KR102564746B1 - three-layered structure dustproof net and manufacturing method thereof - Google Patents

three-layered structure dustproof net and manufacturing method thereof Download PDF

Info

Publication number
KR102564746B1
KR102564746B1 KR1020210162707A KR20210162707A KR102564746B1 KR 102564746 B1 KR102564746 B1 KR 102564746B1 KR 1020210162707 A KR1020210162707 A KR 1020210162707A KR 20210162707 A KR20210162707 A KR 20210162707A KR 102564746 B1 KR102564746 B1 KR 102564746B1
Authority
KR
South Korea
Prior art keywords
fabric
net
nanofiber web
dustproof net
layer structure
Prior art date
Application number
KR1020210162707A
Other languages
Korean (ko)
Other versions
KR20230075972A (en
Inventor
김도경
Original Assignee
김도경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김도경 filed Critical 김도경
Priority to KR1020210162707A priority Critical patent/KR102564746B1/en
Publication of KR20230075972A publication Critical patent/KR20230075972A/en
Application granted granted Critical
Publication of KR102564746B1 publication Critical patent/KR102564746B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/262Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
    • B32B5/263Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer next to one or more woven fabric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/233Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads protein-based, e.g. wool or silk
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres

Abstract

본 발명은 3층 구조 방진망 및 이의 제조방법에 관한 것으로써, 보다 상세하게는 미세먼지와 초미세먼지, 황사와 같은 외부 오염물질을 차단할 뿐만 아니라 통기성도 우수하며, 항균성 또한 가지는 3층 구조 방진망 및 이의 제조방법에 관한 것이다.The present invention relates to a three-layer structure dustproof net and a method for manufacturing the same, and more particularly, to a three-layer structure dustproof net that not only blocks external contaminants such as fine dust, ultrafine dust, and yellow dust, but also has excellent air permeability and antibacterial properties, and It relates to a manufacturing method thereof.

Description

3층 구조 방진망 및 이의 제조방법{three-layered structure dustproof net and manufacturing method thereof}Three-layer structure dustproof net and manufacturing method thereof {three-layered structure dustproof net and manufacturing method thereof}

본 발명은 3층 구조 방진망 및 이의 제조방법에 관한 것으로써, 보다 상세하게는 미세먼지와 초미세먼지, 황사와 같은 외부 오염물질을 차단할 뿐만 아니라 통기성도 우수하며, 항균성 또한 가지는 3층 구조 방진망 및 이의 제조방법에 관한 것이다.The present invention relates to a three-layer structure dustproof net and a method for manufacturing the same, and more particularly, to a three-layer structure dustproof net that not only blocks external contaminants such as fine dust, ultrafine dust, and yellow dust, but also has excellent air permeability and antibacterial properties, and It relates to a manufacturing method thereof.

일반적으로 주택이나 아파트 같은 주거 건물의 창에는 모기, 파리 같은 해충을 차단하고 통기가 가능한 그물망 형태의 방충망이 설치되는 것이 보통이다. 이런 방충망의 소재는 나일론, 폴리에스터 같은 합성 섬유는 물론 알루미늄, 스테인리스 등의 가는 금속망, 최근에는 글라스파이버를 이용한 제품 까지 다양한 소재의 제품들이 개발되어 널리 사용되고 있다. 하지만 최근에는 기존의 방충기능을 가진 방충망을 통해 실내로 유입될 수 있는 유해한 (초)미세먼지의 발생빈도가 잦아지고 이에 따른 미세먼지로 인한 호흡기 계통 질병 발생의 우려가 높아짐에 따라, 기존의 방충망만으로는 안심하고 창문을 열어 환기를 하는 것이 꺼려지고 있는 실정이다. 즉, 실내에서 발생하는 석면, 라돈, 세균, 포름알데히드, 취사, 전자기기 사용 등으로 발생하는 각종 실내 공기오염 물질 문제로 주거생활시 환기가 필수이나, 미세먼지 등 외부 유해물질로 인해 환기가 꺼려지는 실정이다.BACKGROUND ART In general, an insect screen in the form of a net that blocks pests such as mosquitoes and flies and allows ventilation is installed on windows of residential buildings such as houses and apartments. As for the materials of these insect screens, various materials have been developed and widely used, including synthetic fibers such as nylon and polyester, as well as thin metal nets such as aluminum and stainless steel, and recently glass fiber products. However, in recent years, as the frequency of occurrence of harmful (ultra) fine dust that can flow into the room through insect screens with existing insect repellent functions has increased, and as a result, the risk of respiratory system diseases caused by fine dust has increased. It is a situation that is reluctant to open the window and ventilate with peace of mind. In other words, ventilation is essential in residential life due to various indoor air pollutants such as asbestos, radon, bacteria, formaldehyde, cooking, and the use of electronic devices, but ventilation is reluctant due to external harmful substances such as fine dust. is losing.

따라서 기존의 방충망의 기능인 해충차단은 물론이고 유해한 미세먼지까지를 차단해 줄 수 있는 새로운 기능의 방충/방진망의 개발이 절실하게 필요한 상황이다.Therefore, it is urgently needed to develop a new functional insect/dustproof net that can block harmful fine dust as well as pest blocking, which is the function of the existing insect screen.

한국 공개특허번호 제2019-0110963호(공개일 : 2019.10.01)Korean Patent Publication No. 2019-0110963 (published date: 2019.10.01)

본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 분진포집효율이 높을 뿐만 아니라, 산소투과도가 우수하며, 항균성 또한 가지는 3층 구조 방진망 및 이의 제조방법을 제공하는데 목적이 있다.The present invention has been devised in view of the above points, and an object of the present invention is to provide a three-layer dustproof net having high dust collection efficiency, excellent oxygen permeability, and antibacterial properties and a manufacturing method thereof.

상술한 과제를 해결하기 위하여, 본 발명의 3층 구조 방진망은 제1원단, 나노섬유웹 및 제2원단이 순차적으로 적층된 3층 구조 방진망으로서, 제2원단은 실크섬유를 육각형 그물 형태로 제직(weaving)한 것일 수 있다.In order to solve the above problems, the three-layer structure dustproof net of the present invention is a three-layer structure dustproof net in which a first fabric, a nanofiber web, and a second fabric are sequentially stacked, and the second fabric is woven from silk fibers in the form of a hexagonal net. (weaving).

본 발명의 바람직한 일실시예로서, 실크섬유는 표면에 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)이 코팅되어 있을 수 있다.As a preferred embodiment of the present invention, the surface of the silk fiber may be coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate)).

본 발명의 바람직한 일실시예로서, 실크섬유는 1.5 ~ 3.5 데니어의 섬도를 가질 수 있다.As a preferred embodiment of the present invention, the silk fiber may have a fineness of 1.5 to 3.5 denier.

본 발명의 바람직한 일실시예로서, 제2원단은 평균 개공크기가 30 ~ 70㎛일 수 있다.As a preferred embodiment of the present invention, the second fabric may have an average pore size of 30 to 70 μm.

본 발명의 바람직한 일실시예로서, 제1원단 및 제2원단은 1 : 0.3 ~ 0.5의 평량비를 가질 수 있다.As a preferred embodiment of the present invention, the first fabric and the second fabric may have a basis weight ratio of 1: 0.3 to 0.5.

본 발명의 바람직한 일실시예로서, 제1원단 및 나노섬유웹은 1 : 0.1 ~ 0.3의 평량비를 가질 수 있다.As a preferred embodiment of the present invention, the first fabric and the nanofiber web may have a basis weight ratio of 1: 0.1 to 0.3.

본 발명의 바람직한 일실시예로서, 나노섬유웹은 일면에 코팅층이 형성되어 있을 수 있다.As a preferred embodiment of the present invention, a coating layer may be formed on one surface of the nanofiber web.

본 발명의 바람직한 일실시예로서, 코팅층은 환원된 이산화티타늄을 포함할 수 있다.As a preferred embodiment of the present invention, the coating layer may include reduced titanium dioxide.

한편, 본 발명의 3층 구조 방진망의 제조방법은 제1원단을 준비하는 제1단계, 준비한 제1원단 일면에 고분자 용액을 전기방사(Electrospinning)하여 나노섬유웹을 형성하는 제2단계 및 실크섬유를 육각형 그물 형태로 제직(weaving)한 제2원단을 상기 나노섬유웹 일면에 적층하여 3층 구조 방진망을 제조하는 제3단계를 포함할 수 있다.On the other hand, the manufacturing method of the three-layered anti-vibration net of the present invention includes the first step of preparing a first fabric, the second step of forming a nanofiber web by electrospinning a polymer solution on one side of the prepared first fabric, and silk fibers. A third step of manufacturing a three-layered dustproof net by laminating a second fabric weaved in the form of a hexagonal net on one side of the nanofiber web.

본 발명에서, 사용되는 용어인 ‘섬유’는 '사(絲, Yarn)' 또는 '실'을 의미하며, 통상적인 다양한 종류의 사 및 섬유를 의미한다.In the present invention, the term 'fiber' used herein means 'yarn' or 'thread', and refers to various types of conventional yarns and fibers.

본 발명의 3층 구조 방진망 및 이의 제조방법은 분진포집효율이 높을 뿐만 아니라, 산소투과도가 우수하다.The three-layer dustproof net and its manufacturing method of the present invention have high dust collection efficiency and excellent oxygen permeability.

또한, 본 발명의 3층 구조 방진망 및 이의 제조방법은 항균성이 우수하다.In addition, the three-layer dustproof net of the present invention and its manufacturing method have excellent antibacterial properties.

도 1은 본 발명의 바람직한 일 구현예에 따른 3층 구조 방진망의 단면도이다.
도 2는 본 발명의 바람직한 일 구현예에 따른 사각형 그물 형태를 가지는 제1원단을 나타낸 도면이다.
도 3은 본 발명의 바람직한 일 구현예에 따른 육각형 그물 형태를 가지는 제2원단을 나타낸 도면이다.
1 is a cross-sectional view of a three-layer structure dustproof net according to a preferred embodiment of the present invention.
2 is a view showing a first fabric having a rectangular net shape according to a preferred embodiment of the present invention.
3 is a view showing a second fabric having a hexagonal net shape according to a preferred embodiment of the present invention.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. This invention may be embodied in many different forms and is not limited to the embodiments set forth herein. In order to clearly describe the present invention in the drawings, parts irrelevant to the description are omitted, and the same reference numerals are added to the same or similar components throughout the specification.

도 1을 참조하면, 본 발명의 3층 구조 방진망은 제1원단(10), 나노섬유웹(20) 및 제2원단(30)이 순차적으로 적층된 구조를 가진다.Referring to FIG. 1, the three-layer dustproof net of the present invention has a structure in which a first fabric 10, a nanofiber web 20, and a second fabric 30 are sequentially stacked.

먼저, 제1원단(10)은 도 2에 도시된 것처럼 탄소섬유를 사각형 그물 형태로 제직(weaving)한 것으로서, 15 ~ 35g/m2, 바람직하게는 20 ~ 30 g/m2의 평량을 가질 수 있다. First, the first fabric 10 is obtained by weaving carbon fibers in a rectangular net shape as shown in FIG. 2, and has a basis weight of 15 to 35 g/m 2 , preferably 20 to 30 g/m 2 . can

또한, 제1원단(10)은 평균 개공크기가 150 ~ 250㎛, 바람직하게는 180 ~ 220㎛일 수 있으며, 만일 평균 개공크기가 150㎛ 미만이면 산소투과도가 저하되는 문제가 있을 수 있고, 평균 개공크기가 250㎛을 초과하면 분진포집효율이 저하될 뿐만 아니라, 항균성 또한 저하되는 문제가 있을 수 있다.In addition, the first fabric 10 may have an average pore size of 150 to 250 μm, preferably 180 to 220 μm, and if the average pore size is less than 150 μm, there may be a problem in that the oxygen permeability is lowered, and the average If the pore size exceeds 250 μm, there may be a problem in that not only the dust collection efficiency is lowered, but also the antibacterial property is lowered.

탄소섬유는 PAN(polyacrylonitrile)계 탄소섬유, 레이온(rayon)계 탄소섬유 또는 석유 피치(petroleum pitch)계 탄소섬유일 수 있으며, 바람직하게는 PAN계 탄소섬유일 수 있다. PAN계 탄소섬유는 아크릴로나이트릴(Acrylonitrile)을 중합한 후 방사하여 얻은 PAN(Poly-Acrylonitrile) 섬유를 고온에서 탄화해 제조한 것으로서, 중합, 방사, 소성의 과정을 거쳐서 만들어진 섬유이다. 중합은 아크릴로나이트릴(AN : acrylonitrile)에 열과 압력을 가해 고분자 상태로 만드는 과정이고, 방사는 중합과정을 통해 만들어진 고분자 중합체(PAN : Poly-Acrylonitrile)는 방사 과정을 거쳐 아크릴 섬유로 재탄생하는 과정이며, 소성은 만들어진 아크릴 섬유를 1,200℃ 이상의 고온에서 산화 및 탄화시키는 과정으로, 최종적으로 소성 과정을 거친 아크릴섬유는 탄소(C) 성분만 남아 PAN계 탄소섬유가 제조되는 것이다.The carbon fiber may be a PAN (polyacrylonitrile)-based carbon fiber, a rayon-based carbon fiber, or a petroleum pitch-based carbon fiber, preferably a PAN-based carbon fiber. PAN-based carbon fibers are produced by carbonizing PAN (Poly-Acrylonitrile) fibers obtained by spinning after polymerization of acrylonitrile at a high temperature, and are fibers made through the processes of polymerization, spinning, and firing. Polymerization is the process of applying heat and pressure to acrylonitrile (AN: acrylonitrile) to make it into a polymer state, and spinning is the process by which the high-molecular polymer (PAN: Poly-Acrylonitrile) made through the polymerization process is reborn into acrylic fibers through the spinning process. Firing is a process of oxidizing and carbonizing the acrylic fiber at a high temperature of 1,200 ° C or higher. Finally, only the carbon (C) component of the acrylic fiber that has undergone the firing process remains to produce PAN-based carbon fiber.

또한, 탄소섬유는 단섬유의 섬도가 0.8 ~ 1.2 데니어, 바람직하게는 0.9 ~ 1.1 데니어, 필리멘트수가 2,500 ~ 3,500, 바람직하게는 2,800 ~ 3,200일 수 있으며, 이와 같은 범위를 만족할 때, 우수한 분진포집효율, 산소투과도 및 항균성을 가질 수 있다.In addition, the carbon fiber may have a fineness of 0.8 to 1.2 denier, preferably 0.9 to 1.1 denier, and a filament number of 2,500 to 3,500, preferably 2,800 to 3,200, and when these ranges are satisfied, excellent dust collection efficiency, oxygen permeability and antibacterial properties.

다음으로, 나노섬유웹(20)은 제1원단(10) 일면에 고분자 용액을 전기방사(Electrospinning)하여 형성되는 것으로서, 3 ~ 10 g/m2, 바람직하게는 3 ~ 7 g/m2의 평량을 가질 수 있다. 또한, 나노섬유웹(20) 일면에 코팅층이 형성되어 있을 수 있다. 나노섬유웹(20)은 외부면 및/또는 내부면에 기공을 가지고 있는 섬유의 집합체로서, 코팅층을 형성하는 코팅 조성물은 나노섬유웹(20)의 외부면 뿐만 아니라, 기공을 통해 나노섬유웹(20)의 내부면 일부에 침투하여 일부가 경화되어 코팅층을 형성할 수 있다. 코팅층은 환원된 이산화티타늄을 포함할 수 있다. 환원된 이산화티타늄은 이산화티타늄을 환원시켜 제조된 것으로서 청색(Blue)을 띄는 이산화티타늄일 수 있다. 구체적으로, 환원된 이산화티타늄은 에틸렌디아민 용매에 리튬(Li) 및 이산화티타늄을 넣고, 질소 및 20 ~ 30℃의 온도 조건에서 4 ~ 8일 동안 교반 및 반응시켜 반응물을 제조하고, 제조한 반응물을 염산으로 중화하여 제조된 것일 수 있다. 또한, 코팅층은 나노섬유웹(20) 일면에 0.1 ~ 0.5㎛, 바람직하게는 0.1 ~ 0.3㎛의 두께로 형성되어 있을 수 있다.Next, the nanofiber web 20 is formed by electrospinning a polymer solution on one side of the first fabric 10, and has a concentration of 3 to 10 g/m 2 , preferably 3 to 7 g/m 2 . can have basis weight. In addition, a coating layer may be formed on one surface of the nanofiber web 20. The nanofibrous web 20 is an assembly of fibers having pores on the outer and/or inner surfaces, and the coating composition forming the coating layer is a nanofibrous web through pores as well as the outer surface of the nanofibrous web 20 ( 20) to form a coating layer by penetrating a part of the inner surface and curing a part. The coating layer may include reduced titanium dioxide. The reduced titanium dioxide is produced by reducing titanium dioxide and may be blue-colored titanium dioxide. Specifically, the reduced titanium dioxide is prepared by putting lithium (Li) and titanium dioxide in an ethylenediamine solvent, stirring and reacting for 4 to 8 days under nitrogen and temperature conditions of 20 to 30 ° C. to prepare a reactant, and the prepared reactant It may be prepared by neutralizing with hydrochloric acid. In addition, the coating layer may be formed to a thickness of 0.1 to 0.5 μm, preferably 0.1 to 0.3 μm, on one side of the nanofiber web 20.

한편, 제1원단(10) 및 나노섬유웹(20)은 1 : 0.1 ~ 0.3의 평량비, 바람직하게는 1 : 0.15 ~ 0.25의 평량비를 가질 수 있으며, 만일 평량비가 1 : 0.1 미만이면 분진포집효율이 저하될 뿐만 아니라, 항균성 또한 저하되는 문제가 있을 수 있고, 1 : 0.3을 초과하면 산소투과도가 저하될 뿐만 아니라 분진포집효율 또한 저하되는 문제가 있을 수 있다.On the other hand, the first fabric 10 and the nanofiber web 20 may have a basis weight ratio of 1: 0.1 to 0.3, preferably 1: 0.15 to 0.25, and if the basis weight ratio is less than 1: 0.1, dust Not only the collection efficiency is lowered, but also antibacterial properties may be lowered, and when the ratio exceeds 1:0.3, not only the oxygen permeability is lowered, but also the dust collection efficiency is lowered.

마지막으로, 제2원단(30)은 나노섬유웹(20) 일면에 적층하여 형성되는 것으로서, 도 3에 도시된 것처럼 실크섬유를 육각형 그물 형태로 제직(weaving)한 것일 수 있다.Finally, the second fabric 30 is formed by laminating one surface of the nanofiber web 20, and may be woven by weaving silk fibers in a hexagonal net shape as shown in FIG.

또한, 제2원단(30)은 평균 개공크기가 30 ~ 70㎛, 바람직하게는 40 ~ 60㎛일 수 있으며, 만일 평균 개공크기가 30㎛ 미만이면 산소투과도가 저하되는 문제가 있을 수 있고, 평균 개공크기가 70㎛을 초과하면 분진포집효율이 저하될 뿐만 아니라, 항균성 또한 저하되는 문제가 있을 수 있다.In addition, the second fabric 30 may have an average pore size of 30 to 70 μm, preferably 40 to 60 μm, and if the average pore size is less than 30 μm, there may be a problem in that the oxygen permeability is lowered, and the average When the pore size exceeds 70 μm, there may be a problem in that not only the dust collection efficiency is lowered, but also the antibacterial property is lowered.

또한, 실크섬유는 표면에 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)이 코팅되어 있을 수 있고, 1.5 ~ 3.5 데니어의 섬도, 바람직하게는 2.0 ~ 3.0 데니어의 섬도를 가질 수 있으며, 이와 같은 범위를 만족할 때, 우수한 분진포집효율, 산소투과도 및 항균성을 가질 수 있다. 한편, PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)는 실크섬유 표면에 1.5 ~ 3.5㎛의 두께, 바람직하게는 2.0 ~ 3.0㎛의 두께로 코팅되어 있을 수 있다.In addition, the silk fibers may be coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) on the surface, and have a fineness of 1.5 to 3.5 denier, preferably 2.0 to 3.0 denier. On the other hand, PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) can have excellent dust collection efficiency, oxygen permeability and antibacterial properties when these ranges are satisfied. It may be coated with a thickness of ~ 3.5 μm, preferably 2.0 ~ 3.0 μm.

나아가, 제1원단(10) 및 제2원단(30)은 1 : 0.3 ~ 0.5의 평량비, 바람직하게는 1 : 0.35 ~ 0.45의 평량비를 가질 수 있으며, 만일 평량비가 1 : 0.3 미만이면 분진포집효율이 저하될 뿐만 아니라, 항균성 또한 저하되는 문제가 있을 수 있고, 1 : 0.5을 초과하면 산소투과도가 저하될 뿐만 아니라 분진포집효율 또한 저하되는 문제가 있을 수 있다.Furthermore, the first fabric 10 and the second fabric 30 may have a basis weight ratio of 1:0.3 to 0.5, preferably 1:0.35 to 0.45, and if the basis weight ratio is less than 1:0.3, dust Not only the collection efficiency is lowered, there may be a problem that the antibacterial property is also lowered, and when the ratio exceeds 1:0.5, not only the oxygen permeability is lowered, but also the dust collection efficiency is lowered.

한편, 본 발명의 3층 구조 방진망의 제조방법은 제1단계 내지 제3단계를 포함한다.On the other hand, the manufacturing method of the three-layer structure dustproof net of the present invention includes the first to third steps.

먼저, 본 발명의 3층 구조 방진망의 제조방법의 제1단계는 제1원단을 준비할 수 있다. 이 때, 제1단계에서 준비한 제1원단은 앞서 설명한 바와 같다.First, in the first step of the manufacturing method of the three-layer structure dustproof net of the present invention, a first fabric may be prepared. At this time, the first fabric prepared in the first step is as described above.

다음으로, 본 발명의 3층 구조 방진망의 제조방법의 제2단계는 제1단계에 준비한 제1원단 일면에 고분자 용액을 전기방사(Electrospinning)하여 나노섬유웹을 형성할 수 있다.Next, in the second step of the manufacturing method of the three-layer anti-vibration net of the present invention, a nanofiber web may be formed by electrospinning a polymer solution on one side of the first fabric prepared in the first step.

이 때, 고분자 용액은 디메틸포름아마이드와 아세톤이 1 : 0.8 ~ 1.2 중량비로 혼합된 혼합용매에 폴리비닐리덴플루오라이드를 투입한 것일 수 있다. At this time, the polymer solution may be obtained by adding polyvinylidene fluoride to a mixed solvent in which dimethylformamide and acetone are mixed in a weight ratio of 1:0.8 to 1.2.

한편, 제2단계에서 제1원단 일면에 나노섬유웹을 형성시키고, 형성된 나노섬유웹 일면에 환원된 이산화티타늄이 5 ~ 20 중량%로 포함된 용액을 스프레이 코팅한 후, 경화시켜 0.1 ~ 0.3㎛ 두께의 코팅층을 형성할 수 있다.On the other hand, in the second step, a nanofiber web is formed on one side of the first fabric, and a solution containing 5 to 20% by weight of reduced titanium dioxide is spray-coated on one side of the formed nanofiber web, and then cured to form a thickness of 0.1 to 0.3㎛. A thick coating layer can be formed.

마지막으로, 본 발명의 3층 구조 방진망의 제조방법의 제3단계는 실크섬유를 육각형 그물 형태로 제직(weaving)한 제2원단을 제2단계에서 형성한 나노섬유웹 일면에 적층하여 3층 구조 방진망을 제조할 수 있다. 이 때, 제2원단은 앞서 설명한 바와 같다. 또한, 적층은 나노섬유웹 일면에 제2원단을 적층한 후, 열융착 롤러에 통과킴으로서 수행할 수 있고, 적층을 위해 제2원단의 적층면에는 폴리우레탄 수지 등의 당업계에서 일반적으로 사용하는 바인더 수지가 사용될 수 있다.Finally, in the third step of the manufacturing method of the three-layered anti-vibration net of the present invention, a second fabric obtained by weaving silk fibers in the form of a hexagonal net is laminated on one side of the nanofiber web formed in the second step to form a three-layer structure. A dustproof net can be manufactured. At this time, the second fabric is as described above. In addition, lamination can be performed by laminating the second fabric on one side of the nanofiber web and then passing it through a heat-sealing roller, and polyurethane resin is commonly used in the art on the laminated side of the second fabric for lamination. A binder resin may be used.

이상에서 본 발명에 대하여 구현예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명의 구현예를 한정하는 것이 아니며, 본 발명의 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 구현예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In the above, the present invention has been described with a focus on embodiments, but this is only an example and does not limit the embodiments of the present invention, and those skilled in the art to which the embodiments of the present invention belong will appreciate the essential characteristics of the present invention. It will be appreciated that various modifications and applications not exemplified above are possible within a range that does not deviate. For example, each component specifically shown in the embodiment of the present invention can be modified and implemented. And differences related to these modifications and applications should be construed as being included in the scope of the present invention as defined in the appended claims.

준비예 1 : 환원된 이산화티타늄의 제조 Preparation Example 1: Preparation of reduced titanium dioxide

에틸렌디아민 용매 50 mL에 리튬(Li) 350 mg 및 평균입자크기가 21nm인 이산화티타늄(TiO2, 건조된 TiO2 나노 크리스탈) 500 mg을 넣고, 질소 및 상온(25℃) 조건에서 6일 동안 교반 및 반응시켜 반응물을 제조하였다. 제조한 반응물을 염산으로 중화한 후, 원심분리기를 이용해 물과 함께 혼합하고, 정제 및 필터 처리하여 고체 가루를 수득하였다. 수득한 고체 가루를 하루 동안 진공오븐에서 건조하여 환원된 이산화티타늄을 제조하였다.350 mg of lithium (Li) and 500 mg of titanium dioxide (TiO 2 , dried TiO 2 nanocrystal) having an average particle size of 21 nm were added to 50 mL of ethylenediamine solvent, and stirred for 6 days under nitrogen and room temperature (25℃) conditions. And reacted to prepare a reactant. After neutralizing the prepared reactant with hydrochloric acid, it was mixed with water using a centrifuge, purified and filtered to obtain a solid powder. The obtained solid powder was dried in a vacuum oven for one day to prepare reduced titanium dioxide.

실시예 1 : 3층 구조 방진망의 제조 Example 1: Manufacture of 3-layer structure anti-vibration net

(1) 단섬유의 섬도가 0.98 데니어, 필리멘트수가 3,000인 PAN(polyacrylonitrile)계 탄소섬유를 사각형 그물 형태로 제직한 평량이 25g/m2이고, 평균 개공크기가 200㎛인 제1원단을 준비하였다.(1) A first fabric having a basis weight of 25 g/m 2 and an average pore size of 200 μm is prepared by weaving PAN (polyacrylonitrile)-based carbon fibers with a single fiber fineness of 0.98 denier and a filament number of 3,000 in a square net shape. did

(2) 디메틸포름아마이드와 아세톤이 1 : 1 중량비로 혼합된 혼합용매에 폴리비닐리덴플루오라이드를 투입한 고분자 용액을 준비한 다음, 상기 고분자 용액을 준비한 제1원단 일면에 전기방사(Electrospinning)하여 평량이 5g/m2인 나노섬유웹을 형성하였다. 형성된 나노섬유웹 일면에 준비예 1에서 제조된 환원된 이산화티타늄이 10 중량%로 포함된 용액을 스프레이 코팅한 후, 경화시켜 0.2㎛ 두께의 코팅층을 형성하였다.(2) After preparing a polymer solution in which polyvinylidene fluoride is added to a mixed solvent of dimethylformamide and acetone mixed in a weight ratio of 1:1, electrospinning is performed on one side of the first fabric prepared with the polymer solution to obtain a basis weight A nanofiber web of 5 g/m 2 was formed. A solution containing 10% by weight of reduced titanium dioxide prepared in Preparation Example 1 was spray-coated on one side of the formed nanofiber web, and then cured to form a coating layer having a thickness of 0.2 μm.

(3) 표면에 2.5㎛의 두께로 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)가 코팅된 실크섬유(섬도 : 2.5 데니어)를 육각형 그물 형태로 제직한 평량이 10g/m2이고, 평균 개공크기가 50㎛인 제2원단을 준비하였다. 나노섬유웹 일면에 제2원단을 적층한 후, 열융착 롤러에 통과시켜 3층 구조 방진망을 제조하였다.(3) Silk fibers (fineness: 2.5 denier) coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) on the surface to a thickness of 2.5㎛ are woven in a hexagonal net shape, and the basis weight is 10g/ m 2 , and a second fabric having an average pore size of 50 μm was prepared After laminating the second fabric on one side of the nanofiber web, it was passed through a heat-sealing roller to prepare a three-layer structure dustproof net.

실시예 2 : 3층 구조 방진망의 제조 Example 2: Manufacture of 3-layer structure anti-vibration net

실시예 1과 동일한 방법으로 3층 구조 방진망을 제조하였다. 다만, 실시예 1과 달리 제2원단으로서 표면에 2.5㎛의 두께로 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)가 코팅된 실크섬유(섬도 : 2.5 데니어)를 육각형 그물 형태로 제직한 평량이 5g/m2이고, 평균 개공크기가 50㎛인 것을 사용하여, 최종적으로 3층 구조 방진망을 제조하였다.A three-layer structure dustproof net was manufactured in the same manner as in Example 1. However, unlike Example 1, as a second fabric, silk fibers (fineness: 2.5 denier) coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) to a thickness of 2.5 μm on the surface were used as hexagonal nets. Finally, a three-layer structure dustproof net was manufactured using a woven fabric having a basis weight of 5 g/m 2 and an average pore size of 50 μm.

실시예 3 : 3층 구조 방진망의 제조 Example 3: Manufacture of 3-layer structure anti-vibration net

실시예 1과 동일한 방법으로 3층 구조 방진망을 제조하였다. 다만, 실시예 1과 달리 제2원단으로서 표면에 2.5㎛의 두께로 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)가 코팅된 실크섬유(섬도 : 2.5 데니어)를 육각형 그물 형태로 제직한 평량이 15g/m2이고, 평균 개공크기가 50㎛인 것을 사용하여, 최종적으로 3층 구조 방진망을 제조하였다.A three-layer structure dustproof net was manufactured in the same manner as in Example 1. However, unlike Example 1, as a second fabric, silk fibers (fineness: 2.5 denier) coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) to a thickness of 2.5 μm on the surface were used as hexagonal nets. Finally, a three-layer structure dustproof net was manufactured using a woven fabric having a basis weight of 15 g/m 2 and an average pore size of 50 μm.

실시예 4 : 3층 구조 방진망의 제조 Example 4: Manufacture of 3-layer structure anti-vibration net

실시예 1과 동일한 방법으로 3층 구조 방진망을 제조하였다. 다만, 실시예 1과 달리 제2원단으로서 표면에 2.5㎛의 두께로 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)가 코팅된 실크섬유(섬도 : 2.5 데니어)를 육각형 그물 형태로 제직한 평량이 10g/m2이고, 평균 개공크기가 25㎛인 것을 사용하여, 최종적으로 3층 구조 방진망을 제조하였다.A three-layer structure dustproof net was manufactured in the same manner as in Example 1. However, unlike Example 1, as a second fabric, silk fibers (fineness: 2.5 denier) coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) to a thickness of 2.5 μm on the surface were used as hexagonal nets. Finally, a three-layer structure dustproof net was manufactured using a woven fabric having a basis weight of 10 g/m 2 and an average pore size of 25 μm.

실시예 5 : 3층 구조 방진망의 제조 Example 5: Manufacture of 3-layer structure anti-vibration net

실시예 1과 동일한 방법으로 3층 구조 방진망을 제조하였다. 다만, 실시예 1과 달리 제2원단으로서 표면에 2.5㎛의 두께로 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)가 코팅된 실크섬유(섬도 : 2.5 데니어)를 육각형 그물 형태로 제직한 평량이 10g/m2이고, 평균 개공크기가 75㎛인 것을 사용하여, 최종적으로 3층 구조 방진망을 제조하였다.A three-layer structure dustproof net was manufactured in the same manner as in Example 1. However, unlike Example 1, as a second fabric, silk fibers (fineness: 2.5 denier) coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) to a thickness of 2.5 μm on the surface were used as hexagonal nets. Finally, a three-layer structure dustproof net was manufactured using a woven fabric having a basis weight of 10 g/m 2 and an average pore size of 75 μm.

실시예 6 : 3층 구조 방진망의 제조 Example 6: Manufacture of 3-layer structure anti-vibration net

실시예 1과 동일한 방법으로 3층 구조 방진망을 제조하였다. 다만, 실시예 1과 달리 준비예 1에서 제조된 환원된 이산화티타늄이 아닌 평균입자크기가 21nm인 이산화티타늄(TiO2, 건조된 TiO2 나노 크리스탈)을 사용하여, 최종적으로 3층 구조 방진망을 제조하였다.A three-layer structure dustproof net was manufactured in the same manner as in Example 1. However, unlike Example 1, a three-layer dustproof net was finally manufactured using titanium dioxide (TiO 2 , dried TiO 2 nanocrystal) having an average particle size of 21 nm, not the reduced titanium dioxide prepared in Preparation Example 1. did

실시예 7 : 3층 구조 방진망의 제조 Example 7: Manufacture of 3-layer structure anti-vibration net

실시예 1과 동일한 방법으로 3층 구조 방진망을 제조하였다. 다만, 실시예 1과 달리 PAN계 탄소섬유가 아닌 레이온계 탄소섬유를 사용하여, 최종적으로 3층 구조 방진망을 제조하였다.A three-layer structure dustproof net was manufactured in the same manner as in Example 1. However, unlike Example 1, a three-layered dustproof net was finally manufactured using rayon-based carbon fibers instead of PAN-based carbon fibers.

비교예 1 : 3층 구조 방진망의 제조 Comparative Example 1: Manufacture of 3-layer structure dustproof net

실시예 1과 동일한 방법으로 3층 구조 방진망을 제조하였다. 다만, 실시예 1과 달리 제2원단으로서 폴리에틸렌 테레프탈레이트(PET) 섬유를 육각형 그물 형태로 제직한 평량이 10g/m2이고, 평균 개공크기가 50㎛인 것을 사용하여, 최종적으로 3층 구조 방진망을 제조하였다.A three-layer structure dustproof net was manufactured in the same manner as in Example 1. However, unlike Example 1, a polyethylene terephthalate (PET) fiber woven in a hexagonal net shape as a second fabric having a basis weight of 10 g/m 2 and an average pore size of 50 μm was used as a second fabric, and finally a three-layer structure dustproof net. was manufactured.

실험예 1Experimental Example 1

상기 실시예 1 ~ 7 및 비교예 1을 통해 제조된 3층 구조 방진망 각각에 대해 하기의 물성을 측정하여 하기 표 1에 나타내었다.The following physical properties were measured for each of the 3-layer structure anti-vibration nets manufactured in Examples 1 to 7 and Comparative Example 1, and are shown in Table 1 below.

1. 분진포집효율1. Dust collection efficiency

ASHRAE STANDARD 52.1, 중량법(시험풍속 : 1.0m/s, 말기압력손실 : 76 mmAq)에 의거하여, 실시예 1 ~ 7 및 비교예 1을 통해 제조된 3층 구조 방진망 각각의 분진포집효율을 측정하여 하기 표 1에 나타내었다.Based on ASHRAE STANDARD 52.1, gravimetric method (test wind speed: 1.0 m/s, end pressure loss: 76 mmAq), the dust collection efficiency of each of the three-layer structure dustproof nets prepared through Examples 1 to 7 and Comparative Example 1 was measured It is shown in Table 1 below.

2. 공기투과도2. Air permeability

KS K 0570:2006 규정에 의해, 실시예 1 ~ 7 및 비교예 1을 통해 제조된 3층 구조 방진망 각각의 공기투과도를 측정하여 하기 표 1에 나타내었다.In accordance with KS K 0570:2006, the air permeability of each of the three-layer dustproof nets manufactured in Examples 1 to 7 and Comparative Example 1 was measured and shown in Table 1 below.

3. 항균도 측정3. Measurement of antimicrobial activity

KS K 0693 시험 규격을 준용하여 실시예 1 ~ 7 및 비교예 1을 통해 제조된 3층 구조 방진망 각각의 항균도를 각각 측정하였다.The antibacterial activity of each of the three-layer dustproof nets prepared in Examples 1 to 7 and Comparative Example 1 was measured according to the KS K 0693 test standard.

* 1. 시험균종 : * 1. Species tested:

시험균 ① : Staphylococcus aureus ATCC 6538 (황색포도상구균)Test bacteria ①: Staphylococcus aureus ATCC 6538 (Staphylococcus aureus)

시험균 ② : Escherichia coli ATCC 25992 (대장균)Test bacteria ②: Escherichia coli ATCC 25992 (E. coli)

2. 접종균액의 농도 :2. Concentration of inoculum solution:

시험균 ① : 1.7 × 104 CFU/mLTest bacteria ①: 1.7 × 10 4 CFU/mL

시험균 ② : 1.7 × 104 CFU/mLTest bacteria ②: 1.7 × 10 4 CFU/mL

상기 표 1에서 확인할 수 있듯이, 실시예 1에서 제조한 3층 구조 방진망이 가장 우수한 분진포집효율을 보일 뿐만 아니라, 산소투과도가 높고, 항균성 또한 우수함을 확인할 수 있었다.As can be seen in Table 1, it was confirmed that the three-layer dustproof net prepared in Example 1 not only showed the best dust collection efficiency, but also had high oxygen permeability and excellent antibacterial properties.

본 발명의 단순한 변형이나 변경은 이 분야의 통상의 지식을 가진 자에 의해서 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily performed by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (5)

제1원단, 나노섬유웹 및 제2원단이 순차적으로 적층된 3층 구조 방진망에 있어서,
상기 제2원단은 실크섬유를 육각형 그물 형태로 제직(weaving)한 것이고,
상기 실크섬유는 표면에 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)이 코팅되어 있고, 1.5 ~ 3.5 데니어의 섬도를 가지며,
상기 제2원단은 평균 개공크기가 30 ~ 70㎛이고,
상기 나노섬유웹은 일면에 코팅층이 형성되어 있으며,
상기 코팅층은 환원된 이산화티타늄을 포함하고,
상기 제1원단 및 제2원단은 1 : 0.3 ~ 0.5의 평량비를 가지고,
상기 제1원단 및 나노섬유웹은 1 : 0.1 ~ 0.3의 평량비를 가지는 것을 특징으로 하는 3층 구조 방진망.
In a three-layer structure dustproof net in which a first fabric, a nanofiber web, and a second fabric are sequentially stacked,
The second fabric is made by weaving silk fibers in the form of a hexagonal net,
The silk fiber is coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) on the surface and has a fineness of 1.5 to 3.5 denier,
The second fabric has an average pore size of 30 to 70 μm,
The nanofiber web has a coating layer formed on one side,
The coating layer includes reduced titanium dioxide,
The first fabric and the second fabric have a basis weight ratio of 1: 0.3 to 0.5,
The first fabric and the nanofiber web have a basis weight ratio of 1: 0.1 to 0.3.
삭제delete 삭제delete 삭제delete 제1원단을 준비하는 제1단계;
준비한 제1원단 일면에 고분자 용액을 전기방사(Electrospinning)하여 나노섬유웹을 형성하는 제2단계; 및
실크섬유를 육각형 그물 형태로 제직(weaving)한 제2원단을 상기 나노섬유웹 일면에 적층하여 3층 구조 방진망을 제조하는 제3단계; 를 포함하고,
상기 실크섬유는 표면에 PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜 폴리스티렌 술포네이트)이 코팅되어 있고, 1.5 ~ 3.5 데니어의 섬도를 가지며,
상기 제2원단은 평균 개공크기가 30 ~ 70㎛이고,
상기 나노섬유웹은 일면에 코팅층이 형성되어 있으며,
상기 코팅층은 환원된 이산화티타늄을 포함하고,
상기 제1원단 및 제2원단은 1 : 0.3 ~ 0.5의 평량비를 가지고,
상기 제1원단 및 나노섬유웹은 1 : 0.1 ~ 0.3의 평량비를 가지는 것을 특징으로 하는 3층 구조 방진망의 제조방법.
A first step of preparing a first fabric;
A second step of forming a nanofiber web by electrospinning a polymer solution on one side of the prepared first fabric; and
A third step of manufacturing a three-layer anti-vibration net by laminating a second fabric obtained by weaving silk fibers in the form of a hexagonal net on one surface of the nanofiber web; including,
The silk fiber is coated with PEDOT/PSS (poly(3,4-ethylenedioxythiophene polystyrene sulfonate) on the surface and has a fineness of 1.5 to 3.5 denier,
The second fabric has an average pore size of 30 to 70 μm,
The nanofiber web has a coating layer formed on one side,
The coating layer includes reduced titanium dioxide,
The first fabric and the second fabric have a basis weight ratio of 1: 0.3 to 0.5,
The first fabric and the nanofiber web have a basis weight ratio of 1: 0.1 to 0.3, characterized in that the manufacturing method of the three-layer structure dustproof net.
KR1020210162707A 2021-11-23 2021-11-23 three-layered structure dustproof net and manufacturing method thereof KR102564746B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210162707A KR102564746B1 (en) 2021-11-23 2021-11-23 three-layered structure dustproof net and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210162707A KR102564746B1 (en) 2021-11-23 2021-11-23 three-layered structure dustproof net and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20230075972A KR20230075972A (en) 2023-05-31
KR102564746B1 true KR102564746B1 (en) 2023-08-07

Family

ID=86543620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210162707A KR102564746B1 (en) 2021-11-23 2021-11-23 three-layered structure dustproof net and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102564746B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161587B1 (en) 2020-06-16 2020-10-05 김수연 Nano fiber filter and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101854818B (en) * 2007-11-09 2012-10-03 纳幕尔杜邦公司 Contamination control garments
KR102064358B1 (en) * 2016-12-15 2020-01-09 주식회사 아모그린텍 Filter media, method for manufacturing thereof and Filter unit comprising the same
KR102313590B1 (en) 2019-09-05 2021-10-20 유한회사 클리어창 Dustproof net for fine dust filtering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161587B1 (en) 2020-06-16 2020-10-05 김수연 Nano fiber filter and its manufacturing method

Also Published As

Publication number Publication date
KR20230075972A (en) 2023-05-31

Similar Documents

Publication Publication Date Title
KR102313590B1 (en) Dustproof net for fine dust filtering
KR101884365B1 (en) Multilayer filter with excellent visible light transmittance and durability for blocking fine dust by electrostatic capture and physical capture and a method of manufacturing the multilayer filter
CN106541683A (en) A kind of preparation method of the multilayered structure nano-fiber composite film filtered for particulate in air
US20150354139A1 (en) Wet laid non-woven substrate containing polymeric nanofibers
KR102564746B1 (en) three-layered structure dustproof net and manufacturing method thereof
KR102564736B1 (en) three-layered structure dustproof net and manufacturing method thereof
KR20150050419A (en) Activated Carbon Fiber and Method for Preparing the Same
KR102538786B1 (en) three-layered structure dustproof net and manufacturing method thereof
KR102210832B1 (en) Ventilating window with dustproofing and rainwater proofing
CN1853534A (en) Insect-expelling screen and production thereof
CN106823561A (en) A kind of inorfil is combined woven filtrate and preparation method with organic fiber
KR20210109080A (en) Dustproof net comprising carbon nano fiber for fine dust filtering
KR102652940B1 (en) three-layered structure dustproof net and manufacturing method thereof
CN1715231A (en) Botelun fiber and its producing method
KR101078257B1 (en) Method of manufacturing a flame-retardant and antibiotic fabric composed of synthetic fiber
CN108284656A (en) A kind of waterproof and breathable composite membrane that compression strength is high
CN110787532A (en) Nano-fiber haze-preventing gauze material and preparation method thereof
CN207617232U (en) Antibacterial sound-absorbing non-woven fabrics
KR102547331B1 (en) Antimicrobial Mesh Filter and method for manufacturing the same
KR102600661B1 (en) Fine dust protection net with improved durability
KR102546308B1 (en) Multilayer composite membrane using electrospinning and its manufacturing method
KR102620862B1 (en) Antimicrobial copper double filter and Manufacturing method of the same
TWI840769B (en) Composition of fiber with hydrophobic substance and its application
KR102534327B1 (en) Window filter and manufacturing method of window filter
CN214266859U (en) Anion flame-retardant medical curtain fabric

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant