KR102666209B1 - 픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치 - Google Patents

픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치 Download PDF

Info

Publication number
KR102666209B1
KR102666209B1 KR1020190174576A KR20190174576A KR102666209B1 KR 102666209 B1 KR102666209 B1 KR 102666209B1 KR 1020190174576 A KR1020190174576 A KR 1020190174576A KR 20190174576 A KR20190174576 A KR 20190174576A KR 102666209 B1 KR102666209 B1 KR 102666209B1
Authority
KR
South Korea
Prior art keywords
pixel
integrator
sensing
voltage
current
Prior art date
Application number
KR1020190174576A
Other languages
English (en)
Other versions
KR20210082034A (ko
Inventor
홍석현
김선윤
소아롬
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020190174576A priority Critical patent/KR102666209B1/ko
Publication of KR20210082034A publication Critical patent/KR20210082034A/ko
Application granted granted Critical
Publication of KR102666209B1 publication Critical patent/KR102666209B1/ko

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0245Clearing or presetting the whole screen independently of waveforms, e.g. on power-on
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

본 발명의 실시예에 따른 픽셀 센싱 장치는 적분기 커패시터에 연결된 반전 입력단자와 적분기 기준전압이 입력되는 비 반전 입력단자를 갖는 적분기 앰프를 포함하며, 상기 적분기 커패시터의 양단이 상기 적분기 기준전압으로 초기화되는 전류 적분기; 적어도 일 픽셀에 연결된 센싱 라인과 상기 센싱 라인에 연결된 라인 커패시터를 센싱 채널 단자를 통해 상기 적분기 기준전압과 다른 저전위 전압으로 초기화하는 라인 초기화 스위치; 및 상기 센싱 채널 단자와 상기 반전 입력단자 사이에 접속된 연결 스위치를 포함한다.

Description

픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치{Pixel Sensing Device And Method And Electroluminescence Display Device Including The Same}
본 발명은 전계발광 표시장치에 관한 것이다.
액티브 매트릭스 타입의 전계발광 표시장치는 발광 소자와 구동 소자를 각각 포함한 픽셀들을 매트릭스 형태로 배열하고 영상 데이터의 계조에 따라 픽셀들에서 구현되는 영상의 휘도를 조절한다. 구동 소자는 자신의 게이트전극과 소스전극 사이에 걸리는 전압(이하, "게이트-소스 간 전압"이라 함)에 따라 발광 소자에 흐르는 픽셀전류를 제어한다. 픽셀전류에 따라 발광 소자의 발광량과 화면의 휘도가 결정된다.
구동 소자의 문턱 전압과 전자 이동도 등은 픽셀의 구동 특성을 결정하므로 모든 픽셀들에서 동일해야 한다. 하지만, 공정 특성, 시변 특성 등 다양한 원인에 의해 픽셀들 간에 구동 특성이 달라질 수 있다. 이러한 구동 특성 차이는 휘도 편차를 초래하여 원하는 화상을 구현하는 데 제약이 된다. 픽셀들 간의 휘도 편차를 보상하기 위해, 픽셀들의 구동 특성을 센싱하고 그 센싱 결과를 기초로 입력 영상의 데이터를 보정하는 외부 보상 기술이 알려져 있다.
외부 보상 기술은 전류 적분기를 통해 픽셀에 흐르는 픽셀 전류를 센싱한다. 픽셀 전류의 센싱 결과인 적분기 출력전압은 ADC(Analog Digital Converter)에 입력되어 디지털값으로 변환된다. 외부 보상 기술은 픽셀 전류를 센싱하기에 앞서 전류 적분기의 출력단자와 픽셀의 특정 노드(발광 소자의 애노드전극에 연결된 구동 소자의 소스 노드)를 적분기 기준전압으로 초기화한다. 적분기 기준전압은 ADC의 센싱 레인지와 발광 소자의 턴 온 전압을 고려하여 정해진다.
센싱 동작 중에 발광 소자는 턴 오프 상태를 유지해야 하므로 상기 특정 노드는 충분히 낮은 적분기 기준전압으로 초기화되어야 한다. 발광 소자의 턴 온 전압이 낮은 모델의 경우 더욱 그러하다. 하지만, 적분기 기준전압이 낮게 설정될수록 ADC의 센싱 레인지가 감소되어 센싱 성능이 저하될 수 있다.
따라서, 본 발명은 센싱 동작 중에 발광 소자의 비정상 발광을 방지하고 센싱 성능을 높일 수 있도록 한 픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치를 제공한다.
본 발명의 실시예에 따른 픽셀 센싱 장치는 적분기 커패시터에 연결된 반전 입력단자와 적분기 기준전압이 입력되는 비 반전 입력단자를 갖는 적분기 앰프를 포함하며, 상기 적분기 커패시터의 양단이 상기 적분기 기준전압으로 초기화되는 전류 적분기; 적어도 일 픽셀에 연결된 센싱 라인과 상기 센싱 라인에 연결된 라인 커패시터를 센싱 채널 단자를 통해 상기 적분기 기준전압과 다른 저전위 전압으로 초기화하는 라인 초기화 스위치; 및 상기 센싱 채널 단자와 상기 반전 입력단자 사이에 접속된 연결 스위치를 포함한다. 상기 연결 스위치는, 상기 전류 적분기와 상기 라인 커패시터가 독립적으로 초기화되는 제1 기간과, 상기 제1 기간에 이어 상기 픽셀에 흐르는 픽셀 전류가 상기 라인 커패시터에 충전되는 제2 기간에서 오프되고, 상기 제2 기간에 이어 상기 반전 입력단자와 상기 라인 커패시터 간의 전류 이동이 생기는 제3 기간에서 온 된다.
본 발명의 실시예에 따른 픽셀 센싱 방법은 적분기 커패시터에 연결된 반전 입력단자와 적분기 기준전압이 입력되는 비 반전 입력단자를 갖는 적분기 앰프를 포함한 전류 적분기를 이용한 픽셀 센싱 방법으로서, 제1 기간 동안, 상기 적분기 커패시터의 양단을 상기 적분기 기준전압으로 초기화하고, 적어도 일 픽셀에 연결된 센싱 라인과 상기 센싱 라인에 연결된 라인 커패시터를 센싱 채널 단자를 통해 상기 적분기 기준전압과 다른 저전위 전압으로 초기화하는 단계; 상기 제1 기간에 이은 제2 기간 동안, 상기 센싱 채널 단자와 상기 반전 입력단자 사이에 접속된 연결 스위치를 오프 시킨 상태에서 상기 픽셀에 흐르는 픽셀 전류로 상기 라인 커패시터를 충전시키는 단계; 및 상기 제2 기간에 이은 제3 기간 동안, 상기 연결 스위치를 온 시킨 상태에서 상기 반전 입력단자와 상기 라인 커패시터 간의 전류 이동으로 인해 변하는 상기 전류 적분기의 적분기 출력 전압을 생성하는 단계를 포함한다.
본 발명은 픽셀과 전류 적분기를 분리하여 초기화함으로써, 픽셀의 초기화 전압(저전위 전압)을 전류 적분기의 초기화 전압(적분기 기준전압)보다 낮추어 센싱 동작 중에 발광 소자의 비 정상적인 발광을 미연에 방지할 수 있다.
본 발명은 픽셀 전류를 센싱 라인의 라인 커패시터에 저장한 후에, 라인 커패시터를 전류 적분기에 연결한다. 라인 커패시터의 충전 전압은 전류 적분기의 초기화전압(적분기 기준전압)보다 낮게 설정되기 때문에, 전류 적분기로부터 라인 커패시터로 전류 이동이 생긴다. 본 발명은 전류 적분기에서 라인 커패시터로 인출되는 전류를 센싱하여 적분기 출력 전압을 생성하기 때문에, ADC 센싱 레인지를 줄일 필요가 없다. 즉, 본 발명은 전류 적분기를 전류 인출형으로 구성할 수 있기 때문에 라인 커패시터의 최대 충전전압보다 큰 범위 내에서 적분기 기준 전압을 최대한 낮게 설정하더라도 적분기 출력전압이 ADC 센싱 레인지를 만족시킬 수 있어 센싱 성능을 높일 수 있다.
본 발명은 적분기 기준 전압을 낮게 설정함으로써, 센싱부의 소비 전력을 줄일 수 있다.
본 발명은 전류 적분기에서 라인 커패시터로 인출되는 전류를 센싱하는 동작 중에 전류 적분기와 픽셀 간의 연결을 차단할 수 있기 때문에, 적분기 출력 전압에 패널의 노이즈 성분이 혼입되는 것을 미연에 방지하여 센싱의 정확성을 더욱 높일 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 실시예에 따른 전계발광 표시장치를 보여주는 블록도이다.
도 2는 도 1의 표시패널에 구비된 픽셀 어레이의 일 예를 보여주는 도면이다.
도 3은 도 2의 픽셀 어레이에 연결된 데이터 구동부의 일 구성을 보여주는 도면이다.
도 4는 도 3에 도시된 픽셀의 일 등가 회로도이다.
도 5는 본 발명의 실시예에 따른 픽셀 센싱 장치와 일 픽셀의 연결 구성을 보여주는 도면이다.
도 6은 도 5의 픽셀 센싱 장치와 픽셀의 구동 파형도이다.
도 7a는 도 6의 제1 기간에서 이루어지는 픽셀 센싱 장치와 픽셀의 동작을 설명하기 위한 도면이다.
도 7b는 도 6의 제2 기간에서 이루어지는 픽셀 센싱 장치와 픽셀의 동작을 설명하기 위한 도면이다.
도 7c는 도 6의 제3 기간에서 이루어지는 픽셀 센싱 장치와 픽셀의 동작을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에 따른 픽셀 센싱 방법을 보여주는 흐름도이다.
본 명세서의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 명세서는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 명세서의 개시가 완전하도록 하며, 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 명세서는 청구항의 범주에 의해 정의될 뿐이다.
본 명세서의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 명세서가 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 본 명세서 상에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 ' ~ 만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, ' ~ 상에', ' ~ 상부에', ' ~ 하부에', ' ~ 옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용될 수 있으나, 이 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 명세서의 기술적 사상 내에서 제2 구성요소일 수도 있다.
본 명세서에서 표시패널의 기판 상에 형성되는 픽셀 회로는 n 타입 MOSFET(Metal Oxide Semiconductor Field Effect Transistor) 구조의 TFT로 구현되거나 또는 p 타입 MOSFET 구조의 TFT로 구현될 수도 있다. TFT는 게이트(gate), 소스(source) 및 드레인(drain)을 포함한 3 전극 소자이다. 소스는 캐리어(carrier)를 트랜지스터에 공급하는 전극이다. TFT 내에서 캐리어는 소스로부터 흐르기 시작한다. 드레인은 TFT에서 캐리어가 외부로 나가는 전극이다. 즉, MOSFET에서의 캐리어의 흐름은 소스로부터 드레인으로 흐른다. n 타입 TFT (NMOS)의 경우, 캐리어가 전자(electron)이기 때문에 소스에서 드레인으로 전자가 흐를 수 있도록 소스 전압이 드레인 전압보다 낮은 전압을 가진다. n 타입 TFT에서 전자가 소스로부터 드레인 쪽으로 흐르기 때문에 전류의 방향은 드레인으로부터 소스 쪽으로 흐른다. 이에 반해, p 타입 TFT(PMOS)의 경우, 캐리어가 정공(hole)이기 때문에 소스로부터 드레인으로 정공이 흐를 수 있도록 소스 전압이 드레인 전압보다 높다. p 타입 TFT에서 정공이 소스로부터 드레인 쪽으로 흐르기 때문에 전류가 소스로부터 드레인 쪽으로 흐른다. MOSFET의 소스와 드레인은 고정된 것이 아니라는 것에 주의하여야 한다. 예컨대, MOSFET의 소스와 드레인은 인가 전압에 따라 변경될 수 있다.
한편, 본 명세서에서 TFT의 반도체층은 옥사이드 소자, 아몰포스 실리콘 소자, 폴리 실리콘 소자 중 적어도 어느 하나로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 명세서의 실시예를 상세히 설명한다. 이하의 설명에서, 본 명세서와 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 명세서의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.
도 1은 본 발명의 실시예에 따른 전계발광 표시장치를 보여주는 도면이다. 그리고, 도 2는 도 1의 표시패널에 구비된 픽셀 어레이의 일 예를 보여주는 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 전계발광 표시장치는 표시패널(10), 드라이버 IC(D-IC)(20), 보상 IC(30), 호스트 시스템(40), 저장 메모리(50), 및 전원회로(60)를 포함할 수 있다. 표시패널(10)을 구동하기 위한 패널 구동부는 표시패널(10)에 구비된 게이트 구동부(15)와, 드라이버 IC(D-IC)(20)에 내장된 데이터 구동부(25)를 포함한다.
표시패널(10)에는 다수의 픽셀 라인들(PNL1~PNL4)이 구비되고, 각 픽셀라인에는 다수의 픽셀들(PXL)과 복수의 신호라인들이 구비된다. 본 발명에서 설명되는 “픽셀 라인”은 물리적인 신호라인이 아니라, 게이트라인의 연장 방향을 따라 서로 이웃한 픽셀들(PXL)과 신호 라인들의 집합체를 의미한다. 신호라인들은 픽셀들(PXL)에 디스플레이용 데이터전압(VDIS)과 센싱용 데이터전압(VSEN)을 공급하기 위한 데이터라인들(140), 픽셀들(PXL)에 픽셀 기준전압(VREF)을 공급하기 위한 기준전압 라인들(150), 픽셀들(PXL)에 게이트신호를 공급하는 게이트라인들(160), 및 픽셀들(PXL)에 고전위 픽셀 전압을 공급하기 위한 고전위 전원 라인들(PWL)을 포함할 수 있다.
표시패널(10)의 픽셀들(PXL)은 매트릭스 형태로 배치되어 픽셀 어레이(Pixel array)를 구성한다. 도 2의 픽셀 어레이에 포함된 각 픽셀(PXL)는 데이터라인들(140) 중 어느 하나에, 기준전압 라인들(150) 중 어느 하나에, 고전위 전원 라인들(PWL) 중 어느 하나에, 그리고 게이트라인들(160) 중 어느 하나에 연결될 수 있다. 도 2의 픽셀 어레이에 포함된 각 픽셀(PXL)은 복수의 게이트라인들(160)에 연결될 수도 있다. 그리고, 도 2의 픽셀 어레이 포함된 각 픽셀(PXL)은 전원회로(60)로부터 저전위 픽셀 전압을 더 공급받을 수 있다. 전원회로(60)는 저전위 전원 라인 또는 패드부를 통해서 저전위 픽셀 전압을 픽셀(PXL)에 공급할 수 있다.
표시패널(10)에는 게이트 구동부(15)가 내장될 수 있다.
게이트 구동부(15)는 도 2의 픽셀 어레이의 게이트라인들(160)에 연결된 복수의 게이트 스테이지들을 포함할 수 있다. 게이트 스테이지들은 픽셀들(PXL)의 스위치 소자들을 제어하기 위한 게이트신호를 생성하여 게이트라인들(160)에 공급할 수 있다.
드라이버 IC(D-IC)(20)는 타이밍 제어부(21)와 데이터 구동부(25)를 포함할 수 있으나 이에 한정되지 않는다. 타이밍 제어부(21)는 드라이버 IC(D-IC)(20) 내에 포함되지 않고 드라이버 IC(D-IC)(20)와 함께 콘트롤 보드에 실장될 수도 있다. 데이터 구동부(25)는 센싱부(22)와 구동전압 생성부(23)를 포함할 수 있으나, 이에 한정되지 않는다.
타이밍 제어부(21)는 호스트 시스템(40)으로부터 입력되는 타이밍 신호들, 예컨대 수직 동기신호(Vsync), 수평 동기신호(Hsync), 도트클럭신호(DCLK) 및 데이터 인에이블신호(DE) 등을 참조로 게이트 구동부(15)의 동작 타이밍을 제어하기 위한 게이트 타이밍 제어신호(GDC)와, 데이터 구동부(25)의 동작 타이밍을 제어하기 위한 데이터 타이밍 제어신호(DDC)를 생성할 수 있다.
데이터 타이밍 제어신호(DDC)는 소스 스타트 펄스(Source Start Pulse), 소스 샘플링 클럭(Source Sampling Clock), 및 소스 출력 인에이블신호(Source Output Enable) 등을 포함할 수 있으나 이에 한정되지 않는다. 소스 스타트 펄스는 구동전압 생성부(23)의 데이터 샘플링 시작 타이밍을 제어한다. 소스 샘플링 클럭은 라이징 또는 폴링 에지에 기준하여 데이터의 샘플링 타이밍을 제어하는 클럭신호이다. 소스 출력 인에이블신호는 구동전압 생성부(23)의 출력 타이밍을 제어한다.
게이트 타이밍 제어신호(GDC)는 게이트 스타트 펄스(Gate Start Pulse), 게이트 쉬프트 클럭(Gate Shift Clock) 등을 포함할 수 있으나, 이에 한정되지 않는다. 게이트 스타트 펄스는 첫 번째 게이트 출력을 생성하는 게이트 스테이지에 인가되어 그 스테이지의 동작을 활성화한다. 게이트 쉬프트 클럭은 게이트 스테이지들에 공통으로 입력되는 것으로서 게이트 스타트 펄스를 쉬프트시키기 위한 클럭신호이다.
타이밍 제어부(21)는 패널 구동회로의 동작 타이밍을 제어함으로써, 파워 온 기간, 각 프레임의 수직 액티브 기간, 각 프레의 수직 블랭크 기간, 파워 오프 기간 중 적어도 어느 하나에서 픽셀들(PXL)의 구동 특성을 센싱할 수 있다. 여기서, 파워 온 기간은 시스템 전원이 인가된 후부터 화면이 켜지기 전까지의 기간이고, 파워 오프 기간은 화면이 꺼진 후부터 시스템 전원이 해제되기 전까지의 기간이다. 수직 액티브 기간은 화면 재생을 위해 영상 데이터가 표시패널(10)에 기입되는 기간이고, 수직 블랭크 기간은 이웃한 수직 액티브 기간들 사이에 위치하며 영상 데이터의 기입이 중지되는 기간이다. 픽셀들(PXL)의 구동 특성은 픽셀들(PXL)에 포함된 구동 소자들의 문턱전압과 전자 이동도를 포함한다.
타이밍 제어부(21)는 표시패널(10)의 픽셀 라인들(PNL1~PNL4)에 대한 센싱 구동 타이밍과 디스플레이 구동 타이밍을 정해진 시퀀스에 따라 제어함으로써, 디스플레이 구동과 센싱 구동을 구현할 수 있다.
타이밍 제어부(21)는 디스플레이 구동을 위한 타이밍 제어신호들(GDC,DDC)과 센싱 구동을 위한 타이밍 제어신호들(GDC,DDC)을 서로 다르게 생성할 수 있다. 센싱 구동은 센싱 대상 픽셀 라인에 포함된 픽셀들(PXL)에 센싱용 데이터전압(VSEN)을 기입하여 해당 픽셀들(PXL)의 구동 특성을 센싱하고, 센싱 결과 데이터(SDATA)를 기초로 해당 픽셀들(PXL)의 구동 특성 변화를 보상하기 위한 보상값을 업데이트하는 것을 의미한다. 그리고, 디스플레이 구동은 업데이트된 보상값을 기반으로 하여, 해당 픽셀들(PXL)에 입력될 디지털 영상 데이터를 보정하고, 보정된 영상 데이터(CDATA)에 대응되는 디스플레이용 데이터전압(VDIS)을 해당 픽셀들(PXL)에 인가하여 입력 영상을 표시하는 것을 의미한다.
구동전압 생성부(23)는 디지털 신호를 아날로그 신호로 변환하는 디지털-아날로그 변환기(Digital to Analog converter, 이하 DAC라 함)로 구현된다. 구동전압 생성부(23)는 센싱 구동에 필요한 센싱용 데이터전압(VSEN)과 디스플레이 구동에 필요한 디스플레이용 데이터전압(VDIS)을 생성하여 데이터라인들(140)에 공급한다. 디스플레이용 데이터전압(VDIS)은 보상회로(30)에서 보정된 디지털 영상 데이터(CDATA)에 대한 디지털-아날로그 변환 결과로서, 계조값 및 보상값에 따라 픽셀 단위로 그 크기가 달라질 수 있다. 센싱용 데이터전압(VSEN)은 컬러 별로 구동소자의 구동 특성이 다름을 고려하여 R(적색),G(녹색),B(청색),W(백색) 픽셀들 단위로 다르게 설정될 수 있다.
센싱부(22)는 센싱 구동을 위해, 픽셀들(PXL)의 구동 특성, 예컨대, 구동 소자의 문턱전압과 전자 이동도를 센싱 라인들을 통해 센싱할 수 있다. 센싱 라인들은 기준전압 라인들(150)로 구현될 수 있으나, 이에 한정되지 않는다. 센싱 라인들은 데이터라인들(140)로 구현될 수도 있다. 센싱부(22)는 각 픽셀(PXL)에 흐르는 픽셀 전류(IPIX)를 센싱하는 전류 센싱형으로 구현될 수 있다. 센싱부(22)는 전류 적분기와 초기화 스위치와 연결 스위치 등을 포함하여 픽셀(PXL)과 독립적으로 초기화될 수 있다. 센싱 동작 중에 픽셀(PXL)의 비정상 발광이 방지될 수 있도록, 픽셀(PXL)과 센싱 라인을 초기화하기 위한 저전위 전압(VSS)은 전류 적분기를 초기화하기 위한 적분기 기준전압(CVref)보다 더 낮을 수 있다. 센싱부(22)는 센싱 라인에 연결된 라인 커패시터에 픽셀 전류(IPIX)가 충전된 이후에 센싱 라인과 연결될 수 있다. 센싱 라인에 연결되는 전류 적분기의 반전 입력단자의 전압, 즉 적분기 기준전압에 비해 라인 커패시터의 최대 충전전압이 낮아지도록 픽셀 전류(IPIX)의 충전 시간이 설정되므로, 전류 적분기로부터 라인 커패시터로 전류의 이동이 생긴다. 센싱부(22)는 전류의 인출로 인해 변하는 적분기 출력 전압을 생성하는 데, 이러한 적분기 출력 전압으로부터 픽셀 전류(IPIX)가 계산될 수 있다. 한편, 상기 전류의 인출로 인해 적분기 출력 전압이 적분기 기준 전압으로부터 상승한다. 따라서, 라인 커패시터의 최대 충전전압보다 큰 범위 내에서 적분기 기준 전압이 최대한 낮게 설정되더라도, 적분기 출력전압은 ADC 센싱 레인지를 만족시킬 수 있어 센싱 성능이 확보될 수 있다. 이에 대한 보다 구체적인 설명은 도 5 내지 도 7c를 통해 제시된다.
센싱부(22)는 복수의 아날로그 센싱값들을 복수개의 ADC(Aanlog-Digital Conveter)들을 이용하여 동시에 병렬 처리할 수도 있고, 복수의 아날로그 센싱값들을 1개의 ADC를 이용하여 순차적으로 직렬 처리할 수도 있다. ADC는 미리 정해진 센싱 레인지에 따라 아날로그 센싱값들을 디지털 센싱 결과 데이터(SDATA)로 변환한 후, 저장 메모리(50)에 공급한다.
저장 메모리(50)는 센싱 구동시 센싱부(22)로부터 입력되는 디지털 센싱 결과 데이터(SDATA)를 저장한다. 저장 메모리(50)는 플래시 메모리로 구현될 수 있으나, 이에 한정되지 않는다.
보상 IC(30)는 보상부(31)와 보상 메모리(32)를 포함할 수 있다. 보상 메모리(32)는 저장 메모리(50)로부터 읽어들인 디지털 센싱 결과 데이터(SDATA)를 보상부(31)에 전달한다. 보상 메모리(32)는 RAM(Random Access Memory), 예컨대 DDR SDRAM(Double Date Rate Synchronous Dynamic RAM)일 수 있으나, 이에 한정되지 않는다. 보상부(31)는 저장 메모리(50)로부터 읽어들인 디지털 센싱 결과 데이터(SDATA)를 기반으로 각 픽셀 별로 보상 오프셋(Offset)과 보상 게인(Gain)을 연산하고, 연산된 보상 오프셋과 보상 게인에 따라 호스트 시스템(40)으로부터 입력 받은 영상 데이터를 보정하고, 보정된 영상 데이터(CDATA)를 드라이버 IC(20)에 공급한다.
전원회로(60)는 픽셀 기준전압(VREF)과 적분기 기준전압(CVref)과 저전위 전압(VSS)을 생성하여 드라이버 IC(20)에 공급할 수 있다. 픽셀 기준전압(VREF)과 적분기 기준전압(CVref)과 저전위 전압(VSS)은 전압 레벨이 서로 다를 수 있다. 특히, 적분기 기준전압(CVref)과 저전위 전압(VSS)은 열화 정도가 가장 작은 픽셀에 포함된 발광 소자의 턴 온 전압보다 낮다. 픽셀의 발광 소자 열화는 별도의 열화 센싱 프로세스를 통해 알아낼 수 있다. 픽셀 열화가 작을수록 발광 소자의 턴 온 전압이 낮으므로, 열화 정도가 가장 작은 픽셀을 기준으로 적분기 기준전압(CVref)과 저전위 전압(VSS)을 설정하면, 동작의 안전성이 확보될 수 있다. 더욱이, 저전위 전압(VSS)이 적분기 기준전압(CVref)보다 낮게 설정되면, 센싱 동작 중에 픽셀(PXL)의 비정상 발광이 효과적으로 방지될 수 있다.
도 3은 도 2의 픽셀 어레이에 연결된 데이터 구동부(25)의 일 구성을 보여주는 도면이다. 도 3의 데이터 구동부(25)는 픽셀들(PXL)의 구동 특성을 기준 전압라인들(150)을 통해 센싱하기 위한 것이다.
도 3을 참조하면, 데이터 구동부(25)는 데이터라인(140)을 통해 픽셀(PXL)의 제1 노드(구동 소자의 게이트전극에 연결됨)에 접속되고, 기준 전압라인(150)을 통해 픽셀(PXL)의 제2 노드(구동 소자의 소스전극에 연결됨)에 접속될 수 있다. 픽셀(PXL)의 제2 노드에는 픽셀 전류(IPIX)가 흐르기 때문에, 제2 스위치 소자를 통해 제2 노드에 접속된 기준 전압라인(150)이 센싱 라인으로 활용될 수 있다. 센싱 라인으로 기능하는 기준 전압라인(150)에는 픽셀 전류(IPIX)를 저장하기 위한 라인 커패시터(CSO)가 연결된다.
데이터 구동부(25)는 센싱부(22)와 구동전압 생성부(23)와 전원전압 전달부(PTC, 24)를 포함할 수 있다. 센싱부(22)와 전원전압 전달부(PTC, 24)는 스위치 어레이(SARY)를 통해 기준 전압라인(150)에 선택적으로 연결될 수 있다.
구동전압 생성부(23)는 센싱용 데이터전압(VSEN)과 디스플레이용 데이터전압(VDIS)을 생성하는 디지털-아날로그 컨버터(DAC)로 구현될 수 있다. 구동전압 생성부(23)는 센싱용 데이터전압(VSEN)과 디스플레이용 데이터전압(VDIS)을 데이터 채널 단자(DCH)를 통해 표시패널(10)의 데이터라인(140)에 공급한다.
전원전압 전달부(PTC, 24)는 디스플레이 구동시 전원회로(60)로부터 입력받은 픽셀 기준전압(VREF)을 스위치 어레이(SARY)와 센싱 채널 단자(SCH)를 통해 기준 전압라인(150)에 공급한다. 픽셀 기준전압(VREF)은 디스플레이 구동시의 프로그래밍 기간에서 픽셀(PXL)의 제2 노드에 공급될 수 있다.
전원전압 전달부(PTC, 24)는 센싱 구동시 전원회로(60)로부터 입력받은 적분기 기준전압(CVref)과 저전위 전압(VSS)을 센싱부(22)에 공급한다.
센싱부(22)는 스위치 어레이(SARY)를 통해 센싱 채널 단자(SCH)에 연결된다.
스위치 어레이(SARY)는 센싱부(22)와 센싱 채널 단자(SCH) 사이에 연결된 초기화 스위치(도 5의 ISW)와 연결 스위치(도 5의 CSW)를 포함하며, 전원전압 전달부(PTC, 24)와 센싱 채널 단자(SCH) 사이에 연결되어 픽셀 기준전압(VREF)을 전달하기 위한 기준전압 공급 스위치(미도시)를 더 포함한다.
도 4는 도 3에 도시된 픽셀의 일 등가 회로도이다.
도 4를 참조하면, 기준전압 라인(150)을 센싱 라인으로 활용하는 일 픽셀(PXL)은 발광 소자(EL), 구동 TFT(DT), 스위치 TFT들(ST1,ST2), 및 스토리지 커패시터(Cst)를 포함한다. 구동 TFT(DT)와 스위치 TFT들(ST1,ST2)은 NMOS로 구현될 수 있으나 이에 한정되지 않는다.
발광 소자(EL)는 구동 TFT(DT)로부터 인입되는 픽셀 전류에 대응되는 세기로 발광하는 발광 소자이다. 발광 소자(EL)는 유기 발광층을 포함한 유기발광다이오드로 구현될 수도 있고, 무기 발광층을 포함한 무기발광다이오드로 구현될 수도 있다. 발광 소자(EL)의 애노드 전극은 제2 노드(N2)에 접속되고, 캐소드 전극은 저전위 픽셀 전압(EVSS)의 입력단에 접속된다.
구동 TFT(DT)는 게이트-소스 간 전압에 대응하여 픽셀 전류를 생성하는 구동 소자이다. 구동 TFT(DT)의 게이트전극은 제1 노드(N1)에 접속되고, 제1 전극은 고전위 전원 라인(PWL)을 통해 고전위 픽셀 전압(EVDD)의 입력단에 접속되며, 제2 전극은 제2 노드(N2)에 접속된다.
스위치 TFT들(ST1,ST2)은 구동 TFT(DT)의 게이트-소스 간 전압을 설정하고, 구동 TFT(DT)의 제2 전극과 기준전압 라인(150)을 연결하는 스위치 소자들이다.
제1 스위치 TFT(ST1)는 데이터라인(140)과 제1 노드(N1) 사이에 접속되어 게이트라인(160)으로부터의 게이트신호(SCAN)에 따라 턴 온 된다. 제1 스위치 TFT(ST1)는 디스플레이 구동 또는 센싱 구동을 위한 프로그래밍 시에 턴 온 된다. 제1 스위치 TFT(ST1)가 턴 온 될 때, 센싱용 데이터전압(VSEN) 또는 디스플레이용 데이터전압(VDIS)이 제1 노드(N1)에 인가된다. 제1 스위치 TFT(ST1)의 게이트전극은 게이트라인(160)에 접속되고, 제1 전극은 데이터 라인(140)에 접속되며, 제2 전극은 제1 노드(N1)에 접속된다.
제2 스위치 TFT(ST2)는 기준전압 라인(150)과 제2 노드(N2) 사이에 접속되어 게이트라인(160)으로부터의 게이트신호(SCAN)에 따라 턴 온 된다. 제2 스위치 TFT(ST2)는 디스플레이 구동 또는 센싱 구동을 위한 프로그래밍 시에 턴 온 되어, 픽셀 기준 전압(VREF) 또는 저전위 전압(VSS)을 제2 노드(N2)에 인가한다. 또한, 제2 스위치 TFT(ST2)는 상기 프로그래밍 이후의 센싱 동작 중에도 턴 온 되어 구동 TFT(DT)에서 생성된 픽셀 전류를 기준전압 라인(150)에 공급한다. 제2 스위치 TFT(ST2)의 게이트전극은 게이트라인(160)에 접속되고, 제1 전극은 기준전압 라인(150)에 접속되며, 제2 전극은 제2 노드(N2)에 접속된다.
스토리지 커패시터(Cst)는 제1 노드(N1)와 제2 노드(N2) 사이에 접속되어 구동 TFT(DT)의 게이트-소스 간 전압을 일정 기간 동안 유지한다. 디스플레이 구동을 위한 구동 TFT(DT)의 게이트-소스 간 전압은 디스플레이용 데이터전압(VDIS)과 픽셀 기준 전압(VREF) 간의 차전압이 되고, 센싱 구동을 위한 구동 TFT(DT)의 게이트-소스 간 전압은 센싱용 데이터전압(VSEN)과 저전위 전압(VSS) 간의 차전압이 된다.
도 5는 본 발명의 실시예에 따른 픽셀 센싱 장치와 일 픽셀의 연결 구성을 보여주는 도면이다.
본 발명의 실시예에 따른 픽셀 센싱 장치는 센싱부(22)로 구현될 수 있다. 센싱부(22)는 도 5와 같이 전류 적분기(CI), 초기화 스위치(ISW), 및 연결 스위치(CSW)를 포함하며, 샘플 앤 홀드부(SH)와 ADC를 더 포함할 수 있다.
전류 적분기(CI)는 적분기 앰프(AMP)와 적분기 커패시터(CFB)와 리셋 스위치(RST)로 구현될 수 있다. 적분기 앰프(AMP)는 반전 입력 단자(-)와, 비 반전 입력 단자(+)와, 출력 단자를 갖는다. 적분기 커패시터(CFB)와 리셋 스위치(RST)는 반전 입력 단자(-)와 출력 단자 사이에 병렬로 연결된다.
적분기 앰프(AMP)는 반전 입력 단자(-)로 전류가 유출/유입될 수 있는 네거티브 피드백 타입으로 구현된다. 이러한 적분기 앰프(AMP)의 센싱 출력(CI-OUT)은 전류 유입형과 전류 유출형에 따라 달라진다. 전류 유입형의 경우, 전류가 반전 입력 단자(-)를 통해 적분기 커패시터(CFB)에 유입됨에 따라 적분기 앰프(AMP)의 센싱 출력(CI-OUT)이 적분기 기준전압(CVref)로부터 낮아지게 된다. 이와 반대로, 전류 유출형의 경우, 전류가 반전 입력 단자(-)를 통해 적분기 커패시터(CFB)로부터 유출됨에 따라 적분기 앰프(AMP)의 센싱 출력(CI-OUT)이 적분기 기준전압(CVref)로부터 높아지게 된다.
전류 유입형의 경우 적분기 기준전압(CVref)로부터 낮아지는 센싱 출력(CI-OUT)의 하강 기울기가 유입되는 전류의 크기에 비례하여 증가하므로, ADC 센싱 레인지를 고려하여 적분기 기준전압(CVref)이 높아야 한다. 그렇게 않으면, ADC 출력값이 센싱 레인지의 하한값으로 언더 플로워(Under flower) 될 수 있다. 적분기 기준전압(CVref)이 높으면 센싱부(22)의 소비전력이 증가될 수 있다.
이에 반해, 전류 유출형의 경우 적분기 기준전압(CVref)로부터 높아지는 센싱 출력(CI-OUT)의 상승 기울기가 유출되는 전류의 크기에 비례하여 증가하므로, 낮은 적분기 기준전압(CVref)이 사용되더라도 충분히 ADC 센싱 레인지를 만족시킬 수 있으며, 센싱부(22)의 소비전력을 줄이기가 용이하다.
본 발명의 픽셀 센싱 장치는 센싱 라인(SL)에 연결된 라인 커패시터(CSO)의 충전전압(VSIO)이 적분기 앰프(AMP)의 반전 입력단자(-)에 충전된 적분기 기준전압(CVref)보다 낮게 되도록 라인 커패시터(CSO)의 충전 기간을 설정함으로써, 전류 적분기(CI)를 전류 유출형으로 동작시킬 수 있다. 초기화 스위치(ISW)와 연결 스위치(CSW)는 전류 적분기(CI)를 전류 유출형으로 동작시키기 위해 필요한 구성들이다.
초기화 스위치(ISW)는 저전위 전압(VSS)의 입력단과 센싱 채널 단자(SCH) 사이에 접속된다. 초기화 스위치(ISW)는 픽셀(PXL)에 연결된 센싱 라인(SL), 및 센싱 라인(SL)에 연결된 라인 커패시터(CSO)를 센싱 채널 단자(SCH)를 통해 저전위 전압(VSS)으로 초기화하는 역할을 한다. 한편, 연결 스위치(CSW)에 의해, 전류 적분기(CI)는 센싱 라인(SL) 및 라인 커패시터(CSO)와 독립적으로 초기화된다. 적분기 커패시터(CFB)의 양단 즉, 적분기 앰프(AMP)의 반전 입력 단자(-)와 출력 단자는 적분기 기준전압(CVref)으로 초기화된다.
연결 스위치(CSW)는 센싱 채널 단자(SCH)와 적분기 앰프(AMP)의 반전 입력 단자(-) 사이에 접속되어 전류 흐름을 온/오프 시킨다. 연결 스위치(CSW)는 전류 적분기(CI)와 라인 커패시터(CSO)가 독립적으로 초기화되는 제1 기간과, 제1 기간에 이어 픽셀(PXL)에 흐르는 픽셀 전류(IPIX)가 라인 커패시터(CSO)에 충전되는 제2 기간에서 오프된다. 그리고, 연결 스위치(CSW)는 제2 기간에 이어 적분기 앰프(AMP)의 반전 입력 단자(-)와 라인 커패시터(CSO) 간의 전류 이동이 생기는 제3 기간에서 온 된다.
제3 기간의 시작 시점에서 라인 커패시터(CSO)의 충전전압(VSIO)은 적분기 앰프(AMP)의 반전 입력 단자(-)에 충전된 적분기 기준전압(CVref)보다 낮으므로, 제3 기간 동안 적분기 앰프(AMP)의 반전 입력 단자(-)로부터 라인 커패시터(CSO)로 전류 이동이 생긴다. 이러한 전류 이동으로 인해 전류 적분기(CI)의 출력 단자에 걸리는 적분기 출력 전압(CI-OUT)이 적분기 기준전압(CVref)으로부터 상승하게 된다.
샘플 앤 홀드부(SH)는 적분기 기준전압(CVref)으로부터 상승하는 적분기 출력 전압(CI-OUT)을 샘플링 신호(SAM)에 따라 샘플링하는 역할을 한다. 샘플 앤 홀드부(SH)는 샘플링 신호(SAM)에 따라 동작하는 샘플링 스위치와, 샘플링 스위치가 온 될 때 샘플링된 전압을 저장하는 샘플링 커패시터와, 샘플링 신호(SAM)가 오프 될 때 샘플링 커패시터에 저장된 샘플링 전압을 ADC로 출력하는 홀딩 스위치를 포함할 수 있다. ADC는 샘플링 전압을 센싱 레이지에 맞춰 아날로그-디지털 변환한다.
도 6은 도 5의 픽셀 센싱 장치와 픽셀의 구동 파형도이다. 도 7a는 도 6의 제1 기간에서 이루어지는 픽셀 센싱 장치와 픽셀의 동작을 설명하기 위한 도면이다. 도 7b는 도 6의 제2 기간에서 이루어지는 픽셀 센싱 장치와 픽셀의 동작을 설명하기 위한 도면이다. 그리고, 도 7c는 도 6의 제3 기간에서 이루어지는 픽셀 센싱 장치와 픽셀의 동작을 설명하기 위한 도면이다.
도 6을 참조하면, 본 발명의 실시예에 따른 센싱 구동은 제1 기간(①), 제2 기간(②), 제3 기간(③) 순서로 진행된다. 도 5의 픽셀 센싱 장치와 도 4의 픽셀(PXL)을 결부하여 설명하면 다음과 같다.
도 6 및 도 7a를 참조하면, 제1 기간(①)에서 오프 상태의 연결 스위치(CSW)에 의해 전류 적분기(CI)의 초기화 동작과, 센싱 라인(SL) 및 라인 커패시터(CSO)의 초기화 동작이 독립적으로 진행된다.
제1 기간(①)에서 온 상태의 리셋 스위치(RST)에 의해 적분기 앰프(AMP)의 반전 입력 단자(-)와 출력 단자는 적분기 기준전압(CVref)으로 초기화된다.
제1 기간(①)에서 온 상태의 초기화 스위치(ISW)에 의해 센싱 라인(SL)과 라인 커패시터(CSO)가 저전위 전압(VSS)으로 초기화된다. 이때, 온 레벨의 게이트신호(SCAN)에 따른 제2 스위치 TFT(ST2)의 턴 온에 의해 픽셀(PXL)의 제2 노드(N2)에도 저전위 전압(VSS)이 충전된다.
제1 기간(①)에서 라인 커패시터(CSO)의 충전 전압(VSIO)은 “0V”이며, 적분기 출력 전압(CI-OUT)은 적분기 기준전압(CVref)이 된다.
도 6 및 도 7b를 참조하면, 제2 기간(②)에서 온 상태의 제1 스위치 TFT(ST1)를 경유하여 픽셀(PXL)의 제1 노드(N1)에 센싱용 데이터전압(VSEN)이 인가되며, 구동 TFT(DT)의 게이트-소스 간 전압(VSEN-VSS)에 대응되는 픽셀 전류(IPIX)가 구동 TFT(DT)에 흐른다. 제2 기간(②)에서 초기화 스위치(ISW)는 오프 되므로, 픽셀 전류(IPIX)는 온 상태의 제2 스위치 TFT(ST2)와 센싱 라인(SL)을 통해 라인 커패시터(CSO)에 충전된다.
제2 기간(②)에서 오프 상태의 연결 스위치(CSW)에 의해 전류 적분기(CI)는 초기화 상태를 그대로 유지한다.
제2 기간(②)에서 라인 커패시터(CSO)의 충전 전압(VSIO)은 픽셀 전류(IPIX)의 누적으로 인해 “0V”에서 “VCHG”까지 상승하며, 적분기 출력 전압(CI-OUT)은 적분기 기준전압(CVref)으로 유지된다.
한편, 제2 기간(②)의 길이(Tsen1)가 증가하면 픽셀 전류(IPIX)의 누적 시간이 길어지기 때문에 라인 커패시터(CSO)의 충전전압(VSIO)의 크기가 증가하게 된다. 그런데, 전류 적분기(CI)를 제3 기간(③)에서 전류 유출형으로 동작시키기 위해서는 제3 기간(③)의 시작 시점에서 라인 커패시터(CSO)의 충전전압(VSIO)이 적분기 기준전압(CVref)보다 낮아야 한다.
이를 위해, 제2 기간(②)의 길이(Tsen1)는 동일한 프로그래밍 조건(즉, 구동 TFT(DT)의 게이트-소스 간 전압(VSEN-VSS)을 동일하게 한 조건)하에서 표시패널(10)의 픽셀들(PXL)에 흐르는 픽셀 전류들(IPIX) 중에서 가장 큰 픽셀 전류를 기준으로 설정된다. 다시 말해, 제2 기간(②)의 길이(Tsen1)는 동일한 프로그래밍 조건하에서 라인 커패시터(CSO)의 최대 충전전압을 기준으로 설정된다. 프로그래밍 조건을 동일하게 하더라도 구동 TFT(DT)의 문턱전압 편차에 의해 픽셀들(PXL)에 흐르는 픽셀 전류들(IPIX)의 크기가 달라질 수 있다. 픽셀 전류의 크기는 구동 TFT(DT)의 문턱전압이 네거티브 방향으로 가장 많이 쉬프트 된 픽셀에서 가장 크고, 구동 TFT(DT)의 문턱전압이 포지티브 방향으로 가장 많이 쉬프트 된 픽셀에서 가장 작다.
도 6 및 도 7c를 참조하면, 제3 기간(③)에서 온 상태의 연결 스위치(CSW)에 의해 적분기 앰프(AMP)의 반전 입력 단자(-)와 라인 커패시터(CSO) 사이에 전류 이동이 생긴다. 상기 반전 입력 단자(-)에 충전된 적분기 기준전압(CVref)은 라인 커패시터(CSO)의 최대 충전 전압(VSIO)인 “VCHG”보다 높고 온 상태의 연결 스위치(CSW)가 저항 역할을 하므로, 제3 기간(③) 동안 상기 반전 입력단자(-)로부터 라인 커패시터(CSO)로 전류가 이동되고, 오프 상태의 리셋 스위치(RST)와 상기 전류 이동으로 인해 전류 적분기(CI)의 출력 단자에 걸리는 적분기 출력 전압(CI-OUT)이 적분기 기준전압(CVref)으로부터 상승하게 된다.
제3 기간(③) 동안 적분기 기준전압(CVref)으로부터 상승하는 적분기 출력 전압(CI-OUT)은 샘플 앤 홀드부(SH)에 저장된다. 그리고, 샘플링 신호(SAM)가 온 레벨에서 오프 레벨로 변하는 샘플링 시점에서 샘플링 전압(△V)이 ADC로 출력된다.
샘플링 전압(△V)은 아래의 수학식 1에 의해 제3 기간(③)에서 이동되는 전류(i)로 환산될 수 있다. 수학식 1에서, "Tsen2"는 제3 기간(③)의 길이를 의미한다.
[수학식 1]
그리고, 라인 커패시터(CSO)의 충전전압(VSIO)은 아래의 수학식 2로 계산될 수 있다.
[수학식 2]
그러면, 픽셀(PXL)에 흐르는 픽셀 전류(IPIX)는 아래의 수학식 3으로 계산될 수 있다.
[수학식 3]
결국, 샘플링 전압(△V)을 통해 픽셀 전류(IPIX)의 도출이 가능하므로, 픽셀(PXL)의 구동 특성 변화에 대한 센싱이 가능해진다. 상기 수학식 1 내지 3에 따른 연산은 도 1의 보상 IC(30)에서 수행될 수 있다.
한편, 제3 기간(③)에서 오프 레벨의 게이트신호(SCAN)에 의해 제2 스위치 TFT(ST2)가 턴 오프 되므로, 전류 적분기(CI)는 픽셀(PXL)과의 연결이 차단된다. 따라서, 적분기 출력 전압(CI-OUT)에는 패널의 공통 노이즈 성분이 반영되지 않아, 센싱의 정확성이 높아지는 효과가 있다.
도 8은 본 발명의 실시예에 따른 픽셀 센싱 방법을 보여주는 흐름도이다.
도 8을 참조하면, 본 발명의 실시예에 따른 픽셀 센싱 방법은 전류 적분기(CI)에 포함된 적분기 앰프(AMP)의 초기화 동작과, 센싱 라인(SL) 및 라인 커패시터(CSO)의 초기화 동작을 독립적으로 진행한다(S101). 다시 말해, 이 센싱 방법은 제1 기간 동안, 적분기 커패시터의 양단을 적분기 기준전압으로 초기화하고, 적어도 일 픽셀에 연결된 센싱 라인과 상기 센싱 라인에 연결된 라인 커패시터를 센싱 채널 단자를 통해 적분기 기준전압과 다른 저전위 전압으로 초기화한다.
도 8을 참조하면, 본 발명의 실시예에 따른 픽셀 센싱 방법은 상기 제1 기간에 이은 제2 기간 동안, 상기 센싱 채널 단자와 상기 반전 입력단자 사이에 접속된 연결 스위치를 오프 시킨 상태에서 상기 픽셀에 흐르는 픽셀 전류로 상기 라인 커패시터를 충전시킨다(S102).
도 8을 참조하면, 본 발명의 실시예에 따른 픽셀 센싱 방법은 상기 제2 기간에 이은 제3 기간 동안, 상기 연결 스위치를 온 시킨 상태에서 상기 반전 입력단자와 상기 라인 커패시터 간의 전류 이동으로 인해 변하는 상기 전류 적분기의 적분기 출력 전압을 생성한다(S103,S104).
이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여져야만 할 것이다.
10: 표시패널 15: 게이트 구동부
20: 드라이버 IC 21: 타이밍 제어부
22: 센싱부

Claims (15)

  1. 적분기 커패시터에 연결된 반전 입력단자와 적분기 기준전압이 입력되는 비 반전 입력단자를 갖는 적분기 앰프를 포함하며, 상기 적분기 커패시터의 양단이 상기 적분기 기준전압으로 초기화되는 전류 적분기;
    적어도 일 픽셀에 연결된 센싱 라인과 상기 센싱 라인에 연결된 라인 커패시터를 센싱 채널 단자를 통해 상기 적분기 기준전압과 다른 저전위 전압으로 초기화하는 라인 초기화 스위치; 및
    상기 센싱 채널 단자와 상기 반전 입력단자 사이에 접속된 연결 스위치를 포함하고,
    상기 연결 스위치는,
    상기 전류 적분기와 상기 라인 커패시터가 독립적으로 초기화되는 제1 기간에서 오프되고, 상기 제1 기간에 이어 상기 픽셀에 흐르는 픽셀 전류가 상기 라인 커패시터에 충전되는 제2 기간에서 오프되고,
    상기 제2 기간에 이어 상기 반전 입력단자와 상기 라인 커패시터 간의 전류 이동이 생기는 제3 기간에서 온 되는 픽셀 센싱 장치.
  2. 제 1 항에 있어서,
    상기 제3 기간의 시작 시점에서 상기 라인 커패시터의 충전전압은 상기 반전 입력단자의 상기 적분기 기준전압보다 더 낮은 픽셀 센싱 장치.
  3. 제 2 항에 있어서,
    상기 제3 기간 동안 상기 반전 입력단자로부터 상기 라인 커패시터로 전류가 이동되고, 상기 전류 이동으로 인해 상기 전류 적분기의 출력 단자에 걸리는 적분기 출력 전압이 상기 적분기 기준전압으로부터 상승하는 픽셀 센싱 장치.
  4. 제 1 항에 있어서,
    상기 제3 기간 동안 상기 전류 적분기는 상기 픽셀과 연결이 차단된 픽셀 센싱 장치.
  5. 제 1 항에 있어서,
    상기 저전위 전압과 상기 적분기 기준전압은 각각 상기 픽셀에 포함된 발광 소자의 턴 온 전압보다 더 낮은 픽셀 센싱 장치.
  6. 제 5 항에 있어서,
    상기 저전위 전압은 상기 적분기 기준전압보다 더 낮은 픽셀 센싱 장치.
  7. 제 2 항에 있어서,
    상기 제3 기간의 시작 시점에서 상기 라인 커패시터의 충전전압이 상기 적분기 기준전압보다 더 낮도록 상기 제2 기간의 길이가 상기 픽셀 전류를 기준으로 설정되며,
    상기 픽셀 전류는 프로그래밍 조건 하에서 다수의 픽셀들에 흐르는 다수의 픽셀 전류들 중에서 가장 큰 값인 픽셀 센싱 장치.
  8. 적분기 커패시터에 연결된 반전 입력단자와 적분기 기준전압이 입력되는 비 반전 입력단자를 갖는 적분기 앰프를 포함한 전류 적분기를 이용한 픽셀 센싱 방법에 있어서,
    제1 기간 동안, 센싱 채널 단자와 상기 전류 적분기의 반전 입력단자 사이에 접속된 연결 스위치를 오프 시킨 상태에서 상기 적분기 커패시터의 양단을 상기 적분기 기준전압으로 초기화하고, 적어도 일 픽셀에 연결된 센싱 라인과 상기 센싱 라인에 연결된 라인 커패시터를 상기 센싱 채널 단자를 통해 상기 적분기 기준전압과 다른 저전위 전압으로 초기화하는 단계;
    상기 제1 기간에 이은 제2 기간 동안, 상기 연결 스위치를 오프 시킨 상태에서 상기 픽셀에 흐르는 픽셀 전류로 상기 라인 커패시터를 충전시키는 단계; 및
    상기 제2 기간에 이은 제3 기간 동안, 상기 연결 스위치를 온 시킨 상태에서 상기 반전 입력단자와 상기 라인 커패시터 간의 전류 이동으로 인해 변하는 상기 전류 적분기의 적분기 출력 전압을 생성하는 단계를 포함한 픽셀 센싱 방법.
  9. 제 8 항에 있어서,
    상기 제3 기간의 시작 시점에서 상기 라인 커패시터의 충전전압은 상기 반전 입력단자의 상기 적분기 기준전압보다 더 낮은 픽셀 센싱 방법.
  10. 제 9 항에 있어서,
    상기 제3 기간 동안 상기 반전 입력단자로부터 상기 라인 커패시터로 전류가 이동되고, 상기 전류 이동으로 인해 상기 전류 적분기의 출력 단자에 걸리는 적분기 출력 전압이 상기 적분기 기준전압으로부터 상승하는 픽셀 센싱 방법.
  11. 제 8 항에 있어서,
    상기 제3 기간 동안 상기 전류 적분기는 상기 픽셀과 연결이 차단된 픽셀 센싱 방법.
  12. 제 8 항에 있어서,
    상기 저전위 전압과 상기 적분기 기준전압은 각각 상기 픽셀에 포함된 발광 소자의 턴 온 전압보다 더 낮은 픽셀 센싱 방법.
  13. 제 12 항에 있어서,
    상기 저전위 전압은 상기 적분기 기준전압보다 더 낮은 픽셀 센싱 방법.
  14. 제 9 항에 있어서,
    상기 제3 기간의 시작 시점에서 상기 라인 커패시터의 충전전압이 상기 적분기 기준전압보다 더 낮도록 상기 제2 기간의 길이가 상기 픽셀 전류를 기준으로 설정되며,
    상기 픽셀 전류는 다수의 픽셀들에 흐르는 다수의 픽셀 전류들 중에서 가장 큰 값인 픽셀 센싱 방법.
  15. 적어도 일 픽셀에 연결된 센싱 라인과 상기 센싱 라인에 연결된 라인 커패시터가 구비된 표시패널;
    상기 일 픽셀에 연결된 데이터라인에 센싱용 데이터전압을 공급하는 데이터 구동부;
    상기 일 픽셀에 연결된 게이트라인에 상기 센싱용 데이터전압에 동기되는 게이트신호를 공급하는 게이트 구동부; 및
    상기 센싱 라인을 통해 상기 픽셀의 구동 특성을 센싱하는 청구항 제1항 내지 제7항 중 어느 한 항의 픽셀 센싱 장치를 포함한 전계발광 표시장치.
KR1020190174576A 2019-12-24 2019-12-24 픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치 KR102666209B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190174576A KR102666209B1 (ko) 2019-12-24 2019-12-24 픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190174576A KR102666209B1 (ko) 2019-12-24 2019-12-24 픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치

Publications (2)

Publication Number Publication Date
KR20210082034A KR20210082034A (ko) 2021-07-02
KR102666209B1 true KR102666209B1 (ko) 2024-05-14

Family

ID=76897336

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190174576A KR102666209B1 (ko) 2019-12-24 2019-12-24 픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치

Country Status (1)

Country Link
KR (1) KR102666209B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180005559A1 (en) 2011-05-20 2018-01-04 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in amoled displays

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478674B1 (ko) * 2016-05-26 2022-12-16 엘지디스플레이 주식회사 유기발광 표시장치와 그 구동방법
KR102614069B1 (ko) * 2016-08-31 2023-12-15 엘지디스플레이 주식회사 센싱 회로, 센싱 회로를 포함한 유기발광 표시장치, 및 유기발광 표시장치의 센싱 방법
KR102652882B1 (ko) * 2016-11-23 2024-03-29 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그의 구동 방법
KR102401355B1 (ko) * 2017-12-12 2022-05-24 엘지디스플레이 주식회사 전계 발광 표시장치와 그 구동 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180005559A1 (en) 2011-05-20 2018-01-04 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in amoled displays

Also Published As

Publication number Publication date
KR20210082034A (ko) 2021-07-02

Similar Documents

Publication Publication Date Title
CN108091302B (zh) 显示装置
US10930210B2 (en) Organic light-emitting diode display capable of reducing kickback effect
KR102560747B1 (ko) 유기발광 표시장치와 그의 픽셀 센싱 방법
KR102312350B1 (ko) 전계 발광 표시장치 및 그 구동방법
KR102633409B1 (ko) 전계발광 표시장치와 그의 전기적 특성 센싱방법
KR101577909B1 (ko) 유기발광 표시장치의 열화 센싱 방법
KR102618601B1 (ko) 픽셀 센싱 장치와 그를 포함한 유기발광 표시장치, 및 유기발광 표시장치의 픽셀 센싱 방법
KR102636687B1 (ko) 픽셀 센싱 장치와 그를 포함한 유기발광 표시장치, 및 유기발광 표시장치의 센싱 출력 제어방법
US10971082B2 (en) Data driver and organic light emitting display device including the same
KR102348765B1 (ko) 유기발광 표시장치의 발광소자에 대한 열화 센싱 방법
KR20220051550A (ko) 전계발광 표시장치
KR20210083119A (ko) 센싱 장치와 그를 포함한 전계발광 표시장치
KR102462834B1 (ko) 유기발광 다이오드의 열화 센싱 방법
KR102603602B1 (ko) 픽셀 보상 장치와 그를 포함한 유기발광 표시장치
KR102494924B1 (ko) 유기발광 표시장치와 그 구동방법
KR102642014B1 (ko) 유기발광 표시장치와 그 구동방법
KR102666209B1 (ko) 픽셀 센싱 장치와 방법 및 그를 포함한 전계발광 표시장치
KR102374752B1 (ko) 유기발광 표시장치의 구동방법
KR20220086983A (ko) 전계발광 표시장치
JP2022104556A (ja) 電界発光表示装置
KR102560745B1 (ko) 외부 보상용 유기발광 표시장치
KR20220017752A (ko) 전계 발광 표시장치
KR102560746B1 (ko) 유기발광 표시장치와 그 구동방법
KR20200050585A (ko) 외부 보상용 표시장치와 그 구동방법
KR102648421B1 (ko) 픽셀 센싱 장치와 그를 포함한 전계발광 표시장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant