KR19980036684A - Manufacturing method of negative electrode active material for lithium battery - Google Patents

Manufacturing method of negative electrode active material for lithium battery Download PDF

Info

Publication number
KR19980036684A
KR19980036684A KR1019960055271A KR19960055271A KR19980036684A KR 19980036684 A KR19980036684 A KR 19980036684A KR 1019960055271 A KR1019960055271 A KR 1019960055271A KR 19960055271 A KR19960055271 A KR 19960055271A KR 19980036684 A KR19980036684 A KR 19980036684A
Authority
KR
South Korea
Prior art keywords
negative electrode
electrode active
active material
polymerization reaction
manufacturing
Prior art date
Application number
KR1019960055271A
Other languages
Korean (ko)
Other versions
KR100420043B1 (en
Inventor
윤상영
조헌구
Original Assignee
손욱
삼성전관 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손욱, 삼성전관 주식회사 filed Critical 손욱
Priority to KR1019960055271A priority Critical patent/KR100420043B1/en
Publication of KR19980036684A publication Critical patent/KR19980036684A/en
Application granted granted Critical
Publication of KR100420043B1 publication Critical patent/KR100420043B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

초기중합체인 열경화성수지에 중합반응촉매제를 일정하게 혼합한 원료용액을 소정의 두께로 주조하여 형성한 음극화물질 소재를 공기중에서 소정의 기간 동안 방치하는 원료제조공정(P1)과, 상기한 원료제조공정(P1)에서 제조한 음극활물질 소재를 소정의 온도로 일정시간 유지시키는 것에 의하여 수분과 수소 및 질소 등을 증발시키며 중합반응이 진행되는 중합반응공정(P2)과, 중합반응공정(P2)보다 고온에서 음극활물질 소재를 일정시간 열처리하는 탄소화공정(P3)과, 탄소화공정(P3)보다 고온에서 음극활물질 소재를 일정시간 고온 열처리하는 흑연화공정(P4)으로 이루어지는 리튬전지용 음극활물질 제조방법을 제공한다.A raw material manufacturing step (P1) of leaving the cathode material formed by casting a raw material solution having a predetermined thickness mixed with a polymerization reaction catalyst to a thermosetting resin, which is an initial polymer, for a predetermined period of time, and the raw material manufacturing process described above. By maintaining the material of the negative electrode active material prepared in step (P1) at a predetermined temperature for a predetermined time, the polymerization reaction step (P2) and the polymerization reaction step (P2) in which the polymerization reaction proceeds by evaporating water, hydrogen and nitrogen, etc. A method of manufacturing a negative electrode active material for lithium batteries, comprising a carbonization process (P3) for heat treatment of the negative electrode active material material at a high temperature for a predetermined time and a graphitization process (P4) for high temperature heat treatment of the negative electrode active material for a certain time at a higher temperature than the carbonization process (P3). To provide.

Description

리튬전지용 음극활물질 제조방법Manufacturing method of negative electrode active material for lithium battery

본 발명은 열경화성수지와 중합촉매제를 혼합한 다음 중합반응과 탄소화처리 및 흑연화처리를 행하여 미세한 기공을 보유하며 표면에 흑연층이 형성되는 음극활물질을 제조하는 리튬전지용 음극활물질 제조방법에 관한 것이다.The present invention relates to a method for producing a negative electrode active material for a lithium battery for preparing a negative electrode active material having a fine pore and a graphite layer formed on the surface by mixing a thermosetting resin and a polymerization catalyst, followed by polymerization, carbonization and graphitization. .

일반적으로 리튬이차전지 특히 코발트산 리튬-탄소계 이차전지는 음극의 충전반응이 반응속도가 비교적 빠른 탄소속으로 리튬이온이 인터카레이션(intercalation)되는 반응이므로 급속충전이 가능하고 리튬이온의 상태로 존재하므로 안정성도 기대되는 고전압용의 전지이다.In general, a lithium secondary battery, particularly a lithium cobalt-carbon secondary battery, is capable of rapid charging because lithium ions are intercalated into a carbon having a relatively fast reaction rate. It is a battery for high voltages that exists because of its stability.

상기한 코발트산 리튬-탄소계 이차전지의 양극을 형성하는 양극활물질은 코발트(Co)염과 리튬(Li)염을 혼합하여 고온에서 소성하여 얻어지는 코발트산 리튬(LiCoO2)으로 코발트(Co)와 산소(O)로 형성되는 기본 골격의 층간에 리튬(Li)이 배위하는 이른바 리튬의 층간화합물(intercalation compound)이므로 충방전에 의해서 리튬이 출입하게 된다. 즉 코발트산 리튬은 처음부터 리튬이온(Li+)을 함유한 화합물이고 상기한 리튬이온이 충방전에 관여하여 방전전위도 리튬의 전위(Li+/Li)에 대해서 +4V 가까이되어 높으므로 고에너지밀도가 얻어진다.The positive electrode active material forming the positive electrode of the lithium cobalt-carbon secondary battery is lithium cobalt (LiCoO 2 ) obtained by mixing a cobalt (Co) salt and a lithium (Li) salt and baking at a high temperature. Since lithium (Li) is coordinated between the layers of the basic skeleton formed of oxygen (O), so-called lithium intercalation compound (intercalation compound), lithium is introduced and discharged by charging and discharging. That is, lithium cobalt acid is a compound containing lithium ions (Li + ) from the beginning, and since the lithium ions are involved in charging and discharging, the discharge potential is high near + 4V relative to the potential (Li + / Li) of lithium, and thus high energy. Density is obtained.

상기한 코발트산 리튬-탄소계 이차전지의 음극을 구성하는 음극활물질은 탄소원자 6개에 리튬원자 1개가 인터카레이션된 탄소재료(LiC6)로서 372mAh/g의 이론용량밀도를 나타낸다. 상기한 탄소재료는 결정성 탄소재료와 비정질 탄소재료가 사용되며, 결정성 탄소재료는 방전할 때에 전압곡선의 평탄성 및 극판을 제조할 때의 충진율과 사이클 수명특성에서 유리하고, 비정질 탄소재료는 C축방향으로의 넓은 간극 및 공극 등의 구조로 인하여 리튬의 인터카레인션에 한계가 정해져 있지 않으므로 음극의 고용량화가 가능하고 낮은 열처리온도등에서 유리하다.'The negative electrode active material constituting the negative electrode of the lithium cobalt-carbonate secondary battery is a carbon material (LiC 6 ) in which one lithium atom is intercalated to six carbon atoms (LiC 6 ) and has a theoretical capacity density of 372 mAh / g. As the carbon material, a crystalline carbon material and an amorphous carbon material are used. The crystalline carbon material is advantageous in the flatness of the voltage curve during discharge and the filling rate and cycle life characteristics in manufacturing the electrode plate, and the amorphous carbon material is C. Due to the structure of wide gaps and voids in the axial direction, there is no limit on the intercalation of lithium, which enables higher capacity of the cathode and is advantageous at low heat treatment temperatures.

상기한 코발트산 리튬-탄소계 이차전지의 음극을 구성하는 음극활물질인 상기한 탄소재료는 결정구조가 가장 발달하고 천연흑연과, 원료인 수지와 섬유 등을 2000℃ 이상의 고온에서 소성하여 얻어지는 인조흑연이 있다. 상기한 인조흑연은 제조공정에서 구조(방사구조 또는 양파구조 등)나 형태(구형상 또는 섬유형상 등) 및 입도분포나 소성온도 등의 다양한 제어요소에 따라 서로 다른 전기화학적 물성을 갖는 흑연을 제조하는 것이 가능하다.The carbon material, which is a negative electrode active material constituting the negative electrode of the lithium cobalt-carbonate secondary battery, has the most crystalline structure and artificial graphite obtained by firing natural graphite and resins and fibers as raw materials at a high temperature of 2000 ° C. or higher. There is this. Said artificial graphite produces graphite having different electrochemical properties according to various control elements such as structure (radiation structure or onion structure, etc.) or shape (spherical or fibrous shape) and particle size distribution or firing temperature in the manufacturing process. It is possible to do

상기와 같이 구성되는 종래의 리튬전지용 음극활물질인 탄소재료에 있어서, 비정질 탄소재료는 결정성 탄소재료에 비하여 고용량화는 가능하지만 초기 충방전 손실이 크고 열화가 심하여 사이클수멍 특성이 나쁘다는 문제가 있다.In the carbon material, which is a negative electrode active material for a lithium battery according to the related art, the amorphous carbon material is capable of higher capacity than the crystalline carbon material, but has a problem in that the initial charge and discharge loss is large and the deterioration is severe, resulting in poor cycleability.

또 결정성 탄소재료는 리튬의 인터카레이션량이 정해져 있으므로 372mAh/g의 이론용량밀도 이상의 고용량을 얻기 힘들다는 문제가 있다.In addition, the crystalline carbon material has a problem that it is difficult to obtain a high capacity of more than the theoretical capacity density of 372 mAh / g because the amount of lithium intercalation is determined.

본 발명의 목적은 상기한 문제점을 해결하기 위한 것으로서, 열경화성수지와 중합촉매제를 혼합한 원료용액을 중합반응과 탄소화처리 및 흑연화처리를 행하여 미세한 기공을 보유하는 음극활물질을 제조하는 리튬전지용 음극활물질 제조방법을 제공하는 것이다.An object of the present invention is to solve the above problems, a negative electrode for a lithium battery to prepare a negative electrode active material having fine pores by performing a polymerization reaction, carbonization and graphitization treatment of a raw material solution mixed with a thermosetting resin and a polymerization catalyst It is to provide a method for producing an active material.

본 발명 리튬전지용 음극활물질 제조방법은 초기중합체인 열경화성수지에 중합반응촉매제를 일정하제 혼합한 원료용액을 소정의 두께로 주조하여 형성한 음극 활물질 소재를 공기중에서 소정의 기간 동안 방치하는 원료제조공정과, 상기한 원료 제조공정에서 제조한 음극활물질 소재를 소정의 온도로 일정시간 유지시키는 것에 의하여 수분과 수소 및 질소 등을 증발시키며 중합반응이 진행되는 중합반응공정과, 상기한 중합반응공정 고온에서 상기한 음극활물질 소재를 일정시간 열처리하는 탄소화공정과, 상기한 탄소화공정보다 고온에서 상기한 음극활물질 소재를 일정시간 고온 열처리하는 흑연화공정으로 이루어진다.The method of manufacturing a negative electrode active material for a lithium battery according to the present invention comprises a raw material manufacturing process of leaving a negative active material material formed by casting a raw material solution obtained by mixing a polymerization reaction catalyst to a thermosetting resin, which is an initial polymer, to a predetermined thickness for a predetermined period of time; The polymerization reaction step of evaporating water, hydrogen, nitrogen, etc. by maintaining the cathode active material material prepared in the raw material manufacturing process at a predetermined temperature for a predetermined time, and the polymerization reaction proceeds; A carbonization process for heat treatment of a negative electrode active material material for a predetermined time, and a graphitization process for high temperature heat treatment of the negative electrode active material material for a predetermined time at a higher temperature than the carbonization process.

상기한 열경화성수지로는 페놀, 푸란(furan), 폴리이미드, 폴리비닐알코올, 셀룰로이즈, 에폭시, 폴리스티렌 수지 등이 사용된다.As the thermosetting resin, phenol, furan, polyimide, polyvinyl alcohol, cellulose, epoxy, polystyrene resin, and the like are used.

상기한 중합반응촉매제로는 파라톨루엔 술폰산(paratoluen sulfon acid), 염산, 항산, 초산, 질산, 인산, 붕산, 크롬산, 옥살산 등이 사용된다.As the polymerization catalyst, paratoluen sulfon acid, hydrochloric acid, acid, acetic acid, nitric acid, phosphoric acid, boric acid, chromic acid, oxalic acid, and the like are used.

상기한 열경화성수지인 푸란 수지에 첨가하는 중합촉매제인 파라톨루엔 술폰산의 함량은 0.1∼10wt%가 바람직하다.The content of paratoluene sulfonic acid, which is a polymerization catalyst added to furan resin as the thermosetting resin, is preferably 0.1 to 10 wt%.

상기한 원료제조공정에서 원료용액을 음극활물질을 소재로 주조하는 두께는 60∼100μm의 범위가 바람직하고, 공기중에 방치하는 기간은 1시간∼7일이 바람직하다.In the raw material manufacturing process, the thickness of casting the raw material solution to the negative electrode active material is preferably in the range of 60 to 100 µm, and the period of leaving it in air is preferably 1 hour to 7 days.

또 상기한 중합반응공정의 온도범위는 70∼300℃가 바람직하고, 유지시간은 1∼96시간 정도가 바람직하다.Moreover, as for the temperature range of the said polymerization reaction process, 70-300 degreeC is preferable, and the holding time of about 1 to 96 hours is preferable.

상기한 탄소화공정의 온도범위는 500∼1300℃가 바람직하고, 유지시간은 2시간 정도가 바람직하다.As for the temperature range of the said carbonation process, 500-1300 degreeC is preferable, and the holding time of about 2 hours is preferable.

상기한 흑연화공정의 온도범위는 2000∼3000℃가 바람직하고, 유지시간은 30시간 정도가 바람직하다.As for the temperature range of the graphitization process, 2000-3000 degreeC is preferable, and the holding time of about 30 hours is preferable.

상기와 같이 이루어지는 본 발명 리튬전지용 음극활물질 제조방법으로 음극활물질을 제조하면, 상기한 탄소화공정에서 표면으로부터 60μm정도의 미세기공층이 형성되고, 상기한 흑연화공정에서 표면에 탄소가 흑연으로 변화하여 흑연층이 형성된다. 상기한 미세기공의 크기는 수 nm이고, 산소농도에 크게 좌우되며 초기 중합 반응할 때의 분위기에 의해 결정된다.When the negative electrode active material is manufactured by the method of preparing a negative electrode active material for a lithium battery according to the present invention as described above, a fine pore layer of about 60 μm is formed from the surface in the carbonization process, and carbon is changed to graphite on the surface in the graphitization process. The graphite layer is formed. The size of the micropores is several nm, largely dependent on the oxygen concentration and determined by the atmosphere during the initial polymerization reaction.

도 1은 본 발명에 따른 리튬전지용 음극활물질 제조방법의 일실시예를 나타내는 공정도.1 is a process chart showing one embodiment of a method for manufacturing a negative electrode active material for a lithium battery according to the present invention.

도 2는 본 발명에 따른 리튬전지용 음극활물질 제조방법에 의하여 제조된 음극활물질을 나타내는 사시도.Figure 2 is a perspective view showing a negative electrode active material prepared by the method for producing a negative electrode active material for lithium batteries according to the present invention.

다음으로 본 발명에 따른 리튬전지용 음극활물질 제조방법의 가장 바람직한 실시예를 도면을 참조하여 상세히 설명한다.Next, the most preferred embodiment of the method for preparing a negative electrode active material for a lithium battery according to the present invention will be described in detail with reference to the accompanying drawings.

먼저 도 1에 나타낸 바와 같이, 본 발명에 따른 리튬전지용 음극활물질 제조방법의 일실시예는 초기중합체인 열경화성수지에 중합반응촉매제를 일정하게 혼합한 원료용액을 소정의 두께로 주조하여 형성하는 음극활물질 소재를 공기중에서 소정의 기간 동안 방치하는 원료제조공정(P1)과, 상기한 원료제조공정(P1)에서 제조한 음극활물질 소재를 소정의 온도로 일정시간 유지시키는 것에 의하여 수분과 수소 및 질소 등을 증발시키며 중합반응이 진행되는 중합반응공정(P2)과, 상기한 중합반응공정(P2)보다 고온에서 상기한 음극활물질 소재를 일정시간 열처리하는 탄소화공정(P3)과, 상기한 탄소화공정(P3)보다 고온에서 상기한 음극활물질 소재를 일정시간 고온 열처리하는 흑연화공정(P4)으로 이루어진다.First, as shown in FIG. 1, one embodiment of a method for preparing a negative electrode active material for a lithium battery according to the present invention is a negative electrode active material formed by casting a raw material solution having a predetermined thickness mixed with a polymerization reaction catalyst to a thermosetting resin which is an initial polymer. Moisture, hydrogen, nitrogen, and the like are maintained by maintaining the raw material manufacturing process (P1) in which the material is left in the air for a predetermined period, and maintaining the negative electrode active material material produced in the raw material manufacturing process (P1) at a predetermined temperature for a predetermined time. A polymerization reaction step (P2) in which the polymerization reaction proceeds by evaporation, a carbonization step (P3) for heat-treating the negative electrode active material material at a higher temperature than the polymerization reaction step (P2) for a predetermined time, and the carbonization step ( It consists of a graphitization step (P4) of heat-treating the negative electrode active material material at a higher temperature than P3 for a predetermined time.

상기한 열경화성수지로는 페놀, 푸란(furan), 폴리이미드, 폴리비닐알코올, 셀룰로이즈, 에폭시, 폴리스티렌수지 등이 사용된다.As the thermosetting resin, phenol, furan, polyimide, polyvinyl alcohol, cellulose, epoxy, polystyrene resin and the like are used.

상기한 중합반응촉매제로는 파라톨루엔 술폰산(paratoluen sulfon acid), 염산, 황산, 초산, 질산, 인산, 붕산, 크롬산, 옥살산 등이 사용된다.As the polymerization catalyst, paratoluen sulfon acid, hydrochloric acid, sulfuric acid, acetic acid, nitric acid, phosphoric acid, boric acid, chromic acid, oxalic acid, and the like are used.

상기한 열경화성수지(예를 들면 페놀, 푸란, 폴리이미드, 폴리비닐알코올 셀룰로이즈, 에폭시, 폴리스티렌 수지 등)에 첨가하는 중합촉매제(예를 들면 파라톨루엔 술폰산, 염산, 황산, 초산, 질산, 인산, 붕산, 크롬산, 옥살산 등)의 함량은 0.1∼10wt%가 바람직하다.Polymerization catalysts (e.g., paratoluene sulfonic acid, hydrochloric acid, sulfuric acid, acetic acid, nitric acid, phosphoric acid, Boric acid, chromic acid, oxalic acid, etc.) is preferably from 0.1 to 10wt%.

상기한 원료제조공정(P1)에서 원료용액을 소정의 두께로 주조(casting)하여 음극활물질 소재를 형성하는 방법은 도 2에 나타낸 바와 같이, 닥터블레이드(doctor blade)를 이용하여 대략 60∼100μm의 범위의 두께로 유리판(2)위에 소정의 형상으로 음극활물질 소재(4)를 형성하는 것이다.In the raw material manufacturing process (P1), a method of forming a negative electrode active material material by casting the raw material solution to a predetermined thickness, as shown in FIG. 2, is performed using a doctor blade of about 60 to 100 μm. It is to form the negative electrode active material material 4 in a predetermined shape on the glass plate 2 to the thickness of the range.

상기에서 닥터블레이드는 슬러리를 주조하는 날(blade)를 지지하는 구조와, 날의 위치(예를 들면 모재와 날의 간극)를 조절할 수 있도록 마이크로메터가 지지대에 부착되어 최종 막의 두께를 제어할 수 있는 구조이다.In the above, the doctor blade has a structure for supporting the blade for casting the slurry, and a micrometer is attached to the support to control the position of the blade (for example, the gap between the base material and the blade) to control the thickness of the final film. It is a structure.

상기한 닥터블레이드는 슬러리(예를 들면 초기중합체인 열경화성수지(점도가 있는 액상)에 중합반응촉매제를 혼합한 액체)를 유리판(2)위에 부은 다음, 날을 슬러리에 닿게 하여 잡아당김에 의하여 날과 모재인 유리판(2)의 균일한 간극 사이로 슬러리가 도포되도록 한다. 최종 두께는 초기 슬러리의 점도와 당기는 속도 등에 의하여 변경된다.The doctor blade is prepared by pouring a slurry (e.g., a liquid obtained by mixing a polymerization catalyst with a thermosetting resin (viscous liquid) as an initial polymer) onto a glass plate 2, and then pulling the blade by pulling the blade against the slurry. And the slurry is applied between the uniform gaps of the glass plate 2 as the base material. The final thickness is changed by the viscosity of the initial slurry and the pulling speed.

또 상기한 원료제조공정(P1)에서 소정의 형상으로 주조된 음극활물질 소재(4)를 공기중에 방치하는 기간은 1시간∼7일이 바람직하다.In addition, the period of leaving the negative electrode active material material 4 cast in a predetermined shape in the air in the above-described raw material manufacturing step P1 in air is preferably 1 hour to 7 days.

상기한 실시예에서는 원료제조공정(P1)에서 소정의 형상으로 주조된 음극활물질 소재(4)를 공기중에 방치하는 것으로 설명하였지만, 산소분위기에 방치하거나 물에 두는 것도 가능하다. 방치하는 분위기에 따라 탄소구조가 미세하게 변환된다.In the above embodiment, the negative electrode active material 4 cast in a predetermined shape in the raw material manufacturing step P1 was described as being left in the air, but it can also be left in an oxygen atmosphere or placed in water. The carbon structure is finely converted depending on the atmosphere to be left.

또 상기한 중합반응공정(P2)의 온도범위는 70∼300℃가 바람직하고, 유지시간은 1∼96시간 정도가 바람직하다. 상기한 중합반응공정(P2)에서의 승온율은 0.03∼10℃/분이 바람직하고, 강온율은 0.03∼10℃/분이 바람직하다.Moreover, as for the temperature range of said polymerization reaction process (P2), 70-300 degreeC is preferable, and the holding time of about 1 to 96 hours is preferable. As for the temperature increase rate in the said polymerization reaction process (P2), 0.03-10 degreeC / min is preferable, and the temperature-fall rate is 0.03-10 degreeC / min is preferable.

상기한 탄소화공정(P3)의 온도범위는 500∼1300℃가 바람직하고, 유지시간은 2시간 정도가 바람직하다. 상기한 탄소화공정(P3)에서의 승온율은 0.1∼10℃/분이 바람직하고, 강온율은 0.1∼10℃/분이 바람직하다.As for the temperature range of said carbonization process (P3), 500-1300 degreeC is preferable, and the holding time of about 2 hours is preferable. As for the temperature increase rate in said carbonization process (P3), 0.1-10 degreeC / min is preferable, and, as for a temperature-fall rate, 0.1-10 degreeC / min is preferable.

상기한 흑연화공정(P4)의 온도범위는 2000∼3000℃가 바람직하고, 유지시간은 30분 정도가 바람직하다. 상기한 흑연화공정(P4)에서의 승온율은 5∼10℃/분이 바람직하고, 강온율은 5∼20℃/분이 바람직하다.As for the temperature range of said graphitization process (P4), 2000-3000 degreeC is preferable, and the holding time of about 30 minutes is preferable. 5-10 degreeC / min is preferable, and, as for a temperature-fall rate in said graphitization process (P4), 5-20 degreeC / min is preferable.

상기와 같이 이루어지는 본 발명 리튬 전지용 음극활물질 제조방법으로 음극활물질을 제조하면, 도 2에 나타낸 바와 같이 상기한 탄소화공정(P3)에서 표면으로 부터 60μm정도의 미세기공층(6)이 형성되고, 상기한 흑연화공정(P4)에서 표면에 탄소가 흑연으로 변화하여 흑연층(8)이 형성된다. 상기한 미세기공층(6)에 형성되는 미세기공(7)의 크기는 수 nm이고, 산소농도에 크게 좌우되며 초기 중합반응할 때의 분위기에 의해 결정된다.When the negative electrode active material is manufactured by the method for preparing a negative electrode active material for a lithium battery according to the present invention as described above, a microporous layer 6 having a thickness of about 60 μm from the surface is formed in the carbonization process (P3) as shown in FIG. In the graphitization step P4, carbon is changed to graphite on the surface to form the graphite layer 8. The size of the micropores 7 formed in the microporous layer 6 is several nm, largely dependent on the oxygen concentration, and determined by the atmosphere during the initial polymerization reaction.

상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허 청구의 범위와 발명의 상세한 설명 및 첨부한 도면의 범위안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

상기와 같이 이루어지는 본 발명 리튬전지용 음극활물질 제조방법에 의하여 음극활물질을 제조하면, 흑연층 또는 미세기공을 보유하는 비정질층이 생성되므로 전극막 내부까지 미세기공을 따라서 리튬이온의 확산이 용이하므로 전지의 고용량화가 가능하다.When the negative electrode active material is manufactured by the method of preparing a negative electrode active material for a lithium battery according to the present invention as described above, an amorphous layer having a graphite layer or fine pores is generated, so that lithium ions are easily diffused along the micropores to the inside of the electrode film. High capacity is possible.

또 활물질 제조공정이 간단하고 열처리하는 온도조건을 적절하게 변화시키는 것에 의하여 탄소조직의 제어가 가능하므로 비정질탄소로부터 흑연까지 간단하게 원하는 조직을 얻을 수가 있다.In addition, since the carbon structure can be controlled by simply changing the temperature conditions to be heat-treated and the active material manufacturing process, the desired structure can be easily obtained from amorphous carbon to graphite.

더욱이 비정질과 흑연의 이중조직을 갖는 활물질의 구조는 전지의 고용량화와 더불어 사이클 수명특성의 향상도 도모할 수 있다.In addition, the structure of the active material having a double structure of amorphous and graphite can improve the cycle life characteristics as well as increase the capacity of the battery.

Claims (10)

초기중합체인 열경화성수지에 중합반응촉매제를 일정하게 혼합한 원료용액을 소정의 두께로 주조하여 형성한 음극활물질 소재를 공기중에서 소정의 기간 동안 방치하는 원료제조공정과, 상기한 원료제조공정에서 제조한 음극활물질 소재를 소정의 온도로 일정시간 유지시키는 것에 의하여 수분과 수소 및 질소 등을 증발시키며 중합반응이 진행되는 중합반응공정과, 상기한 중합반응공정보다 고온에서 상기한 음극활물질 소재를 일정시간 열처리하는 탄소화공정과, 상기한 탄소화공정보다 고온에서 상기한 음극활물질 소재를 일정시간 고온 열처리하는 흑연화공정으로 이루어지는 리튬전지용 음극활물질 제조방법.A raw material manufacturing step of leaving a negative active material material formed by casting a raw material solution obtained by uniformly mixing a polymerization reaction catalyst with a thermosetting resin, which is an initial polymer, to a predetermined thickness, for a predetermined period of time, and the raw material manufacturing step By maintaining the negative electrode active material at a predetermined temperature for a predetermined time, a polymerization reaction step of evaporating moisture, hydrogen and nitrogen, and the polymerization reaction proceeds, and heat treatment of the negative electrode active material material at a higher temperature than the polymerization reaction process for a predetermined time. A method for producing a negative electrode active material for a lithium battery, comprising a carbonization step and a graphitization step of subjecting the negative electrode active material material to a high temperature at a higher temperature than the carbonization step for a predetermined time. 제1항에 있어서, 상기한 열경화성수지에 첨가하는 중합반응촉매제의 함량은 0.1∼10wt%인 리튬전지용 음극활물질 제조방법.The method of claim 1, wherein the content of the polymerization catalyst added to the thermosetting resin is 0.1 to 10 wt%. 제1항에 있어서, 상기한 원료제조공정에서 소정의 형상으로 주조된 음극활물질 소재를 공기중에 방치하는 기간은 1시간∼7일인 리튬전지용 음극활물질 제조방법.The method of manufacturing a negative electrode active material for a lithium battery according to claim 1, wherein the period of leaving the negative electrode active material material cast in a predetermined shape in the air in the raw material manufacturing step in air is 1 hour to 7 days. 제1항에 있어서, 상기한 원료제조공정에서 소정의 형상으로 주조된 음극활물질 소재를 산소분위기에서 1시간∼7일간 방치하는 리튬전지용 음극활물질 제조방법.The method of manufacturing a negative electrode active material for a lithium battery according to claim 1, wherein the negative electrode active material material cast in a predetermined shape in the raw material manufacturing process is left in an oxygen atmosphere for 1 hour to 7 days. 제1항에 있어서, 상기한 원료제조공정에서 소정의 형상으로 주조된 음극활물질 소재를 물속에서 1시간∼7일간 방치하는 리튬전지용 음극활물질 제조방법.The method of manufacturing a negative electrode active material for a lithium battery according to claim 1, wherein the negative electrode active material material cast in a predetermined shape in the raw material manufacturing step is left in water for 1 hour to 7 days. 제1항에 있어서, 상기한 중합반응공정의 온도범위는 70∼300℃인 리튬전지용 음극활물질 제조방법.The method of claim 1, wherein the temperature range of the polymerization reaction step is 70 ~ 300 ℃. 제1항에 있어서, 상기한 탄소화공정의 온도범위는 500∼1300℃인 리튬전지용 음극활물질 제조방법.The method of claim 1, wherein the temperature range of the carbonization process is 500 ~ 1300 ℃. 제1항에 있어서, 상기한 흑연화공정의 온도범위는 2000∼3000℃인 리튬전지용 음극활물질 제조방법.The method of claim 1, wherein the temperature range of the graphitization step is 2000 ~ 3000 ℃. 제1항에 있어서, 상기한 열경화성수지는 푸란수지인 리튬전지용 음극활물질제조방법.The method of claim 1, wherein the thermosetting resin is a furan resin. 제1항에 있어서, 상기한 중합반응촉매제는 파라톨루엔 술폰산인 음극활물질 제조방법.The method of claim 1, wherein the polymerization catalyst is paratoluene sulfonic acid.
KR1019960055271A 1996-11-19 1996-11-19 Method for preparing anode active material for lithium battery KR100420043B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960055271A KR100420043B1 (en) 1996-11-19 1996-11-19 Method for preparing anode active material for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960055271A KR100420043B1 (en) 1996-11-19 1996-11-19 Method for preparing anode active material for lithium battery

Publications (2)

Publication Number Publication Date
KR19980036684A true KR19980036684A (en) 1998-08-05
KR100420043B1 KR100420043B1 (en) 2004-05-10

Family

ID=37323380

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960055271A KR100420043B1 (en) 1996-11-19 1996-11-19 Method for preparing anode active material for lithium battery

Country Status (1)

Country Link
KR (1) KR100420043B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445415B1 (en) * 1997-09-11 2004-10-14 삼성에스디아이 주식회사 Method for manufacturing powdery carbonaceous material useful for anode active material for lithium secondary battery
KR100515593B1 (en) * 2001-04-17 2005-09-16 주식회사 엘지화학 Spherical carbons and method for preparing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605011A (en) * 1983-06-20 1985-01-11 Kanebo Ltd Preparation of porous material of carbon having high strength
JPH07249411A (en) * 1994-03-11 1995-09-26 Osaka Gas Co Ltd Manufacture of negative electrode material for lithium secondary battery and lithium secondary battery
JP3129087B2 (en) * 1994-07-06 2001-01-29 松下電器産業株式会社 Graphite layer
KR0156062B1 (en) * 1995-04-28 1998-11-16 변승봉 Manufacturing method of carbon material for lithium secondary battery by using the furan resin having phosphate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445415B1 (en) * 1997-09-11 2004-10-14 삼성에스디아이 주식회사 Method for manufacturing powdery carbonaceous material useful for anode active material for lithium secondary battery
KR100515593B1 (en) * 2001-04-17 2005-09-16 주식회사 엘지화학 Spherical carbons and method for preparing the same

Also Published As

Publication number Publication date
KR100420043B1 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP4477522B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the negative electrode active material
KR102332760B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110416503B (en) Soft carbon coated sodium titanium phosphate mesoporous composite material and preparation method and application thereof
CN114447325B (en) Porous carbon material, preparation method thereof, negative electrode and lithium metal battery
KR20220104684A (en) Silicon-carbon negative electrode material for lithium ion battery and manufacturing method thereof
CN107946575B (en) Preparation method of nitrogen-doped porous carbon-coated mesocarbon microbeads, composite material prepared by method and application of composite material
CN115010109B (en) Preparation method of phenolic epoxy resin-based hard carbon material, hard carbon material and sodium ion battery
US5741472A (en) Carbonaceous electrode material for secondary battery
CN114122390A (en) Preparation method of carbon electrode material and carbon electrode material
KR100318375B1 (en) Lithium ion secondary battery
CN117117158B (en) Modified sodium ion battery positive electrode material, preparation method thereof and sodium ion battery
CN112531160A (en) Amorphous carbon negative electrode material and preparation method and application thereof
CN112271272B (en) Three-dimensional porous lithium cathode protected by organic modification layer on surface and preparation method and application thereof
CN108963226A (en) C silicon/activity silicon/charcoal core-shell structure composite negative pole material and preparation method thereof
Zhang et al. A wet granulation method to prepare graphite particles with a high tap density for high volumetric energy density lithium-ion storage
KR100570651B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR19990080594A (en) Anode active material for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using same
KR100420043B1 (en) Method for preparing anode active material for lithium battery
CN113451575A (en) Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery
KR100383095B1 (en) Negative active material for lithium secondary battery and method of preparing same
CN113764640A (en) Production method of high-compaction and fast-charging type lithium ion battery cathode material
CN115548278A (en) Composite negative electrode material, preparation method thereof, negative plate and lithium ion battery
CN108878776A (en) A kind of battery cathode sheet and preparation method thereof and a kind of battery
KR100277788B1 (en) Manufacturing method of negative electrode active material for lithium ion secondary battery
KR20140075526A (en) an electrode having conductive material integral structure and a secondary battery using thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140123

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee