KR20010049989A - A method for producing a polyurethane foam thermal insulator - Google Patents

A method for producing a polyurethane foam thermal insulator Download PDF

Info

Publication number
KR20010049989A
KR20010049989A KR1020000045201A KR20000045201A KR20010049989A KR 20010049989 A KR20010049989 A KR 20010049989A KR 1020000045201 A KR1020000045201 A KR 1020000045201A KR 20000045201 A KR20000045201 A KR 20000045201A KR 20010049989 A KR20010049989 A KR 20010049989A
Authority
KR
South Korea
Prior art keywords
polyurethane foam
foam
polyol component
quaternary ammonium
ammonium salt
Prior art date
Application number
KR1020000045201A
Other languages
Korean (ko)
Other versions
KR100639898B1 (en
Inventor
이시카와아쓰시
사카이미쓰루
모리이마사요시
Original Assignee
가오가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가오가부시끼가이샤 filed Critical 가오가부시끼가이샤
Publication of KR20010049989A publication Critical patent/KR20010049989A/en
Application granted granted Critical
Publication of KR100639898B1 publication Critical patent/KR100639898B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1875Catalysts containing secondary or tertiary amines or salts thereof containing ammonium salts or mixtures of secondary of tertiary amines and acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE: To provide a method for producing the subject thermal insulation material, favorable in foam fluidity during molding process, excellent in demoldability after the molding process, and capable of giving the polyurethane foam with high compressive strength and thermal conductivity retention. CONSTITUTION: This method for producing the objective polyurethane foam as thermal insulation material comprises reaction between a polyol component and an isocyanate component in the presence of (A) a catalyst comprising a quaternary ammonium salt and at least one compound selected from N,N,N',N'- tetramethyl-1,6-hexanediamine, N,N-dimethylcyclohexylamine and N-(2- dimethylaminoethyl)-N'-methylpiperazine, (B) a foaming agent composed of water and cyclopentane and (C) a foam stabilizer.

Description

폴리우레탄 폼 단열재의 제조법{A method for producing a polyurethane foam thermal insulator}A method for producing a polyurethane foam thermal insulator

본 발명은 폴리우레탄 폼 단열재의 제조법에 관한 것이다. 보다 상세하게는, 전기냉장고용 단열재, 냉동 스토커용 단열재 등에 적절하게 사용될 수 있는 폴리우레탄 폼 단열재의 제조법에 관한 것이다.The present invention relates to a method for producing a polyurethane foam insulation. More specifically, the present invention relates to a method for producing a polyurethane foam insulation which can be suitably used for insulation for electric refrigerators, insulation for refrigeration stockers and the like.

경질 폴리우레탄 폼은 경량이고 단열성이 우수하므로 냉장고나 냉동고 속의 단열재로 사용되고 있다. 이러한 경질 폴리우레탄 폼에는, 성층권내 오존층의 파괴나 지구온난화 등을 회피하는 관점에서 프레온계 발포제를 대신하는 발포제로서 사이클로펜탄이 사용되고 있다[참조: 일본 공개특허공보 제(평)11-29652호].Rigid polyurethane foam is used as a heat insulator in refrigerators and freezers because of its light weight and excellent thermal insulation. In such rigid polyurethane foams, cyclopentane is used as a blowing agent to replace the freon-based blowing agent from the viewpoint of avoiding destruction of the ozone layer in the stratosphere, global warming, and the like (see Japanese Patent Laid-Open No. 11-29652). .

그러나, 사이클로펜탄을 사용하는 경우, 프레온계 발포제를 사용하는 경우에 비해 수득되는 폴리우레탄 폼의 압축 강도 및 치수 안정성이 저하되므로 폴리우레탄 폼을 고밀도화시키는 것이 필요하며, 폴리우레탄 폼을 고밀도화시키면 동일 주입량의 경우, 필연적으로 폼의 유동성 저하를 초래하므로 성형 주형 등의 내부공간 전체에 폼을 충분히 충전할 수 없다는 결점이 있다.However, in the case of using cyclopentane, the compressive strength and dimensional stability of the polyurethane foam obtained are lowered compared with the case of using a freon-based blowing agent, so that the polyurethane foam needs to be densified. Inevitably, since it inevitably leads to a deterioration in the flowability of the foam, there is a drawback in that the foam cannot be sufficiently filled in the entire internal space such as a molding mold.

따라서, 폴리우레탄 폼의 압축 강도를 높이기 위해 톨릴렌디아민이나 자당에 알킬렌 옥사이드를 부가시킨 폴리올 등의 폴리에테르 폴리올을 사용하는 방안이 검토되고 있다. 그러나, 이러한 폴리에테르 폴리올 자체가 고점도이므로 폼의 유동성을 악화시키는 요인이 되고 있다.Therefore, in order to raise the compressive strength of polyurethane foam, the method of using polyether polyol, such as tolylene diamine and the polyol which added the alkylene oxide to sucrose, is examined. However, since such polyether polyols themselves have high viscosity, they are a factor that deteriorates the fluidity of the foam.

또한, 경질 폴리우레탄 폼을 발포 성형시킬 때에는 일반적으로 높은 발포압이 발생하고, 이러한 발포압으로 인해 수득된 성형체에 팽창이 생기므로 수지 강도가 일정 수준에 도달할 때까지의 시간 동안 성형 주형 등의 외부를 튼튼한 치구(治具)로 보강하는 것이 필요하다. 예를 들면, 전기냉장고 등의 외각(外殼)이나 문 종류의 경우, 매우 얇은 금속판이나 합성 수지판이 사용되며 높은 치수 정밀도가 요구되므로 이의 변형을 방지하기 위해 개폐 기능을 갖는 견고하고 정확한 형상의 치구로 이의 외부를 견고하게 고정시키는 것이 필요하다. 이러한 치구는 매우 비싸며, 이러한 상황에서 성형시간의 단축은 주형의 수를 증가시키지 않고 회전률을 상승시켜 생산량을 증대시킬 수 있으므로, 이에 대한 요망이 높아지고 있다.In addition, when foaming a rigid polyurethane foam, high foaming pressure is generally generated, and expansion of the molded article obtained due to such foaming pressure causes molding molds and the like for a time until the resin strength reaches a certain level. It is necessary to reinforce the exterior with a sturdy fixture. For example, in the case of an external refrigerator or door type such as an electric refrigerator, a very thin metal plate or a synthetic resin plate is used, and high dimensional accuracy is required. It is necessary to fix the outside of it firmly. Such a jig is very expensive, and in such a situation, shortening of the molding time can increase the yield by increasing the rotation rate without increasing the number of molds, and thus the demand for this is increasing.

본 발명은 성형시의 폼 유동성이 양호하고 탈형성(脫型性)이 우수하며 압축 강도가 높고 열 전도율을 유지하는 폴리우레탄 폼을 제공하는 폴리우레탄 폼 단열재의 제조법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for producing a polyurethane foam insulation which provides a polyurethane foam having good foam flowability during molding, excellent deforming property, high compressive strength and maintaining thermal conductivity.

도 1은 각 실시예 및 비교예에서 폴리우레탄 폼을 성형할 때 폼의 유동성을 측정하는 방법을 나타낸 개략 설명도이다.1 is a schematic explanatory diagram showing a method of measuring the flowability of a foam when molding a polyurethane foam in each Example and Comparative Example.

도 1에서, 부호 1은 폴리우레탄 폼을 나타낸다.In Fig. 1, reference numeral 1 denotes a polyurethane foam.

제1로, 본 발명은 폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민(이하, TMHDA라고 한다), N,N-디메틸사이클로헥실아민(이하, DMCHA라고 한다) 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진(이하, TMAEP라고 한다)으로부터 선택된 하나 이상과 4급 암모늄염을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(整泡劑)(C)의 존재하에 반응시키는, 폴리우레탄 폼 단열재의 제조법에 관한 것이다.First, in the present invention, the polyol component and the isocyanate component include N, N, N ', N'-tetramethyl-1,6-hexanediamine (hereinafter referred to as TMHDA), N, N-dimethylcyclohexylamine ( Hereinafter referred to as DMCHA) and N- (2-dimethylaminoethyl) -N'-methylpiperazine (hereinafter referred to as TMAEP) catalyst containing at least one quaternary ammonium salt (A), water and cyclopentane The manufacturing method of the polyurethane foam heat insulating material made to react in presence of the foaming agent (B) and foam stabilizer (C) which contain is contained.

제2로, 본 발명은 폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민, N,N-디메틸사이클로헥실아민 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진으로부터 선택된 하나 이상과 4급 암모늄염을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(C)의 존재하에 이소시아네이트 지수가 120 내지 200으로 되도록 반응시키는, 폴리우레탄 폼 단열재의 제조법에 관한 것이다.Secondly, the present invention provides a polyol component and an isocyanate component with N, N, N ', N'-tetramethyl-1,6-hexanediamine, N, N-dimethylcyclohexylamine and N- (2-dimethylamino The isocyanate index is 120 to 120 in the presence of a catalyst (A) containing at least one selected from ethyl) -N'-methylpiperazine and a quaternary ammonium salt, a blowing agent (B) and a foaming agent (C) containing water and cyclopentane. It relates to a method for producing a polyurethane foam insulation which is reacted to 200.

제3으로, 본 발명은 폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민, N,N-디메틸사이클로헥실아민 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진으로부터 선택된 하나 이상과 4급 암모늄염 및 N,N,N',N",N"-펜타메틸디에틸렌트리아민을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(C)의 존재하에 반응시키는, 폴리우레탄 폼 단열재의 제조법에 관한 것이다.Thirdly, the present invention provides a polyol component and an isocyanate component with N, N, N ', N'-tetramethyl-1,6-hexanediamine, N, N-dimethylcyclohexylamine and N- (2-dimethylamino Catalyst (A) containing at least one quaternary ammonium salt selected from ethyl) -N'-methylpiperazine and N, N, N ', N ", N" -pentamethyldiethylenetriamine, water and cyclopentane The manufacturing method of the polyurethane foam heat insulating material made to react in the presence of the foaming agent (B) and foam stabilizer (C) which contain.

제4로, 본 발명은 폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민, N,N-디메틸사이클로헥실아민 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진으로부터 선택된 하나 이상과 4급 암모늄염 및 N,N,N',N",N"-펜타메틸디에틸렌트리아민을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(C)의 존재하에 이소시아네이트 지수가 120 내지 200으로 되도록 반응시키는, 폴리우레탄 폼 단열재의 제조법에 관한 것이다.Fourthly, the present invention provides a polyol component and an isocyanate component with N, N, N ', N'-tetramethyl-1,6-hexanediamine, N, N-dimethylcyclohexylamine and N- (2-dimethylamino Catalyst (A) containing at least one quaternary ammonium salt selected from ethyl) -N'-methylpiperazine and N, N, N ', N ", N" -pentamethyldiethylenetriamine, water and cyclopentane The manufacturing method of the polyurethane foam heat insulating material which makes it react so that an isocyanate index may be 120-200 in presence of the foaming agent (B) and foam stabilizer (C) which contain.

본 발명은 TMHDA, DMCHA 및 TMAEP로부터 선택된 하나 이상과 4급 암모늄염을 함유하는 촉매를 사용함을 하나의 큰 특징으로 한다.One great feature of the present invention is the use of a catalyst containing at least one quaternary ammonium salt and at least one selected from TMHDA, DMCHA and TMAEP.

이와 같이, TMHDA, DMCHA 및 TMAEP로부터 선택된 하나 이상과 4급 암모늄염을 병용하는 경우에는 폴리우레탄 폼을 제조할 때 폼의 유동성이 양호해져 성형 주형 내의 공극 부분 전체에 폼을 충분하게 충전할 수 있게 되며 성형 시간을 단축할 수 있게 된다. 또한, 수득한 폴리우레탄 폼 단열재의 열 전도율을 유지하고 압축 강도가 높으며 치수 안정성이 우수하다고 하는 뛰어난 효과가 발현된다.As such, when one or more selected from TMHDA, DMCHA, and TMAEP are used together with the quaternary ammonium salt, when the polyurethane foam is manufactured, the foam has good fluidity, so that the foam can be sufficiently filled in the entire void portion in the molding mold. Molding time can be shortened. Moreover, the outstanding effect of maintaining the thermal conductivity of the obtained polyurethane foam heat insulating material, high compressive strength, and excellent dimensional stability is expressed.

TMHDA, DMCHA 및 TMAEP는 각각 단독으로 사용하거나 병용할 수 있다.TMHDA, DMCHA and TMAEP may be used alone or in combination, respectively.

TMHDA, DMCHA 및 TMAEP로부터 선택된 하나 이상의 양은, 폼의 유동성의 향상 및 탈형에 요구되는 시간의 단축의 관점에서, 폴리올 성분 100중량부에 대해 0.3 내지 5중량부, 바람직하게는 0.5 내지 3중량부로 하는 것이 바람직하다.The at least one amount selected from TMHDA, DMCHA and TMAEP is 0.3 to 5 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the polyol component, in view of the improvement of the fluidity of the foam and the shortening of time required for demolding. It is preferable.

또한, 본 발명에서는 TMHDA, DMCHA 및 TMAEP로부터 선택된 하나 이상과 함께 다시 N,N, N', N", N"-펜타메틸디에틸렌트리아민(이하, PMDETA라고 한다)을 사용하는 것이 바람직하다. PMDETA를 사용하는 경우, 수지화 반응과 기포화 반응의 균형이 한층 더 양호해지고 우수한 폼의 상승 프로파일(rise profile)이 얻어지며 폼의 유동성을 한층 더 향상시킬 수 있다는 우수한 효과가 발현된다. PMDETA의 양은, 양호한 폼의 상승 프로파일에 의한 폼의 유동성 및 폼의 표면의 비산성의 관점에서, 폴리올 성분 100중량부에 대해 0.1 내지 2중량부, 바람직하게는 0.15 내지 1.5중량부로 하는 것이 바람직하다.In the present invention, it is preferable to use N, N, N ', N ", N" -pentamethyldiethylenetriamine (hereinafter referred to as PMDETA) together with one or more selected from TMHDA, DMCHA, and TMAEP. In the case of using PMDETA, the balance between the resination reaction and the foaming reaction is further improved, an excellent rise profile of the foam is obtained, and the excellent effect that the fluidity of the foam can be further improved is expressed. The amount of PMDETA is preferably 0.1 to 2 parts by weight, preferably 0.15 to 1.5 parts by weight with respect to 100 parts by weight of the polyol component from the viewpoint of the flowability of the foam and the scattering property of the surface of the foam due to the favorable profile of the foam.

4급 암모늄염의 대표적인 예로서는, 화학식 1의 화합물을 들 수 있다.As a typical example of a quaternary ammonium salt, the compound of General formula (1) is mentioned.

[R1R2R3R4N]+·[O(CO)R5][R 1 R 2 R 3 R 4 N] + · [O (CO) R 5 ]

위의 화학식 1에서,In Formula 1 above,

R1및 R2는 각각 메틸기이고,R 1 and R 2 are each a methyl group,

R3및 R4는 각각 독립적으로 탄소수 1 내지 4의 알킬기, -CH2CH2OH기 또는 -CH2CH(CH3)OH기이고,R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, a -CH 2 CH 2 OH group, or a -CH 2 CH (CH 3 ) OH group,

R5는 수소원자 또는 탄소수 1 내지 11의 직쇄 또는 측쇄 알킬기이다.R 5 is a hydrogen atom or a straight or branched alkyl group having 1 to 11 carbon atoms.

4급 암모늄염의 구체적인 예로서는, N,N-디메틸-N-하이드록시에틸-N-(2-하이드록시프로필)암모늄 포르메이트, N,N-디메틸-N-하이드록시에틸-N-(2-하이드록시프로필)암모늄 아세테이트, N,N-디메틸-N-하이드록시에틸-N-(2-하이드록시프로필)암모늄(2-에틸헥사노에이트), N,N,N-트리메틸-N-(2-하이드록시프로필)암모늄 포르메이트 등을 들 수 있으며, 이들은 단독으로 또는 둘 이상을 혼합하여 사용할 수 있다.Specific examples of quaternary ammonium salts include N, N-dimethyl-N-hydroxyethyl-N- (2-hydroxypropyl) ammonium formate, N, N-dimethyl-N-hydroxyethyl-N- (2-hydroxy Oxypropyl) ammonium acetate, N, N-dimethyl-N-hydroxyethyl-N- (2-hydroxypropyl) ammonium (2-ethylhexanoate), N, N, N-trimethyl-N- (2- Hydroxypropyl) ammonium formate, and the like, and these may be used alone or in combination of two or more.

4급 암모늄염의 양은, 폼의 유동성의 향상, 탈형 시간의 단축 및 압축 강도의 향상의 관점에서, 폴리올 성분 100중량부에 대해 0.1 내지 3중량부, 바람직하게는 O.15 내지 2중량부로 하는 것이 바람직하다.The amount of the quaternary ammonium salt is 0.1 to 3 parts by weight, preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the polyol component from the viewpoint of improving the fluidity of the foam, shortening the demold time and improving the compressive strength. desirable.

또한, TMHDA, DMCHA 및 TMAEP로부터 선택된 하나 이상과 4급 암모늄염을 함유하는 촉매의 양은, 폴리올 성분과 이소시아네이트 성분의 반응성을 높여 탈형 시간을 단축시키는 관점 및 폼의 유동성을 높이는 관점에서, 폴리올 성분 100중량부에 대해 0.5중량부 이상, 바람직하게는 1중량부 이상으로 하는 것이 바람직하며, 또한 폴리우레탄 폼의 강도 유지 및 유동성 유지의 관점에서, 폴리올 성분 100중량부에 대해 10중량부 이하, 바람직하게는 8중량부 이하로 하는 것이 바람직하다.In addition, the amount of the catalyst containing one or more quaternary ammonium salts selected from TMHDA, DMCHA, and TMAEP is 100 weight of the polyol component from the viewpoint of increasing the reactivity of the polyol component and the isocyanate component to shorten the demolding time and increasing the fluidity of the foam. The amount is preferably 0.5 parts by weight or more, preferably 1 parts by weight or more, and 10 parts by weight or less, preferably 100 parts by weight of the polyol component, from the viewpoint of maintaining the strength and fluidity of the polyurethane foam. It is preferable to set it as 8 weight part or less.

또한, 본 발명의 목적이 저해되지 않는 범위 내에서, 예를 들면, 1,4-디아자비사이클로(2.2.2)옥탄 등의 기타 촉매를 사용할 수 있다. 기타 촉매의 양은 특별히 한정되지 않으며, 본 발명의 목적이 저해되지 않는 범위 내에서 적절하게 조정하면 양호하다.Moreover, other catalysts, such as 1, 4- diazabicyclo (2.2.2) octane, can be used within the range in which the objective of this invention is not impaired. The amount of the other catalyst is not particularly limited and may be appropriately adjusted within the range in which the object of the present invention is not impaired.

폴리올 성분은 폴리우레탄 폼의 제조시 종래부터 사용되고 있는 것이면 양호하며, 특별히 한정되지 않는다.The polyol component should just be used conventionally at the time of manufacture of a polyurethane foam, and is not specifically limited.

폴리올 성분의 대표적인 예로서는, 관능기의 수가 2 내지 8이며 수산기 값이 200 내지 1000mg KOH/g인 폴리올 등을 들 수 있다.Representative examples of the polyol component include polyols having a functional group number of 2 to 8 and a hydroxyl value of 200 to 1000 mg KOH / g.

폴리올 성분의 구체적인 예로서는, 아디프산, 석신산, 프탈산, 푸마르산 등의 2가 염기산과 에틸렌 글리콜, 디에틸렌 글리콜, 1,4-부탄디올, 글리세린, 트리메틸올프로판, 프로필렌 글리콜 등의 다가 알콜을 반응시켜 수득한 폴리에스테르 폴리올 및 에틸렌 글리콜, 디에틸렌 글리콜, 프로필렌 글리콜, 디프로필렌 글리콜, 네오펜틸 글리콜, 1,4-부탄디올 등의 2가 알콜; 글리세린, 디글리세린, 펜타에리스리톨, 트리메틸올프로판, 소르비톨, 자당 등의 3가 이상의 다가 알콜; 에틸렌디아민, 톨릴렌디아민, 1,3-프로판디아민, 이소포론디아민 등의 다가 아민에 에틸렌 옥사이드, 프로필렌 옥사이드 등의 알킬렌 옥사이드를 부가하여 수득한 폴리에테르 폴리올 등을 들 수 있으며 이들 폴리올은 단독으로 또는 둘 이상을 혼합하여 사용할 수 있다. 이들 중에는 톨릴렌디아민의 옥시알킬렌 부가물과 자당의 옥시알킬렌 부가물을 병용하는 것이 바람직하다. 이러한 경우, 톨릴렌디아민의 옥시알킬렌 부가물/자당의 옥시알킬렌 부가물(중량비)은 폼의 미세 셀화에 따른 열 전도율의 저하 및 폼의 압축 강도의 향상의 관점에서 20/80 내지 90/10으로 하는 것이 바람직하다. 또한, 폴리올 성분의 평균 수산기 값은 300 내지 800mg KOH/g인 것이 열 전도율의 저하 및 압축 강도의 향상의 관점에서 바람직하다.As a specific example of a polyol component, dihydric basic acids, such as adipic acid, succinic acid, phthalic acid, and fumaric acid, and polyhydric alcohols, such as ethylene glycol, diethylene glycol, 1, 4- butanediol, glycerin, trimethylolpropane, propylene glycol, are made to react, Obtained polyester polyols and dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 1,4-butanediol; Trihydric or higher polyhydric alcohols such as glycerin, diglycerin, pentaerythritol, trimethylolpropane, sorbitol, and sucrose; Polyether polyols obtained by adding alkylene oxides such as ethylene oxide and propylene oxide to polyvalent amines such as ethylenediamine, tolylenediamine, 1,3-propanediamine and isophoronediamine, and the like, and these polyols alone Or two or more may be mixed and used. Among these, it is preferable to use together the oxyalkylene adduct of tolylene diamine and the oxyalkylene adduct of sucrose. In this case, the oxyalkylene adduct of tolylenediamine / oxyalkylene adduct of sucrose (weight ratio) is in the range of 20/80 to 90 / It is preferable to set it to 10. Moreover, it is preferable that the average hydroxyl value of a polyol component is 300-800 mg KOH / g from a viewpoint of the fall of thermal conductivity and the improvement of compressive strength.

이소시아네이트 성분으로서는, 예를 들면, 2,4-톨릴렌디이소시아네이트, 2,6-톨릴렌디이소시아네이트, 4,4'-디페닐메탄디이소시아네이트, 2,2'-디페닐메탄디이소시아네이트, 2,4'-디페닐메탄디이소시아네이트, 폴리메틸렌폴리페닐렌폴리이소시아네이트, 크실릴렌디이소시아네이트, 나프틸렌디이소시아네이트 등의 방향족 폴리이소시아네이트; 헥사메틸렌디이소시아네이트, 라이신디이소시아네이트 등의 지방족 폴리이소시아네이트; 수소 첨가 디페닐메탄디이소시아네이트, 수소 첨가 톨릴렌디이소시아네이트, 이소포론디이소시아네이트 등의 지환족 폴리이소시아네이트; 우레탄 결합, 카보디이미드 결합, 우레토이민 결합, 알로파네이트 결합, 우레아 결합, 뷰렛 결합, 이소시아눌레이트 결합 등을 하나 이상 함유하는 폴리이소시아네이트 변성물 등을 들 수 있으며, 이들은 단독으로 또는 둘 이상을 혼합하여 사용할 수 있다.As the isocyanate component, for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4 ' Aromatic polyisocyanates such as diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate and naphthylene diisocyanate; Aliphatic polyisocyanates such as hexamethylene diisocyanate and lysine diisocyanate; Alicyclic polyisocyanates such as hydrogenated diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate and isophorone diisocyanate; Polyisocyanate modified products containing at least one of a urethane bond, a carbodiimide bond, a uretoimine bond, an allophanate bond, a urea bond, a burette bond, an isocyanurate bond, and the like, and the like, and these may be used alone or in combination. The above can be mixed and used.

폴리올 성분과 이소시아네이트 성분의 비율은, 이소시아네이트 지수가 120 내지 200으로 되도록 조정하는 것이 바람직하다. 이와 같이, 이소시아네이트 지수를 조정하는 경우에는, 폼의 유동성이 특히 양호해지며 성형 주형의 내면 형상에 추종하는 주형대로 성형체를 제조할 수 있다는 이점이 있으며, 폼의 압축 강도를 보다 향상시킬 수 있다.It is preferable to adjust the ratio of a polyol component and an isocyanate component so that an isocyanate index may be 120-200. Thus, when adjusting the isocyanate index, the flowability of the foam is particularly good, and there is an advantage that the molded body can be manufactured with a mold that follows the inner surface shape of the molding mold, and the compressive strength of the foam can be further improved.

이소시아네이트 지수란, [(실제로 사용된 이소시아네이트량)/(화학량론적으로 폴리올 성분과 등량으로 되는 이소시아네이트량)] × 100으로 나타낸 값이다.An isocyanate index is a value shown by [(the amount of isocyanate actually used) / (the amount of isocyanate which becomes stoichiometrically equivalent to a polyol component)] x100.

발포제로서 물 및 사이클로펜탄을 함유하는 것이 사용된다. 물과 사이클로펜탄의 비율은 특별히 한정되지 않지만, 통상적으로 물/사이클로펜탄(중량비)이 폼의 압축 강도의 향상 및 열 전도율의 저하의 관점에서 1/99 내지 25/75, 바람직하게는 1.5/98.5 내지 20/80인 것이 바람직하다.As the blowing agent, those containing water and cyclopentane are used. The ratio of water and cyclopentane is not particularly limited, but water / cyclopentane (weight ratio) is usually 1/99 to 25/75, preferably 1.5 / 98.5, in view of the improvement of the compressive strength of the foam and the decrease of the thermal conductivity. It is preferable that it is from 20/80.

또한, 발포제로서, 예를 들면, 이소펜탄, 노르말펜탄 등의 저비점 탄화수소, HCFC-141b, HCFC-142b, HCFC-22 등의 하이드로클로로플루오로카본, HFC-245fa, HFC-134a, HFC-152a, HFC-365mfc 등의 하이드로플루오로카본, 질소 가스, 공기, 이산화탄소 등의 가스 등을 본 발명의 목적을 저해하지 않는 범위내에서 사용할 수 있다.As the blowing agent, for example, low boiling point hydrocarbons such as isopentane and normalpentane, hydrochlorofluorocarbons such as HCFC-141b, HCFC-142b and HCFC-22, HFC-245fa, HFC-134a, HFC-152a, Hydrofluorocarbons, such as HFC-365mfc, nitrogen gas, air, gas, such as carbon dioxide, etc. can be used within the range which does not impair the objective of this invention.

발포제의 양은 폴리우레탄 폼 단열재의 밀도 등에 따라 상이하여 일률적으로는 결정할 수 없으므로, 이들의 물성 등에 따라 적절하게 조정하는 것이 바람직하다.Since the quantity of a foaming agent differs according to the density etc. of a polyurethane foam heat insulating material, it cannot determine uniformly, It is preferable to adjust suitably according to these physical properties.

정포제는 일반적으로 폴리우레탄 폼 단열재를 제조할 때에 사용되는 것이면 양호하다. 정포제의 대표적인 예로서는 디메틸폴리실록산, 폴리옥시알킬렌 변성 디메틸폴리실록산 등의 실리콘계 계면활성제, 지방산염, 황산 에스테르염, 인산 에스테르염, 설폰산염 등의 음이온 계면활성제 등을 들 수 있다.A foam stabilizer generally should just be used when manufacturing a polyurethane foam heat insulating material. Representative examples of the foam stabilizer include silicone-based surfactants such as dimethylpolysiloxane and polyoxyalkylene-modified dimethylpolysiloxane, and anionic surfactants such as fatty acid salts, sulfuric acid ester salts, phosphate ester salts, and sulfonate salts.

정포제의 양은 이의 종류나 목적하는 폴리우레탄 폼 단열재의 밀도에 따라 상이하여 일률적으로는 결정할 수 없으므로, 이들 정포제의 종류 등에 따라 적절하게 조정하는 것이 바람직하다.Since the quantity of foam stabilizer differs according to the kind and density of the polyurethane foam heat insulating material desired, it cannot determine uniformly, It is preferable to adjust suitably according to the kind of these foam stabilizers, etc.

또한, 본 발명에서는 상기 이 외의 임의의 성분, 예를 들면, 난연제, 충전제 등의 기타 조제를 본 발명의 목적을 방해하지 않는 범위에서 사용할 수 있다.In addition, in this invention, other arbitrary components, such as a flame retardant and a filler, can be used in the range which does not prevent the objective of this invention.

폴리우레탄 폼 단열재는, 예를 들면, 폴리올 성분과 발포제, 촉매, 정포제 및 기타 조제를 혼합하고, 수득한 폴리올 혼합물과 이소시아네이트 성분을 성형기 등으로 혼합, 교반하여 성형 주형 내로 주입하여 발포시킴으로써 성형시킬 수 있다. 보다 구체적으로는, 예를 들면, 폴리올 혼합물을 탱크 등을 사용하여 혼합 교반하고, 통상적으로 약 20℃의 온도로 조절한 다음, 자동 혼합 주입형 발포기, 자동 혼합 사출형 발포기 등의 발포기를 사용하여 이소시아네이트 성분과 반응시킴으로써 폴리우레탄 폼 단열재를 제조할 수 있다.The polyurethane foam insulation may be molded by, for example, mixing a polyol component with a blowing agent, a catalyst, a foam stabilizer, and other preparations, mixing the obtained polyol mixture with an isocyanate component with a molding machine, stirring, injecting into a molding mold and foaming the foam. Can be. More specifically, for example, the polyol mixture is mixed and agitated using a tank or the like, and is usually adjusted to a temperature of about 20 ° C., and then a foaming machine such as an automatic mixing injection foaming machine or an automatic mixing injection foaming machine is used. Polyurethane foam insulation can be prepared by reacting with an isocyanate component.

상기에서 설명한 바와 같이 본 발명에서는 제조할 때에 특정 조성으로 이루어진 촉매가 사용되고 있으므로, 성형할 때에 폼의 유동성이 양호하고 탈형성이 우수하며 압축 강도가 높으며 열 전도율을 유지하는 폴리우레탄 폼 단열재를 제조할 수 있다.As described above, in the present invention, since a catalyst having a specific composition is used during manufacture, a polyurethane foam insulation material having a good fluidity, good deformability, high compressive strength, and high thermal conductivity can be produced during molding. Can be.

또한, 이소시아네이트 지수를 130 내지 200으로 하는 경우에는 이소시아네이트 성분의 폴리올 성분에 대한 혼합 비율이 높아지며 초기의 양쪽을 혼합할 때에 점도를 저하시킬 수 있으므로 폼의 유동성을 상승적으로 향상시킬 수 있다. 이소시아네이트 지수는 보다 바람직하게는 130 내지 160, 특히 바람직하게는 130 내지 140으로 하는 것이 유동성, 열 전도율, 치수 안정성 등의 전체적인 균형에서 바람직하다.In addition, when the isocyanate index is set to 130 to 200, the mixing ratio of the isocyanate component to the polyol component is increased and the viscosity can be lowered when mixing both of the initial stages, so that the flowability of the foam can be improved synergistically. The isocyanate index is more preferably 130 to 160, particularly preferably 130 to 140, in terms of the overall balance of fluidity, thermal conductivity, dimensional stability and the like.

따라서, 본 발명의 제조법에 따르면, 예를 들면, 전기냉장고용 단열재, 냉동 스토커용 단열재 등에 적절하게 사용될 수 있고 폼의 유동성이 양호하며 탈형성이 우수하고 압축 강도가 높으며 열 전도율을 유지하는 폴리우레탄 폼 단열재를 성형 주형대로 제조할 수 있다.Therefore, according to the manufacturing method of the present invention, for example, polyurethane that can be suitably used for insulation for electric refrigerators, insulation for refrigeration stockers, etc., has good flowability of foam, excellent deformability, high compressive strength, and maintains thermal conductivity. Foam insulation can be produced in molding molds.

실시예 1 내지 실시예 12 및 비교예 1 내지 비교예 3Examples 1 to 12 and Comparative Examples 1 to 3

폴리올 성분(평균 수산기 값: 397mg KOH/g)[톨릴렌디아민계 폴리에테르 폴리올(수산기 값: 450mg KOH/g, 아사히글래스(주)제, 상품명: 엑세놀 455 AR) 45중량%, 자당계 폴리에테르 폴리올(수산기 값: 380mg KOH/g, 스미또모바이엘우레탄(주)제, 상품명: 폴리올 0475) 45중량% 및 글리세린계 폴리에테르 폴리올(수산기 값: 235mg KOH/g, 미쓰이가가쿠(주)제, 상품명: 폴리올 MN-700) 10중량%] 100중량부에 대해 실리콘계 정포제[니혼유니카(주)제, 상품명: L-5340] 1.5중량부, 발포제로서 표 1 및 표 2에 기재된 양의 사이클로펜탄과 물, 및 표 1 및 표 2에 기재된 조성의 촉매를 래보 믹서로 혼합하여 폴리올 혼합물을 수득한다.Polyol component (average hydroxyl value: 397 mg KOH / g) [tolylenediamine polyether polyol (hydroxyl value: 450 mg KOH / g, manufactured by Asahi Glass Co., Ltd., product name: Exenol 455 AR) 45 wt%, sucrose-based poly 45% by weight of ether polyol (hydroxyl value: 380 mg KOH / g, manufactured by Sumitomo Bayer Urethane Co., Ltd., product name: Polyol 0475) and glycerin polyether polyol (hydroxyl value: 235 mg KOH / g, manufactured by Mitsui Chemical Co., Ltd.) , Product Name: Polyol MN-700) 10 parts by weight] of the cyclohydrogenating agent (Nihon Unika Co., Ltd., product name: L-5340) 1.5 parts by weight of the foaming agent in the amounts of Pentane and water and catalysts of the compositions shown in Tables 1 and 2 are mixed with a Labo mixer to obtain a polyol mixture.

이어서, 수득한 폴리올 혼합물과 이소시아네이트 성분[스미또모바이엘우레탄(주)제, 상품명: 스미듈 44V20]을 이소시아네이트 지수가 표 1 및 표 2에 기재된 값으로 되도록 20℃에서 래보 믹서로 혼합, 교반하고 수득한 혼합물을 사용하여 하기의 물성을 조사한다. 그 결과를 표 1 및 표 2에 기재한다.Subsequently, the obtained polyol mixture and isocyanate component (manufactured by Sumitomo Biureur Urethane Co., Ltd., trade name: Sumidule 44V20) were mixed, stirred and obtained at 20 ° C. in a labyrinth mixer so that the isocyanate index becomes the values shown in Tables 1 and 2. One mixture was used to investigate the following physical properties. The results are shown in Table 1 and Table 2.

또한, 표 1 및 표 2 중의 각 약어는 하기를 의미한다.In addition, each abbreviation in Table 1 and Table 2 means the following.

(4급 암모늄염)(Quaternary ammonium salt)

TAS1: N,N-디메틸-N-하이드록시에틸-N-(2-하이드록시프로필)암모늄 포르메이트TAS1: N, N-dimethyl-N-hydroxyethyl-N- (2-hydroxypropyl) ammonium formate

TAS2: N,N-디메틸-N-하이드록시에틸-N-(2-하이드록시프로필)암모늄 아세테이트TAS2: N, N-dimethyl-N-hydroxyethyl-N- (2-hydroxypropyl) ammonium acetate

TAS3: N,N-디메틸-N-하이드록시에틸-N-(2-하이드록시프로필)암모늄(2-에틸헥사노에이트)TAS3: N, N-dimethyl-N-hydroxyethyl-N- (2-hydroxypropyl) ammonium (2-ethylhexanoate)

TAS4: N,N,N-트리메틸-N-(2-하이드록시프로필)암모늄 포르메이트TAS4: N, N, N-trimethyl-N- (2-hydroxypropyl) ammonium formate

또한, 표 1 및 표 2에서 겔 타임이 일정해지도록 촉매량을 조정한다. 또한, 발포제로서 사이클로펜탄과 물의 배합 비율을 일정하게 하는 동시에, 폴리올 성분과 이소시아네이트 성분의 혼합물 중에 차지하는 발포제(사이클로펜탄+물)의 몰 수를 거의 일정하게 하고 표 1 및 표 2에 상기 혼합물 1kg 중의 발포제 총량(몰)을 기재한다.In addition, in Table 1 and Table 2, catalyst amount is adjusted so that gel time may become constant. In addition, the mixing ratio of cyclopentane and water as the blowing agent is constant, while the molar number of the blowing agent (cyclopentane + water) in the mixture of the polyol component and the isocyanate component is almost constant, and in the mixture 1 kg in Tables 1 and 2 Describe the total amount of blowing agent in moles.

(1) 반응성(1) reactivity

300ml 용적의 폴리캡 내에서 교반된 상기 혼합물 40g의 자유 발포에서 크림 타임, 겔 타임 및 상승(rise) 타임에 도달하기까지의 시간을 측정한다.The time from free foaming of 40 g of the mixture stirred in a 300 ml volume polycap to the time of reaching cream time, gel time and rise time is determined.

(2) 폼의 유동성(2) fluidity of foam

소정량(350g)의 상기 혼합물을 45℃로 조정된 폼 유동성 측정용 몰드(알루미늄제, 수직 부분: 400mm×550mm×35mm, 수평 부분: 400mm×450mm×35mm의 역 L자형) 속에 몰드의 하부에 주입하여 폴리우레탄 폼을 성형하고 7분이 경과한 후에 탈형하고, 도 1에 도시된 바와 같이 폴리우레탄 폼(1)의 상면의 직선 부분의 길이 X와 팽창 부분에서의 면적적인 중간치 Y(길이가 400mm인 변에 평행한 직선이 팽창 부분의 면적을 2분할 때에 당해 직선과 팽창 말단부 사이의 길이 Y)의 합(X+Y)을 측정하고 「550+X+Y」를 폼의 유동성의 지표로 한다.A predetermined amount (350 g) of the mixture was placed in the bottom of the mold in a mold for measuring the fluidity of the foam (aluminum, vertical part: 400 mm x 550 mm x 35 mm, horizontal part: inverted L shape of 400 mm x 450 mm x 35 mm) adjusted to 45 ° C. After 7 minutes of molding the polyurethane foam by injection, the mold was demolded, and as shown in FIG. When a straight line parallel to the phosphorus side divides the area of the expanded portion by two, measure the sum (X + Y) of the length Y) between the straight line and the expanded distal end portion, and set "550 + X + Y" as an index of fluidity of the foam. .

(3) 탈형성(치수 변화율)(3) Deformation (Dimension Change Rate)

상기 혼합물을 45℃로 조정된 수직 몰드(300mm×300mm×50mm)에 팩(pack)율이 110%로 되도록 주입하여 4분이 경과한 후에 탈형한다. 탈형 후, 30초가 경과한 후에 폴리우레탄 폼의 중앙부의 두께를 다이얼 게이지로 측정하여 탈형성의 지표로서 치수 변화율을 하기 식에 따라 구한다.The mixture is injected into a vertical mold (300mm × 300mm × 50mm) adjusted to 45 ° C. such that the pack ratio is 110% and demolded after 4 minutes. After demolding, after 30 seconds have elapsed, the thickness of the central portion of the polyurethane foam is measured by a dial gauge, and the rate of dimensional change as an index of demolding is determined according to the following equation.

[치수 변화율(%)]= [폼의 두께(mm)-50]/50×100[Dimension Change Rate (%)] = [Thickness of Form (mm) -50] / 50 × 100

(4) 코어 밀도 및 열 전도율(4) core density and thermal conductivity

상기 혼합물을 45℃로 조정된 수직 몰드(300mm×300mm×50mm)에 팩율이 110%로 되도록 주입하여 7분이 경과한 후에 탈형한다. 탈형으로부터 24시간 동안 방치한 폴리우레탄 폼의 코어 밀도 및 열 전도율을 하기 방법에 준하여 측정한다.The mixture was injected into a vertical mold (300 mm x 300 mm x 50 mm) adjusted to 45 DEG C so that the pack ratio was 110%, and demolded after 7 minutes had elapsed. The core density and thermal conductivity of the polyurethane foams left for 24 hours from demolding are measured according to the following method.

① 코어 밀도① core density

180mm×180mm×25mm의 크기로 절단한 샘플의 치수 및 중량으로부터 코어 밀도를 산출한다.Core density is computed from the dimension and weight of the sample cut | disconnected in the magnitude | size of 180 mm x 180 mm x 25 mm.

② 열 전도율② thermal conductivity

상기 샘플을 열 전도율 측정기기[히데히로세이키(주)제, 품명 번호: Auto-A(HC-072)]를 사용하여 상한 온도 40℃, 하한 온도 10℃(중간 온도 25℃)의 조건에서 열 전도율을 측정한다.The sample was heated under conditions of an upper limit temperature of 40 ° C. and a lower limit temperature of 10 ° C. (intermediate temperature of 25 ° C.) using a thermal conductivity measuring instrument (manufactured by Hide Hirosei Co., Ltd., product name: Auto-A (HC-072)). Measure the conductivity.

(5) 압축 강도(5) compressive strength

상기 혼합물을 45℃로 조정된 수직 몰드(300mm×300mm×50mm)에 팩율이 110%로 되도록 주입하여 7분이 경과한 후에 탈형한다. 발포 후, 24시간 동안 방치한 폴리우레탄 폼의 압축 강도를 ASTM D1621에 준하여 하기 방법으로 측정한다.The mixture was injected into a vertical mold (300 mm x 300 mm x 50 mm) adjusted to 45 DEG C so that the pack ratio was 110%, and demolded after 7 minutes had elapsed. After foaming, the compressive strength of the polyurethane foam left for 24 hours is measured by the following method in accordance with ASTM D1621.

폴리우레탄 폼의 소정 위치로부터 30mm×30mm×30mm의 크기로 절단하고 압축 시험기[(주)시마쓰세이사쿠쇼제, 주형 번호: DCS-50M]를 사용하여 압축 속도 5mm/분의 조건으로 측정한다. 압축 강도는, 발포 방향에 대해 평행 방향, 발포 방향에 대해 수직 방향 및 발포 방향에 대해 수직 방향 두께의 3방향 압축 응력에 관해 측정하여 압축 응력을 단면적으로 나누어 산출한다.It cuts into the size of 30 mm x 30 mm x 30 mm from the predetermined position of a polyurethane foam, and it measures on the conditions of 5 mm / min of compression speeds using the compression tester (made by Shimadus Corporation, model number: DCS-50M). The compressive strength is calculated by dividing the compressive stress by the cross-sectional area by measuring the three-way compressive stress in a direction parallel to the foaming direction, perpendicular to the foaming direction, and vertical in the foaming direction.

표 1 및 표 2에 기재된 결과로부터, 각 실시예에서 수득한 폴리우레탄 폼은 어느 것이나 각 비교예에서 수득한 폴리우레탄 폼에 비해 폼의 유동성이 우수하며 치수 변화율이 작다는 점으로부터 탈형성이 우수하며 압축 강도가 보다 우수함을 알 수 있다.From the results shown in Tables 1 and 2, the polyurethane foams obtained in each of the examples had excellent deforming properties in that the foams had better fluidity and smaller dimensional change rate than the polyurethane foams obtained in the respective comparative examples. And it can be seen that the compressive strength is more excellent.

본 발명의 제조법에 따르면, 성형시의 폼 유동성이 양호하고 탈형성이 우수하며 압축 강도가 높고 열 전도율을 유지하는 폴리우레탄 폼 단열재를 제조하는 데 효과적이다.According to the production method of the present invention, it is effective in producing a polyurethane foam insulation which has good foam fluidity during molding, excellent deformability, high compressive strength and maintains thermal conductivity.

Claims (6)

폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민, N,N-디메틸사이클로헥실아민 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진으로부터 선택된 하나 이상과 4급 암모늄염을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(整泡劑)(C)의 존재하에 반응시키는, 폴리우레탄 폼 단열재의 제조법.The polyol component and the isocyanate component include N, N, N ', N'-tetramethyl-1,6-hexanediamine, N, N-dimethylcyclohexylamine and N- (2-dimethylaminoethyl) -N'-methyl Polyurethane foam insulation, reacted in the presence of a catalyst (A) containing at least one selected from piperazine and a quaternary ammonium salt, a blowing agent (B) and a foaming agent (C) containing water and cyclopentane Recipe. 폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민, N,N-디메틸사이클로헥실아민 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진으로부터 선택된 하나 이상과 4급 암모늄염을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(C)의 존재하에 이소시아네이트 지수가 120 내지 200으로 되도록 반응시키는, 폴리우레탄 폼 단열재의 제조법.The polyol component and the isocyanate component include N, N, N ', N'-tetramethyl-1,6-hexanediamine, N, N-dimethylcyclohexylamine and N- (2-dimethylaminoethyl) -N'-methyl Polyis reacted to have an isocyanate index of 120 to 200 in the presence of a catalyst (A) containing at least one selected from piperazine and a quaternary ammonium salt, a blowing agent (B) and a foaming agent (C) containing water and cyclopentane Method of making urethane foam insulation. 폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민, N,N-디메틸사이클로헥실아민 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진으로부터 선택된 하나 이상과 4급 암모늄염 및 N,N,N',N",N"-펜타메틸디에틸렌트리아민을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(C)의 존재하에 반응시키는, 폴리우레탄 폼 단열재의 제조법.The polyol component and the isocyanate component include N, N, N ', N'-tetramethyl-1,6-hexanediamine, N, N-dimethylcyclohexylamine and N- (2-dimethylaminoethyl) -N'-methyl A catalyst (A) containing at least one quaternary ammonium salt selected from piperazine and N, N, N ', N ", N" -pentamethyldiethylenetriamine, a blowing agent (B) containing water and cyclopentane, and The manufacturing method of a polyurethane foam heat insulating material made to react in presence of a foam stabilizer (C). 폴리올 성분과 이소시아네이트 성분을, N,N,N',N'-테트라메틸-1,6-헥산디아민, N,N-디메틸사이클로헥실아민 및 N-(2-디메틸아미노에틸)-N'-메틸피페라진으로부터 선택된 하나 이상과 4급 암모늄염 및 N,N,N',N",N"-펜타메틸디에틸렌트리아민을 함유하는 촉매(A), 물 및 사이클로펜탄을 함유하는 발포제(B) 및 정포제(C)의 존재하에 이소시아네이트 지수가 120 내지 200으로 되도록 반응시키는, 폴리우레탄 폼 단열재의 제조법.The polyol component and the isocyanate component include N, N, N ', N'-tetramethyl-1,6-hexanediamine, N, N-dimethylcyclohexylamine and N- (2-dimethylaminoethyl) -N'-methyl A catalyst (A) containing at least one quaternary ammonium salt selected from piperazine and N, N, N ', N ", N" -pentamethyldiethylenetriamine, a blowing agent (B) containing water and cyclopentane, and The manufacturing method of the polyurethane foam heat insulating material made to react so that an isocyanate index may be 120-200 in presence of foam stabilizer (C). 제1항 내지 제4항 중의 어느 한 항에 있어서, 4급 암모늄염이 화학식 1의 화합물인 제조법.The process according to any of claims 1 to 4, wherein the quaternary ammonium salt is a compound of formula (I). 화학식 1Formula 1 [R1R2R3R4N]+·[O(CO)R5][R 1 R 2 R 3 R 4 N] + · [O (CO) R 5 ] 위의 화학식 1에서,In Formula 1 above, R1및 R2는 각각 메틸기이고,R 1 and R 2 are each a methyl group, R3및 R4는 각각 독립적으로 탄소수 1 내지 4의 알킬기, -CH2CH2OH기 또는 -CH2CH(CH3)OH기이고,R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, a -CH 2 CH 2 OH group, or a -CH 2 CH (CH 3 ) OH group, R5는 수소원자 또는 탄소수 1 내지 11의 직쇄 또는 측쇄 알킬기이다.R 5 is a hydrogen atom or a straight or branched alkyl group having 1 to 11 carbon atoms. 제1항 내지 제4항 중의 어느 한 항에 있어서, 폴리올 성분이 톨릴렌디아민의 옥시알킬렌 부가물과 자당의 옥시알킬렌 부가물을 함유하여 이루어지고 평균 수산기 값이 300 내지 800mg KOH/g인 제조법.The polyol component according to any one of claims 1 to 4, wherein the polyol component comprises an oxyalkylene adduct of tolylene diamine and an oxyalkylene adduct of sucrose and has an average hydroxyl value of 300 to 800 mg KOH / g. Recipe.
KR1020000045201A 1999-08-09 2000-08-04 A method for producing a polyurethane foam thermal insulator KR100639898B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP99-225685 1999-08-09
JP22568599A JP3242090B2 (en) 1999-08-09 1999-08-09 Manufacturing method of polyurethane foam insulation

Publications (2)

Publication Number Publication Date
KR20010049989A true KR20010049989A (en) 2001-06-15
KR100639898B1 KR100639898B1 (en) 2006-10-31

Family

ID=16833196

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000045201A KR100639898B1 (en) 1999-08-09 2000-08-04 A method for producing a polyurethane foam thermal insulator

Country Status (3)

Country Link
JP (1) JP3242090B2 (en)
KR (1) KR100639898B1 (en)
CN (1) CN1135245C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120027104A (en) * 2009-06-02 2012-03-21 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Expandable polyurethane composition and process for production of polyurethane foam
KR102514387B1 (en) 2021-09-27 2023-03-29 주식회사 진양 Rigid polyurethane foam board with excellent flame retardancy, sound insulation and eco-friendliness

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070112085A1 (en) * 2003-09-29 2007-05-17 Tosoh Corporation Catalyst composition for production of rigid polyurethane foam and isocyanurate-modified rigid polysurethane foam and raw-material composition containing the same
DE102005050525A1 (en) * 2005-10-21 2007-04-26 Degussa Gmbh Metal-free 1-component polyurethane systems
BR112013017259A2 (en) 2011-01-17 2018-06-05 3M Innovative Properties Co injection molding method and reaction of a polyurethane foam and polyurethane foam article
JP5710654B2 (en) * 2013-01-09 2015-04-30 東洋ゴム工業株式会社 Polyurethane foam panels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144316A (en) * 1983-07-05 1985-07-30 Bridgestone Corp Production of polyurethane foam
DE3402310A1 (en) * 1984-01-24 1985-07-25 Bayer Ag, 5090 Leverkusen HARD, CLOSED-CELLED, FLAME-RESISTANT POLYURETHANE FOAMS
CA2052908A1 (en) * 1990-11-06 1992-05-07 Charles M. Milliren System for the production of toluene diisocyanate based flexible foams and the flexible foams produced therefrom
US5240970A (en) * 1993-01-08 1993-08-31 Air Products And Chemicals, Inc. Quaternary ammonium carboxylate inner salt compositions as controlled activity catalysts for making polyurethane foam
KR970001398A (en) * 1995-06-09 1997-01-24 김정돈 Rigid Urethane Foam for Structural Materials
KR100224595B1 (en) * 1997-04-26 1999-10-15 윤종용 Open cell rigid polyurethane foam and method for producing the same and method for making vacuum insulation panel using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120027104A (en) * 2009-06-02 2012-03-21 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Expandable polyurethane composition and process for production of polyurethane foam
KR102514387B1 (en) 2021-09-27 2023-03-29 주식회사 진양 Rigid polyurethane foam board with excellent flame retardancy, sound insulation and eco-friendliness

Also Published As

Publication number Publication date
CN1283644A (en) 2001-02-14
KR100639898B1 (en) 2006-10-31
JP3242090B2 (en) 2001-12-25
CN1135245C (en) 2004-01-21
JP2001048947A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
KR950015124B1 (en) Preparation of fine-cell rigid polyurethane foam using amine catalyst
EP2649120B1 (en) Method of molding rigid polyurethane foams
CA2462387C (en) Rigid, dimensionally stable polyurethane foams and a process for the production of such foams in which the foam pressure is reduced
KR960005794B1 (en) Process for producing polyurethane foam
JP3292725B2 (en) Manufacturing method of polyurethane foam
KR100323504B1 (en) Refrigerator
JP2023027084A (en) Hydrohaloolefin (hfo)-containing pu formulation
CA2143654C (en) Process for production of low density water-blown rigid foams with flow and dimensional stability
ES2378504T3 (en) Procedure for preparing a rigid polyurethane foam from polyols initiated with methylenebis (cyclohexylamine)
KR100639898B1 (en) A method for producing a polyurethane foam thermal insulator
KR100935517B1 (en) Raw composition for preparing polyurethane foam having a improved demolding property and adhesive strength, polyurethane foam made therefrom, and preparation method thereof
JP2001122941A (en) Rigid polyurethane foam and refrigerator using the same
KR100850995B1 (en) A composition for preparing rigid polyurethane foam and rigid polyurethane foam made therefrom
KR100901115B1 (en) Polyurethane foam compositions for pipes insulation and manufacturing method thereof and foam therefrom
JP2600735B2 (en) Method for producing fine cell rigid polyurethane foam
KR20010032761A (en) Low density CO2-blown polyurethane foams and a process of preparing same
KR102548562B1 (en) Insulating materials for refrigeration system including rigid polyurethane foams made using polyol initiated by meta-toluenediamine
JP3979512B2 (en) Method for producing polyisocyanurate
JP3311306B2 (en) Manufacturing method of polyurethane foam
EP4306563A1 (en) Polyurethane foaming system and rigid foam prepared therefrom
JPH03231915A (en) Polyol composition and use thereof
JP2015059189A (en) Method for producing polyurethane foam
JP2000281744A (en) Rigid polyurethane foam and heat-insulation treatment process for article using the same
JPH0794525B2 (en) Method of manufacturing rigid polyurethane foam

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121002

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141002

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150917

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee