KR20010017536A - Electrolyte for a lithium polymer battery and a lithium polymer battery using the same - Google Patents

Electrolyte for a lithium polymer battery and a lithium polymer battery using the same Download PDF

Info

Publication number
KR20010017536A
KR20010017536A KR1019990033108A KR19990033108A KR20010017536A KR 20010017536 A KR20010017536 A KR 20010017536A KR 1019990033108 A KR1019990033108 A KR 1019990033108A KR 19990033108 A KR19990033108 A KR 19990033108A KR 20010017536 A KR20010017536 A KR 20010017536A
Authority
KR
South Korea
Prior art keywords
battery
lithium polymer
polymer battery
electrolyte
carbonate
Prior art date
Application number
KR1019990033108A
Other languages
Korean (ko)
Other versions
KR100537604B1 (en
Inventor
유효상
노형곤
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR10-1999-0033108A priority Critical patent/KR100537604B1/en
Publication of KR20010017536A publication Critical patent/KR20010017536A/en
Application granted granted Critical
Publication of KR100537604B1 publication Critical patent/KR100537604B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: An electrolytic solution for a lithium polymer battery and a lithium polymer battery using the same are provided to improve the low temperature feature of the lithium polymer battery by adding fluorbenzene to the electrolytic solution. CONSTITUTION: An electrolytic solution for a lithium polymer battery comprises a fixing organic solvent including fluorbenzene of 10 to 50 wt% and carbonate based material of 40 to 80 wt% and stabilizer of 1 to 10 wt%. The carbonate based material is one selected from the group consisting of methylene carbonate, dimethyl carbonate, and diethyl carbonate. The stabilizer is one selected from the group consisting of biphenyls, thiophene and methoxy thiophene. The fluorbenzene induces the polymer reaction in the electrolytic solution so that the resistance value of the electrolytic solution is increased.

Description

리튬 폴리머 전지용 전해액 및 이를 이용한 리튬 폴리머 전지{Electrolyte for a lithium polymer battery and a lithium polymer battery using the same}Electrolyte for lithium polymer battery and lithium polymer battery using same {Electrolyte for a lithium polymer battery and a lithium polymer battery using the same}

본 발명은 리튬 폴리머 전지용 전해액 및 이를 이용한 리튬 폴리머 전지에 관한 것으로서, 보다 상세하게는 리튬 폴리머 전지의 안전성을 개선시킬 수 있는 리튬 폴리머 전지 전해액에 관한 것이다.The present invention relates to a lithium polymer battery electrolyte and a lithium polymer battery using the same, and more particularly to a lithium polymer battery electrolyte that can improve the safety of the lithium polymer battery.

휴대용 전자 기기의 전원으로 높은 에너지 밀도를 갖는 전지의 필요성이 증대됨에 따라 리튬 폴리머 전지에 대한 연구가 활발하게 진행되어 왔다.As the necessity of a battery having a high energy density as a power source for portable electronic devices has increased, research on lithium polymer batteries has been actively conducted.

리튬 폴리머 전지는 양극/전해액, 음극/전해액 등의 복합적인 전기 화학 반응에 의해서 전지 고유의 특성이 발현된다. 따라서, 리튬 폴리머 전지의 전해액은 전지 내부에서 일어나는 전기 화학 반응에서 가장 중요한 역할을 하는 구성요소이며, 전지의 성능을 좌우할 수 있는 중요한 하나의 요소임은 전지 기술에서는 자명한 사실이다.Lithium polymer batteries exhibit unique battery characteristics by complex electrochemical reactions such as positive / electrolyte and negative / electrolyte. Therefore, the electrolyte of a lithium polymer battery is the most important component in the electrochemical reaction occurring inside the battery, and it is obvious in the battery technology that it is an important factor that can influence the performance of the battery.

리튬 폴리머 전지의 음극은 초기에는 리튬 금속재를 이용하여 제조되었으나, 이 경우에 덴트라이트(dentrite)의 형성으로 인한 전지 단락으로 인한 전지의 폭발 위험성이 상존하고 있으므로, 이를 방지하기 위해 최근에는 음극 제조를 위해 종래에 사용되었던 리튬 금속재가 탄소재, 예컨대 인조흑연(MCF), 천연흑연(그래파이트) 등으로 대체되고 있다.The negative electrode of a lithium polymer battery was initially manufactured using a lithium metal material, but in this case, since there is a risk of explosion of the battery due to battery short-circuit due to the formation of dentrite, in order to prevent this, in recent years, negative electrode manufacturing has been performed. Lithium metal materials, which have been conventionally used, have been replaced by carbon materials such as artificial graphite (MCF), natural graphite (graphite), and the like.

리튬 폴리머 전지의 양극은 리튬을 포함하는 혼합금속산화물, 예를 들면 리튬코발트산화물, 리튬망간산화물, 리튬니켈산화물, 리튬니켈코발트산화물, 리튬망간산화물 등의 물질로 제조되고 있다.The positive electrode of a lithium polymer battery is made of a mixed metal oxide containing lithium, for example, lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, lithium nickel cobalt oxide, lithium manganese oxide and the like.

현재까지 개발된 전해액으로는 다양한 종류가 있다. 초기의 전지 제조 기술에서 이용되었던 전해액은 단순히 리튬 이온을 이동시키는 매개체 정도의 기능으로도 충분하였다. 전지가 개발된 초기 단계에서 이용되었던 전해액들 대부분은 전지의 충/방전시 일부 내지는 전부가 분해된다. 전해액의 분해 현상은 전지의 성능 저하를 초래하는 한 원인이 되고 있다.There are various types of electrolytes developed to date. The electrolytes used in early battery manufacturing techniques were simply enough to function as mediators to move lithium ions. Most of the electrolytes used in the early stages of battery development decompose some or all of the cells during charging / discharging. The decomposition phenomenon of electrolyte solution is a cause which causes the performance degradation of a battery.

종래에는 전해액 분해 현상으로 인한 전지 성능 저하의 문제를 해결하기 위해 카보네이트계의 물질을 포함하는 전해액이 제시되었다. 그러나, 카보네이트계 물질은 발화성이 강한 유기용매이므로, 외부의 발화 요인 등에 취약한 문제가 있다. 따라서, 카보네이트계 물질과 인산계 물질을 포함하는 혼합유기용매가 전지의 전해액으로 채용되는 기술이 계속적으로 개발되었다. 그 결과, 혼합유기용매 전해액을 이용한 전지는 종래의 카보네이트계 물질만으로 이루어진 전해액을 이용하여 제조된 전지에 비하여 상대적으로 전지 내의 전해액 분해 반응을 억제시킬 수 있게 됨으로써 보다 안전성이 강화된 리튬 폴리머 전지를 제조할 수 있게 되었다.Conventionally, an electrolyte solution including a carbonate-based material has been proposed to solve a problem of deterioration of battery performance due to electrolyte decomposition. However, since the carbonate-based material is an organic solvent having a strong ignition property, there is a problem that is vulnerable to external ignition factors. Therefore, the technology in which the mixed organic solvent containing a carbonate material and a phosphoric acid material is employ | adopted as electrolyte of a battery continuously developed. As a result, the battery using the mixed organic solvent electrolyte can suppress the electrolyte decomposition reaction in the battery relative to the battery prepared using the electrolyte consisting of a conventional carbonate-based material, thereby producing a more stable lithium polymer battery. I can do it.

그런데, 전술한 바와 같이 카보네이트계 용매와 인산계 용매를 혼합하여 제조된 혼합유기용매를 전해액으로 이용하는 방법은 카보네이트계 용매만을 이용하여 제조된 종래의 전해액에 비해 그 안전성은 개선 될 수 있기는 하지만, 리튬 폴리머 전지 내부에서의 전기화학적인 충/방전시, 혼합유기용매 전해액의 인산계 성분이 쉽게 분해됨으로써, 전지의 비가역용량을 과도하게 증가되는 또다른 문제가 야기되었다. 전지의 비가역용량이 과도하게 증가되면, 전지의 기본적인 여러 특성이 크게 저하될 수 있다. 전지의 비가역용량은 충전량과 방전량 간의 차이를 전체 충전량의 백분율로 표현한 것으로서, 실질적으로는 전지의 비가역용량이 증가하게 되면 전지의 유효용량이 감소되는 문제점이 초래된다.However, as described above, the method of using a mixed organic solvent prepared by mixing a carbonate solvent and a phosphoric acid solvent as an electrolyte may be improved in safety compared to a conventional electrolyte prepared using only a carbonate solvent. During electrochemical charging / discharging inside a lithium polymer battery, the phosphoric acid component of the mixed organic solvent electrolyte is easily decomposed, thereby causing another problem of excessively increasing the irreversible capacity of the battery. If the irreversible capacity of the battery is excessively increased, several basic characteristics of the battery may be greatly degraded. The irreversible capacity of the battery is expressed as a percentage of the total charge amount, and the difference between the charge amount and the discharge amount is substantially caused by the problem that the effective capacity of the battery decreases when the battery irreversible capacity increases.

본 발명은 전술한 종래 전해액 용매가 갖는 문제점을 해결하기 위한 것으로서, 전지의 저온 특성 개선 및 전지의 안전성을 도모함과 아울러 전지 내부에서 발생되는 충/방전시 전해액이 분해됨으로써 전지의 성능이 저하되는 문제를 해결하는 것을 기술적 과제로 하며, 리튬 폴리머 전지에 사용되는 안전성이 개선된 전해액을 제공하는 것을 목적으로 한다.The present invention is to solve the above problems of the conventional electrolyte solvent, improve the low-temperature characteristics of the battery and improve the safety of the battery, and also the problem that the performance of the battery is degraded by decomposing the electrolyte during charge / discharge generated inside the battery It is an object of the present invention to provide an electrolyte with improved safety used in a lithium polymer battery.

전술한 본 발명이 해결하고자 하는 기술적 과제를 달성하기 위한 리튬 폴리머 전지용 전해액은, 10 내지 50 중량의 플루오로벤젠과, 40 내지 80 중량의 카보네이트계 물질을 포함하는 혼합유기용매; 및 1 내지 10 중량의 안정화제;를 포함하는 것을 특징으로 한다.In order to achieve the technical problem to be solved by the present invention described above, an electrolyte solution for a lithium polymer battery includes a mixed organic solvent including 10 to 50 weight fluorobenzene and 40 to 80 weight carbonate-based material; And 1 to 10 weight stabilizer.

전술한 본 발명이 해결하고자 하는 기술적 과제를 달성하기 위한 리튬 폴리머 전지는 10 내지 50 중량의 플루오로벤젠과, 40 내지 80 중량의 카보네이트계 물질을 포함하는 혼합유기용매; 및 1 내지 10 중량의 안정화제;를 포함하는 것을 특징으로 하는 전해액을 포함하는 것을 특징으로 한다. 한편, 상기 안정화제는 전해액 내에 적은 양으로라도 반드시 존재하여야 하지만, 그 함량이 10를 초과하는 경우에는 전지의 성능이 오히려 떨어질 수 있기 때문에 상기와 같은 적절한 수치한정은 필수적이다.A lithium polymer battery for achieving the technical problem to be solved by the present invention described above is a mixed organic solvent comprising 10 to 50 weight fluorobenzene, 40 to 80 weight carbonate-based material; And 1 to 10 weight stabilizer; characterized in that it comprises an electrolyte solution comprising a. On the other hand, the stabilizer must be present in a small amount in the electrolyte, but if the content exceeds 10, the appropriate numerical limitation as described above is essential because the performance of the battery may be rather deteriorated.

상기 본 발명에 따른 리튬 폴리머 전지용 전해액 및 이를 이용한 리튬 폴리머 전지에 있어서, 상기 카보네이트계 물질은 에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트로 이루어진 물질군 중 선택된 하나 이상의 물질을 포함하는 것이 바람직하며, 상기 안정화제는 바이페닐, 메톡시티오펜 및 티오펜 중 선택된 하나 이상의 물질을 포함하는 것이 바람직하다.In the lithium polymer battery electrolyte according to the present invention and a lithium polymer battery using the same, the carbonate-based material preferably comprises at least one material selected from the group consisting of ethylene carbonate, dimethyl carbonate and diethyl carbonate, and the stable The topical agent preferably comprises at least one material selected from biphenyl, methoxythiophene and thiophene.

상기 전해액 중의 플루오로벤젠은 전지의 저온성능을 향상시키며, 전지의 수명의 안정화를 이루기 위해 사용되는 물질이다.Fluorobenzene in the electrolyte is a material used to improve the low temperature performance of the battery and to stabilize the battery life.

상기 안정화제는 상기 플루오로벤젠과 카보네이트계 물질을 포함하는 혼합유기용매 내에서, 전지 전압이 6볼트 정도인 조건에서 중합 반응을 유도시켜 전해액의 저항값이 증가되도록 한다. 따라서, 전해액을 통과하는 전류의 흐름이 방해되어 고율 과충전시 발생되는 전지 특성이 열화되는 문제를 해결할 수 있다. 즉, 상기 티오펜이나 바이페닐 등의 안정화제는 6볼트 이상에서 중합 반응이 일어나게 되며, 따라서 전해액 내에서 올리고머 내지는 폴리머가 형성되어 전류의 흐름을 방지할 수 있다.The stabilizer induces a polymerization reaction in a mixed organic solvent including the fluorobenzene and a carbonate-based material under a condition that the battery voltage is about 6 volts to increase the resistance of the electrolyte. Therefore, it is possible to solve the problem that the flow of the current passing through the electrolyte is disturbed and the battery characteristics generated during high rate overcharging are deteriorated. That is, the stabilizer such as thiophene, biphenyl, or the like will cause a polymerization reaction at 6 volts or more, and thus oligomers or polymers may be formed in the electrolyte to prevent the flow of current.

이하, 본 발명에 따른 실시예와 이에 대비되는 비교예를 들어 본 발명에 대해 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to examples according to the present invention and comparative examples.

실시예 1Example 1

에틸렌카보네이트 및 디메틸카보네이트의 혼합용매인 카보네이트계 물질과 플루오로벤젠을 포함하는 혼합유기용매를 준비하였다. 이때, 상기 혼합유기용매에서 에틸렌카보네이트, 디메틸카보네이트 및 플루오로벤젠의 중량비를 3:4:5로 조성하였다. 한편, 상기혼합유기용매의 안정화제로 상기 혼합유기용매에 대해 5중량의 메톡시티오펜을 첨가하였다. 그 결과 제조된 전해액을 이용하여 전지를 제조하였으며, 이때 전지의 양극은 활물질인 리튬니켈코발트망간산화물을 이용하여 제조하였고, 전지의 음극은 인조흑연(MCF)를 이용하여 제조하였다.A mixed organic solvent including carbonate based material and fluorobenzene, which are mixed solvents of ethylene carbonate and dimethyl carbonate, was prepared. In this case, the weight ratio of ethylene carbonate, dimethyl carbonate and fluorobenzene in the mixed organic solvent was set to 3: 4: 5. On the other hand, 5 weight of methoxythiophene was added to the mixed organic solvent as a stabilizer of the mixed organic solvent. As a result, a battery was manufactured using the prepared electrolyte, and the cathode of the battery was prepared using lithium nickel cobalt manganese oxide as an active material, and the anode of the battery was prepared using artificial graphite (MCF).

전술한 바에 따라 제조된 전해액을 이용하여 제조된 전지의 여러 가지 특성에 대해 다음의 (1) 내지 (4)에 기술된 각각의 평가방법에 따라 평가하여 그 결과를 하기 표 1에 나타내었다.Various characteristics of the battery manufactured using the electrolyte prepared as described above were evaluated according to each evaluation method described in the following (1) to (4), and the results are shown in Table 1 below.

(1) 전지에 대한 수명특성 평가방법(1) Evaluation method for life characteristics of battery

통상적으로 전지의 수명특성은 1C에서 500사이클 충방전을 행한 후에 전지의 용량을 측정하였다. 이때, 전지의 용량이 초기 용량의 70이상인 경우에는 우수한 것으로 본다.Typically, the battery life characteristics of the battery was measured after performing 500 cycle charge and discharge at 1C. At this time, when the capacity of the battery is 70 or more of the initial capacity is considered to be excellent.

(2) 전지의 용량 평가방법(2) Battery capacity evaluation method

전지를 완전히 제조한 후, 1사이클에서의 초기 방전용량과 비가역용량을 측정하였다.After the battery was completely prepared, the initial discharge capacity and the irreversible capacity in one cycle were measured.

(3) 전지의 안전성 평가방법(3) Battery safety evaluation method

전지의 안전성 평가실에서 8대의 안전성 테스터를 이용하여 과충전과 고율과충전 테스트를 실행하였다. 전지로 상용화할 수 있는 지에 대한 합격 내지는 불합격 여부를 판정한다.Overcharge, high rate and charge tests were performed using eight safety testers in the cell safety evaluation room. It is judged whether the pass or fail of the battery can be commercialized.

(4) 전지의 저온특성 평가방법(4) Evaluation method of low temperature characteristics of battery

극한 조건인 영하 20℃로 유지된 쳄버 내에서 방전시의 용량을 측정하여 통상적인 실험실 조건에서의 전지의 방전 용량을 비교하였다.The capacity at the time of discharge was measured in the chamber maintained at minus 20 degreeC which is an extreme condition, and the discharge capacity of the battery in normal laboratory conditions was compared.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 제조된 혼합유기용매에 대해 5중량의 바이페닐을 안정화제로 첨가하여 전해액을 제조하였다. 그 결과 제조된 전해액을 이용하여 제조된 전지의 여러 가지 특성에 대해 상기 실시예 1에 기재된 평가방법에 따라 평가하여 그 결과를 하기 표 1에 나타내었다.An electrolyte solution was prepared by adding 5 weight biphenyl as a stabilizer to the mixed organic solvent prepared in the same manner as in Example 1. As a result, various characteristics of the battery manufactured using the prepared electrolyte were evaluated according to the evaluation method described in Example 1, and the results are shown in Table 1 below.

실시예 3Example 3

상기 실시예 1과 동일한 방법으로 제조된 혼합유기용매에 대해 2.5 중량의 티오펜 및 2.5중량의 바이페닐을 안정화제로 첨가하여 전지를 제조하였다. 그 결과 제조된 전해액을 이용하여 제조된 전지의 여러 가지 특성에 대해 상기 실시예 1에 기재된 평가방법에 따라 평가하여 그 결과를 하기 표 1에 나타내었다.A battery was prepared by adding 2.5 weights of thiophene and 2.5 weights of biphenyl as a stabilizer to the mixed organic solvent prepared in the same manner as in Example 1. As a result, various characteristics of the battery manufactured using the prepared electrolyte were evaluated according to the evaluation method described in Example 1, and the results are shown in Table 1 below.

비교예 1Comparative Example 1

에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트의 중량비가 3:4:3으로 제조된 혼합유기용매를 리튬 폴리머 전지의 전해액으로 이용하여 전지를 제조하였다. 이는 상기 실시예 1 내지 3과 달리 혼합유기용매에 플루오로벤젠 및 안정화제를 첨가하지 않은 전해액을 이용하여 전지를 제조하는 종래의 방법에 따른 것이다. 그 결과 제조된 전해액을 이용하여 완성된 전지의 여러 가지 특성을, 상기 실시예 1에 기재된 평가방법에 따라 평가하여 그 결과를 하기 표 1에 나타내었다.A battery was prepared using a mixed organic solvent having a weight ratio of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a 3: 4: 3 electrolyte solution as a lithium polymer battery. This is according to the conventional method of manufacturing a battery using an electrolyte solution in which the fluorobenzene and the stabilizer are not added to the mixed organic solvent, unlike Examples 1 to 3. As a result, various characteristics of the finished battery using the prepared electrolyte solution were evaluated according to the evaluation method described in Example 1, and the results are shown in Table 1 below.

비교예 2Comparative Example 2

에틸렌카보네이트, 디메틸카보네이트 및 플루오로벤젠의 중량비가 3:4:3으로 제조된 혼합유기용매를 리튬 폴리머 전지의 전해액으로 이용하여 전지를 제조하였다. 이는 상기 실시예 1 내지 3과 달리 혼합유기용매에 별도의 안정화제를 첨가하지 않은 전해액을 이용하여 전지를 제조하는 종래의 방법에 따른 것이다. 그 결과 제조된 전해액을 이용하여 완성된 전지의 여러 가지 특성을 평가하기 위해, 상기 실시예 1에 기재된 평가방법에 따라 평가하여 그 결과를 하기 표 1에 나타내었다.A battery was manufactured using a mixed organic solvent having a weight ratio of ethylene carbonate, dimethyl carbonate, and fluorobenzene in a 3: 4: 3 solution as an electrolyte of a lithium polymer battery. This is in accordance with the conventional method for producing a battery using an electrolyte solution that does not add a separate stabilizer to the mixed organic solvent, unlike Examples 1 to 3. As a result, in order to evaluate various characteristics of the finished battery using the prepared electrolyte solution, the evaluation was performed according to the evaluation method described in Example 1, and the results are shown in Table 1 below.

비교예 3Comparative Example 3

상기 실시예 1과 동일한 방법으로 제조된 혼합유기용매에 대해 0.5중량의 메톡시티오펜을 상기 혼합유기용매의 안정화제로 첨가하여 전해액을 제조하였다. 그 결과 제조된 전해액을 이용하여 제조된 전지의 여러 가지 특성에 대해 상기 실시예 1에 기재된 평가방법에 따라 평가하여 그 결과를 하기 표 1에 나타내었다.To the mixed organic solvent prepared in the same manner as in Example 1, 0.5 weight of methoxythiophene was added as a stabilizer of the mixed organic solvent to prepare an electrolyte solution. As a result, various characteristics of the battery manufactured using the prepared electrolyte were evaluated according to the evaluation method described in Example 1, and the results are shown in Table 1 below.

비교예 4Comparative Example 4

상기 실시예 1과 동일한 방법으로 제조된 혼합유기용매에 대해 12중량의 메톡시티오펜을 상기 혼합유기용매의 안정화제로 첨가하여 전해액을 제조하였다. 그 결과 제조된 전해액을 이용하여 제조된 전지의 여러 가지 특성에 대해 상기 실시예 1에 기재된 평가방법에 따라 평가하여 그 결과를 하기 표 1에 나타내었다.To the mixed organic solvent prepared in the same manner as in Example 1, 12 weight of methoxythiophene was added as a stabilizer of the mixed organic solvent to prepare an electrolyte solution. As a result, various characteristics of the battery manufactured using the prepared electrolyte were evaluated according to the evaluation method described in Example 1, and the results are shown in Table 1 below.

구 분division 수 명()life span() 용 량Volume 안전성safety 저온특성()(-20℃하)Low temperature characteristic () (-20 ° C) 초기방전용량Initial discharge capacity 비가역용량()Irreversible capacity () 과충전(1C)Overcharge (1C) 고율과충전High rate and charge 실시예 1Example 1 8585 21502150 88 ******** ******** 7070 실시예 2Example 2 8484 20902090 1212 ******** ******** 6565 실시예 3Example 3 8989 21202120 1414 ******** ******** 7373 비교예 1Comparative Example 1 9090 21002100 99 **** **** 8383 비교예 2Comparative Example 2 9292 21302130 1111 ****** **** 8080 비교예 3Comparative Example 3 8888 21402140 1313 ****** **** 6565 비교예 4Comparative Example 4 8585 20802080 1212 **** ****** 6060

상기 표 1에 따르면, 전지의 수명 특성, 용량 및 저온특성에서는 본 발명에 따른 실시예는 비교예와 큰 차이없는 제품의 성능을 보유하고 있음을 알 수 있다. 한편, 본 발명에서 주안점을 둔 전지의 안전성 측면에서는 그 합격 및 불합격여부를 판정하는 기준으로 별표시(*)의 개수로 표현하였다. 전지의 안전성 테스트를 수행한 결과 그 안전성에 대한 별표(*) 2개 미만인 경우는 제품으로서 하자가 있는 불합격 대상이며, 별표(*) 2개 이상인 경우는 제품으로서 합격 판정을 받은 것이다. 한편, 합격 받은 것이라 해도, 제품의 안전성 면에서 그 정도의 차이가 있으므로 그 등급을 매기면, 별표(*) 2개인 경우는 양호, 3개인 경우는 매우 양호, 4개 이상인 경우에는 최상으로 구분할 수 있으며, 상기 표 1에 따르면, 실시예 1 내지 실시예 3의 경우는 모두 종래의 비교예에 비해 개선된 안전성을 가짐을 알 수 있다.According to Table 1, in the life characteristics, capacity and low temperature characteristics of the battery it can be seen that the embodiment according to the present invention has the performance of the product without significant difference from the comparative example. On the other hand, in terms of safety of the battery focusing on the present invention was expressed by the number of stars (*) as a criterion for determining the pass or fail. As a result of the battery's safety test, less than two asterisks (*) on the safety of the battery are defective products, and in the case of two or more asterisks (*), the product has been passed as a product. On the other hand, even if passed, there is a difference in the safety of the product, so if it is rated, two stars (*) are good, three are very good, and four or more can be classified as the best. In addition, according to Table 1, it can be seen that in the case of Examples 1 to 3 all have improved safety compared to the conventional comparative example.

이상, 실시예를 들어 설명한 본 발명은 당해 실시예에 한정되는 것으로 해석되어서는 아니되며, 단지 본 발명의 용이한 이해를 목적으로 개시한 것에 불과함은 본 발명이 속하는 기술분야의 당업자에게 자명하다. 따라서, 본 발명의 범위에는 상기 실시예에서 언급된 내용의 다양한 변형물까지도 포함된다.The present invention described above with reference to the embodiments should not be construed as being limited to the above embodiments, but only those disclosed for the purpose of easy understanding of the present invention will be apparent to those skilled in the art. . Accordingly, the scope of the present invention also includes various modifications of the contents mentioned in the above embodiments.

본 발명에 따른 리튬 폴리머 전지용 전해액을 이용하여 리튬 폴리머 전지를 제조하는 경우에는 전지의 양호한 저온특성을 확보할 수 있으며, 전지의 안전성과 전지의 충방전시 전지 내부에서의 전해액 성분의 분해반응에 의해 비가역용량이 증대됨으로써 초래되는 전지 특성 열화의 문제를 해결할 수 있다. 즉, 본 발명에서와 같이 저온특성 개선제인 플루오로벤젠과 카보네이트계 유기용매를 포함하는 혼합유기용매에 소정의 안정화제를 첨가하면, 상기 첨가된 안정화제가 상기 혼합유기용매 내에서 중합반응을 유도하여 전지의 안전성을 현저하게 향상시킬 수 있다.When manufacturing a lithium polymer battery using the lithium polymer battery electrolyte according to the present invention it is possible to ensure a good low-temperature characteristics of the battery, and by the decomposition of the electrolyte components in the battery safety and safety of the battery during charging and discharging of the battery The problem of deterioration of battery characteristics caused by increasing irreversible capacity can be solved. That is, when a predetermined stabilizer is added to a mixed organic solvent containing fluorobenzene and a carbonate organic solvent, which is a low temperature characteristic improving agent as in the present invention, the added stabilizer induces a polymerization reaction in the mixed organic solvent. The safety of the battery can be significantly improved.

Claims (6)

10 내지 50 중량의 플루오로벤젠과, 40 내지 80 중량의 카보네이트계 물질;을 포함하는 혼합유기용매; 및Mixed organic solvents including 10 to 50 weight percent of fluorobenzene and 40 to 80 weight percent of a carbonate-based material; And 1 내지 10 중량의 안정화제;를 포함하는 것을 특징으로 하는 리튬 폴리머 전지의 전해액.An electrolyte solution of a lithium polymer battery, comprising: 1 to 10 weight of stabilizer. 제1항에 있어서,The method of claim 1, 상기 카보네이트계 물질은 에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트로 이루어진 물질군 중 선택된 하나 이상의 물질을 포함하는 것을 특징으로 하는 리튬 폴리머 전지 전해액.The carbonate-based material is a lithium polymer battery electrolyte, characterized in that it comprises at least one material selected from the group consisting of ethylene carbonate, dimethyl carbonate and diethyl carbonate. 제1항에 있어서,The method of claim 1, 상기 안정화제는 바이페닐, 메톡시티오펜 및 티오펜 중 선택된 하나 이상의 물질을 포함하는 것을 특징으로 하는 리튬 폴리머 전지 전해액.The stabilizer is a lithium polymer battery electrolyte, characterized in that it comprises at least one material selected from biphenyl, methoxythiophene and thiophene. 전해액을 포함하여 제조된 리튬 폴리머 전지에 있어서,In a lithium polymer battery prepared by including an electrolyte solution, 상기 전해액은 10 내지 50 중량의 플루오로벤젠과, 40 내지 80 중량의 카보네이트계 물질;을 포함하는 혼합유기용매; 및The electrolyte is a mixed organic solvent comprising 10 to 50 weight percent of fluorobenzene, 40 to 80 weight of a carbonate-based material; And 1 내지 10 중량의 안정화제;를 포함하는 것을 특징으로 하는 리튬 폴리머 전지.Lithium polymer battery comprising a; 1 to 10 weight of stabilizer. 제4항에 있어서,The method of claim 4, wherein 상기 카보네이트계 물질은 에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트로 이루어진 물질군 중 선택된 하나 이상의 물질을 포함하는 것을 특징으로 하는 리튬 폴리머 전지.The carbonate-based material is a lithium polymer battery, characterized in that it comprises at least one material selected from the group consisting of ethylene carbonate, dimethyl carbonate and diethyl carbonate. 제4항에 있어서,The method of claim 4, wherein 상기 안정화제는 바이페닐, 메톡시티오펜 및 티오펜 중 선택된 하나 이상의 물질을 포함하는 것을 특징으로 하는 리튬 폴리머 전지.The stabilizer is a lithium polymer battery, characterized in that it comprises at least one material selected from biphenyl, methoxythiophene and thiophene.
KR10-1999-0033108A 1999-08-12 1999-08-12 Electrolyte for a lithium polymer battery and a lithium polymer battery using the same KR100537604B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0033108A KR100537604B1 (en) 1999-08-12 1999-08-12 Electrolyte for a lithium polymer battery and a lithium polymer battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0033108A KR100537604B1 (en) 1999-08-12 1999-08-12 Electrolyte for a lithium polymer battery and a lithium polymer battery using the same

Publications (2)

Publication Number Publication Date
KR20010017536A true KR20010017536A (en) 2001-03-05
KR100537604B1 KR100537604B1 (en) 2005-12-19

Family

ID=19606937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0033108A KR100537604B1 (en) 1999-08-12 1999-08-12 Electrolyte for a lithium polymer battery and a lithium polymer battery using the same

Country Status (1)

Country Link
KR (1) KR100537604B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128903A (en) * 2006-12-27 2007-05-24 Hitachi Maxell Ltd Nonaqueous secondary battery and portable instrument using the same
US7282303B2 (en) * 2001-12-21 2007-10-16 Hitachi Maxell, Ltd. Non-aqueous secondary battery and portable equipment using the same
JP2010219058A (en) * 2010-05-21 2010-09-30 Hitachi Maxell Ltd Nonaqueous secondary battery and portable equipment using this

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101784738B1 (en) * 2013-05-21 2017-10-13 삼성에스디아이 주식회사 Additive for electrolyte and electrolyte and lithium secondary battery
US20220115704A1 (en) * 2020-10-13 2022-04-14 Sion Power Corporation Electrolytes for lithium batteries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2163187C (en) * 1995-11-17 2003-04-15 Huanyu Mao Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge
JP3354057B2 (en) * 1996-10-03 2002-12-09 日立マクセル株式会社 Organic electrolyte secondary battery
CA2216898C (en) * 1997-09-26 2005-03-22 Moli Energy (1990) Limited Improved additives for overcharge protection in non-aqueous rechargeable lithium batteries
KR100309775B1 (en) * 1999-07-31 2001-11-14 김순택 A non-aqueous electrolyte and a lithium secondary battery made thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282303B2 (en) * 2001-12-21 2007-10-16 Hitachi Maxell, Ltd. Non-aqueous secondary battery and portable equipment using the same
US7285361B2 (en) 2001-12-21 2007-10-23 Hitachi Maxell, Ltd. Non-aqueous secondary battery and portable equipment using the same
JP2007128903A (en) * 2006-12-27 2007-05-24 Hitachi Maxell Ltd Nonaqueous secondary battery and portable instrument using the same
JP4537373B2 (en) * 2006-12-27 2010-09-01 日立マクセル株式会社 Non-aqueous secondary battery and portable device using the same
JP2010219058A (en) * 2010-05-21 2010-09-30 Hitachi Maxell Ltd Nonaqueous secondary battery and portable equipment using this

Also Published As

Publication number Publication date
KR100537604B1 (en) 2005-12-19

Similar Documents

Publication Publication Date Title
US6004698A (en) Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection
CA2156800C (en) Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
US7368203B2 (en) Nonaqueous electrolyte secondary cell
Morita et al. AC imepedance behaviour of lithium electrode in organic electrolyte solutions containing additives
US20040029017A1 (en) Rechargeable lithium electrochemical cell
Lu et al. Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1, 1, 2, 2-tetrafluoroethyl ether
KR20170039369A (en) Electrolyte additives for secondary battery and secondary battery comprising same
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
KR20040065412A (en) Organic electrolytic solution and lithium battery employing the same
CN108736065B (en) Electrolyte and lithium ion battery containing electrolyte and/or anode
KR20180096313A (en) Control method of residual lithium compounds in cathode active materials
KR20040108217A (en) Organic electrolytic solution and lithium battery employing the same
KR20150028787A (en) Agent for forming electrode protection film
CN113451653A (en) Non-aqueous electrolyte and lithium ion battery comprising same
CN114023965A (en) Solid state lithium battery
KR101565533B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR920009805B1 (en) Lithium secondary cell
KR100537604B1 (en) Electrolyte for a lithium polymer battery and a lithium polymer battery using the same
CN109216783B (en) Film-forming additive composition for lithium ion battery, non-aqueous electrolyte and lithium ion battery
Zhang et al. Redox shuttle additives for lithium-ion battery
CN115020811A (en) High-voltage electrolyte and lithium ion battery containing same
CN113921906A (en) High-voltage electrolyte additive, high-voltage electrolyte and lithium ion battery
EP1716616B1 (en) Non-aqueous electrolyte for battery
KR100693288B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20000072955A (en) A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121123

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151123

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171121

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 14

EXPY Expiration of term