KR20180096313A - Control method of residual lithium compounds in cathode active materials - Google Patents

Control method of residual lithium compounds in cathode active materials Download PDF

Info

Publication number
KR20180096313A
KR20180096313A KR1020170022858A KR20170022858A KR20180096313A KR 20180096313 A KR20180096313 A KR 20180096313A KR 1020170022858 A KR1020170022858 A KR 1020170022858A KR 20170022858 A KR20170022858 A KR 20170022858A KR 20180096313 A KR20180096313 A KR 20180096313A
Authority
KR
South Korea
Prior art keywords
active material
lithium
cathode active
positive electrode
electrode active
Prior art date
Application number
KR1020170022858A
Other languages
Korean (ko)
Other versions
KR101941869B1 (en
Inventor
김점수
박동준
이창우
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020170022858A priority Critical patent/KR101941869B1/en
Publication of KR20180096313A publication Critical patent/KR20180096313A/en
Application granted granted Critical
Publication of KR101941869B1 publication Critical patent/KR101941869B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12

Abstract

The present invention relates to a control method of residual lithium compounds in a positive electrode active material. According to the present invention, the control method includes a step of washing the positive electrode active material with a cosolvent which is obtained by mixing distilled water and alcohol, and a step of performing a heat treatment, thereby providing the positive electrode active material capable of removing residual lithium and improving electrochemical properties such as lifetime degradation and rate characteristics of a lithium battery.

Description

양극활물질의 잔류 리튬 제어방법{CONTROL METHOD OF RESIDUAL LITHIUM COMPOUNDS IN CATHODE ACTIVE MATERIALS}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for controlling residual lithium in a positive electrode active material,

본 발명은 리튬전지의 양극활물질에 존재하는 잔류 리튬의 제어방법에 관한 것으로서, 더욱 상세하게는 증류수와 다른 용매를 혼합한 공용매에 의한 수세시의 전기화학 특성을 향상시키는 잔류 리튬의 제어방법에 관한 것이다.The present invention relates to a method for controlling residual lithium in a positive electrode active material of a lithium battery, and more particularly, to a method for controlling residual lithium which improves electrochemical characteristics during washing with a co-solvent in which distilled water and another solvent are mixed .

리튬 이차 전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정 구조의 LiMnO2, 스피넬 결정 구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of the lithium secondary battery. In addition, a lithium-containing manganese oxide such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, (LiNiO 2 ) is also being considered.

상기 양극 활물질들 중 LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 많이 사용되고 있지만, 안전성이 낮으며 원료로서 코발트의 자원적 한계로 인해 고가이고, 전기자동차, 하이브리드 전기자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다.Of the above cathode active materials, LiCoO 2 has excellent properties such as excellent cycle characteristics and is widely used. However, LiCoO 2 is low in safety, is expensive due to the resource limit of cobalt as a raw material, and is used as a power source in fields such as electric vehicles and hybrid electric vehicles There is a limit to use.

LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로 많은 관심을 모으고 있다. 그러나 리튬 망간 산화물은 용량이 작고 고온에서 사이클 특성 등이 나쁘다는 단점을 가지고 있다.Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 have attracted much attention as a cathode active material that can replace LiCoO 2 because it has the advantage of using resources rich and environmentally friendly manganese as a raw material. However, lithium manganese oxide has a disadvantage in that it has a small capacity and poor cycle characteristics at a high temperature.

반면 리튬 니켈계 산화물은 코발트계 산화물보다 비용이 저렴하면서도 4.3 V로 충전되었을 때 높은 방전 용량을 나타내는바, 도핑된 리튬 니켈계 산화물의 가역 용량은 LiCoO2의 용량(약 165 mAh/g)을 초과하는 약 200 mAh/g에 근접한다. 따라서 약간 낮은 방전 전압과 체적 밀도(volumetric density)에도 불구하고, 니켈계 양극 활물질을 포함하는 상용화 전지는 개선된 에너지 밀도를 가지므로, 최근 고용량 전지를 개발하기 위하여 이러한 니켈계 양극 활물질에 대한 연구가 활발하게 진행되고 있다.On the other hand, the lithium nickel oxide shows a higher discharge capacity when it is charged at 4.3 V and is lower in cost than the cobalt oxide. The reversible capacity of the doped lithium nickel oxide exceeds the capacity of LiCoO 2 (about 165 mAh / g) To about 200 mAh / g. Therefore, in spite of a slightly low discharge voltage and volumetric density, commercialized batteries containing nickel-based cathode active materials have an improved energy density. Therefore, in order to develop a high capacity battery, researches on such nickel- It is actively proceeding.

그러나, 니켈계 양극 활물질은 충방전 사이클이 진행되는 동안 체적 변화가 일어나며 이에 의한 급격한 상전이가 발생하여 결정구조 붕괴가 일어나는 문제점이 있다.However, the nickel-based positive electrode active material undergoes a volume change during the charge / discharge cycle, resulting in a rapid phase transition, resulting in crystal structure collapse.

이와 같은 문제점을 해결하기 위하여 LiNiO2계의 결정 구조를 잘 형성시키기 위해 리튬 소스를 과잉으로 넣는 방법에 대해 연구되었다.In order to solve the problem, a method of inserting a lithium source into the LiNiO 2 system in order to form a crystal structure is studied.

그러나, Ni 함량이 65% 이상인 니켈 리치 시스템(Ni rich system)은 저온 반응이기에 양극활물질 표면에 LiOH, Li2CO3 형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다. 이러한 잔류 리튬 즉, 미반응 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱시 점도가 높아 겔화를 야기시키기도 하는 문제점이 있었다.However, since the Ni rich system having a Ni content of 65% or more is a low-temperature reaction, there is a problem that the residual lithium amount existing in the form of LiOH and Li 2 CO 3 on the surface of the cathode active material is high. Such residual lithium, that is, unreacted LiOH and Li 2 CO 3 react with an electrolyte or the like in the battery to cause gas generation and swelling phenomenon, thereby causing a problem that the high-temperature safety is seriously deteriorated. In addition, unreacted LiOH has a problem of causing gelation due to high viscosity when mixing slurry before preparation of the electrode plate.

이에 따라 이러한 미반응 Li을 제거하기 위하여 일반적으로 수세 공정을 도입하지만, 이 경우 수세시 양극 활물질 표면 손상이 발생하여 용량, 수명열화 및 율 특성이 저하되고 또한 고온 저장시 저항이 증가하는 또 다른 문제를 야기시키는 문제점이 발생하였다.In order to remove such unreacted Li, a water washing process is generally employed. In this case, however, the surface of the cathode active material is damaged during water washing, deteriorating the capacity, life span and rate characteristics, . ≪ / RTI >

대한민국 공개특허공보 제10-2016-0038984호Korean Patent Publication No. 10-2016-0038984

본 발명의 목적은, 증류수만으로 잔류 리튬의 수세시 발생되는 수명열화 및 율특성 저하를 개선하는 양극활물질의 잔류 리튬 제어방법을 제공함에 있다.It is an object of the present invention to provide a residual lithium control method of a cathode active material which improves the deterioration of lifetime and the deterioration of rate characteristics caused by the washing of residual lithium with only distilled water.

상기 목적을 달성하기 위하여, 본 발명은 Ni-Co-Mn(NCM)계 조성의 양극활물질을 증류수와 알코올을 혼합한 공용매로 수세하는 단계; 및 및 상기 양극활물질을 열처리하는 단계를 포함하는 리튬 양극활물질의 잔류리튬 제어방법을 제공하는 것을 본 발명의 일 측면으로 한다.In order to achieve the above object, the present invention provides a method for manufacturing a lithium secondary battery, comprising: washing a cathode active material having a Ni-Co-Mn (NCM) composition with a co-solvent in which distilled water and alcohol are mixed; And a step of heat-treating the cathode active material. The present invention also provides a method for controlling residual lithium in a lithium positive electrode active material.

상기 알코올은 에탄올(ethanol) 또는 이소프로필 알코올(isopropyl alcohol)일 수 있으며, 상기 증류수와 알코올의 혼합비는, 증류수와 알코올의 총 100 중량% 대비 알코올의 중량이 10 내지 40 중량%일 수 있다.The alcohol may be ethanol or isopropyl alcohol. The mixing ratio of the distilled water and the alcohol may be 10 to 40% by weight based on 100% by weight of the total amount of the distilled water and the alcohol.

상기 Ni-Co-Mn계 조성의 양극활물질은 하기 화학식 1로 표시되는 양극활물질일 수 있다. The cathode active material of the Ni-Co-Mn composition may be a cathode active material represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Li[NixCoyMnz]O2 Li [Ni x Co y Mn z ] O 2

(상기 화학식 1에서 0.60≤x<1, 0<y≤0.35, 0<z≤0.35 이고, x+y+z=1이다.)(0.60? X <1, 0 <y? 0.35, 0 <z? 0.35 and x + y + z = 1 in the formula (1)

또한, 본 발명은 상기의 제어방법에 의하여 잔류리튬이 제거된 Ni-Co-Mn(NCM)계 조성의 리튬 양극활물질을 제공하는 것을 본 발명의 다른 측면으로 한다.The present invention also provides another aspect of the present invention to provide a lithium-based cathode active material having a Ni-Co-Mn (NCM) composition in which residual lithium is removed by the above-described control method.

상기 Ni-Co-Mn계 조성의 양극활물질은 하기 화학식 1로 표시되는 양극활물질일 수 있다. The cathode active material of the Ni-Co-Mn composition may be a cathode active material represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Li[NixCoyMnz]O2 Li [Ni x Co y Mn z ] O 2

(상기 화학식 1에서 0.60≤x<1, 0<y≤0.35, 0<z≤0.35 이고, x+y+z=1이다.)(0.60? X <1, 0 <y? 0.35, 0 <z? 0.35 and x + y + z = 1 in the formula (1)

상기 리튬 양극활물질은 XRD 분석에 의한 I(003)/I(004) ratio가 1.4 이상인 양극활물질일 수 있다.The lithium cathode active material may be a cathode active material having an I (003) / I (004) ratio of 1.4 or more as measured by XRD analysis.

상기와 같은 본 발명에 따르면, 증류수와 알코올을 혼합한 공용매로 수세 후, 열처리를 수행함으로써, 잔류리튬 제거뿐만 아니라 리튬 전지의 수명열화 및 율 특성 등의 전기화학적 성능이 개선시키는 양극활물질을 제공하는 효과가 있다.As described above, according to the present invention, a cathode active material is provided which improves the electrochemical performance such as deterioration of lifetime and rate characteristic of a lithium battery as well as residual lithium removal by performing a heat treatment after washing with a co-solvent in which distilled water and alcohol are mixed .

도 1은 본 발명의 실시예의 양극활물질 잔류 리튬 제거량을 측정한 결과를 나타낸다.
도 2는 본 발명의 비교예의 양극활물질 잔류 리튬 제거량을 측정한 결과를 나타낸다.
도 3은 본 발명의 실시예 및 비교예의 양극활물질의 XRD 측정 결과를 나타낸다.
도 4는 본 발명의 실시예 및 비교예의 양극활물질의 lattice parameter를 측정한 결과를 나타낸다.
도 5는 본 발명의 실시예 및 비교예의 양극활물질을 포함하는 전지에 대해 초기 충방전 특성을 측정한 결과를 나타낸다.
도 6은 본 발명의 실시예 및 비교예의 양극활물질을 포함하는 전지에 대해 수명 평가를 측정한 결과를 나타낸다.
도 7은 본 발명의 실시예 및 비교예의 양극활물질을 포함하는 전지에 율 특성을 측정한 결과를 나타낸다.
도 8은 본 발명의 실시예 및 비교예의 양극활물질을 포함하는 전지에 대해 임피던스 특성을 측정한 결과를 나타낸다.
Fig. 1 shows the results of measurement of the amount of residual lithium in the positive electrode active material of the present invention.
Fig. 2 shows the results of measurement of the amount of residual lithium in the positive electrode active material of the comparative example of the present invention.
3 shows XRD measurement results of the cathode active materials of Examples and Comparative Examples of the present invention.
4 shows the results of measurement of the lattice parameter of the cathode active material of the examples and comparative examples of the present invention.
FIG. 5 shows the results of measurement of the initial charge-discharge characteristics of a battery containing the cathode active material of the examples and comparative examples of the present invention.
Fig. 6 shows results of measurement of life evaluation for a battery containing a cathode active material of Examples and Comparative Examples of the present invention.
FIG. 7 shows the results of measuring the rate characteristics of a battery including a cathode active material of Examples and Comparative Examples of the present invention.
8 shows measurement results of impedance characteristics of a battery including a cathode active material according to Examples and Comparative Examples of the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1-1. 물과 에탄올 공용매에 의한 수세Example 1-1. Washing by water and ethanol co-solvent

리튬 양극활물질 Li[Ni0.82Co0.07Mn0.11]O2에 대하여 증류수와 에탄올을 30 : 20의 중량비로 혼합하여 수세하였다.The lithium positive electrode active material Li [Ni 0.82 Co 0.07 Mn 0.11 ] O 2 was mixed with distilled water and ethanol at a weight ratio of 30:20 and washed with water.

실시예 1-2. 물과 에탄올 공용매에 의한 수세Examples 1-2. Washing by water and ethanol co-solvent

상기 실시예 1-1과 동일하게 수행하되, 증류수와 에탄올의 혼합비를 35 : 15의 중량비로 한정하였다. The procedure of Example 1-1 was repeated except that the mixing ratio of distilled water to ethanol was limited to a weight ratio of 35:15.

실시예 1-3. 물과 에탄올 공용매에 의한 수세Examples 1-3. Washing by water and ethanol co-solvent

상기 실시예 1-1과 동일하게 수행하되, 증류수와 에탄올의 혼합비를 30 : 20의 중량비로 한정하였다.The procedure of Example 1-1 was repeated except that the mixing ratio of distilled water to ethanol was limited to a weight ratio of 30:20.

실시예 2-1. 물과 IPA 공용매에 의한 수세Example 2-1. Washing by water and IPA co-solvent

리튬 양극활물질 Li[Ni0.82Co0.07Mn0.11]O2에 대하여 증류수와 이소프로필 알코올(IPA, isopropyl alcohol)을 30 : 20의 중량비로 혼합하여 수세한 후, 수행하였다.The lithium positive electrode active material Li [Ni 0.82 Co 0.07 Mn 0.11 ] O 2 was mixed with distilled water and isopropyl alcohol (IPA, isopropyl alcohol) at a weight ratio of 30:20, followed by washing with water.

실시예 2-2. 물과 IPA 공용매에 의한 수세Example 2-2. Washing by water and IPA co-solvent

상기 실시예 2-1과 동일하게 수행하되, 증류수와 이소프로필 알코올의 혼합비를 35 : 15의 중량비로 한정하였다.The procedure of Example 2-1 was repeated except that the mixing ratio of distilled water to isopropyl alcohol was limited to a weight ratio of 35:15.

실시예 2-3. 물과 에탄올 공용매에 의한 수세Examples 2-3. Washing by water and ethanol co-solvent

상기 실시예 2-1과 동일하게 수행하되, 증류수와 이소프로필 알코올의 혼합비를 30 : 20의 중량비로 한정하였다.The procedure of Example 2-1 was repeated except that the mixing ratio of distilled water to isopropyl alcohol was limited to a weight ratio of 30:20.

비교예 1.Comparative Example 1

수세처리 하지 않은 리튬 양극활물질 Li[Ni0.82Co0.07Mn0.11]O2을 준비하였다. A lithium positive electrode active material Li [Ni 0.82 Co 0.07 Mn 0.11 ] O 2 which had not been subjected to water treatment was prepared.

비교예 2. 단일용매에 다른 수세COMPARATIVE EXAMPLE 2 In another solvent

리튬 양극활물질 Li[Ni0.82Co0.07Mn0.11]O2에 대하여 증류수(W), 에탄올(EtOH), 이소프로필 알코올(IPA), 1-methyl-2-pyrrolidionone(NMP) 및 아세톤(ACT) 각각의 단일용매로 수세하였다.Each of the lithium anode active material Li [Ni 0.82 Co 0.07 Mn 0.11 ] Distilled water (W) with respect to O 2, ethanol (EtOH), isopropyl alcohol (IPA), 1-methyl- 2-pyrrolidionone (NMP) and acetone (ACT) And washed with a single solvent.

실험예 1. 잔류 리튬 제거율 확인Experimental Example 1. Determination of Residual Lithium Removal Rate

상기 실시예 1-1 내지 1-3, 상기 실시예 2-1 내지 2-1에 따른 수세 후 잔류리튬 제거량을 측정하여 이를 도 1에 도시하였으며, 상기 비교예 2에 따른 단일 용매의 종류별로 수세 후 잔류리튬 제거량을 측정(비교예 2(W))하여 이를 도 2에 도시하였다.The amount of residual lithium removed after washing with water according to each of Examples 1-1 to 1-3 and Examples 2-1 to 2-1 was measured and shown in FIG. 1, (Comparative Example 2 (W)), which is shown in Fig.

도 1 및 도 2를 참조하면, 단일 용매의 경우, 증류수 이외의 다른 용매에 대해서 잔류리튬 제거효과는 나타나지 않았으며, 증류수와 알코올계의 공용매 조성에 대해서는 물의 비율이 높아짐에 따라 잔류리튬 제거 효과가 증가하는 것을 확인하였다.1 and 2, in the case of a single solvent, residual lithium removal effect was not exhibited for solvents other than distilled water, and for the co-solvent of distilled water and alcohol, as the ratio of water increased, the residual lithium removal effect .

실시예 3. 열처리Example 3. Heat treatment

상기 실시예 2-3에 따른 수세처리한 양극활물질에 대하여 500℃, 5h, O2 분위기 하에서 열처리 공정을 수행하였다.The cathode active material subjected to washing treatment according to Example 2-3 was subjected to a heat treatment process at 500 ° C for 5 hours in an O 2 atmosphere.

비교예 1-1. 열처리Comparative Example 1-1. Heat treatment

상기 비교예 1의 수세하지 않은 양극활물질에 대하여 500℃, 5h, O2 분위기 하에서 열처리 공정을 수행하였다.The non-water-swellable cathode active material of Comparative Example 1 was subjected to a heat treatment process at 500 ° C for 5 hours in an O 2 atmosphere.

비교예 2-1. 열처리Comparative Example 2-1. Heat treatment

상기 비교예 2에서 단일 용매 중 증류수로 수세처리한 양극활물질(비교예 2(W))에 대하여 500℃, 5h, O2 분위기 하에서 열처리 공정을 수행하였다.In Comparative Example 2, the positive electrode active material washed with distilled water in a single solvent (Comparative Example 2 (W)) was subjected to a heat treatment process at 500 ° C for 5 hours in an O 2 atmosphere.

실험예 2. 열처리 전, 후 XRD 구조 분석Experimental Example 2. Analysis of XRD structure before and after heat treatment

상기 실시예 2-3, 실시예 3, 비교예 1, 비교예 1-1, 비교예 2(W) 및 비교예 2-1의 활물질에 대한 XRD 측정 결과 및 XRD 측정 결과로부터 lattice parameter를 측정하고 그 결과를 도 3 , 도 4 및 아래 표 1에 정리하였다.Lattice parameters were measured from the XRD measurement results and the XRD measurement results of the active materials of Examples 2-3, 3, Comparative Example 1, Comparative Example 1-1, Comparative Example 2 (W) and Comparative Example 2-1 The results are summarized in Fig. 3, Fig. 4 and Table 1 below.

aa cc c/ac / a c/3ac / 3a (I003)/(I004)(I 003 ) / (I 004 ) 비교예 1Comparative Example 1 2.87282.8728 14.212514.2125 4.9474.947 1.6491.649 1.4261.426 비교예 1-1Comparative Example 1-1 2.87282.8728 14.220114.2201 4.9504.950 1.6501.650 1.4591.459 비교예 2(W)Comparative Example 2 (W) 2.87152.8715 14.200314.2003 4.9454.945 1.6481.648 1.3741.374 비교예 2-1Comparative Example 2-1 2.87252.8725 14.210814.2108 4.9474.947 1.6491.649 1.4811.481 실시예 2-3Example 2-3 2.87282.8728 14.212314.2123 4.9474.947 1.6491.649 1.3751.375 실시예 3Example 3 2.87292.8729 14.221814.2218 4.9504.950 1.6501.650 1.4251.425

도 3을 참조하면, 용매 처리 및 열처리로 인한 결정 구조에는 영향을 미치지 않은 것으로 확인하였습니다.Referring to FIG. 3, it was confirmed that the crystal structure due to solvent treatment and heat treatment was not affected.

도 4 및 표 1을 참조하면, 양이온 혼합의 척도로 이용되는 (I003)/(I004) ratio값이 용매처리시에는 낮아지고 열처리시 높아지는 것을 확인하였는 바, 열처리로 인하여 양이온 혼합이 감소하는 경향을 확인하였습니다.Referring to FIG. 4 and Table 1, it was confirmed that the (I 003 ) / (I 004 ) ratio value used as a measure of the cationic mixing was lowered during the solvent treatment and increased during the heat treatment. As a result, I confirmed the trend.

제조예 1. 전지 제조Production Example 1. Preparation of Cell

상기 실시예 2-3, 실시예 3, 비교예 1, 비교예 1-1, 비교예 2(W) 및 비교예 2-1의 활물질을 양극으로 제조하였다. The active materials of Examples 2-3, Example 3, Comparative Example 1, Comparative Example 1-1, Comparative Example 2 (W) and Comparative Example 2-1 were prepared as positive electrodes.

실험예 3. 초기 충방전 특성 측정Experimental Example 3. Measurement of initial charge / discharge characteristics

상기 제조예 1에서 제조된 전지에 대하여, 초기 충방전시 용량 변화를 측정(0.1C at 25℃, 2.5 ~ 4.3 V vs Li/Li+)하였으며, 그 결과를 도 5에 도시하였다.The battery prepared in Preparation Example 1 was subjected to the measurement of the capacity change (0.1C at 25 ° C, 2.5 to 4.3 V vs. Li / Li + ) at the time of initial charge / discharge, and the result is shown in FIG.

도 5를 참조하면, 초기 충방전시 용매처리의 경우에는 비교예 1 대비 초기 방전용량의 감소가 나타나지만(실시예 2-3, 비교예 2), 열처리 진행 후 6 내지 7 mAh/g의 방전용량이 향상되었으며, 비교예 1 대비 8 mAh/g 방전용량이 향상되었고, over potential이 감소(저항의 감소)하는 경향을 확인하였다. Referring to FIG. 5, in the case of the solvent treatment at the initial charge-discharge, the initial discharge capacity was decreased compared with Comparative Example 1 (Example 2-3, Comparative Example 2), but after the heat treatment, discharge capacity of 6 to 7 mAh / g And the discharge capacity of 8 mAh / g compared to Comparative Example 1 was improved and the tendency of over potential (decrease of resistance) was confirmed.

실험예 4. 수명 평가Experimental Example 4. Life Evaluation

상기 제조예 1에서 제조된 전지에 대하여, 수명평가를 (1C 50cycle at 25 ℃, 2.5 ~ 4.3 V vs Li/Li+) 수행하였으며, 그 결과를 도 6에 도시하였다.The battery manufactured in Production Example 1 was subjected to a life evaluation (1C 50 cycle at 25 ° C, 2.5 to 4.3 V vs Li / Li + ), and the results are shown in FIG.

도 6을 참조하면, 충방전을 계속 진행함에 따라 전지의 수명 유지율을 측정한 결과, 용매처리만 한 경우 비교예 1 대비 용량유지율이 5 내지 7 % 정도 감소하지만, 열처리 시 공용매 조성의 경우(실시예 3) 비교예 1 수준의 용량유지율(90.8 %)을 가지는 것을 확인하였다.Referring to FIG. 6, as a result of continuing the charge and discharge, the life retention rate of the battery was measured. As a result, the capacity retention rate was reduced by about 5 to 7% as compared with Comparative Example 1 only by solvent treatment. Example 3) It was confirmed that the capacity retention ratio (90.8%) of Comparative Example 1 was obtained.

실험예 5. 율 특성 측정Experimental example 5. Measurement of rate characteristic

상기 제조예 1에서 제조된 전지에 대하여, 율 특성을 측정(0.5C 3cycle, 1C 5cycle, 2C 5cycle at 25 ℃, 2.5 ~ 4.3 V vs. Li/Li+)하여 고속 충방전에 따른 용량유지율을 확인하였으며, 그 결과를 도 7에 도시하였다.The capacity of the battery prepared in Preparation Example 1 was measured by the rate characteristics (0.5 C 3 cycles, 1 C 5 cycles, 2 C 5 cycles at 25 ° C, 2.5 to 4.3 V vs. Li / Li + ) The results are shown in Fig.

도 7을 참조하면, 용매처리한 샘플들(비교예 2, 실시예 2-3)은 비교예 1 대비 낮은 용량을 나타내는 반면, 열처리한 샘플(실시예 3)의 경우 초기 충방전 결과과 비교예 1과 유사하게 높은 용량을 나타내는 것을 확인하였다.7, the solvent-treated samples (Comparative Example 2 and Example 2-3) exhibited lower capacities compared to Comparative Example 1, whereas in the case of the heat-treated sample (Example 3), the initial charge- And a high capacity similar to that of the control.

실험예 6. 임피던스 측정Experimental example 6. Impedance measurement

상기 제조예 1에서 제조된 전지에 대하여, 수명 평가(cycle) 전후의 임피던스를 측정(충전상태, 25℃, 10 mV amplitude, 10kHz ~ 1MHz frequency)하여 전극의 저항성분을 분석하였으며, 그 결과를 도 8에 도시하였다.The resistance component of the electrode prepared in Preparation Example 1 was analyzed by measuring the impedance before and after the life cycle (charging state, 25 ° C, 10 mV amplitude, 10 kHz to 1 MHz frequency) 8.

도 8을 참조하면, 임피던스 측정 결과 용매처리한 샘플들(비교예 2, 실시예 2-3)의 저항이 열처리 시 비교예 1 수준으로 감소하는 것을 확인하였고, 이는 율속 특성이 개선된 것과 일치한다.Referring to FIG. 8, it was confirmed that the resistance of the solvent-treated samples (Comparative Example 2, Example 2-3) as a result of impedance measurement was reduced to the level of Comparative Example 1 at the time of heat treatment, which is in agreement with the improvement in the rate- .

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

Ni-Co-Mn(NCM)계 조성의 양극활물질을 증류수와 알코올을 혼합한 공용매로 수세하는 단계; 및
상기 양극활물질을 열처리하는 단계를 포함하는
리튬 양극활물질의 잔류리튬 제어방법.
Washing the cathode active material of Ni-Co-Mn (NCM) composition with a co-solvent comprising distilled water and alcohol; And
And heat treating the cathode active material
A method for controlling residual lithium in a lithium positive electrode active material.
제 1 항에 있어서,
상기 알코올은 에탄올(ethanol) 또는 이소프로필 알코올(isopropyl alcohol)인 것을 특징으로 하는 리튬 양극활물질의 잔류리튬 제어방법.
The method according to claim 1,
Wherein the alcohol is ethanol or isopropyl alcohol. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 1 항에 있어서,
상기 증류수와 알코올의 혼합비는, 증류수와 알코올의 총 100 중량% 대비 알코올의 중량이 10 내지 40 중량%인 것을 특징으로 하는 잔류리튬 제어방법.
The method according to claim 1,
Wherein the mixing ratio of the distilled water to the alcohol is 10 to 40% by weight of the alcohol relative to 100% by weight of the total amount of the distilled water and the alcohol.
제 1 항에 있어서,
상기 Ni-Co-Mn계 양극활물질은 하기 화학식 1로 표시되는 양극활물질인 것을 특징으로 하는 잔류리튬 제어방법.
[화학식 1]
Li[NixCoyMnz]O2
(상기 화학식 1에서 0.60≤x<1, 0<y≤0.35, 0<z≤0.35이고, x+y+z=1 이다.)
The method according to claim 1,
Wherein the Ni-Co-Mn based positive electrode active material is a positive electrode active material represented by the following formula (1).
[Chemical Formula 1]
Li [Ni x Co y Mn z ] O 2
(0.60? X <1, 0 <y? 0.35, 0 <z? 0.35 and x + y + z = 1 in the formula (1)
제 1 항 내지 제 4 항 중 어느 한 항의 제어방법에 의하여 잔류리튬이 제거된 Ni-Co-Mn계 조성의 리튬 양극활물질.
A lithium-based positive electrode active material having a Ni-Co-Mn composition in which residual lithium is removed by the control method of any one of claims 1 to 4.
제 5 항에 있어서,
상기 Ni-Co-Mn계 조성의 양극활물질은 하기 화학식 1로 표시되는 것인 리튬 양극활물질.
[화학식 1]
Li[NixCoyMnz]O2
(상기 화학식 1에서 0.60≤x<1, 0<y≤0.35, 0<z≤0.35이고, x+y+z=1 이다.)
6. The method of claim 5,
Wherein the cathode active material of the Ni-Co-Mn composition is represented by the following formula (1).
[Chemical Formula 1]
Li [Ni x Co y Mn z ] O 2
(0.60? X <1, 0 <y? 0.35, 0 <z? 0.35 and x + y + z = 1 in the formula (1)
제 5 항에 있어서,
상기 리튬 양극활물질은 XRD 분석에 의한 I(003)/I(004) ratio가 1.4 이상인 것을 특징으로 하는 리튬 양극활물질.
6. The method of claim 5,
Wherein the lithium positive electrode active material has an I (003) / I (004) ratio of 1.4 or more as measured by XRD analysis.
KR1020170022858A 2017-02-21 2017-02-21 Control method of residual lithium compounds in cathode active materials KR101941869B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170022858A KR101941869B1 (en) 2017-02-21 2017-02-21 Control method of residual lithium compounds in cathode active materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170022858A KR101941869B1 (en) 2017-02-21 2017-02-21 Control method of residual lithium compounds in cathode active materials

Publications (2)

Publication Number Publication Date
KR20180096313A true KR20180096313A (en) 2018-08-29
KR101941869B1 KR101941869B1 (en) 2019-01-24

Family

ID=63434944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170022858A KR101941869B1 (en) 2017-02-21 2017-02-21 Control method of residual lithium compounds in cathode active materials

Country Status (1)

Country Link
KR (1) KR101941869B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144456A (en) 2020-05-22 2021-11-30 인하대학교 산학협력단 Lithium hydroxide treatment method including cathode material for lithium secondary battery and slurry production method including cathode material to which it is applied
KR20220134935A (en) 2021-03-29 2022-10-06 인하대학교 산학협력단 Positive electrode slurry for lithium secondary battery containing carbonite based additives, preparing method thereof, positive electrode for lithium secondary battery and lithium secondary battery
KR20230081345A (en) * 2021-11-30 2023-06-07 한국교통대학교산학협력단 Method for manufacturing electrode active material, electrode active material, and lithium ion battery comprising the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423486B1 (en) 2020-08-24 2022-07-21 (주)한국워터테크놀로지 Apparatus for dehydration of positive electrode active material using electro-osmosis method, and dewatering facility including the apparatus
KR20220071674A (en) 2020-11-24 2022-05-31 현대자동차주식회사 A surface treatment solution, a method for preparing a surface treatment solution, a method for preparing an active material using a surface treatment solution, and an active material prepared therefrom
KR102428778B1 (en) 2021-08-05 2022-08-09 (주)한국워터테크놀로지 Apparatus for dehydration of positive electrode active material and dewatering facility including the apparatus
KR102428777B1 (en) 2022-02-21 2022-08-09 (주)한국워터테크놀로지 Apparatus for dehydration of positive electrode active material
KR102567741B1 (en) 2022-08-25 2023-08-17 (주)한국워터테크놀로지 Apparatus for continuously electric dehydration of positive electrode active material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297385B1 (en) * 2012-07-09 2013-08-19 성신여자대학교 산학협력단 Preparation method of cathode active materials for lithium secondary battery
KR20150018752A (en) * 2013-08-08 2015-02-24 세종대학교산학협력단 Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same
KR20150079362A (en) * 2013-12-31 2015-07-08 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR20160038984A (en) 2014-09-30 2016-04-08 한국교통대학교산학협력단 Heat treatment method for reducing remaining lithium cathode active materials and lithiumsecondary battery using the same, and preparation method thereof
KR20160081545A (en) * 2014-12-31 2016-07-08 주식회사 에코프로 Cathod active material and manufacturing method of the same
KR20160091172A (en) * 2015-01-23 2016-08-02 주식회사 포스코이에스엠 Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297385B1 (en) * 2012-07-09 2013-08-19 성신여자대학교 산학협력단 Preparation method of cathode active materials for lithium secondary battery
KR20150018752A (en) * 2013-08-08 2015-02-24 세종대학교산학협력단 Positive Electrode Material for Lithium-Ion Batteries and Lithium-Ion Battery Having the Same
KR20150079362A (en) * 2013-12-31 2015-07-08 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR20160038984A (en) 2014-09-30 2016-04-08 한국교통대학교산학협력단 Heat treatment method for reducing remaining lithium cathode active materials and lithiumsecondary battery using the same, and preparation method thereof
KR20160081545A (en) * 2014-12-31 2016-07-08 주식회사 에코프로 Cathod active material and manufacturing method of the same
KR20160091172A (en) * 2015-01-23 2016-08-02 주식회사 포스코이에스엠 Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144456A (en) 2020-05-22 2021-11-30 인하대학교 산학협력단 Lithium hydroxide treatment method including cathode material for lithium secondary battery and slurry production method including cathode material to which it is applied
KR20220134935A (en) 2021-03-29 2022-10-06 인하대학교 산학협력단 Positive electrode slurry for lithium secondary battery containing carbonite based additives, preparing method thereof, positive electrode for lithium secondary battery and lithium secondary battery
KR20230081345A (en) * 2021-11-30 2023-06-07 한국교통대학교산학협력단 Method for manufacturing electrode active material, electrode active material, and lithium ion battery comprising the same
WO2023101078A1 (en) * 2021-11-30 2023-06-08 한국교통대학교산학협력단 Method for manufacturing electrode active material, electrode active material, and lithium ion battery comprising same

Also Published As

Publication number Publication date
KR101941869B1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
KR101941869B1 (en) Control method of residual lithium compounds in cathode active materials
KR101473322B1 (en) Cathode active material and cathode and lithium battery containing the material
KR101550741B1 (en) Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
CN106797053B (en) Gel polymer electrolyte and lithium secondary battery including it
KR101892612B1 (en) Manufacturing method of cathod active material for lithium rechargeable batteries and cathod active material for lithium rechargeable batteries made by the same
KR101615413B1 (en) Anode active material for lithium secondary battery, preparation method of thereof, and lithium secondary battery comprising the same
JP7260573B2 (en) Composite positive electrode active material for lithium ion battery, manufacturing method thereof, and lithium ion battery including positive electrode containing the same
KR101650569B1 (en) Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
Wang et al. Manganese dissolution from LiMn 2 O 4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive
CN109786832B (en) Electrolyte additive, electrolyte and lithium ion secondary battery
KR20210018085A (en) Cathode Active Material for Lithium Secondary Battery
KR102434069B1 (en) Electrolyte for lithium secondary battery
KR102391532B1 (en) Electrolyte for lithium secondary battery
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
CN115101745A (en) Micro lithium-rich lithium nickelate positive electrode material with layered structure, preparation method and application of material in lithium ion battery
KR101779638B1 (en) Cathode active material, preparation method thereof, and lithium secondary battery comprising the same
KR20170034774A (en) Preparing methode for lithium secondary battery having improved low temperature property and lithium secondary battery
KR20170038736A (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
CN106340671A (en) Lithium ion battery and electrolyte thereof
KR20160086228A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR101816949B1 (en) Non-aqueous liquid electrolyte and lithium secondary battery comprising the same
KR20160105348A (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising the same
KR102298292B1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising the same
KR20200057054A (en) Nickel composite oxide and lithium nickel composite oxide manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)