by treating at a temperature of 20 to 100 ° C. When the catalyst is prepared using the vanadium compound and the titanium compound in such a ratio, the activity per g-catalyst is increased by 1.2 to 2 times higher than that of the vanadium compound alone, and the ethylene polymer or copolymer obtained from the catalyst is only a titanium compound. It has been found to have a broader molecular weight distribution than the polymer obtained, and its extent is controlled according to the amount of titanium compound used. In addition, the catalyst of the present invention is a method of supporting a titanium compound after supporting a vanadium compound on the support, a method of supporting a titanium compound and a vanadium compound on the support, a mixture of a titanium compound and a vanadium compound on the support It is prepared by any one of the methods.

본 발명에서 사용되는 바나듐화합물은 최대원자가가 4가이며 또는 바나딜기 VO가 최대원자가 3가인 화합물이다. 바나듐화합물은 V(OR4)4-nXn또는 VO(OR4)3-mXm의 일반식을 갖는다. R4는 탄소수 1∼14의 지방족 또는 방향족 탄화 수소기 또는 COR5(여기서 R5는 탄소수 1∼14의 지방족 또는 방향족 탄화 수소기임)이고, X는 Cl, Br 또는 I이며, n은 0∼4의 정수 또는 분율이고, m은 0∼3의 정수 또는 분율이다. 이들 화합물의 예로는 사염화바나듐, 바나딜 트리클로라이드, 바나딜 트리-n-프로폭사이드, 바나딜 트리이소프로폭사이드, 바나딜 트리-n-부톡사이드, 바나딜 테트라-n-부톡사이드 및 테트라-n-프록폭사이드 등이 있으며 이들로부터 선택된 하나 이상의 화합물을 사용한다.The vanadium compound used in the present invention is a compound having a maximum valence tetravalent or a vanadil group VO having a maximum valency trivalent. The vanadium compound has a general formula of V (OR 4 ) 4-n X n or VO (OR 4 ) 3-m X m . R 4 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms or COR 5 where R 5 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms, X is Cl, Br or I, and n is 0 to 4 Is an integer or fraction, and m is an integer or fraction of 0 to 3. Examples of these compounds are vanadium tetrachloride, vanadil trichloride, vanadil tri-n-propoxide, vanadil triisopropoxide, vanadil tri-n-butoxide, vanadil tetra-n-butoxide and tetra -n-propoxide and the like and one or more compounds selected from them are used.

본 발명에서 사용되는 티타늄 화합물은 Ti(OR4)aXb의 일반식을 갖는다. R4는탄소수 1∼14의 지방족 또는 방향족 탄화 수소기 또는 COR5(여기서 R5는 탄소수 1∼14의 지방족 또는 방향족 탄화 수소기임)이고, X는 Cl, Br 또는 I이며, a는 0, 1, 2 또는 3이고, b는 1∼4이며, a+b는 3 또는 4이다. 이들 화합물의 예로는 TiCl4, Ti(OC3H5)4, Ti(OC4H7)4, Ti(OC3H5)2Cl2, Ti(OC3H5)Cl3, Ti(OC3H5)3Cl, Ti(OC4H7)2Cl2, Ti(OC4H7)Cl3, Ti(OC4H7)3Cl가 있다.The titanium compound used in the present invention has a general formula of Ti (OR 4 ) a X b . R 4 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms or COR 5 , wherein R 5 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms, X is Cl, Br or I, and a is 0, 1 , 2 or 3, b is 1 to 4, and a + b is 3 or 4. Examples of these compounds include TiCl 4 , Ti (OC 3 H 5 ) 4 , Ti (OC 4 H 7 ) 4 , Ti (OC 3 H 5 ) 2 Cl 2 , Ti (OC 3 H 5 ) Cl 3 , Ti (OC 3 H 5 ) 3 Cl, Ti (OC 4 H 7 ) 2 Cl 2 , Ti (OC 4 H 7 ) Cl 3 , Ti (OC 4 H 7 ) 3 Cl.

담체는 필요에 따라서 바나듐화합물 또는 티타늄화합물 처리전 또는 촉매 제조후 필요에 따라서 세척전에 Al/Ti의 몰비를 0.1∼2.0으로 하여 유기알루미늄화합물로 처리할 수 있다.The carrier can be treated with an organoaluminum compound with a molar ratio of Al / Ti of 0.1 to 2.0, if necessary, before treatment with vanadium compound or titanium compound or after preparation of the catalyst, if necessary.

이상과 같이 본 발명의 촉매제조 방법은 좁은 입자크기분포와 다양한 평균 입자크기를 가지며, 다양한 용도로 사용될 수 있는 고활성 촉매의 제조방법을 제공한다.As described above, the method for preparing a catalyst of the present invention has a narrow particle size distribution and various average particle sizes, and provides a method for preparing a high activity catalyst that can be used for various purposes.

예를 들면, 본 발명에 의하면 슬러리 에틸렌 중합에 유용한 5~10㎛ 및 10~15㎛의 입자크기를 갖는 촉매를 제조할 수 있고, 또한 기상 에틸렌 중합에 유용한 20∼80㎛의 입자크기를 갖는 촉매를 제조할 수 있다. 촉매의 활성성분으로서 티타늄과 바나듐을 이용할 경우, 티타늄과 바나듐의 혼합비에 따라서 좁은 분자량 분포를 갖는 폴리에틸렌 및 폴리에틸렌 공중합체로부터 넓은 분자량 분포를 갖는 폴리에틸렌 및 폴리에틸렌 공중합체가 얻어진다. 좁은 분자량 분포는 MI21.6/MI2.16<30의 용융지수비율(melt index ratio)에 의하여 특징지워지고, 넓은 분자량 분포는MI21.6/MI2.16>100의 용융지수비율(melt index ratio)에 의하여 특징지워진다.For example, according to the present invention, a catalyst having a particle size of 5 to 10 μm and a particle size of 10 to 15 μm useful for slurry ethylene polymerization can be prepared, and a catalyst having a particle size of 20 to 80 μm useful for gas phase ethylene polymerization. Can be prepared. When titanium and vanadium are used as active components of the catalyst, polyethylene and polyethylene copolymers having a wide molecular weight distribution are obtained from polyethylene and polyethylene copolymers having a narrow molecular weight distribution depending on the mixing ratio of titanium and vanadium. The narrow molecular weight distribution is characterized by the melt index ratio of MI 21.6 / MI 2.16 <30, and the wide molecular weight distribution is characterized by the melt index ratio of MI 21.6 / MI 2.16 > 100.

본 발명에 따른 촉매는 에틸렌 중합 또는 에틸렌과 α-올레핀과의 공중합에 이용된다. 본 발명의 촉매는 조촉매로서 하나 이상의 유기알루미늄화합물, 바람직하게는 트리알킬알루미늄과 함께 사용될 수 있다.The catalyst according to the invention is used for ethylene polymerization or copolymerization of ethylene and α-olefins. The catalyst of the present invention may be used together with one or more organoaluminum compounds, preferably trialkylaluminum as cocatalyst.

조촉매로서 사용가능한 유기알루미늄화합물은 AlRnX3-n의 구조식을 갖는다. 여기서 R은 탄소수 1∼12의 알킬라디칼이고, X는 수소원자 또는 염소 또는 불소같은 할로겐 원자 또는 탄소수 1∼12의 알콕시라디칼이고, n은 1∼3의 정수 또는 분수이다. 예로서 트리-이소부틸알루미늄, 트리에틸알루미늄, 트리메틸알루미늄, 트리-n-헥실알루미늄, 트리-n-옥틸알루미늄, 에틸알루미늄 세스퀴클로라이드 또는 디에틸알루미늄 클로라이드를 사용할 수 있다.The organoaluminum compound usable as a cocatalyst has a structural formula of AlR n X 3-n . Wherein R is an alkyl radical having 1 to 12 carbon atoms, X is a hydrogen atom or a halogen atom such as chlorine or fluorine or an alkoxy radical having 1 to 12 carbon atoms, and n is an integer or fraction of 1 to 3; As examples, tri-isobutylaluminum, triethylaluminum, trimethylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, ethylaluminum sesquichloride or diethylaluminum chloride can be used.

중합은 탄화수소 용매(예로서, 핵산, 헵탄)내에서 50∼100℃의 온도에서 슬러리중합법으로 수행되거나, 또는 탄화수소용매의 부재하에 60∼100℃의 온도와 2∼40기압의 압력에서 기상 중합법으로 수행된다. 폴리머의 분자량 조절제로서 수소(5∼90부피%)가 사용된다. 프로필렌, 부텐-1, 헥센-1, 4-메틸펜텐-1 및 다른 α-올레핀이 에틸렌과 α-올레틴과의 공중합에 유용하다.The polymerization is carried out by slurry polymerization at a temperature of 50-100 ° C. in a hydrocarbon solvent (eg, nucleic acid, heptane) or by gas phase polymerization at a temperature of 60-100 ° C. and a pressure of 2-40 atmospheres in the absence of a hydrocarbon solvent. Performed by law. Hydrogen (5-90% by volume) is used as the molecular weight regulator of the polymer. Propylene, butene-1, hexene-1, 4-methylpentene-1 and other α-olefins are useful for the copolymerization of ethylene with α-oletin.

이하, 실시예 및 비교예를 통하여 본 발명을 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 제한하지는 않는다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. However, the following examples do not limit the content of the present invention.

비교예 1Comparative Example 1

< A > 유기마그네슘화합물의 제조<A> Preparation of Organic Magnesium Compound

교반기와 온도조절기가 구비된 6ℓ 반응기내에서, 디부틸에테르(10.44mol) 1799㎖와 활성제로서 37㎖ 부틸클로라이드에 2.53g의 요오드가 용해된 용액의 존재하에, 253.6g의 마그네슘 분말(10.44mol)과 3183㎖의 클로로벤젠(31.32mol)을 반응시켰다. 반응은 80~100℃의 온도에서 불활성기체 분위기(질소, 아르곤)하에서 10시간 동안 교반하면서 진행되었다. 그런 다음 반응 혼합물을 교반하지 않은 상태로 12시간 동안 정지시킨 후 액체상을 침전물로부터 분리하였다. 액체상은 MgPh2.0.5MgCl2.2(C4H9)2O의 조성을 갖는 유기마그네슘화합물이 클로로벤젠내에 용해된 용액(Mg의 농도는 1ℓ당 1.0mol)이다.253.6 g of magnesium powder (10.44 mol) in a 6 L reactor equipped with a stirrer and a temperature controller in the presence of a solution of 2.99 g of iodine dissolved in 1799 ml of dibutyl ether (10.44 mol) and 37 ml butyl chloride as an activator And 3183 mL of chlorobenzene (31.32 mol) were reacted. The reaction proceeded with stirring for 10 hours under an inert gas atmosphere (nitrogen, argon) at a temperature of 80 ~ 100 ℃. The reaction mixture was then stopped for 12 hours without stirring and the liquid phase was separated from the precipitate. Liquid phase MgPh 2 .0.5MgCl a 2 .2 (C 4 H 9) the solution is dissolved in the organic magnesium compound having a composition of 2 O chlorobenzene (the concentration of Mg was 1.0mol per 1ℓ).

< B > 담체 합성<B> Carrier Synthesis

< A >에서 얻어진 용액(3.0mol의 Mg) 3000㎖를 교반기가 구비된 반응기에 투입하고, 289㎖의 헵탄에 용해된 289㎖ CCl4(3.0mol CCl4)를 60℃의 온도에서 2시간에 걸쳐 반응기내로 첨가했다. 반응혼합물을 60분 동안 동일온도에서 교반한 다음, 용매를 제거하고, 침전물을 2000㎖의 헵탄으로 60℃에서 4회 세척하였다. 그 결과 분말상의 유기마그네슘 담체가 헵탄내에 현탁된 상태로 얻어졌다.3000 ml of the solution (3.0 mol Mg) obtained in <A> was added to a reactor equipped with a stirrer, and 289 ml CCl 4 (3.0 mol CCl 4 ) dissolved in 289 ml heptane was added at a temperature of 60 ° C. for 2 hours. Over into the reactor. The reaction mixture was stirred at the same temperature for 60 minutes, then the solvent was removed, and the precipitate was washed four times at 60 ° C. with 2000 ml of heptane. As a result, a powdery organic magnesium carrier was obtained in a suspended state in heptane.

< C > 촉매의 제조<C> Preparation of Catalyst

얻어진 담체 100g을 40℃의 온도에서 2시간 동안 AlEt2Cl/Mg=1의 몰비로 디에틸알루미늄클로라이드 용액으로 처리한 다음, 이를 300㎖ n-헥산으로 4회 세척하였다. 촉매의 합성은 상기 담체를 CCl4중의 VCl4용액(농도가 0.951mol VCl4/㎖인 용액 18.6㎖)으로 60℃의 온도에서 1시간 동안 처리함으로써 수행되었다. 촉매를 70㎖의 n-헥산으로 2회 세척하였다. 얻어진 촉매는 1.2중량%의 바나듐을 함유하며, 평균입자크기는 75㎛이었다.100 g of the obtained carrier was treated with diethylaluminum chloride solution at a molar ratio of AlEt 2 Cl / Mg = 1 at a temperature of 40 ° C. for 2 hours, and then washed four times with 300 ml n-hexane. The synthesis of the catalyst was carried out by treating the carrier with a solution of VCl 4 in CCl 4 (18.6 mL of a solution with a concentration of 0.951 mol VCl 4 / ml) at a temperature of 60 ° C. for 1 hour. The catalyst was washed twice with 70 ml of n-hexane. The catalyst obtained contained 1.2 wt% vanadium and the average particle size was 75 μm.

에틸렌의 중합은 교반기와 온도조절재킷이 구비된 2ℓ 스틸반응기내에서 수행되었다. 탄화수소 용매로서 n-헥산(1000㎖)이 사용되고, 조촉매로서 2mmol의 Al(Bu)3이 사용되었다. 중합은 7.5기압의 에틸렌 압력과 910cc(0℃, 1기압)의 수소압력하에서 80℃의 온도에서 1시간 동안 수행되었다.The polymerization of ethylene was carried out in a 2 L steel reactor equipped with a stirrer and temperature control jacket. N-hexane (1000 mL) was used as a hydrocarbon solvent, and 2 mmol of Al (Bu) 3 was used as a promoter. The polymerization was carried out for 1 hour at a temperature of 80 ° C. under ethylene pressure of 7.5 atm and hydrogen pressure at 910 cc (0 ° C., 1 atm).

실험을 위해서 0.015mmol의 바나듐에 해당하는 촉매를 취하였고, 그 결과 109g의 폴리머가 제조되었다. 촉매활성은 촉매 1g당 2.1kg이었다.For the experiment, a catalyst corresponding to 0.015 mmol of vanadium was taken, resulting in 109 g of polymer. The catalytic activity was 2.1 kg per gram of catalyst.

폴리에틸렌 용융지수(MI)는 2.16kg의 하중 및 190℃의 온도에서 0.125g/10min이었으며 21.6kg과 2.16kg의 용융지수분율은 110이었다. 폴리에틸렌 분말의 겉보기 밀도는 0.36g/㎤이고, 분자체 분석데이타에 의한 폴리에틸렌의 평균입자크기는 450㎛이었다. 폴리에틸렌 분말은 좁은 입자크기분포를 나타내었다. 분자체 분석데이타로부터 다음식으로 계산된 SPAN 값은 0.6 이하이었다.The polyethylene melt index (MI) was 0.125g / 10min at a load of 2.16kg and a temperature of 190 ° C, and the melt index ratio of 21.6kg and 2.16kg was 110. The apparent density of the polyethylene powder was 0.36 g / cm 3, and the average particle size of polyethylene by molecular sieve analysis data was 450 μm. Polyethylene powder showed a narrow particle size distribution. The SPAN value calculated from the molecular sieve analysis data was as below 0.6.

SPAN = (d90-d10)/d50, 여기서 d90, d50 및 d10은 총입자함량이 각각 90, 50 및 10중량%가 되는 폴리에틸렌 입자크기를 의미한다.SPAN = (d90-d10) / d50, where d90, d50 and d10 mean polyethylene particle sizes such that the total particle content is 90, 50 and 10% by weight, respectively.

실시예 1Example 1

비교예 1 < B >에서 유기마그네슘 화합물과 289㎖의 헵탄에 용해된 289㎖ CCl4(3.0mol CCl4)를 사용하는 대신에 40.5㎖의 실리콘에톡사이드와 289㎖의 CCl4를 249ml의 n-핵산에 혼합하여 사용하는 것 이외에는 비교예 1과 동일한 방법으로 촉매를 제조하였다. 에틸렌 중합은 비교예 1과 동일한 방법으로 수행되었다. 에틸렌 중합결과는 표 1에 나타낸 바와 같다.In Comparative Example 1, instead of using 289 mL CCl 4 (3.0 mol CCl 4 ) dissolved in 289 mL heptane and an organic magnesium compound, 449 mL of silicon ethoxide and 289 mL of CCl 4 were added to 249 mL of n. A catalyst was prepared in the same manner as in Comparative Example 1 except that the mixture was mixed with nucleic acid. Ethylene polymerization was carried out in the same manner as in Comparative Example 1. The ethylene polymerization results are shown in Table 1.

실시예 2Example 2

비교예 1 < B >에서 유기마그네슘 화합물과 289㎖의 헵탄에 용해된 289㎖ CCl4(3.0mol CCl4)를 사용하는 대신에 40.5㎖의 실리콘에톡사이드와 289㎖의 CCl4를 249㎖의 n-핵산에 혼합하여 사용하는 것과 비교예 1에서 제조된 촉매를 Ti/V=0.3의 몰비의 TiCl4및 VCl4로 처리하여 1시간 반응 시킨 뒤 촉매를 70㎖의 헥산으로 2회 세척한 것을 제외하고는 비교예 1과 동일한 방법으로 수행되었다. 촉매의 물성 및 중합결과는 표 1에 나타낸 바와 같다.In Comparative Example 1, instead of using 289 mL CCl 4 (3.0 mol CCl 4 ) dissolved in 289 mL heptane and 4 mg mL of silicon ethoxide and 289 mL CCl 4 in 249 mL The mixture prepared by using n-nucleic acid and the catalyst prepared in Comparative Example 1 were treated with TiCl 4 and VCl 4 in a molar ratio of Ti / V = 0.3 for 1 hour and then the catalyst was washed twice with 70 ml of hexane. Except that was carried out in the same manner as in Comparative Example 1. Physical properties and polymerization results of the catalyst are shown in Table 1.

실시예 3Example 3

실시예 1에서 실리콘에톡사이드를 20.2㎖ 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행되었다. 촉매의 물성 및 중합 결과는 표 1에 나타낸 바와 같다.The same procedure as in Example 1 was carried out except that 20.2 ml of silicon ethoxide was used in Example 1. Physical properties and polymerization results of the catalyst are shown in Table 1.

실시예 4Example 4

실시예 1에서 얻어진 촉매를 사용하여 에틸렌과 1-헥센 공중합을 수행하였다. 중합전에 30cc의 1-헥센을 사용한 것 이외에는 실시예 2와 동일한 방법으로 중합이 수행되었다. 중합결과 밀도 0.930g/cc의 에틸렌과 1-헥센 공중합체가 제조되었다. 에틸렌 공중합 결과는 표 1에 나타낸 바와 같다.1-hexene copolymerization was carried out using the catalyst obtained in Example 1. The polymerization was carried out in the same manner as in Example 2, except that 30 cc of 1-hexene was used before the polymerization. As a result of polymerization, ethylene and 1-hexene copolymer having a density of 0.930 g / cc was prepared. The ethylene copolymerization results are shown in Table 1.

이상과 같이 본 발명의 촉매제조 방법은 분자량 분포가 넓고, 입자크기가 제어된 폴리에틸렌 및 폴리에틸렌 공중합체를 제조할 수 있는 에틸렌 중합과 에틸렌/α-올레핀 공중합에 유용한 담지촉매를 제공한다.As described above, the catalyst production method of the present invention provides a supported catalyst useful for ethylene polymerization and ethylene / α-olefin copolymerization capable of producing polyethylene and polyethylene copolymers having a wide molecular weight distribution and controlled particle size.

Claims (11)

MgPh2.nMgCl2.mR20(여기서, Ph=페닐 ; n=0.37~0.7 ; m≥1 ; R20=에테르)의 조성을 갖는 유기마그네슘화합물과 유기염소화합물 및 실리콘화합물의 혼합물을 -20∼80℃의 온도에서, 유기염소화합물/Mg의 몰비를 0.5 이상, 실리콘화합물/Mg의 몰비를 0.001 이상으로 하여 반응시킨 다음, 얻어진 담체를 바나듐화합물 단독 또는 바나듐화합물과 티타늄화합물로 처리하는 것을 포함하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.MgPh 2 .nMgCl 2 .mR 2 0 (where Ph = phenyl; n = 0.37 to 0.7; m≥1; R 2 0 = ether) is a mixture of -20 and -20 At a temperature of ˜80 ° C., reacting the molar ratio of organochlorine compound / Mg to 0.5 or more and the molar ratio of silicon compound / Mg to 0.001 or more, and then treating the obtained carrier with vanadium compound alone or with vanadium compound and titanium compound A method for producing a supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin. 제 1항에 있어서, 유기마그네슘화합물은 디부틸에테르 또는 디이소아밀에테르의 존재하에서 금속마그네슘과 클로로벤젠의 반응에 의해 제조된 것임을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin according to claim 1, wherein the organomagnesium compound is prepared by reaction of metal magnesium and chlorobenzene in the presence of dibutyl ether or diisoamyl ether. Manufacturing method. 제 1항에 있어서, 유기염소화합물은 일반식 CR'nCl(4-n)(여기서, R'은 탄소수 1∼12의 알킬라디칼, n은 0∼3의 정수)의 화합물인 것을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The organochlorine compound according to claim 1, wherein the organochlorine compound is a compound of the general formula CR ' n Cl (4-n) , wherein R' is an alkyl radical having 1 to 12 carbon atoms and n is an integer of 0 to 3 Process for preparing supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin. 제 3항에 있어서, 유기염소화합물은 카본테트라클로라이드임을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The method for preparing a supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin according to claim 3, wherein the organic chlorine compound is carbon tetrachloride. 제 1항에 있어서, 실리콘 화합물은 Si(OR)aX4-a(여기서 R은 탄소수 1∼14의 지방족 또는 방향족 탄화수소기, 또는 R'가 탄소수 1∼14의 지방족 또는 방향족 탄화수소기인 COR'이고, X는 Cl, Br 또는 I이며, a는 0, 1, 2, 3또는 4이다)의 화합물인 것을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The silicone compound of claim 1, wherein the silicon compound is Si (OR) a X 4-a , wherein R is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms, or R ′ is COR ′ wherein R is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms , X is Cl, Br or I, and a is 0, 1, 2, 3 or 4) a method of producing a supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin. 제 5항에 있어서, 실리콘화합물은 실리콘알콕사이드임을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The method of claim 5, wherein the silicon compound is a silicon alkoxide. 제 1항에 있어서, 바나듐화합물은 V(OR4)4-nXn또는 VO(OR4)3-mXm(여기서, R4는 탄소수 1∼14의 지방족 또는 방향족 탄화 수소기 또는 COR5(여기서, R5는 탄소수 1∼14의 지방족 또는 방향족 탄화 수소기임)이고, X는 Cl, Br 또는 I이며, n은 0∼4의 정수 또는 분율이며, m은 0∼3의 정수 또는 분율이다)의 화합물인 것을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The vanadium compound of claim 1, wherein the vanadium compound is selected from V (OR 4 ) 4-n X n or VO (OR 4 ) 3-m X m , wherein R 4 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms or COR 5. (Wherein R 5 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms), X is Cl, Br or I, n is an integer or fraction from 0 to 4, and m is an integer or fraction from 0 to 3 A process for producing a supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin, characterized in that the compound. 제 1항에 있어서, 티타늄화합물은 Ti(OR4)aXb(여기서, R4는 탄소수 1∼14의지방족 또는 방향족 탄화 수소기 또는 COR5(여기서 R5는 탄소수 1∼14의 지방족 또는 방향족 탄화 수소기임)이고, X는 Cl, Br 또는 I이며, a는 0, 1, 2 또는 3이고, b는 1∼4이며, a+b는 3 또는 4이다)의 화합물인 것을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The compound of claim 1, wherein the titanium compound is selected from Ti (OR 4 ) a X b , wherein R 4 is an aliphatic or aromatic hydrocarbon group having 1 to 14 carbon atoms or COR 5 , wherein R 5 is an aliphatic or aromatic compound having 1 to 14 carbon atoms. Hydrocarbon group), X is Cl, Br or I, a is 0, 1, 2 or 3, b is 1 to 4 and a + b is 3 or 4 A method for producing a supported catalyst for polymerization and copolymerization of ethylene and α-olefin. 제 1항에 있어서, V/Mg의 몰비는 0.01∼1.0이고 V/Ti의 몰비는 0.5∼200인 것을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The method of claim 1, wherein the molar ratio of V / Mg is 0.01-1.0 and the molar ratio of V / Ti is 0.5-200. 제 1항에 있어서, 얻어진 담체를 바나듐화합물 단독 또는 바나듐화합물과 티타늄화합물로 처리하기 전 또는 처리한 후에 유기알루미늄화합물을 Al/Ti의 몰비를 0.1∼2.0으로 하여 처리하는 것을 더 포함하는 것을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The method of claim 1, further comprising treating the organoaluminum compound with a molar ratio of Al / Ti of 0.1 to 2.0 before or after the obtained carrier is treated with vanadium compounds alone or with vanadium compounds and titanium compounds. A method for producing a supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin. 제 1항에 있어서, 담체에 바나듐화합물을 담지한 후 티타늄화합물을 담지하는 방법, 담체에 티타늄화합물을 담지하고 바나듐화합물을 담지하는 방법, 또는 담체에 티타늄화합물과 바나듐화합물의 혼합물을 담지하는 방법중 어느 하나의 방법으로 제조되는 것을 특징으로 하는 에틸렌 중합 및 에틸렌과 α-올레핀과의 공중합용 담지촉매의 제조방법.The method according to claim 1, wherein the carrier carries a vanadium compound and then the titanium compound, the carrier carries a titanium compound and the vanadium compound, or the carrier carries a mixture of a titanium compound and a vanadium compound. A process for producing a supported catalyst for ethylene polymerization and copolymerization of ethylene and α-olefin, which is produced by any one method.
KR10-1999-0057472A 1999-12-14 1999-12-14 A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer KR100436493B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-1999-0057472A KR100436493B1 (en) 1999-12-14 1999-12-14 A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer
AU20292/01A AU2029201A (en) 1999-12-14 2000-12-13 Preparation method of supported catalyst for polymerization of ethylene and co-polymerization of ethylene/alpha-olefin
PCT/KR2000/001455 WO2001044312A1 (en) 1999-12-14 2000-12-13 Preparation method of supported catalyst for polymerization of ethylene and co-polymerization of ethylene/alpha-olefin
AU20293/01A AU2029301A (en) 1999-12-14 2000-12-13 Preparation method of supported catalyst for polymerization of ethylene and co-polymerization of ethylene/alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0057472A KR100436493B1 (en) 1999-12-14 1999-12-14 A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer

Publications (2)

Publication Number Publication Date
KR20010056056A true KR20010056056A (en) 2001-07-04
KR100436493B1 KR100436493B1 (en) 2004-06-24

Family

ID=19625656

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0057472A KR100436493B1 (en) 1999-12-14 1999-12-14 A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer

Country Status (2)

Country Link
KR (1) KR100436493B1 (en)
WO (1) WO2001044312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827539B1 (en) * 2001-12-26 2008-05-06 삼성토탈 주식회사 A method for producing a solid vanadium titanium catalyst for ehtylene homo- and copolymerization

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070282147A1 (en) * 2004-03-29 2007-12-06 Basell Poliolefine Italia S.R.L. Magnesium Chloride-Based Adducts And Catalyst Components Obtained Therefrom
US8062989B2 (en) 2006-06-23 2011-11-22 Basell Poliolefine Italia S.R.L. Magnesium chloroakolate-based catalyst precursors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072798B2 (en) * 1987-10-28 1995-01-18 住友化学工業株式会社 Solid catalyst component for olefin polymerization
DZ1626A1 (en) * 1991-10-09 2002-02-17 Enichem Polimeri Catalysts for the polymerization of olefins.
RU2064836C1 (en) * 1994-06-20 1996-08-10 Институт катализа им. Г.К.Борескова СО РАН Method to produce applied catalyst for ethylene polymerization and copolymerization of ethylene with alfa-olefins
US5587439A (en) * 1995-05-12 1996-12-24 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization
KR100218045B1 (en) * 1995-11-10 1999-09-01 유현식 Method for producing supported catalyst for ethylene polymerization and ethylene/alpha-olefin copolymerization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827539B1 (en) * 2001-12-26 2008-05-06 삼성토탈 주식회사 A method for producing a solid vanadium titanium catalyst for ehtylene homo- and copolymerization

Also Published As

Publication number Publication date
WO2001044312A1 (en) 2001-06-21
KR100436493B1 (en) 2004-06-24

Similar Documents

Publication Publication Date Title
EP1572756B1 (en) Catalyst components for the polymerization of olefins
RU2043150C1 (en) Method of preparing solid catalyst, catalyst and a method of synthesis of ethylene (co)polymers
RU2064836C1 (en) Method to produce applied catalyst for ethylene polymerization and copolymerization of ethylene with alfa-olefins
SK280848B6 (en) Solid component of catalyst for the (co)polymerisation of ethylene or copolymerisation of ethylene and one or more alpha-olefins, process for its preparation, catalyst it containing, and the use thereof
KR100334164B1 (en) A PRODUCTION METHOD OF A SUPPORTED T i / V CATALYST FOR ETHYLENE POLYMERIZATION AND ETHYLENE/ α-OLEFIN COPOLYMERIZATION
KR100334165B1 (en) A PRODUCTION METHOD OF A SUPPORTED CATALYST FOR ETHYLENE POLYMERIZATION AND ETHYLENE/α-OLEFIN COPOLYMERIZATION
US4656151A (en) Intermetallic compound
KR100436494B1 (en) A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer
KR100218045B1 (en) Method for producing supported catalyst for ethylene polymerization and ethylene/alpha-olefin copolymerization
KR100436493B1 (en) A preparing method of supported catalyst for polymerization of ethylene homopolymer and ethylene/alpha-olefin copolymer
KR100334160B1 (en) Process for preparing supported catalyst for ethylene polymerization and ethylene / α-olefin copolymerization
JP2759780B2 (en) Method for producing supported catalyst for polymerization of ethylene and copolymerization of ethylene and α-olefin
EP0915104B1 (en) Catalyst for alpha-olefin polymerization
KR100532071B1 (en) A preparation method of ethylene polymer and copolymer having the high molecular tail in molecular distribution
KR100359930B1 (en) PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION
KR100436360B1 (en) A preparing method of supported catalyst for polimerization of ethylene homopolymer and ethylene/alpha-olefin copolymer
KR100359931B1 (en) PREPARATION METHOD OF CATALYST FOR ETHYLENE HOMOPOLYMERIZATION OR ETHYLENE/α-OLEFIN COPOLYMERIZATION
KR100430976B1 (en) Preparation method of supported catalyst for ethylene polymerization and ethylene/α-olefin copolymerization
KR100436359B1 (en) Method of preparing gas-phase ethylene homopolymer and ethylene/alpha-olefin copolymer
RU2682163C1 (en) Method for preparation of vanadium magnesium polymerization catalyst of ethylene and copolimerization of ethylene with alpha olefines
KR100430978B1 (en) Method for producing supported catalyst for producing ethylene polymer and ethylene/alpha-olefin copolymer
US5095080A (en) Olefin polymerization catalyst and method for production and use
RU2570645C1 (en) Method of producing catalyst for polymerisation of ethylene and copolymerisation of ethylene with alpha-olefins
US5068212A (en) Olefin polymerization catalyst and method for production and use
JPH0134246B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160329

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 16