KR102604417B1 - Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction - Google Patents

Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction Download PDF

Info

Publication number
KR102604417B1
KR102604417B1 KR1020210068911A KR20210068911A KR102604417B1 KR 102604417 B1 KR102604417 B1 KR 102604417B1 KR 1020210068911 A KR1020210068911 A KR 1020210068911A KR 20210068911 A KR20210068911 A KR 20210068911A KR 102604417 B1 KR102604417 B1 KR 102604417B1
Authority
KR
South Korea
Prior art keywords
catalyst
orbital
metal
block element
single metal
Prior art date
Application number
KR1020210068911A
Other languages
Korean (ko)
Other versions
KR20220162191A (en
Inventor
김용태
김영우
정상문
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020210068911A priority Critical patent/KR102604417B1/en
Priority to PCT/KR2022/005761 priority patent/WO2022250299A1/en
Publication of KR20220162191A publication Critical patent/KR20220162191A/en
Application granted granted Critical
Publication of KR102604417B1 publication Critical patent/KR102604417B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

본 발명은 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 귀금속 담지량 대비 산소발생반응 효율이 증가하고, 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 제조방법에 관한 것이다.
본 발명에 의해 제조된 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 혼성화된 단일원자촉매를 통해 중간체의 흡착과 생성물의 탈착간 스케일링 한계를 극복하고 촉매 활성면에서 불필요하게 발생하는 이차반응 문제를 해결할 수 있다는 장점이 있다.
The present invention relates to a method for producing a pd orbital hybrid single metal atom catalyst for oxygen evolution reaction. More specifically, the present invention increases the oxygen generation reaction efficiency compared to the amount of noble metal supported through hybridization between the p-orbital of the catalyst support (p-block element) and the d-orbital of the noble metal (d-block element), and This relates to a method for manufacturing a pd orbital hybrid single metal atom catalyst for oxygen generation reaction that can dramatically reduce the amount of catalyst used.
The pd orbital hybrid single metal atom catalyst for oxygen evolution reaction prepared by the present invention overcomes the scaling limit between adsorption of intermediates and desorption of products through a hybridized single atom catalyst and secondary reactions that occur unnecessarily in terms of catalytic activity. It has the advantage of being able to solve problems.

Description

산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 제조방법{Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction}Manufacturing method of p-d orbital hybrid type single metal atom catalyst for oxygen evolution reaction {Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction}

본 발명은 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 산소발생반응 효율이 증가하고 귀금속 촉매 사용량을 획기적으로 줄일 수 있는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 제조방법에 관한 것이다.The present invention relates to a method for producing a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction. More specifically, the present invention increases the efficiency of oxygen generation reaction and dramatically reduces the amount of precious metal catalyst used through hybridization between the p-orbital of the catalyst support (p-block element) and the d-orbital of the noble metal (d-block element). It relates to a method of manufacturing a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction that can be reduced to .

고성능 촉매개발은 P2G 기술의 에너지변환 효율을 향상시키는 가장 확실한 방법으로 현재 가장 활발히 진행되고 있는 에너지변환 촉매연구는 금속나노입자 촉매(Nanoparticle Catalyst, NPC) 분야에 대한 연구이다.The development of high-performance catalysts is the surest way to improve the energy conversion efficiency of P2G technology. Currently, the most active energy conversion catalyst research is in the field of metal nanoparticle catalysts (NPC).

이는 촉매 구성원소의 조성 및 미세 전자구조 제어에 관한 것으로, 입자크기 100nm 이하인 NPC 입자 크기를 줄여 활성 표면적을 증가시키고 이를 통해 촉매의 단위 활성표면적 대비 활성을 향상시키는 프로세스가 이용된다.This is related to the control of the composition and fine electronic structure of the catalyst components, and a process is used to increase the active surface area by reducing the particle size of NPC particles of 100 nm or less, thereby improving the activity compared to the unit active surface area of the catalyst.

한편, 촉매의 반응 메커니즘은 촉매 입자가 반응물 및 중간체를 흡착하고 반응 생성물을 탈착하는 과정을 포함하고, 촉매의 활성을 높이기 위해서는 중간체의 흡착 세기는 강하면서도 생성물의 탈착이 원활하게 이루어져야 한다. Meanwhile, the reaction mechanism of the catalyst includes a process in which catalyst particles adsorb reactants and intermediates and desorb the reaction products. In order to increase the activity of the catalyst, the adsorption strength of the intermediates must be strong while the desorption of the products must be smooth.

그러나, 실제 반응에서는 반응물과 생성물 등 중간체들이 서로 같은 증감 경향성을 갖는 스케일링 관계(scaling relation)의 태생적 촉매 활성 한계가 존재하여, 이를 해결하기 위해 활성 최적점에 관한 촉매 연구개발이 진행되고 있다.However, in actual reactions, there is an inherent limit to catalytic activity due to a scaling relationship in which intermediates such as reactants and products have the same tendency to increase or decrease, and catalyst research and development on the optimal point of activity is in progress to solve this.

종래의 다원자 촉매는 여러 촉매원자가 반응대상 물질과 상호작용하여 의도치 않은 이차반응(secondary reaction)을 일으킬 수 있고, 이로 인해 촉매반응의 효율감소 및 불필요한 생성물로 인한 촉매 손상 등 부작용이 발생하고 있다.Conventional multi-atom catalysts can cause unintended secondary reactions when multiple catalyst atoms interact with the reaction target material, resulting in side effects such as reduced catalytic reaction efficiency and damage to the catalyst due to unnecessary products. .

이를 해결하기 위해 단일원자촉매(Single Atom Catalysts)가 대안으로 제기되고 있으나, 이 또한 고가금속의 표면적을 극대화시켜 촉매효율을 증대시키고 동시에 촉매 반응에서의 활성과 선택성을 개선시킴에 많은 한계가 있다.To solve this problem, single atom catalysts (Single Atom Catalysts) have been proposed as an alternative, but these also have many limitations in that they increase catalytic efficiency by maximizing the surface area of expensive metals and at the same time improve activity and selectivity in catalytic reactions.

따라서, 다양한 산업분야에서 급증하는 저비용, 고효율의 단일원자촉매에 대한 니즈를 충족하는 기술개발이 절실한 실정으로 KR10-1736065 및 KR10-1505285 등이 그러한 일 예이나, 아직까지 전술한 바를 해결하는 개시는 찾아볼 수 없다.Therefore, there is an urgent need to develop technology that meets the rapidly increasing needs for low-cost, high-efficiency single-atom catalysts in various industrial fields. KR10-1736065 and KR10-1505285 are examples, but no disclosure has yet been made to solve the above problems. Can't find it.

이에 본 발명자는 상기 문제점을 개선하기 위해 예의 노력을 계속하던 중 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 산소발생반응 효율이 증가하고 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 본 발명을 완성하기에 이르렀다.Accordingly, while continuing to make diligent efforts to improve the above problems, the present inventors created an oxygen generation reaction through hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal (d-block element). We have completed the present invention, which increases efficiency and dramatically reduces the amount of precious metal catalyst used.

선행특허 1 : 한국특허등록 제10-1736065호Prior Patent 1: Korean Patent Registration No. 10-1736065 선행특허 2 : 한국특허등록 제10-1505285호Prior Patent 2: Korean Patent Registration No. 10-1505285

본 발명의 목적은 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 산소발생반응 효율이 증가하고 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 제조방법을 제공하는 것이다.The purpose of the present invention is to increase the efficiency of oxygen generation reaction and dramatically reduce the amount of precious metal catalyst used through hybridization between the p-orbital of the catalyst support (p-block element) and the d-orbital of the noble metal (d-block element). The aim is to provide a method for producing a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction that can reduce oxygen generation reaction.

본 발명의 다른 목적은 혼성화된 단일원자촉매를 통해 중간체 흡착과 생성물 탈착간의 스케일링 한계를 극복하고 촉매 활성면에서 불필요하게 발생하는 이차반응 문제를 해결할 수 있는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법을 제공하는 것이다.Another object of the present invention is to overcome the scaling limit between intermediate adsorption and product desorption through a hybridized single atom catalyst and to provide a single metal in the form of p-d orbital hybridization for oxygen evolution reaction that can solve secondary reaction problems that occur unnecessarily in terms of catalytic activity. The aim is to provide an atomic catalyst manufacturing method.

본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다. The above and other objects of the present invention can all be achieved by the present invention described below.

본 발명의 하나의 관점은, 금속 물질에 p-블럭원소(p-block element)가 도핑되어 형성된 촉매 담지체 및 상기 촉매 담지체의 표면에 형성된 단일금속원자층을 포함하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매에 관한 것이다.One aspect of the present invention is a p-d orbital for oxygen generation reaction comprising a catalyst support formed by doping a p-block element into a metal material and a single metal atomic layer formed on the surface of the catalyst support. This relates to a hybrid single metal atom catalyst.

구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific example, the metal material forming the catalyst support is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.

구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다. In a specific example, the material forming the single metal atomic layer may be a noble metal-based metal.

구체예에서, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다.In an embodiment, the noble metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium.

구체예에서, 상기 단일금속원자층의 두께는 1nm 내지 2nm 일 수 있다.In a specific example, the thickness of the single metal atomic layer may be 1 nm to 2 nm.

본 발명의 다른 하나의 관점은, 금속 물질에 p-블럭원소(p-block element)를 도핑하여 촉매 담지체를 형성하는 단계 및 상기 촉매 담지체에 귀금속계 금속을 증착시켜 1nm 내지 2nm 두께의 단일금속원자층을 형성하는 단계를 포함하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법에 관한 것이다Another aspect of the present invention is to form a catalyst support by doping a p-block element into a metal material and depositing a noble metal on the catalyst support to form a single catalyst having a thickness of 1 nm to 2 nm. It relates to a method for producing a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction including the step of forming a metal atomic layer.

구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific example, the metal material forming the catalyst support is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.

구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다.In a specific example, the material forming the single metal atomic layer may be a noble metal-based metal.

구체예에서, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다.In an embodiment, the noble metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium.

구체예에서, 상기 촉매담지체를 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 상기 티타늄 금속을 히터를 통해 메탄 분위기하에서 가열하여 표면에 티타늄 카바이드(TiC)를 생성시킬 수 있다.In a specific example, the step of forming the catalyst support includes, when the metal material is titanium and the p-block element is carbon, the titanium metal is heated in a methane atmosphere through a heater to form a surface. Titanium carbide (TiC) can be produced.

구체예에서, 상기 단일금속원자층을 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 티타늄 카바이드가 표면에 도핑된 티타늄으로 이루어진 촉매담지체에 이리듐을 전자빔을 이용해 증착시켜 단일금속원자층을 형성할 수 있다.In a specific example, the step of forming the single metal atomic layer includes, when the metal material is titanium and the p-block element is carbon, a catalyst carrier made of titanium doped with titanium carbide on the surface. Iridium can be deposited using an electron beam to form a single metal atomic layer.

구체예에서, 상기 단일금속원자층을 형성하는 단계에서 증착된 이리듐으로 이루어진 단일금속원자층의 두께는 1nm 내지 2nm일 수 있다.In a specific example, the thickness of the single metal atomic layer made of iridium deposited in the step of forming the single metal atomic layer may be 1 nm to 2 nm.

본 발명에 의해 제조된 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 귀금속 담지량 대비 산소발생반응 효율이 증가하고, 귀금속 촉매 사용량을 획기적으로 줄일 수 있는 장점이 있다.The single metal atom catalyst in the form of p-d orbital hybridization for oxygen evolution reaction prepared by the present invention achieves hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal (d-block element). This has the advantage of increasing the efficiency of the oxygen generation reaction compared to the amount of precious metal loaded and dramatically reducing the amount of precious metal catalyst used.

본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법은 촉매 중간체 흡착과 생성물 탈착간의 스케일링 한계를 극복하고, 촉매 활성면에서 불필요하게 발생하는 이차반응 문제를 해결할 수 있다는 다른 장점이 있다.Another advantage of the method for producing a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction according to the present invention is that it can overcome the scaling limit between catalyst intermediate adsorption and product desorption and solve secondary reaction problems that occur unnecessarily in terms of catalyst activity. There is.

도 1은 본 발명의 한 구체예에 따른 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법을 나타낸 순서도이다.
도 2는 본 발명의 한 구체예에 따른 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 LSV 분극곡선 그래프이다.
Figure 1 is a flowchart showing a method for producing a pd orbital hybrid single metal atom catalyst for oxygen evolution reaction according to an embodiment of the present invention.
Figure 2 is a LSV polarization curve graph of a pd orbital hybrid single metal atom catalyst for oxygen evolution reaction according to an embodiment of the present invention.

이하, 첨부한 도면들을 참조하여, 본 출원의 실시예들을 보다 상세하게 설명하고자 한다. 그러나 본 출원에 개시된 기술은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. Hereinafter, embodiments of the present application will be described in more detail with reference to the attached drawings. However, the technology disclosed in this application is not limited to the embodiments described herein and may be embodied in other forms. However, the embodiments introduced here are provided to ensure that the disclosed content is thorough and complete and that the spirit of the present application can be sufficiently conveyed to those skilled in the art. In order to clearly express the components of each device in the drawing, the sizes of the components, such as width and thickness, are shown somewhat enlarged.

또한, 설명의 편의를 위하여 구성요소의 일부만을 도시하기도 하였으나, 당업자라면 구성요소의 나머지 부분에 대하여도 용이하게 파악할 수 있을 것이다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위 또는 아래에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위 또는 아래에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 기술적 사상을 벗어나지 않는 범위 내에서 본 출원의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고, 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다. Additionally, for convenience of explanation, only some of the components are shown, but those skilled in the art will be able to easily understand the remaining components. When describing the drawing as a whole, it is described from the observer's point of view, and when an element is mentioned as being located above or below another element, this means that the element is located directly above or below another element, or that an additional element is interposed between those elements. It includes everything that can be done. Additionally, a person skilled in the art will be able to implement the ideas of this application in various other forms without departing from the technical spirit of this application. Also, like symbols in a plurality of drawings refer to substantially the same elements.

또한, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함하는 것으로 이해되어야 하고, ‘포함하다’ 또는 ‘가지다’ 등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, singular expressions should be understood to include plural expressions, unless the context clearly indicates otherwise, and terms such as 'include' or 'have' refer to the described features, numbers, steps, operations, components, etc. It is intended to specify the existence of a part or a combination thereof, but should be understood as not excluding in advance the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.

또한, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.Additionally, when performing a method or manufacturing method, each process forming the method may occur differently from the specified order unless a specific order is clearly stated in the context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the opposite order.

이하, 본 발명에 대하여 더욱 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 의한 제조방법에 의해 제조된 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 금속 물질에 p-블럭원소(p-block element)가 도핑되어 형성된 촉매 담지체 및 상기 촉매 담지체의 표면에 형성된 단일금속원자층을 포함한다. 본 발명의 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 귀금속 담지량 대비 산소발생반응 효율이 증가하고, 귀금속 촉매의 사용량을 획기적으로 줄일 수 있다.The p-d orbital hybrid single metal atom catalyst for oxygen generation reaction prepared by the production method according to the present invention consists of a catalyst support formed by doping a p-block element into a metal material and the catalyst support. It contains a single metal atomic layer formed on the surface. The p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction of the present invention is capable of carrying precious metal through hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal (d-block element). Compared to this, the efficiency of the oxygen generation reaction increases and the amount of precious metal catalyst used can be dramatically reduced.

구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific example, the metal material forming the catalyst support is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.

상기 금속 물질은 예를들어, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, 란탄족 및 악티늄족 원소 중 1종 이상의 금속 또는 이들의 조합을 포함할 수 있다. 바람직하게는 Ti(티타늄) 금속을 포함할 수 있다.The metal material is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, One or more metals or a combination of Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, lanthanide and actinide elements It can be included. Preferably, it may contain Ti (titanium) metal.

상기 Ti(티타늄) 금속은 순도 99.5% 초과의 Pure Ti로 촉매 담지체를 형성하는 지지체로 사용될 수 있다. 상기 Ti(티타늄) 금속은 기판 역할을 수행하며 단일원자에 존재하지 않는 전기촉매 전도띠를 제공하여 전기화학촉매로 사용 가능할 수 있다.The Ti (titanium) metal is Pure Ti with a purity of more than 99.5% and can be used as a support to form a catalyst support. The Ti (titanium) metal serves as a substrate and can be used as an electrochemical catalyst by providing an electrocatalytic conduction band that does not exist in a single atom.

상기 p-블럭원소(p-block element)는 상기 금속물질에 도핑시 사용하는 물질로 p-오비탈을 갖고 있어 단일금속원자층 형성시 귀금속계 금속의 d-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다.The p-block element is a material used when doping the metal material and has a p-orbital. When forming a single metal atomic layer, the p-block element adsorbs the catalyst intermediate through orbital hybridization with the d-orbital of the noble metal. Intensity can be independently controlled and scaled out of bounds.

상기 p-블럭원소(p-block element)는 부피가 가벼워 기체를 통한 도핑이 가능한 C(탄소), N(질소) 및 O(산소) 중 어느 하나를 포함할 수 있고, 예를들어, TiX (TiC, TiN, TiO2) 지지체를 형성할 수 있다. 더욱 바람직하게는 C를 포함하여 TiC(티타늄 카바이드) 지지체를 형성할 수 있다.The p-block element may include any one of C (carbon), N (nitrogen), and O (oxygen), which is light in volume and can be doped through gas, for example, TiX ( TiC, TiN, TiO2) can form a support. More preferably, a TiC (titanium carbide) support can be formed by including C.

구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다. 또한, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. In a specific example, the material forming the single metal atomic layer may be a noble metal-based metal. Additionally, the noble metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium.

상기 귀금속계 금속은 상기 촉매 담지체에 증착시 사용하는 물질로 d-오비탈을 갖고 있어 단일금속원자층 형성시, 촉매 담지체의 p-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다. The noble metal-based metal is a material used when depositing on the catalyst support and has a d-orbital, so when forming a single metal atomic layer, the adsorption strength of the catalyst intermediate is independently controlled through orbital hybridization with the p-orbital of the catalyst support. and can escape the scaling limit.

상기 귀금속계 금속인 d-블럭원소(d-block element)는 예를들어, 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. 상기 귀금속계 금속은 d-블럭원소(d-block element)로 d-오비탈을 갖고 있고, p-블럭원소(p-block element)와의 오비탈 혼성시 원소 조합에 따라 다양한 특성을 나타낼 수 있다. 예를들어, 특유의 전도대, 가전도대 전자구조 등을 알 수 있고, 산소발생반응 과전압 향상 등 고효율의 산소발생반응 특성을 구현하며, 귀금속 촉매의 사용량을 줄일 수 있다.For example, the d-block element, which is a noble metal-based metal, may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium. The noble metal-based metal has a d-orbital as a d-block element, and can exhibit various characteristics depending on the combination of elements when hybridizing the orbital with a p-block element. For example, the unique conduction band and valence band electronic structure can be known, high-efficiency oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage can be realized, and the amount of precious metal catalyst used can be reduced.

구체예에서, 상기 단일금속원자층의 두께는 1nm 내지 2nm 일 수 있다. 상기 증착두께의 범위일 때, 산소발생반응 과전압값이 감소하여 고효율의 산소발생반응 특성을 구현할 수 있는 장점이 있다.In a specific example, the thickness of the single metal atomic layer may be 1 nm to 2 nm. When the deposition thickness is within the above range, the oxygen generation reaction overvoltage value is reduced, which has the advantage of realizing highly efficient oxygen generation reaction characteristics.

본 발명에 의해 제조된 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 귀금속 담지량 대비 산소발생반응 효율이 증가하고, 귀금속 촉매 사용량을 획기적으로 줄일 수 있다.The single metal atom catalyst in the form of p-d orbital hybridization for oxygen evolution reaction prepared by the present invention achieves hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal (d-block element). Through this, the efficiency of the oxygen generation reaction increases compared to the amount of precious metal loaded, and the amount of precious metal catalyst used can be dramatically reduced.

본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법은 금속 물질에 p-블럭원소(p-block element)를 도핑하여 촉매 담지체를 형성하는 단계(S100) 및 상기 촉매 담지체에 귀금속계 금속을 증착시켜 1nm 내지 2nm 두께의 단일금속원자층을 형성하는 단계(S200)를 포함한다.The method for producing a p-d orbital hybrid single metal atom catalyst for oxygen generation reaction according to the present invention includes the steps of forming a catalyst support by doping a p-block element into a metal material (S100) and carrying the catalyst. It includes forming a single metal atomic layer with a thickness of 1 nm to 2 nm by depositing a noble metal-based metal on the substrate (S200).

도 1은 본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법을 나타내는 순서도이다. Figure 1 is a flowchart showing a method for producing a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction according to the present invention.

도 1을 참조하면, 본 발명의 단일원자촉매의 제조방법은 촉매 담지체 형성단계(S100) 및 단일금속원자층 형성단계(S200)를 포함한다.Referring to Figure 1, the method for producing a single atom catalyst of the present invention includes a catalyst support forming step (S100) and a single metal atomic layer forming step (S200).

촉매 담지체 형성단계(S100)는 금속 물질에 p-블럭원소(p-block element)를 도핑하여 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 촉매 담지체를 형성하기 위한 목적에서 수행된다.The catalyst support forming step (S100) is performed for the purpose of forming a catalyst support for a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction by doping a p-block element into a metal material. .

구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific example, the metal material forming the catalyst support is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.

상기 금속 물질은 예를들어, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, 란탄족 및 악티늄족 원소 중 1종 이상의 금속 또는 이들의 조합을 포함할 수 있다. 바람직하게는 Ti(티타늄) 금속을 포함할 수 있다.The metal material is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, One or more metals or a combination of Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, lanthanide and actinide elements It can be included. Preferably, it may contain Ti (titanium) metal.

상기 Ti(티타늄) 금속은 순도 99.5% 초과의 Pure Ti로 촉매 담지체를 형성하는 지지체로 사용될 수 있다. 상기 Ti(티타늄) 금속은 기판 역할을 수행하며 단일원자에 존재하지 않는 전기촉매 전도띠를 제공하여 전기화학촉매로 사용 가능할 수 있다.The Ti (titanium) metal is Pure Ti with a purity of more than 99.5% and can be used as a support to form a catalyst support. The Ti (titanium) metal serves as a substrate and can be used as an electrochemical catalyst by providing an electrocatalytic conduction band that does not exist in a single atom.

상기 p-블럭원소(p-block element)는 상기 금속물질에 도핑시 사용하는 물질로 p-오비탈을 갖고 있어 단일금속원자층 형성시 귀금속계 금속의 d-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다.The p-block element is a material used when doping the metal material and has a p-orbital. When forming a single metal atomic layer, the p-block element adsorbs the catalyst intermediate through orbital hybridization with the d-orbital of the noble metal. Intensity can be independently controlled and scaled out of bounds.

상기 p-블럭원소(p-block element)는 예를들어, 부피가 가벼워 기체를 통한 도핑이 가능한 C(탄소), N(질소), O(산소)를 포함할 수 있고, 예를들어, TiX (TiC, TiN, TiO2) 지지체를 형성할 수 있다. 바람직하게는 C를 포함할 수 있고, 예를 들어, TiC(티타늄 카바이드) 지지체를 형성할 수 있다.The p-block element may include, for example, C (carbon), N (nitrogen), and O (oxygen), which are light in volume and can be doped through gas, for example, TiX. (TiC, TiN, TiO 2 ) can form a support. Preferably, it may include C and, for example, may form a TiC (titanium carbide) support.

구체예에서, 상기 촉매 담지체를 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 상기 티타늄 금속을 히터를 통해 메탄 분위기하에서 가열하여 표면에 티타늄 카바이드(TiC)를 생성시킬 수 있다.In a specific example, the step of forming the catalyst support includes, when the metal material is titanium and the p-block element is carbon, the titanium metal is heated in a methane atmosphere through a heater to form a surface. Titanium carbide (TiC) can be produced.

상기 티타늄 카바이드(TiC)는 1000 내지 1200℃에서, 200 내지 400초간 열처리하여 형성할 수 있다. 바람직하게는 1050 내지 1150℃에서, 250 내지 350초간 열처리하여 형성할 수 있다. 상기 조건 범위에서 열처리시, 별도의 후공정을 필요로 하지 않고 불순물을 제거하여 도핑이 표면에 고르게 잘될 수 있다.The titanium carbide (TiC) can be formed by heat treatment at 1000 to 1200°C for 200 to 400 seconds. Preferably, it can be formed by heat treatment at 1050 to 1150°C for 250 to 350 seconds. During heat treatment within the above condition range, impurities can be removed without the need for a separate post-process, and doping can be done evenly on the surface.

상기 촉매 담지체는 넓은 비표면적을 갖고 결정성이 높은 탄소 담지체(TiC)일 수 있다. 예를들어, 상기 촉매 담지체는 탄소 담지체로써, 그래핀(graphene), 그래핀 산화물(graphene oxide), 플러렌(fullerene), 탄소나노튜브(CNT), 탄소나노섬유(carbon nanofiber), 탄소나노벨트(carbon nanobelt), 탄소나노양파(carbon nanoonion), 탄소나노뿔(carbon nanohorn), 활성탄소 (activated carbon), 흑연 (graphite) 등을 포함할 수 있다. 그러나, 반드시 이들로 한정되지 않고 당해 기술분야에서 탄소 담지체로 사용될 수 있는 것이라면 모두 포함할 수 있다.The catalyst support may be a carbon support (TiC) with a large specific surface area and high crystallinity. For example, the catalyst support is a carbon support, such as graphene, graphene oxide, fullerene, carbon nanotubes (CNT), carbon nanofiber, and carbon nano. It may include a carbon nanobelt, carbon nanoonion, carbon nanohorn, activated carbon, graphite, etc. However, it is not necessarily limited to these and may include any material that can be used as a carbon carrier in the relevant technical field.

상기 촉매 담지체는 구형, 막대형, 튜브형, 뿔형 또는 판상형 등의 구조를 포함할 수 있다. 그러나, 반드시 이러한 구조로 한정되지 않고 당해 기술 분야에서 촉매 담지체로 사용할 수 있는 구조라면 모두 포함할 수 있다.The catalyst carrier may have a spherical, rod-shaped, tube-shaped, horn-shaped, or plate-shaped structure. However, it is not necessarily limited to this structure and may include any structure that can be used as a catalyst support in the art.

상기 촉매 담지체는 다공성일 수 있다. 예를들어, 상기 촉매 담지체는 넓은 비표면적과 기공을 가지는 다공성 탄소재료일 수 있다. 예를들어, 상기 촉매 담지체는 메조다공성일 수 있다. 예를들어, 상기 촉매 담지체는 상술한 다양한 형태의 촉매 담지체의 일부 또는 전부가 다공성일 수 있다.The catalyst support may be porous. For example, the catalyst support may be a porous carbon material with a large specific surface area and pores. For example, the catalyst support may be mesoporous. For example, some or all of the various types of catalyst supports described above may be porous.

단일금속원자층 형성단계(S200)는 상기 촉매 담지체에 귀금속계 금속을 증착하여 p-오비탈과 d-오비탈간 오비탈 혼성화를 통해 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매를 형성하기 위한 목적에서 수행된다.The single metal atomic layer forming step (S200) is to deposit a noble metal-based metal on the catalyst carrier to form a single metal atom catalyst in the form of p-d orbital hybridization for oxygen evolution reaction through orbital hybridization between p-orbital and d-orbital. It is carried out for a purpose.

구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다. 또한, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. 상기 귀금속계 금속은 d-오비탈을 갖고 있어 단일금속원자층 형성시, 촉매 담지체의 p-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다. In a specific example, the material forming the single metal atomic layer may be a noble metal-based metal. Additionally, the noble metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium. The noble metal-based metal has a d-orbital, so that when forming a single metal atomic layer, the adsorption strength of the catalyst intermediate can be independently controlled through orbital hybridization with the p-orbital of the catalyst supporter and can escape the scaling limit.

상기 귀금속계 금속인 d-블럭원소(d-block element)는 예를들어, 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. 상기 귀금속계 금속은 d-블럭원소(d-block element)로 d-오비탈을 갖고 있고, p-블럭원소와의 오비탈 혼성시 원소 조합에 따라 다양한 특성을 나타낼 수 있다. 예를들어, 오비탈 혼성화로 특유의 전도대, 가전도대 전자구조 등을 알 수 있고, 또한, 산소발생반응 과전압 향상 등 고효율의 산소발생반응 특성을 구현하고 귀금속 촉매의 사용량을 줄일 수 있다.For example, the d-block element, which is a noble metal-based metal, may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium. The noble metal-based metal is a d-block element and has a d-orbital, and when hybridizing the orbital with a p-block element, it can exhibit various characteristics depending on the combination of elements. For example, orbital hybridization can reveal the unique conduction band and valence band electronic structure, and also realize highly efficient oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage, and reduce the amount of precious metal catalyst used.

구체예에서, 상기 단일금속원자층을 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 티타늄 카바이드가 표면에 도핑된 티타늄으로 이루어진 촉매 담지체에 이리듐을 증착시켜 단일금속원자층을 형성할 수 있다.In a specific example, the step of forming the single metal atomic layer includes, when the metal material is titanium and the p-block element is carbon, a catalyst carrier made of titanium doped with titanium carbide on the surface. A single metal atomic layer can be formed by depositing iridium.

상기 증착은 예를들어, 아크방전(arc discharge), 열화학기상증착법(thermal chemical vapor deposition), 플라즈마 합성법(plasma synthesis), 고온 플라즈마(high temperature plasma), 플라즈마화학기상증착법(plasma enhanced chemical vapor deposition), 레이저 증착법(laser evaporation), 레이저 어블레이션(laser ablation), 기상합성법(vapor phase growth) 또는 진공증착법(electronic-beam evaporator) 중 적어도 하나의 공정에 의해 수행할 수 있다. 바람직하게는 진공증착법(electronic-beam evaporator) 공정에 의해 수행할 수 있다.The deposition may be performed, for example, by arc discharge, thermal chemical vapor deposition, plasma synthesis, high temperature plasma, or plasma enhanced chemical vapor deposition. , it can be performed by at least one process among laser evaporation, laser ablation, vapor phase growth, or electronic-beam evaporator. Preferably, it can be performed by a vacuum evaporation (electronic-beam evaporator) process.

상기 증착은 20 내지 30℃에서 0.1 내지 0.5Å/s로 증착할 수 있다. 바람직하게는, 23 내지 27℃에서 0.2 내지 0.4Å/s로 증착할 수 있다. 상기 온도, 속도 범위에서 증착될 때, 일정한 속도로 증착반응이 균일하게 일어나 목표로 하는 단일금속원자층이 잘 형성될 수 있다.The deposition can be performed at 20 to 30°C and at 0.1 to 0.5 Å/s. Preferably, deposition can be performed at 23 to 27°C and 0.2 to 0.4 Å/s. When deposited in the above temperature and speed range, the deposition reaction occurs uniformly at a constant speed, so that the target single metal atomic layer can be well formed.

구체예에서, 상기 단일금속원자층을 형성하는 단계에서 증착된 이리듐으로 이루어진 단일금속원자층의 두께는 1nm 내지 2nm일 수 있다. 상기 증착두께 범위일 때, 산소발생반응 과전압값이 감소하여 산소발생반응의 효율이 향상되는 등 고효율의 산소발생반응 특성을 구현할 수 있는 장점이 있다.In a specific example, the thickness of the single metal atomic layer made of iridium deposited in the step of forming the single metal atomic layer may be 1 nm to 2 nm. When the deposition thickness is in the above range, there is an advantage in realizing highly efficient oxygen generation reaction characteristics, such as reducing the oxygen generation reaction overvoltage value and improving the efficiency of the oxygen generation reaction.

본 발명의 제조방법에 의해 제조된 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 오비탈 혼성화를 통해 산소발생반응 과전압의 향상 등 고효율의 산소발생반응 특성을 구현하고 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 우수한 특징이 있다.The p-d orbital hybrid single metal atom catalyst for oxygen generation reaction prepared by the production method of the present invention is composed of the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal (d-block element). It has excellent features such as realizing highly efficient oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage through inter-orbital hybridization and dramatically reducing the amount of precious metal catalyst used.

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is presented as a preferred example of the present invention and should not be construed as limiting the present invention in any way.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Any information not described here can be technically inferred by anyone skilled in the art, so description thereof will be omitted.

Ti 금속에 p-블럭원소(p-block element) 탄소(C)를 도핑하여 촉매 담지체인 티타늄 카바이드를 제조하였다. 이때, 인덕션 히터(induction)를 사용하여 메탄(C4H4) 분위기에서 1100℃, 300초 동안 열처리하여 제조하였다.Titanium carbide, a catalyst carrier, was prepared by doping Ti metal with the p-block element carbon (C). At this time, it was manufactured by heat treatment at 1100°C for 300 seconds in a methane (C 4 H 4 ) atmosphere using an induction heater.

그 다음, 상기 티타늄 카바이드 담지체에 E-beam을 사용하여 귀금속계 금속인 d-블럭원소(d-block element) 이리듐(Ir)을 증착하여 단일금속원자층을 형성하였다. 이때, 증착은 상온에서 0.3Å/s로 조절하여 진행하였고 그 두께는 0.5nm로 증착하였다.Next, the d-block element iridium (Ir), a precious metal-based metal, was deposited on the titanium carbide support using an E-beam to form a single metal atomic layer. At this time, deposition was carried out at room temperature at a speed of 0.3 Å/s, and the thickness was 0.5 nm.

상기 과정을 통해 최종적으로 본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매(TiC-ir)를 완성하였다 (0.5nm 증착된 TiC-Ir).Through the above process, a p-d orbital hybrid single metal atom catalyst (TiC-ir) for oxygen generation reaction according to the present invention was finally completed (TiC-Ir deposited at 0.5 nm).

실시예 2는 단일원자촉매 형성시 Ir(이리듐)을 촉매 담지체에 1.0nm 두께로 증착한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 단일원자촉매를 완성하였다 (1nm 증착된 TiC-Ir).In Example 2, a single atom catalyst was completed in the same manner as Example 1, except that Ir (iridium) was deposited on the catalyst carrier to a thickness of 1.0 nm when forming the single atom catalyst (TiC-Ir deposited at 1 nm). .

실시예 3은 단일원자촉매 형성시 Ir(이리듐)을 촉매 담지체에 2nm 두께로 증착한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 단일원자촉매를 완성하였다 (2nm 증착된 TiC-Ir).In Example 3, a single atom catalyst was completed in the same manner as Example 1, except that Ir (iridium) was deposited on the catalyst carrier to a thickness of 2 nm when forming the single atom catalyst (TiC-Ir deposited at 2 nm).

실시예 4는 실시예 1 내지 3에 대한 비교예로서, 단일원자촉매를 사용하지 않고 상용촉매인 Bulk Ir을 사용하였다(Bulk Ir). 이후, 상기 실시예 1 내지 3에 의한 본 발명의 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 및 비교예로서 제시한 실시예 4에 의한 기존의 상용촉매에 대해, 아래와 같이 산소발생반응(OER)의 활성평가를 수행하였다. Example 4 is a comparative example to Examples 1 to 3, and instead of using a single atom catalyst, Bulk Ir, a commercial catalyst, was used (Bulk Ir). Thereafter, for the p-d orbital hybridized single metal atom catalyst for oxygen generation reaction of the present invention according to Examples 1 to 3 and the existing commercial catalyst according to Example 4 presented as a comparative example, the oxygen generation reaction ( OER) activity evaluation was performed.

우선, 상기 각 실시예에 의해 제작된 촉매를 이용하여 RDE 실험을 위한 3전극 셀을 구성하고 상온, 상압 조건하에서 OER 분극곡선을 측정하였다. 그 다음, 얻어진 분극곡선으로부터 일정 전류밀도(10mA/㎠)에서의 전위를 측정하였다.First, a three-electrode cell for RDE experiment was constructed using the catalyst prepared in each of the above examples, and the OER polarization curve was measured under room temperature and pressure conditions. Next, the potential at a constant current density (10 mA/cm2) was measured from the obtained polarization curve.

전체 실험조건은 다음과 같다. 작동전극(Working electrode)은 Rotating Disk Electrode(RDE), 기준전극(Reference electrode)은 Ag/AgCl, 상대전극(Counter electrode)은 Pt Wire를 사용하였다. 이때, 전해질은 0.1 M HClO4 (pH 1), 온도는 상온 25℃ 조건에서 수행하였다. The overall experimental conditions are as follows. Rotating Disk Electrode (RDE) was used as the working electrode, Ag/AgCl was used as the reference electrode, and Pt Wire was used as the counter electrode. At this time, the electrolyte was 0.1 M HClO4 (pH 1), and the temperature was 25°C.

또한, OER 활성평가를 위해 다음 조건에서 실험을 수행하였다. 전해질을 아르곤으로 30분간 purging하고, OER에서의 산소 제거를 위해 작동전극을 1600rpm로 회전하였다. 이때, Scan rate는 10mV/s, Scan range는 0.05 V(vs RHE) 내지 2.00 V (vs RHE)를 유지하였고, 각 실험마다 1회부터 10회까지 반응을 반복 실시하였다.Additionally, to evaluate OER activity, experiments were performed under the following conditions. The electrolyte was purged with argon for 30 minutes, and the working electrode was rotated at 1600 rpm to remove oxygen from the OER. At this time, the scan rate was maintained at 10 mV/s, the scan range was maintained at 0.05 V (vs RHE) to 2.00 V (vs RHE), and the reaction was repeated from 1 to 10 times for each experiment.

이에 대한 실험 결과는 하기 표 1 및 도 2에 구체적으로 개시하였다.The experimental results for this are specifically disclosed in Table 1 and Figure 2 below.

샘플 명sample name 과전압
(첫번째 분극곡선)
overvoltage
(First polarization curve)
과전압
(열번째 분극곡선)
overvoltage
(10th polarization curve)
실시예4Example 4 Bulk IrBulk Ir 1.6521.652 ·· 실시예1Example 1 Ir 0.5 nm on TiCIr 0.5 nm on TiC 1.604 V vs RHE1.604 V vs RHE 측정불가Not measurable 실시예2Example 2 Ir 1 nm on TiCIr 1 nm on TiC 1.592 V vs RHE1.592 V vs RHE 1.571 V vs RHE1.571 V vs RHE 실시예3Example 3 Ir 2 nm on TiCIr 2 nm on TiC 1.557 V vs RHE1.557 V vs RHE 1.534 V vs RHE1.534 V vs RHE

도 2는 본 발명의 한 구체예에 따른 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 LSV 분극곡선 그래프이다. Figure 2 is an LSV polarization curve graph of a p-d orbital hybrid single metal atom catalyst for oxygen evolution reaction according to an embodiment of the present invention.

도 2를 참조하면, 종래의 상용촉매인 이리듐 벌크(Bulk Ir)의 첫번째 분극곡선의 과전압값과 비교할 때, 이리듐 0.5nm를 증착시킨 실시예 1의 샘플에 대한 첫번째 분극곡선의 과전압값은 약 2.99% 감소되었으나, 산소발생반응을 10회 반복한 이후에는 과전압값을 측정할 수 없었다. Referring to FIG. 2, when compared to the overvoltage value of the first polarization curve of iridium bulk (Bulk Ir), a conventional commercial catalyst, the overvoltage value of the first polarization curve for the sample of Example 1 on which 0.5 nm of iridium was deposited was about 2.99. % decreased, but the overvoltage value could not be measured after the oxygen generation reaction was repeated 10 times.

또한, 이리듐 벌크(Bulk Ir)의 첫번째 분극곡선의 과전압값과 비교하였을 때, 이리듐 1nm를 증착시킨 실시예 2의 샘플에 대한 첫 번째 분극곡선의 과전압값은 약 3.63% 감소되었으며, 이리듐 2nm를 증착시킨 실시예 3의 샘플에 대한 첫 번 째 분극곡선의 과전압값은 약 5.75% 감소되어 실시예 2와 3의 경우 이리듐 벌크를 촉매로 채택하였을 때보다 각각 산소발생반응의 효율이 높아진 것을 확인할 수 있었다.
이후, 산소발생반응 실험을 10회 반복한 경우에 실시예 2와 3의 샘플 모두 산소발생반응의 과전압값이 첫 번째 산소발생반응 실험에서의 과전압값 보다 더 감소하여 산소발생반응의 효율이 더 높아졌음을 확인할 수 있었으며, 산소발생반응 실험을 10회 반복하여 실시예 2와 3의 샘플 표면에 형성된 이리듐층이 산화되어 이리듐 옥사이드로 전부 전환된 이후에는 과전압값이 더이상 감소되지 않고 일정하게 유지되었다.
In addition, when compared to the overvoltage value of the first polarization curve of iridium bulk (Bulk Ir), the overvoltage value of the first polarization curve for the sample of Example 2 in which 1 nm of iridium was deposited was reduced by about 3.63%, and the overvoltage value of the first polarization curve in the sample of Example 2 in which 1 nm of iridium was deposited was reduced by about 3.63%. The overvoltage value of the first polarization curve for the sample of Example 3 was reduced by about 5.75%, confirming that the efficiency of the oxygen generation reaction was increased in Examples 2 and 3 compared to when iridium bulk was used as the catalyst. .
Afterwards, when the oxygen evolution reaction experiment was repeated 10 times, the overvoltage value of the oxygen evolution reaction for both samples of Examples 2 and 3 decreased more than the overvoltage value in the first oxygen evolution reaction experiment, resulting in higher efficiency of the oxygen evolution reaction. It was confirmed that the oxygen evolution reaction experiment was repeated 10 times, and after the iridium layer formed on the surface of the samples of Examples 2 and 3 was oxidized and completely converted to iridium oxide, the overvoltage value did not decrease any longer and remained constant.

이를 통해, 본 발명과 같이 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 오비탈 혼성화를 이룬 단일원자촉매에 의할 경우, 귀금속 촉매(이리듐)를 단독으로 사용하였을 때에 비해 산소발생반응의 과전압 값이 감소되어 산소발생반응의 효율이 높아지며, 귀금속 촉매(이리듐)만을 촉매로 사용했을 때보다 귀금속 촉매(이리듐)의 사용량을 획기적으로 줄일 수 있는 우수한 특징을 확인할 수 있었다.Through this, in the case of a single atom catalyst that achieves orbital hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal-based metal (d-block element) as in the present invention, the precious metal catalyst ( Compared to when iridium is used alone, the overvoltage value of the oxygen generation reaction is reduced, thereby increasing the efficiency of the oxygen generation reaction, and the amount of precious metal catalyst (iridium) used can be dramatically reduced compared to when only precious metal catalyst (iridium) is used as a catalyst. Excellent features were identified.

이상 살펴본 바와 같이, 물성평가 실험예를 통해 본 발명에 의한 단일원자촉매는 종래 발명과 대비하여 오비탈 혼성화된 p-d 오비탈 혼성 단일원자촉매를 사용함으로써, 촉매 중간체 흡착과 생성물 탈착간의 스케일링 한계를 극복하고, 촉매 활성면에서 불필요하게 발생하는 이차반응(secondary reaction) 문제를 해결할 수 있는 효과가 있음을 확인할 수 있었다.As discussed above, through experimental examples of physical property evaluation, the single atom catalyst according to the present invention overcomes the scaling limit between catalytic intermediate adsorption and product desorption by using an orbital hybridized p-d orbital hybrid single atom catalyst compared to the conventional invention, It was confirmed that it was effective in solving the problem of secondary reactions that occur unnecessarily in terms of catalytic activity.

한편, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.Meanwhile, although the present invention has been described with limited embodiments and drawings, the present invention is not limited to the above embodiments, and various modifications and variations can be made by those skilled in the art from these descriptions. possible.

그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 청구범위뿐만 아니라 청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined by the claims and equivalents as well as the claims described below.

S100 : 촉매 담지체 형성단계
S200 : 단일금속원자층 형성단계
S100: Catalyst carrier formation step
S200: Single metal atomic layer formation step

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 티타늄 금속을 히터를 통해 메탄 분위기하에서 1050~1150℃에서 250~350초 동안 가열하여 표면에 티타늄 카바이드(TiC)를 생성시켜 촉매 담지체를 형성하는 단계; 및
상기 촉매 담지체에 전자빔을 이용하여 23~27℃에서 0.2~0.4Å/s의 속도로 이리듐을 1nm 내지 2nm 두께로 증착시켜 단일금속원자층을 형성하는 단계;를 포함하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 제조방법.
Heating titanium metal in a methane atmosphere using a heater at 1050-1150°C for 250-350 seconds to generate titanium carbide (TiC) on the surface to form a catalyst support; and
forming a single metal atomic layer by depositing iridium on the catalyst carrier to a thickness of 1 nm to 2 nm at a rate of 0.2 to 0.4 Å/s at 23 to 27°C using an electron beam; pd orbital for oxygen generation reaction comprising Method for producing a hybrid single metal atom catalyst.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020210068911A 2021-05-28 2021-05-28 Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction KR102604417B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210068911A KR102604417B1 (en) 2021-05-28 2021-05-28 Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction
PCT/KR2022/005761 WO2022250299A1 (en) 2021-05-28 2022-04-22 Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210068911A KR102604417B1 (en) 2021-05-28 2021-05-28 Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction

Publications (2)

Publication Number Publication Date
KR20220162191A KR20220162191A (en) 2022-12-08
KR102604417B1 true KR102604417B1 (en) 2023-11-22

Family

ID=84228264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210068911A KR102604417B1 (en) 2021-05-28 2021-05-28 Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction

Country Status (2)

Country Link
KR (1) KR102604417B1 (en)
WO (1) WO2022250299A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576607B1 (en) * 2004-01-30 2006-05-04 아주대학교산학협력단 Formation method of titanium carbide coat on titanium-based product by hydrocarbon gas reaction and product thereof
KR101505285B1 (en) 2012-05-29 2015-03-24 현대중공업 주식회사 Manufacturing method of oxygen reduction reaction catalysts and catalysts thereof, Cathode using oxygen reduction reaction catalysts
KR101736065B1 (en) 2015-01-29 2017-05-17 한국과학기술연구원 Catalyst for oxygen reduction reaction and preparation method of the same
KR102457845B1 (en) * 2015-12-02 2022-10-25 한국과학기술원 Single Atomic Platinum Catalysts and Their Uses
KR101809595B1 (en) * 2015-12-18 2017-12-19 한국과학기술원 Titanium carbide supported Pt single-atom catalyst for production of hydrogen peroxide, MEA including the same and Method for preparing the catalyst
KR102285948B1 (en) * 2019-04-30 2021-08-03 포항공과대학교 산학협력단 A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition
KR102293767B1 (en) * 2019-11-26 2021-08-26 한국과학기술연구원 Method of manufacturing metal single-atom catalysts

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D.J.Hagen et al., Atomic layer deposition of metals: Precursors and film growth, Applied Physics Reviews 6, 041309 (2019)
Dongxiao Kan et al., Screening effective single-atom ORR and OER ~ by first-principles calculations, J. Mater. Chem. A, 2020,8, 17065-17077, 2020.7.21.발행
Lirong Ma et al., Preparation and characterization of Ir/TiC catalyst for oxygen evolution, 2007.12.7.발행
Roderick E. Fuentes et al., Pt-Ir/TiC Electrocatalysts for PEM Fuel Cell/Electrolyzer Process, Journal of The Electrochemical Society, 161 (1), F77~F82쪽, 2013.11.21.발행*
Seoin Back et al., TiC- and TiN-Supported Single-Atom Catalysts ~ Electrochemical Reduction to CH4, ACS Energy Lett. 2017, 2, 5, 969-975, 2017.4.5.발행
Titta Aaltonen et al, Atomic Layer Deposition of Iridium Thin Films, J. Electrochem. Soc. 151(8), G489, 2004.6.17.발행

Also Published As

Publication number Publication date
WO2022250299A1 (en) 2022-12-01
KR20220162191A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Luo et al. Strong metal–support interaction in heterogeneous catalysts
Wang et al. Recent advances in structural engineering of MXene electrocatalysts
Sun et al. Activity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalysts
Chen et al. High‐entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis
Cheng et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2
Cheng et al. Single-atom catalysts: from design to application
Zhu et al. Single‐atom electrocatalysts
CN101024495B (en) Carbon nanotube, a supported catalyst comprising the same, and fuel cell using the same
Flores Espinosa et al. Compressed intermetallic PdCu for enhanced electrocatalysis
US9849445B2 (en) Subnanometer to nanometer transition metal CO oxidation catalysts
Hejazi et al. Intrinsic Au-decoration on anodic TiO2 nanotubes grown from metastable Ti–Au sputtered alloys—High density co-catalyst decoration enhances the photocatalytic H2 evolution
Roh et al. Preparation of carbon-supported Pt–Ru core-shell nanoparticles using carbonized polydopamine and ozone for a CO tolerant electrocatalyst
KR20130067476A (en) Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
KR20220103288A (en) Intermetallic catalyst and method for preparing the same
KR102604417B1 (en) Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
US20120270727A1 (en) Catalyst
Laishram et al. 2D transition metal carbides (MXenes) for applications in electrocatalysis
KR102551698B1 (en) Making Process of Single Atom Catalysts For Deposition Control
JP6847412B2 (en) Catalytic base material for manufacturing carbon nanotube aggregates and method for manufacturing carbon nanotube aggregates
KR102505456B1 (en) Carbon sheet loaded with metal nanoparticles and manufacturing method thereof, oxygen reduction catalyst comprising them and manufacturing method of the catalyst
KR20220102854A (en) Intermetallic catalyst and method for preparing the same
KR101807530B1 (en) Catalyst, catalyst layer comprising the same for fuel cell electrode and method preparing the catalyst
KR102596663B1 (en) Catalyst For Ammoxidation Having Core Shell Structure and Making Process Thereof
JP7072040B1 (en) Fuel cell catalyst and its manufacturing method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant