KR19980084033A - Manganese ore for oxidizing carbon monoxide and volatile organic compounds and noble metal catalyst containing the same - Google Patents

Manganese ore for oxidizing carbon monoxide and volatile organic compounds and noble metal catalyst containing the same Download PDF

Info

Publication number
KR19980084033A
KR19980084033A KR1019970019610A KR19970019610A KR19980084033A KR 19980084033 A KR19980084033 A KR 19980084033A KR 1019970019610 A KR1019970019610 A KR 1019970019610A KR 19970019610 A KR19970019610 A KR 19970019610A KR 19980084033 A KR19980084033 A KR 19980084033A
Authority
KR
South Korea
Prior art keywords
catalyst
manganese ore
carbon monoxide
oxidation
volatile organic
Prior art date
Application number
KR1019970019610A
Other languages
Korean (ko)
Other versions
KR100224634B1 (en
Inventor
강석화
홍성창
박종수
윤재성
박태성
Original Assignee
김정자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김정자 filed Critical 김정자
Priority to KR1019970019610A priority Critical patent/KR100224634B1/en
Publication of KR19980084033A publication Critical patent/KR19980084033A/en
Application granted granted Critical
Publication of KR100224634B1 publication Critical patent/KR100224634B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Abstract

조성비가 적어도 망간이 40-60%이고, SiO2, Al2O3, Fe, CaO, MgO의 조성비의 범위가 각각 0.1중량%에서 5중량%인 천연망각광석입자를 300℃-500℃의 공기 분위기에서 산화물형태로 처리한 일산화탄소 및 휘발성유기화합물 산화용천연망간광석 입자로된 촉매와 이와같은 천연망간광석에 귀금속(팔라딤움 또는 백금)을 담지시킨 일산화탄소 및 휘발성유기화합물산화용 촉매에 관한 것임.The natural obliteration ore particles having a composition ratio of at least 40 to 60% manganese and a composition ratio of SiO 2 , Al 2 O 3 , Fe, CaO and MgO of 0.1 wt% to 5 wt% Carbon monoxide and volatile organic compounds treated with oxides in the atmosphere, and a catalyst for oxidizing carbon monoxide and volatile organic compounds in which noble metals (palladium or platinum) are supported on such natural manganese ores.

Description

일산화탄소 및 휘발성 유기화합물 산화용 망간광석 및 이를 담체로하는 귀금속 촉매Manganese ore for oxidizing carbon monoxide and volatile organic compounds and noble metal catalyst containing the same

제 1 도 : 망간광석과 귀금속 촉매의 메탄산화 활성 비교Figure 1: Methane oxidation activity of manganese ore and precious metal catalysts

A : 온도에 따른 망각광석(NMO)의 활성변화A: Change in the activity of NMOs with temperature

B : 온도에 따른 Pd/Al2O3의 활성변화B: Activity change of Pd / Al 2 O 3 with temperature

C : 온도에 따른 Pt/Al2O3의 활성변화C: Change in activity of Pt / Al 2 O 3 with temperature

촉매층의 가열속도는 5℃/min 반응가스의 공간속도는(GHSV)는 2.4x104, 반응 물중 메탄의 농도는 1.5% 균형가스는 공기를 사용함.The heating rate of the catalyst layer is 5 ° C / min. The space velocity of the reaction gas (GHSV) is 2.4 × 10 4 , and the concentration of methane in the reaction product is 1.5%.

제 2 도 : 망간광석을 담체로한 파라듐촉매의 일산화탄소, 벤젠, 에탄올 산화활성 향상효과2: Improvement of oxidation activity of carbon monoxide, benzene and ethanol of palladium catalyst using manganese ore as carrier

A : 반응온도에 따른 일산화탄소(CO)의 전환율 변화A: Conversion rate of carbon monoxide (CO) according to reaction temperature

B : 반응온도에 따른 에탄올(C2H5OH)의 전환율 변화B: Conversion rate of ethanol (C 2 H 5 OH) according to reaction temperature

C : 반응온도에 따른 벤젠(C6H6)의 전환율 변화C: Conversion rate of benzene (C 6 H 6 ) according to reaction temperature

유동층 반응기에서 측정된 산화활성의 온도 의존성이며 반응물의 공급속도는 최소유동화 속도에 3배, 균형가스는 공기이며, 일산화탄소의 농도는 2000ppm, 벤젠과 에탄올의 농도는 각각 400ppm임.The temperature dependence of the oxidation activity measured in the fluidized bed reactor is 3 times the minimum fluidization rate, the balance gas is air, the concentration of carbon monoxide is 2000 ppm, and the concentration of benzene and ethanol is 400 ppm, respectively.

제 3 도 : 팔라듐 담지량에 따른 촉매의 활성변화Figure 3: Catalytic activity change with palladium loading

T90: 반응물중에 포함된 일산화탄소의 전환율이 90%에 이르는 온도T 90 : The temperature at which the conversion rate of carbon monoxide contained in the reaction reaches 90%

T50: 반응물중에 포함된 일산화탄소의 전환율이 50%에 이르는 온도T 50 : temperature at which the conversion rate of carbon monoxide contained in the reaction reaches 50%

고정층 반응기에서 측정되었으며 일산화탄소의 농도는 2000ppm, 균형가스는 공기를 사용함. 반응가스의 공간속도(GHSV)는 2.4x104.It was measured in a fixed bed reactor. The concentration of carbon monoxide was 2000 ppm and the balance gas was air. The space velocity (GHSV) of the reaction gas is 2.4 x 10 4 .

제 4 도 : 망간광석을 담체로한 파라듐FIG. 4: Palladium with manganese ore as a carrier

65일간 반응조건을 동일하게 유지하여 전환율이 차이를 측정하여 촉매의 안정성을 고찰함. 반응물을 일산화탄소 2000ppm, 균형가스는 공기를 사용함. 반응가스의 공간속도(GHSV)는 2.4x104.The stability of the catalyst was examined by measuring the difference in conversion rate by maintaining the same reaction conditions for 65 days. Carbon monoxide was used as the reactant at 2000 ppm, and the balance gas was air. The space velocity (GHSV) of the reaction gas is 2.4 x 10 4 .

제 5 : 망간광석을 담체로한 파라듐Fifth: palladium containing manganese ore as a carrier

반응물중 일산화탄소의 농도 2000ppm, 수분의 함량은 5vol%를 유지하며 균형가스는 공기를 사용함. 72시간 동안 촉매의 활성을 측정하여 촉매의 비활성화를 측정함. 반응가스의 공간속도(GHSV)는 2.4x104.The concentration of carbon monoxide in the reactant is 2000 ppm, the moisture content is maintained at 5 vol%, and the balance gas is air. The activity of the catalyst was measured for 72 hours to measure the inactivation of the catalyst. The space velocity (GHSV) of the reaction gas is 2.4 x 10 4 .

[발명의 목적][Object of the invention]

본 발명은 일산화탄소 벤젠, 에타놀, 신나, 케톤, 토루엔, 크시렌, 메타놀, 케톤 등의 탄화수소 그룹으로 표현되는 휘발성 유기화합물의 산화용 촉매를 제공하는 것으로 더욱 구체적으로 일산화탄소 및 휘발성 유기화합물의 산화용 천연망간광석 및 이를 담체로하는 귀금속 촉매를 제공함에 있다.The present invention provides a catalyst for the oxidation of volatile organic compounds represented by hydrocarbon groups such as carbon monoxide benzene, ethanol, cinnamic acid, ketone, toluene, xylene, methanol, ketone and the like. More specifically, the present invention provides a catalyst for oxidation of carbon monoxide and a volatile organic compound Natural manganese ore and a noble metal catalyst containing the same.

[발명이 속하는 기술분야 및 그 분야의 종래기술][TECHNICAL FIELD OF THE INVENTION AND RELATED ART OF THE SAME]

무기 또는 유기합성, 유기 및 무기 개스등의 산화환원에 의한 다른 물질로의 전화에 사용되는 산화환원 촉매중 일산화탄소 및 벤젠, 메타놀, 신나 케토, 토루엔, 크시렌, 메탄 등의 휘발성 유기화합물을 탄산개스, 물등으로 전화시키는 산화촉매에 관한 기술분야로서 이와같은 분야에 종래 기술로는 일산화탄소 및 휘발성 유기화합을 파라디움이나 백 등의 귀금속을 알루미나(Al2O3)이산화티탄과 같은 담체에 담지만 산화촉매들을 들수있으나, 귀금속이 고가이고 사용가능한 절대량이 한정되어 있으며, 특히 휘발성 유기화합물에 대하여 선택적으로 산화활성을 나타내므로 다양한 유기화합물의 각각이나 이들의 혼합개스처리에 포괄적인 용도로서 부족한점이 있다하겠다.Carbon monoxide, and volatile organic compounds such as benzene, methanol, cinnamate, toluene, xylene, and methane in the redox catalysts used for dialysis into other materials by redox such as inorganic or organic synthesis, organic and inorganic gases, (Al 2 O 3 ) titanium dioxide on a support such as palladium or white, but it has been found that oxidation of carbon dioxide and volatile organic compounds can be carried out only in a carrier such as alumina Catalysts. However, since the noble metal is expensive and the absolute amount thereof is limited, especially since it exhibits oxidative activity selectively with respect to the volatile organic compound, it is insufficient as a comprehensive use for various organic compounds and their mixed gas treatment .

[발명이 이루고자 하는 기술적 과제][Technical Problem]

일산화탄소 및 휘발성 유기화합물 산화용촉매로서 저렴하고 사용가능한 절대량에 한정을 받지않는 산화촉매를 제공하고 나아가서 종래 알루미나 또는 산화티타늄을 담체로하는 귀금속 촉매에 비해 산화활성도가 크고 넓은 온도범위에서 활성도를 나타내고 내구성이 우수하며 고열 및 수분에 대한 안전성을 갖는 촉매를 제공함에 있다하겠다.It is an object of the present invention to provide an oxidation catalyst which is inexpensive and not limited to an absolute amount which can be used as a catalyst for oxidation of carbon monoxide and a volatile organic compound and which has a higher oxidation activity than that of a noble metal catalyst containing a conventional alumina or titanium oxide as a carrier, And a catalyst having high heat and safety against moisture.

[발명의 구성 및 작용][Structure and operation of the invention]

본 발명은 일산화탄소 및 휘발성 유기화합물을 산화시키므로서 탄산개스 수증기, 수소 등의 무해물질로 전화시키는 산화 촉매로서 일정한 조성을 갖는 천연 망간광석을 분쇄 40-60메쉬의 입자를 300℃-500℃의 공기 분위기에서 1-2시간 유지하여 산화물의 형태로 처리한 천연망간광석의 산화촉매와 이와 같은 천연망간광석을 담체로하는 귀금속 산화촉매로서 이는 천연망간망석을 분쇄 40-60메쉬의 입도를 갖는 천연망간광석입자를 염화파라듐 또는 염화백금 수용액에 침지하고 80℃에서 1-3시간 교반한후 진공회전증발기에서 건조하여 이를 70-90℃ 오븐(OVEN)에서 20-28시간 건조시키고 이를 다시 250℃-400℃에서 5%H2/He으로 2-4시간 환원한후 공기분위기에서 2-4시간 소성하여 얻어진 천연망간광석을 담체로한 산화용 귀금속 촉매라 할수 있다.The present invention relates to an oxidation catalyst for oxidizing carbon monoxide and a volatile organic compound, thereby causing the natural manganese ore having a constant composition to be crushed into particles of 40-60 mesh as an oxidation catalyst for converting carbon monoxide and volatile organic compounds into harmless substances such as carbon dioxide gas and hydrogen, For 1 to 2 hours to treat the natural manganese ore in the form of an oxide and a noble metal oxidation catalyst containing such natural manganese ore as a carrier, which is obtained by crushing natural manganese gangue into natural manganese ores having a particle size of 40-60 mesh The particles were immersed in an aqueous solution of palladium chloride or platinum chloride, stirred at 80 ° C for 1 to 3 hours, dried in a vacuum rotary evaporator, and dried in an oven at 70-90 ° C for 20-28 hours, C for 2 to 4 hours with 5% H 2 / He and calcining for 2 to 4 hours in an air atmosphere as a carrier.

이상에서 천연망간광석에 담지된 귀금속의 량은 천연망간광석 입자의 중량에 대하여 1중량%가 가장 적합하고 최대의 산화활성을 갖는 범위라고 할 수 있으며 0.5-1.5중량% 범위에서는 효과적인 산화활성을 갖지만 0.5% 이하에서는 산화활성이 크게 떨어지고 1.5% 이상을 사용하면 고가의 귀금속을 낭비하는 결과를 초래하게 된다.The amount of the noble metal carried on the natural manganese ore is most favorable to 1 wt% based on the weight of the natural manganese ore and can be said to have the maximum oxidation activity, and has an effective oxidation activity in the range of 0.5-1.5 wt% Below 0.5%, the oxidation activity is greatly lowered, and if it exceeds 1.5%, expensive noble metal is wasted.

또 본 발명에서 사용되는 천연망간광석의 구체적인 소성을 일례를 들어 분석한 결과 Mn : 51.85중량%, SiO2: 3.13중량%, Al2O3: 2.5중량%, Fe : 3.80중량%, CaO : 0.11중량%, MgO : 0.25중량%, 망간과 철에 결합한 산소량 38.3중량%의 구성으로된 조성비이고 이와 같은 광석에 전체적으로 분포되어 있는 조성비의 범위는 적어도 망간이 40-60중량%이고 SiO2, Al2O3, Fe, CaO, MgO의 조성비의 범위는 각각 0.1중량%에서 5%까지의 조성비의 분포를 갖고 있다.Specific calcination of the natural manganese ore used in the present invention was analyzed by way of example. As a result, it was found that 51.85 wt% of Mn, 3.13 wt% of SiO 2 , 2.5 wt% of Al 2 O 3 , 3.80 wt% of Fe, wt%, MgO: 0.25% by weight, the range of manganese and with the configuration of the oxygen content 38.3% by weight bound to the iron composition is a composition that is distributed as a whole to such a manganese ore is at least 40-60 wt% SiO 2, Al 2 The composition ratio of O 3 , Fe, CaO, and MgO ranges from 0.1 wt% to 5 wt%.

이와 같은 범위의 조성물 및 조성비를 갖는 천연망간광석은 산화촉매로서 활성은 물론 휘발성 유기화합물에 대하여 포괄적인 산화기능을 갖고 있으며, 종래 산화알루미늄이나 산화티타늄을 담체로하는 귀금속 산화촉매와 비교할 때 대등한 산화활성을 갖게되고 천연망간광석을 담체로하는 파라듐 또는 백금의 산화촉매는 상술한 종래 귀금속 촉매에 비하여 산화활성도가 크며 산화활성을 갖는 온도범위가 넓고 휘발성 유기화합물에 대한 포괄적 산화능을 가지며 고열 및 수분에 안정성을 갖는 산화촉매라할 수 있다.Natural manganese ores having such a composition and composition ratio in this range have a comprehensive oxidation function against volatile organic compounds as well as their activity as oxidation catalysts and are comparable to niobium oxide oxidation catalysts using niobium oxide or titanium oxide as a carrier The oxidation catalyst of palladium or platinum, which has an oxidation activity and contains natural manganese ore as a carrier, has a higher oxidation activity than the conventional noble metal catalyst, has a wide temperature range with oxidation activity, has a comprehensive oxidation ability to volatile organic compounds, And can be an oxidation catalyst having stability to water.

이와 같은 기능은 유동촉매나 접촉식촉매에도 동일하게 작용한다.This function also works for flow catalysts and contact catalysts.

위에서 언급한 천연망간광석입자로된 산화촉매나 이를 담체로하는 귀금속 촉매의 우수한 산화활성도나 휘발성을 갖는 유기화합물에 대하여 포괄적인 산화능을 갖는 이유는 천연망간석의 조성물에서 기인하다고 보아진다.It is considered that the reason why the above-mentioned oxidation catalyst composed of natural manganese ore particles or a noble metal catalyst using the same as the carrier has a comprehensive oxidation ability to organic compounds having excellent oxidation activity or volatility is attributed to the composition of natural manganese stones.

그 이유로서 천연망간광석의 조성물인 망간은 이산화망간의 형태로 존재하고 이는 강력한 산화제로 산화촉매로 사용하고 있으며, 산화알루미늄은 기히 종래 산화촉매의 지지체로서 사용되고 개스 및 수중기 흡수능을 갖는 물질이다.The reason for this is that manganese, which is a composition of natural manganese ore, exists in the form of manganese dioxide, which is used as a strong oxidizing agent as an oxidation catalyst, and aluminum oxide is a substance which is conventionally used as a support for an oxidation catalyst and has a capability of absorbing gas and water.

또 SiO2는 촉매지지체 또는 촉매로서 산화촉진기능을 가지며, MgO는 SO2개스 제거제이며, 열처리에 의해 산화된 MgO2는 강력한 산화제로서 산화촉매기능을 갖게되고 CaO는 스톡(stock) 개스로부터 SO2개스를 제거하고 산성폐개스 및 독성개스의 중화능을 갖는 물질이다.Further SiO 2 has a promoting oxide functions as a catalyst support or catalyst, MgO is SO 2 and gas agent, oxidized by the heat treatment MgO 2 is to have the oxidation catalyst function as a strong oxidizing agent CaO is SO 2 from the stock (stock) gas It is a substance that removes gas and has neutralizing ability of acid waste gas and toxic gas.

또 천연망간광석에는 MnFe2O4와 같은 강자성 물질의 구조도 존재한다고 보아지며 이들의 작용에 의한 이온이동과 관련하여 산화활성에 미치는 영향도 고려하고 있다.In addition, the structure of ferromagnetic materials such as MnFe 2 O 4 is considered to exist in natural manganese ore, and influence on the oxidation activity in relation to ion movement due to their action is also considered.

[발명의 효과][Effects of the Invention]

이상과 같이 열처리에 의한 망간광석입자로된 산화촉매는 극히 염가이면서 산화활성도가 큰 촉매이여서 일산화탄소 및 휘발성 유기화합물의 산화는 물론 다른 분야의 산화촉매로서 활용이 기대되며 망간광석을 담체로하는 귀금속 촉매는 종래 산화촉매로서 산화활성도가 높은 귀금속 촉매에 비해 산화활성도가 크고 특히 탄화수소 그룹으로 표현되는 휘발성 유기화합물에 대하여 포괄적인 산화활성을 가지므로서 공장에서 발생하는 각종 유해한 개스를 무해한 물질로 전화시키므로서 공해 방지의 일익을 담당함은 물론 각종 유기합성에 있어 고효율을 갖는 촉매로서 널리 이용될 수 있다.As described above, the oxidation catalyst composed of manganese ore particles by heat treatment is an extremely low and highly oxidative catalyst, so it is expected to be used as an oxidation catalyst in other fields as well as carbon monoxide and volatile organic compounds, and a noble metal catalyst Has a large oxidative activity as compared with a noble metal catalyst having a high oxidation activity as a conventional oxidizing catalyst and has a comprehensive oxidizing activity against volatile organic compounds represented by hydrocarbon groups in particular so that harmful gases generated in factories are converted into harmless substances It can be widely used as a catalyst having a high efficiency in various organic synthesis as well as a part of prevention of pollution.

이상에서 본 발명에 의한 효과를 기술했지만 이를 더욱 분명히 하기 위하여 실시예를 들어 그 효과를 나타내었다.The effects of the present invention have been described above. However, in order to make it clearer, the effects of the present invention are shown.

실시예(1), 실시예(2), 실시예(3), 실시예(4), 실시예(5)Examples (1), (2), (3), (4) and (5)

[실시예 1][Example 1]

먼저 망간광석을 촉매로하여 유기화합물 중에서 산화반응이 어려운 물질중에 하나인 메탄에 대한 산화력을 검토하였다. 공급된 메탄의 농도는 1.5%이며 균형가스는 공기를 이용하였다. 고정층 반응기에서 수행되었으며 촉매층의 가열속도와 반응물인 혼합가스의 농도는 일정하게 유지하였다. 망간광석 촉매는 자연에 존재하는 광석을 균일입경(50/60mesh)으로 분쇄한후 건조하여 사용하였다. 또한 Pd/Al2O3, Pt/Al2O3촉매는 알루미나 담체를 균일입경(50/60mesh)으로 분쇄한 후 습식담지하였다. 건조후 공기를 이용하여 소성, 수소가스를 이용하여 귀금속을 환원하여 단결정의 형태로 변화시켜 제조를 완료하여다. 제조된 각 측매들의 물리화학적 특성은 [표 1]과 같다.First, the oxidative potential of methane, one of the substances which are difficult to oxidize in organic compounds, was investigated using manganese ore as a catalyst. The concentration of methane supplied was 1.5% and the balance gas was air. In the fixed bed reactor, the heating rate of the catalyst layer and the concentration of the mixed gas as a reactant were kept constant. The manganese ore catalyst was prepared by pulverizing ores present in nature in a uniform particle size (50/60 mesh) and drying them. The Pd / Al 2 O 3 and Pt / Al 2 O 3 catalysts were prepared by pulverizing the alumina carrier to a uniform particle diameter (50/60 mesh) and wet-supported. After drying, the precious metal is reduced by calcining and hydrogen gas using air to change into a single crystal form. The physicochemical properties of each manufactured petroleum product are shown in Table 1.

[표 1][Table 1]

각 촉매들의 특성치Properties of each catalyst

반응성 검토시 먼저 각 촉매의 전처리를 다음과 같이 수용하였다. 알루미나 담체의 귀금속 촉매(Pd/Al2O3, Pt/Al2O3)는 수소를 이용하여 400℃에서 환원하였다. 이는 귀금속의 경우 단결정의 활성이 우수한 것으로 알려진바 이와 동일한 반응조건을 재현하고자 취해진 방법이다. 그러나 본연구에서 최초로 사용한 망간광석을 기본으로한 촉매는 400℃의 공기 분위기에서 60분을 유지하여 산화물의 형태를 유지하도록 유도하였다.When the reactivity was examined, each catalyst was pretreated as follows. The noble metal catalysts (Pd / Al 2 O 3 , Pt / Al 2 O 3 ) of the alumina support were reduced at 400 ° C using hydrogen. This is a method to reproduce the same reaction conditions, which is known to be excellent in the activity of a single crystal in the case of noble metals. However, the catalysts based on manganese ore used for the first time in this study were maintained in the air atmosphere at 400 ° C for 60 minutes to maintain the shape of the oxide.

각 촉매의 활성을 측정한 결과 [제1도]와 같다. 메탄에 대한 팔라듐과 백금의 산화활성은 각 실험장치와 촉매의 제조 방법에 따라서 활성의 순위에서 차이가 있는 것으로 보고된바 있으며, 본 발명에서 수행된 조건에서는 팔라듐의 산화활성이 백금보다 높게 나타났다. 세가지 촉매모두 약 300℃를 전후로하여 반응성이 급격하게 증가하기 시작하였다. 망관광석의 T50(50% 전환율을 보이는 온도)은 410℃에서 나타났다. 이는 Pt/Al2O3촉매의 활성과 유사한 값으로서 매우 놀라운 결과이다. 이와 같이 망간광석은 별도의 귀금 속의 분산등과 같은 처리없이 단독으로도 메탄의 산화활성이 매우 우수함으로 촉매로서 사용가능함을 알 수 있다. 더욱이 망간광석의 표면적인 상기[표 1]에서 보인바와 같이 17m2/g에 불과하다. 즉 촉매의 단위 표면적당 처리가능한 메탄의 몰수로 산정할 때 알루미나상에 분산된 귀금속 활성을 능가하는 우수한 촉매임을 알 수 있다.The results of measuring the activity of each catalyst are shown in FIG. 1. The oxidation activity of palladium and platinum on methane has been reported to vary in the order of activity depending on the experimental apparatus and catalyst preparation method, and the oxidation activity of palladium is higher than that of platinum under the conditions performed in the present invention. The reactivity of all three catalysts began to increase rapidly around 300 ° C. The T 50 (50% conversion temperature) of the municipal tourists appeared at 410 ℃. This is a remarkable result as a value similar to the activity of the Pt / Al 2 O 3 catalyst. Thus, the manganese ore can be used as a catalyst because the manganese ore has a very excellent oxidation activity of methane alone without any treatment such as dispersion in noble metals or the like. Furthermore, the surface area of the manganese ore is only 17 m 2 / g as shown in Table 1 above. That is, when it is calculated as the number of moles of methane that can be treated per unit surface area of the catalyst, it can be understood that the catalyst is superior to the activity of the noble metal dispersed on alumina.

[실시예 2][Example 2]

산화제어시 가장 높은 온도를 갖는 대표적인 물질인 메탄에 대한 우수한 효과를 보여 산화촉매로서 사용이 기대되는 망간광석과 이에 팔라듐을 담지하여 산화활성을 배가한 촉매를 제조하였다. 이의 활성에 대하여 검토한 대상 물질로는 일산화탄소, 벤젠, 에탄올에 대하여 검토하였다. 검토된 물질들은 산화제어 가능한 무기물인 일산화탄소, 휘발성 유기화합물로서 대표적인 방향족화합물 및 알콜류의 산화활성에 대하여 검토하였다.In the oxidation control, manganese ore, which is expected to be used as an oxidation catalyst, has been shown to have an excellent effect on methane, which is a representative material having the highest temperature, and a catalyst having palladium supported thereon to multiply the oxidation activity. Carbon monoxide, benzene and ethanol were studied for their activity. The investigated materials were carbon monoxide, which is an oxidation controllable inorganic substance, and volatile organic compounds, and investigated oxidation activities of representative aromatic compounds and alcohols.

반응성 검토시 사용된 반응기는 대용량화에 적절한 유동층 반응기(내경 40mm)를 사용하였으며 반응기의 운전조건은 다음과 같다. 공급되는 혼합가스의 유량은 촉매유동화 속도의 3배에서 운전하였으며, 촉매의 투입량(종횡비)은 반응기의 직경과 동일하게 유지하였다. 촉매의 평균입경은 40/50mesh로 균일 크기의 촉매를 사용하였으며, 반응물인 벤젠의 농도는 400ppm, 일산화탄소는 2000ppm, 에탄올 400ppm을 각각 공기중에 혼합하였다. 전환율이 측정전에 촉매의 전처리로서 400℃의 공기분위기를 30분 유지한후 반응온도로 냉각 또는 가열하여 임의의 반응온도에 도달후 30분 유지하여 전환율을 측정하였다. 매온도에서 이와 같이 수행하여 촉매의 특성을 일정하게 유지하였다.Reactivity The reactor used in the study was a fluidized bed reactor (inner diameter 40 mm) suitable for large capacity. The operating conditions of the reactor were as follows. The flow rate of the supplied mixed gas was operated at 3 times the fluidization speed of the catalyst, and the amount of the catalyst (aspect ratio) was kept equal to the diameter of the reactor. The average particle size of the catalyst was 40 / 50mesh, and the homogeneous catalyst was used. The concentration of benzene, 400ppm, and 400ppm of benzene, 400ppm and 400ppm, respectively, were mixed in the air. The conversion rate was measured as a pretreatment of the catalyst before the conversion, and the conversion rate was measured by maintaining the air atmosphere at 400 ° C for 30 minutes and then cooling or heating to the reaction temperature to reach an arbitrary reaction temperature for 30 minutes. This was done at each temperature to maintain the characteristics of the catalyst constant.

각 촉매들의 활성은 [제2도]와 같다. 세가지 반응물에 대하여 팔라듐의 효과는 절대적으료 작용되었다. 그중에서 특히 일산화탄소의 산화활성이 매우 크게 증진되었다. 망간광석을 사용할 때는 100℃까지 일산화탄소의 산화가 발생되지 않았으나 망간광석을 담체로한 파라듐 촉매의 경우는 상온인 25℃에서도 전환율이 17%로 나타났으며 100℃에서는 70%이상의 전환율을 나타냈다. 에탄올의 경우는 동일한 전환율을 보이는 온도는 약 30℃를 낮추는 효과를 보였다. 또한 벤젠의 경우는 팔라듐의 담지됨에 따라서 동일한 전환율을 보이는 온도를 약 70℃를 낮출수 있는 효과를 얻을 수 있었다.The activity of each catalyst is shown in FIG. The effect of palladium on the three reactants was absolute. In particular, the oxidation activity of carbon monoxide was greatly enhanced. When manganese ore was used, oxidation of carbon monoxide did not occur up to 100 ℃. However, in the case of palladium catalyst containing manganese ore as a carrier, the conversion rate was 17% even at 25 ℃, and 70% or more conversion rate at 100 ℃. In the case of ethanol, the temperature with the same conversion rate was lowered by about 30 ° C. Also, in the case of benzene, the effect of lowering the temperature, which exhibits the same conversion ratio, to about 70 ° C was obtained according to the loading of palladium.

[실시예 3][Example 3]

망간광석을 유동층 반응기에서 촉매로 사용하기에 앞서 이의 내마모성에 대한 평가가 선행되어야할 필요가 있다. 따라서 본 발명에서는 망간광석을 유동층용 촉매로 사용가능한 물질인지를 평가하기 위하여 0.715mm(20/30mesh) 균일입자를 종횡비 1이 되도록 투입한후 72시간 동안 유동시켜 체분석한 결과 [표2]와 같이 5% 미만의 손실을 보였다. 따라서 망간광석을 유동층용 촉매로서 적절히 사용될 수 있음을 알수 있다.Prior to using manganese ore as a catalyst in a fluidized bed reactor, its wear resistance needs to be evaluated. Therefore, in order to evaluate whether the manganese ore is usable as a catalyst for a fluidized bed, 0.715 mm (20/30 mesh) uniform particles were injected so as to have an aspect ratio of 1 and then flowed for 72 hours. Likewise, the loss was less than 5%. Therefore, it can be understood that manganese ore can be suitably used as a catalyst for a fluidized bed.

[표 2][Table 2]

72시간 유동화후 입도분포Size distribution after fluidization for 72 hours

[실시예 4][Example 4]

망간광석을 담체로한 파라듐 촉매의 활성은 팔라듐의 효과가 결정적으로 작용되었다. 따라서 적절한 담지량을 제시하고자 팔라듐 함량에 따른 효과에 대하여 고찰하였다. 이 때 반응물은 공기에 일산화탄소 2000ppm으로 혼합하여 사용하였다. 그 결과 [제3도]와 같다. 팔라듐의 농도가 망간광석의 1wt%를 담지할 때 가장 우수한 산화력을 갖음을 알수 있다. 표기된 T90은 공급된 일산화탄소의 90%가 산화제어되는 온도를 T50은 50%의 일산화탄소가 산화되는 온도를 의미한다. 반응시 각 촉매의 전처리를 400℃의 공기분위기에서 30분을 유지하여 촉매의 산화가를 동일하게 유지하였다.The activity of palladium catalyst with manganese ore as a carrier was crucial to the effect of palladium. Therefore, the effect of palladium content was investigated to provide adequate loading. At this time, the reactants were mixed with carbon dioxide of 2000 ppm in air. The result is as shown in FIG. It can be seen that the concentration of palladium has the best oxidizing power when 1 wt% of manganese ore is carried. The indicated T 90 means the temperature at which 90% of the supplied carbon monoxide is oxidized and the T 50 means the temperature at which 50% of the carbon monoxide is oxidized. During the reaction, the pretreatment of each catalyst was maintained for 30 minutes in an air atmosphere at 400 ° C to maintain the same oxidation rate of the catalyst.

[실시예 5][Example 5]

산화력이 우수한 촉매라 할지라도 장시간에 걸처서 사용하게 되면 촉매의 비활성화가 발생되어 초기의 산화활성이 상실될 수 있다. 따라서 본 발명에서 제조한 망간광석을 담체로한 파라듐 촉매를 장시간에 걸처서 산화반응을 수행하여 이의 특성에 대하여 고찰하였다. 이 때 사용된 반응물은 일산화탄소 2000ppm을 사용하였으며 균형가스는 공기이다. 그 결과 제4도와 같이 65일 동안에 약 2-3%의 전환율 감소가 발생될 정도로 매우 안정적인 촉매작용을 보이는 우수한 촉매임을 알수 있다.Even if a catalyst having excellent oxidizing power is used for a long time, the catalyst may be inactivated and its initial oxidation activity may be lost. Therefore, the palladium catalyst prepared by using the manganese ore prepared in the present invention as a support is subjected to oxidation reaction for a long time, and its properties have been investigated. The reactant used was 2000 ppm of carbon monoxide and the balance gas was air. As a result, it can be seen that the catalyst is an excellent catalyst exhibiting a very stable catalytic activity such that a reduction in conversion of about 2-3% occurs over 65 days as in the fourth step.

또한 대부분의 촉매들은 수분이 존재할 때 비활성화 되어 활성의 감소가 초래될 수 있다. 이러한 현상은 매우 급격하게 진행되며 몇몇 촉매들은 활성이 매우 우수함에도 불구하고 사용범위가 한정적인 약점이 잇다. 따라서 본 발명에서는 수분의 영향에 대하여 고찰하기 위하여 공기의 수분을 5vol.% 일산화탄소 2000ppm으로 혼합한 가스를 반응물로 공급하면서 일산화탄소의 전환율을 측정하였다. 그 결과 제5도에 보인바와 같이 72시간에 걸처서 일정한 활성을 보이는 매우 놀라운 효과를 보였다.Also, most catalysts can be deactivated in the presence of moisture, resulting in reduced activity. This phenomenon is very rapid, and some catalysts have a limited activity range despite their excellent activity. Therefore, in order to investigate the influence of moisture, the conversion rate of carbon monoxide was measured while supplying a gas obtained by mixing moisture of air with 2000 ppm of 5 vol.% Carbon monoxide as a reactant. As a result, as shown in FIG. 5, a remarkable effect showing constant activity over 72 hours was shown.

Claims (5)

천연망간광석을 분쇄한 입자를 300℃-500℃의 공기 분위기에서 1-2시간 산화물 형태로 처리함을 특징으로 하는 일산화탄소 및 휘발성 유기화합물 산화용 천연망간광석 입자로된 촉매.Characterized in that the particles obtained by pulverizing natural manganese ore are treated in the form of oxide in an air atmosphere at 300 ° C to 500 ° C for 1 to 2 hours to obtain a natural manganese ore particle for oxidation of carbon monoxide and volatile organic compounds. 천연망간광석을 담체로하여 귀금속 담지 방법에 의해 일산화탄소 및 휘발성 유기화합물 산화용 망간광석을 담체로한 귀금속 촉매.A noble metal catalyst comprising natural manganese ore as a carrier and manganese ore for oxidation of carbon monoxide and volatile organic compounds as a carrier by a noble metal loading method. 청구범위 제 1 항에 있어서, 천연망간광석을 구성하는 조성물의 구성비가 망간 40-60중량%이고 실리카, 알루미나(산화알미늄), 철, 산화칼슘, 산화마그네슘의 각각이 0.1-5중량%이며 나머지가 망간과 철에 결합한 산소임을 특징으로하는 일산화탄소 및 휘발성 유기화합물의 산화용 망간광석으로된 촉매.The composition according to claim 1, wherein the composition of the composition constituting the natural manganese ore is 40-60 wt% of manganese, each of the silica, alumina (aluminum oxide), iron, calcium oxide and magnesium oxide is 0.1-5 wt% Wherein the catalyst is oxygen bonded to manganese and iron. The catalyst is a manganese ore for oxidation of carbon monoxide and a volatile organic compound. 청구범위 제 2항에 있어서, 귀금속 담지 방법은 천연망간광석 입자를 염화팔라듐 또는 염화백금 수용액에 침지하고 80℃에서 1-3시간 교반한후 진공회전 증발기에서 건조하여 이를 70-90℃ 오븐(OVEN)에서 20-28시간 건조시키고 이를 다시 250-400℃에서 5% H2/He으로 2-4시간 환원처리한후 공기분위기에서 2-4시간 소정함을 특징으로 하는 일산화탄소 및 휘발성 유기화합물 산화용 망간광석을 담체로한 귀금속 촉매.The method for supporting noble metal according to claim 2, wherein the natural manganese ore particles are immersed in an aqueous solution of palladium chloride or platinum chloride, stirred at 80 ° C for 1 to 3 hours, dried in a vacuum rotary evaporator, ) For 20-28 hours, reducing it again to 250-400 ° C with 5% H 2 / He for 2-4 hours, and then setting it in an air atmosphere for 2-4 hours to oxidize carbon monoxide and volatile organic compounds Precious metal catalyst with manganese ore as carrier. 청구범위 제 2 항에 및 제 4 항에 있어서, 귀금속이 팔라듐, 백금임을 특징으로 하는 망간광석을 담체로한 귀금속 촉매.The noble metal catalyst according to any one of claims 2 and 4, wherein the noble metal is palladium or platinum.
KR1019970019610A 1997-05-20 1997-05-20 Manganese ore for oxidizing co and volatile organic compound, and its use as catalyst carrier KR100224634B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970019610A KR100224634B1 (en) 1997-05-20 1997-05-20 Manganese ore for oxidizing co and volatile organic compound, and its use as catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970019610A KR100224634B1 (en) 1997-05-20 1997-05-20 Manganese ore for oxidizing co and volatile organic compound, and its use as catalyst carrier

Publications (2)

Publication Number Publication Date
KR19980084033A true KR19980084033A (en) 1998-12-05
KR100224634B1 KR100224634B1 (en) 1999-10-15

Family

ID=19506451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970019610A KR100224634B1 (en) 1997-05-20 1997-05-20 Manganese ore for oxidizing co and volatile organic compound, and its use as catalyst carrier

Country Status (1)

Country Link
KR (1) KR100224634B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440907B1 (en) * 2001-11-29 2004-07-21 (주)에너피아 Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using Natural Manganese Ore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020094344A (en) * 2001-06-11 2002-12-18 학교법인고려중앙학원 Method for Desulfurization Using Natural Manganese Ore and Method for Regenerating a Desulfurizing Agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196730A (en) * 1983-04-22 1984-11-08 Nippon Kokan Kk <Nkk> Ore catalyst method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440907B1 (en) * 2001-11-29 2004-07-21 (주)에너피아 Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using Natural Manganese Ore

Also Published As

Publication number Publication date
KR100224634B1 (en) 1999-10-15

Similar Documents

Publication Publication Date Title
Liu et al. Quasi free K cations confined in hollandite-type tunnels for catalytic solid (catalyst)-solid (reactant) oxidation reactions
Ri et al. Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation
Pasel et al. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3
Shukla et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution
Lu et al. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas
Hu et al. Effect of crystal phase of MnO2 with similar nanorod‐shaped morphology on the catalytic performance of benzene combustion
Zhao et al. Nitrogen-modified activated carbon supported bimetallic gold–cesium (i) as highly active and stable catalyst for the hydrochlorination of acetylene
Li et al. Catalytic oxidation of VOCs over Al-and Fe-pillared montmorillonite
CN107774120B (en) Process for catalyzing and oxidizing VOCs (volatile organic compounds) by microwave cooperation
Kawi et al. Catalytic decomposition and reduction of N2O on Ru/MCM-41 catalyst
RU2175573C2 (en) Oxidation catalyst
Lingaiah et al. Structure and activity of microwave irradiated silica supported Pd–Fe bimetallic catalysts in the hydrodechlorination of chlorobenzene
Deka et al. Using coal fly ash as a support for Mn (II), Co (II) and Ni (II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization
Li et al. Tandem supported Pt and ZSM-5 catalyst with separated catalytic functions for promoting multicomponent VOCs oxidation
CN113926448A (en) Supported niobium oxide catalyst and method for catalytic degradation of dimethyl sulfoxide by using same
Chaghaganooj et al. Ce and Mn/bio-waste-based activated carbon composite: Characterization, phenol adsorption and regeneration
Huang et al. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer
Wang et al. Effects of sulfur poisoning on physicochemical properties and performance of MnO2/AlNi-PILC for toluene catalytic combustion
Doheim et al. Catalytic conversion of ethanol and iso-propanol over ZnO-treated Co3O4/Al2O3 solids
Do Thi et al. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation
KR19980084033A (en) Manganese ore for oxidizing carbon monoxide and volatile organic compounds and noble metal catalyst containing the same
Wang et al. Decomposition of water-containing nitrous oxide gas using Ru/Al2O3 catalysts
Xue et al. Preparation and characterization of highly efficient CuFe mixed oxides for total oxidation of toluene
CN113101920A (en) Catalytic ozonation catalyst, preparation and application in catalytic ozonation of VOCs
Dimitrova et al. Metallurgical slag as a support of catalysts for complete oxidation in the presence of ozone

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040707

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee