KR102543191B1 - Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby - Google Patents

Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby Download PDF

Info

Publication number
KR102543191B1
KR102543191B1 KR1020200177356A KR20200177356A KR102543191B1 KR 102543191 B1 KR102543191 B1 KR 102543191B1 KR 1020200177356 A KR1020200177356 A KR 1020200177356A KR 20200177356 A KR20200177356 A KR 20200177356A KR 102543191 B1 KR102543191 B1 KR 102543191B1
Authority
KR
South Korea
Prior art keywords
photocatalyst
building material
liquefaction
light transmission
surface treatment
Prior art date
Application number
KR1020200177356A
Other languages
Korean (ko)
Other versions
KR20220087035A (en
Inventor
이동군
Original Assignee
(주)군월드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)군월드 filed Critical (주)군월드
Priority to KR1020200177356A priority Critical patent/KR102543191B1/en
Publication of KR20220087035A publication Critical patent/KR20220087035A/en
Application granted granted Critical
Publication of KR102543191B1 publication Critical patent/KR102543191B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • C04B2111/00827Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Abstract

본 발명은 열처리 및 아연 도핑된 이산화티탄 광촉매를 건축자재의 표면에 함침시켜 고성능 저비용의 광촉매 적용 건축자재를 제조하도록 구현한 광촉매 적용 건축자재 제조 방법 및 이에 의해 제조된 광촉매 적용 건축자재에 관한 것으로, 열처리 및 아연 도핑된 이산화티탄 광촉매를 액상화하는 액상화단계; 건축자재의 표면 거칠기 정도에 따라 이에 대응하여 건축자재의 표면을 처리하는 표면처리단계; 및 액상화단계에서 액상화된 광촉매를 표면처리단계에서 표면 처리한 건축자재에 함침시키는 함침단계를 포함한다.The present invention relates to a method for manufacturing a photocatalyst-applied building material realized by impregnating the surface of a building material with heat-treated and zinc-doped titanium dioxide photocatalyst to manufacture a high-performance, low-cost photocatalyst-applied building material, and a photocatalyst-applied building material manufactured thereby, A liquefaction step of liquefying the heat-treated and zinc-doped titanium dioxide photocatalyst; A surface treatment step of treating the surface of the building material in response to the degree of surface roughness of the building material; and an impregnation step of impregnating the photocatalyst liquefied in the liquefaction step into the building material surface-treated in the surface treatment step.

Description

광촉매 적용 건축자재 제조 방법 및 이에 의해 제조된 광촉매 적용 건축자재{Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby}Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby}

본 발명의 기술 분야는 광촉매 적용 건축자재 제조 방법 및 이에 의해 제조된 광촉매 적용 건축자재에 관한 것으로, 특히 열처리 및 아연 도핑된 이산화티탄 광촉매를 건축자재의 표면에 함침시켜 고성능 저비용의 광촉매 적용 건축자재를 제조하도록 구현한 광촉매 적용 건축자재 제조 방법 및 이에 의해 제조된 광촉매 적용 건축자재에 관한 것이다.The technical field of the present invention relates to a method for manufacturing a photocatalyst-applied building material and a photocatalyst-applied building material manufactured thereby. In particular, heat-treated and zinc-doped titanium dioxide photocatalysts are impregnated into the surface of the building material to produce high-performance, low-cost photocatalyst-applied building materials. It relates to a method for manufacturing a photocatalyst-applied building material implemented to manufacture and a photocatalyst-applied building material manufactured thereby.

건축자재는, 흡음 및 진동 흡수 기능뿐만 아니라, 다른 부가적인 기능을 가져야 한다. 이러한 부가적인 기능은 사용 공간의 효율성을 위해서 요구되는데, 예를 들어 항균, 소취, 난연 및 새집 증후군의 원인이 되는 유해 가스 발생 방지를 포함한다. 건축자재에 추가되는 이와 같은 기능들은 새로운 건축자재의 개발과 함께 필수적인 기능이 되어 가고 있다.In addition to sound absorbing and vibration absorbing functions, building materials must have other additional functions. These additional functions are required for efficiency of use space, and include, for example, antibacterial, deodorizing, flame retardant, and prevention of noxious gas that causes sick house syndrome. Such functions added to building materials are becoming essential functions along with the development of new building materials.

한편, 이산화티탄은 광촉매들 중에서 제조하기 쉽고 안정하여 가장 많이 사용되는 광촉매이다. 광촉매는 빛(자외선)을 쐬어주게 되면 공기 중의 유기화합물을 분해하는 촉매이다. 이산화티탄에 태양이나 형광등 등의 자외선을 쐬어주게 되면, 산화, 환원 반응에 의해 수산화이온을 산화하고 과산화수소(옥시풀), 염소나 오존보다도 강력한 산화력을 갖는 OH 래디컬을 발생한다. OH 래디컬은 강력한 산화력으로 유해 물질인 배기가스 NO, SO로부터 포름알데히드나 담배와 같은 고약한 냄새가 나는 성분이 아세트알데히드 암모니아 등의 유기물질의 분자 결합을 분해 제거한다.On the other hand, titanium dioxide is the most widely used photocatalyst because it is easy to prepare and stable among photocatalysts. A photocatalyst is a catalyst that decomposes organic compounds in the air when exposed to light (ultraviolet rays). When titanium dioxide is exposed to ultraviolet rays such as sunlight or fluorescent lamps, it oxidizes hydroxide ions through oxidation and reduction reactions and generates OH radicals that have stronger oxidizing power than hydrogen peroxide (oxypool), chlorine, or ozone. With its strong oxidizing power, OH radicals decompose and remove the molecular bonds of organic substances such as acetaldehyde, ammonia, and other nasty smelling substances such as formaldehyde and cigarettes from harmful substances such as exhaust gas NO and SO.

이산화티탄에 자외선이 쐬어주게 되면, 이산화티탄이 반응하고, 그 이산화티탄은 공기 중의 물과 산소를 분해하며, 이산화티탄의 표면에 활성산소 OH(OH 래디컬)와 O2(슈퍼 산화물 이온)를 생성하여 공기 중의 세균, 미생물을 분해한다. 이러한 이산화티탄이 광촉매로서 기능하기 위해서는, 아나타제형(anatase type) 등의 결정성을 가져야한다. 따라서 티타늄 출발물질로부터 가수분해와 축합중합 반응을 통해 비정질의 이산화티탄을 생성하였을 경우, 이를 아나타제형 이산화티탄으로 전환시키기 위해 고온 열처리 과정인 소성 공정을 필요로 한다. 이때, 소성 온도는 높은 고온을 필요로 한다.When titanium dioxide is irradiated with ultraviolet rays, titanium dioxide reacts, and the titanium dioxide decomposes water and oxygen in the air, generating active oxygen OH (OH radical) and O2 (super oxide ion) on the surface of titanium dioxide. Decomposes bacteria and microorganisms in the air. In order for such titanium dioxide to function as a photocatalyst, it must have crystallinity such as anatase type. Therefore, when amorphous titanium dioxide is produced from a titanium starting material through hydrolysis and condensation polymerization, a high-temperature heat treatment process, such as a sintering process, is required to convert it into anatase-type titanium dioxide. At this time, the firing temperature requires a high temperature.

이산화티탄을 이용하여 공장에서 직접 광촉매 막이 도포된 건축자재는, 지금까지 여러 종류 개발되어 왔지만, 운반이나 부착 시 코팅된 피막이 손상될 위험이 있었다. 또한, 미리 코팅된 건축자재의 경우에는, 이음새에는 도포되지 않은 부분이 상당량 남아 있게 되어 그 효과가 의심스러웠다.Several types of building materials to which a photocatalytic film is directly applied in a factory using titanium dioxide have been developed so far, but there is a risk of damaging the coated film during transportation or attachment. In addition, in the case of pre-coated building materials, a significant amount of uncoated parts remained at the seams, making the effect questionable.

한국공개특허 제10-2003-0066485호(2003.08.09. 공개)는 건축 구조물에 대하여 중성이며 수용성인 광촉매를 일정량 분무하여 그 조화의 조직 내로 흡착되게 함으로써, 광촉매에 의한 공기 중의 세균, 미생물 등을 분해하여 탈취, 정화 등의 효과를 얻을 수 있는 광촉매를 이용한 건축 구조물의 코팅방법에 관하여 개시되어 있다. 개시된 기술에 따르면, 콘크리트, 모르타르, 벽돌, 목재, 석재, 유리, 타일, 금속판, 기와, 합성수지 등의 자재로 이루어진 건축 구조물의 표면을 깨끗하게 청소하는 단계; 건축 구조물의 표면에 대하여 과산화티타늄을 주성분으로 하는 황색 투명 콜로이드 용액으로 10~20mm의 입경을 갖고 pH는 6~7이며, 비중은 약 1인 광촉매(TiOCOAT; 티오코트)를 균일하게 스프레이하여 건축 구조물의 조직 내부로 티오코트가 침투되어 흡착되게 하는 단계; 및 티오코트가 분무된 건축 구조물을 상온에서 8시간 건조하여 양생하는 단계를 포함하는 것을 특징으로 한다.Korean Patent Publication No. 10-2003-0066485 (published on August 9, 2003) sprays a certain amount of a neutral and water-soluble photocatalyst on a building structure and adsorbs it into the tissue of the building, thereby removing bacteria and microorganisms in the air by the photocatalyst. Disclosed is a coating method for a building structure using a photocatalyst capable of decomposing and obtaining effects such as deodorization and purification. According to the disclosed technique, cleaning the surface of a building structure made of materials such as concrete, mortar, brick, wood, stone, glass, tile, metal plate, roof tile, synthetic resin; A photocatalyst (TiOCOAT) with a particle size of 10 to 20 mm, a pH of 6 to 7, and a specific gravity of about 1 is uniformly sprayed onto the surface of the building structure to form a yellow transparent colloidal solution containing titanium peroxide as the main component. infiltrating and adsorbing the thiocoat into the tissues of the body; and curing by drying the building structure sprayed with thiocoat at room temperature for 8 hours.

한국등록특허 제10-0701275호(2007.03.22. 등록)는 광촉매의 기능 층을 가진 카펫 건축용 소재에 관하여 개시되어 있는데, 실내 건축용 소재에 있어서, 나일론, 폴리프로필렌, 폴리트리메틸렌테레프탈레이트 또는 폴리에틸렌테레프탈레이트 벌키 연속 필라멘트로 제조된 파일 형태의 카페 층; 전이 금속 산화물을 포함하는 광촉매 기능 층; 카펫 층에 결합되는 흡수 층; 및 카펫 층과 흡수 층을 결합시키는 접착 층을 포함하고, 카펫 층의 유효 표면적은 흡음 층 1(㎡)에 대하여 20 내지 150(㎡)이 되는 것을 특징으로 한다. 개시된 기술에 따르면, 나일론6, 나일론66, 폴리프로필렌(PP), 폴리트리메틸렌테레프탈레이트(PTT) 및 폴리에틸렌테레프탈레이트(PET) 섬유의 카펫 층 및 광촉매 코팅이 됨으로써, 카펫 층으로 인하여 흡음성을 가지면서 동시에 광촉매 기능 층을 포함하여 오염방지, 공기정화, 살균 및 냄새 제거 등과 같은 효과를 나타낼 수 있다.Korean Patent Registration No. 10-0701275 (registered on March 22, 2007) discloses a carpet construction material having a photocatalytic functional layer. In the interior construction material, nylon, polypropylene, polytrimethylene terephthalate or polyethylene terephthalate A pile-shaped cafe layer made of phthalate bulky continuous filaments; a photocatalytic function layer containing a transition metal oxide; an absorbent layer bonded to the carpet layer; and an adhesive layer bonding the carpet layer and the absorption layer, wherein the carpet layer has an effective surface area of 20 to 150 (m 2 ) per 1 (m 2 ) of the sound-absorbing layer. According to the disclosed technology, by being a carpet layer and photocatalyst coating of nylon 6, nylon 66, polypropylene (PP), polytrimethylene terephthalate (PTT) and polyethylene terephthalate (PET) fibers, while having sound absorption due to the carpet layer At the same time, by including a photocatalytic function layer, effects such as pollution prevention, air purification, sterilization, and odor removal can be exhibited.

상술한 바와 같은 종래의 기술에서는, 기존 광촉매의 경우에 광활성이 낮아 기능성 소재로의 응용에 여전히 어려움을 가지고 있으며, 또한 광촉매 관련 시장은 내외장재, 환경정화시스템 등의 다양한 분야로 세계적으로 확대되고 있는 추세이나, 기존 광촉매가 비용적인 측면에서 고가라는 점이 경제적인 측면에서의 불리함으로 작용하고 있으며, 이에 이러한 고가이면서 광활성이 낮은 광촉매를 건축자재에 사용하는 경우에, 반응성이 낮고 경제적으로 효율성이 떨어져 관련 시장의 확대가 어려우며, 제조 공정이 복잡하고, 대량 생산이 용이하지 못하고, 손쉽게 응용도 어려운 단점이 있었다.In the conventional technology as described above, in the case of existing photocatalysts, there is still difficulty in application to functional materials due to low photoactivity, and the photocatalyst-related market is expanding globally to various fields such as interior and exterior materials and environmental purification systems. However, the fact that the existing photocatalyst is expensive in terms of cost acts as a disadvantage in terms of economy, and when such an expensive photocatalyst with low photoactivity is used for building materials, its reactivity is low and economically inefficient, so it is difficult to find a market for the related market. It is difficult to expand, the manufacturing process is complicated, mass production is not easy, and it is difficult to apply easily.

한국공개특허 제10-2003-0066485호Korean Patent Publication No. 10-2003-0066485 한국등록특허 제10-0701275호Korean Patent Registration No. 10-0701275

본 발명이 해결하고자 하는 과제는, 전술한 바와 같은 단점을 해결하기 위한 것으로, 열처리 및 아연 도핑된 이산화티탄 광촉매를 건축자재의 표면에 함침시켜 고성능 저비용의 광촉매 적용 건축자재를 제조하도록 구현한 광촉매 적용 건축자재 제조 방법 및 이에 의해 제조된 광촉매 적용 건축자재를 제공하는 것이다.The problem to be solved by the present invention is to solve the above-described disadvantages, and the application of a photocatalyst implemented to manufacture a high-performance and low-cost photocatalyst-applied building material by impregnating the surface of a building material with heat-treated and zinc-doped titanium dioxide photocatalyst It is to provide a building material manufacturing method and a photocatalyst-applied building material manufactured thereby.

상술한 과제를 해결하는 수단으로는, 본 발명의 한 특징에 따르면, 열처리 및 아연 도핑된 이산화티탄 광촉매를 액상화하는 액상화단계; 건축자재의 표면 거칠기 정도에 따라 이에 대응하여 건축자재의 표면을 처리하는 표면처리단계; 및 상기 액상화단계에서 액상화된 광촉매를 상기 표면처리단계에서 표면 처리한 건축자재에 함침시키는 함침단계를 포함하는 광촉매 적용 건축자재 제조 방법을 제공한다.As a means for solving the above problems, according to one feature of the present invention, a liquefaction step of liquefying the heat-treated and zinc-doped titanium dioxide photocatalyst; A surface treatment step of treating the surface of the building material in response to the degree of surface roughness of the building material; and an impregnation step of impregnating the surface-treated building material in the surface treatment step with the photocatalyst liquefied in the liquefaction step.

일 실시 예에서, 상기 액상화단계는, 열처리 및 아연 도핑된 이산화티탄 광촉매를 분말화시킨 후에, 증류수 100중량부에 대하여 분말 광촉매를 10 ~ 60 중량%로 혼합하여 광촉매 액상을 만드는 것을 특징으로 한다.In one embodiment, the liquefaction step is characterized by making a photocatalyst liquid phase by mixing 10 to 60% by weight of the powdered photocatalyst with respect to 100 parts by weight of distilled water after heat treatment and powdering the zinc-doped titanium dioxide photocatalyst.

일 실시 예에서, 상기 액상화단계는, 열처리 및 아연 도핑된 이산화티탄 광촉매를 나노 입자화한 후에 조촉매와 염기성 첨가제를 첨가하여 액상화하는 것을 특징으로 한다.In one embodiment, the liquefaction step is characterized by adding a cocatalyst and a basic additive after heat treatment and converting the zinc-doped titanium dioxide photocatalyst into nanoparticles to liquefy it.

일 실시 예에서, 상기 표면처리단계는, 건축자재의 종류에 따라 이에 대응하는 건축자재의 표준 표면 거칠기를 기 설정해 두며, 건축자재의 표면 거칠기를 측정하여 표준 표면 거칠기가 되도록 건축자재의 표면을 처리하는 것을 특징으로 한다.In one embodiment, in the surface treatment step, the standard surface roughness of the building material corresponding to the standard surface roughness is previously set according to the type of the building material, and the surface roughness of the building material is measured to treat the surface of the building material to have the standard surface roughness. It is characterized by doing.

일 실시 예에서, 상기 표면처리단계는, 건축자재의 종류에 따라 이에 대응하는 기 설정해 둔 표준 표면 거칠기가 되도록 건축자재의 표면에 기공을 형성시키는 것을 특징으로 한다.In one embodiment, the surface treatment step is characterized in that pores are formed on the surface of the building material to have a predetermined standard surface roughness corresponding to the type of the building material.

일 실시 예에서, 상기 함침단계는. 상기 표면처리단계에서 형성시킨 기공에, 상기 액상화단계에서 액상화된 광촉매를 함침시키는 것을 특징으로 한다.In one embodiment, the impregnation step. It is characterized in that the pores formed in the surface treatment step are impregnated with the photocatalyst liquefied in the liquefaction step.

일 실시 예에서, 상기 광촉매 적용 건축자재 제조 방법은, 상기 함침단계에서 함침시킨 광촉매를 상기 표면처리단계에서 측정한 표면 거칠기로 만드는 거칠기생성단계를 더 포함하는 것을 특징으로 한다.In one embodiment, the photocatalyst-applied building material manufacturing method may further include a roughness generating step of making the photocatalyst impregnated in the impregnation step to the surface roughness measured in the surface treatment step.

일 실시 예에서, 상기 광촉매 적용 건축자재 제조 방법은, 상기 함침단계에서 함침시킨 광촉매를 평탄화시키는 평탄화단계를 더 포함하는 것을 특징으로 한다.In one embodiment, the photocatalyst applied building material manufacturing method may further include a flattening step of flattening the photocatalyst impregnated in the impregnating step.

일 실시 예에서, 상기 광촉매 적용 건축자재 제조 방법은, 상기 함침단계에서 함침시킨 광촉매를 코팅하는 코팅단계를 더 포함하는 것을 특징으로 한다.In one embodiment, the photocatalyst applied building material manufacturing method is characterized in that it further comprises a coating step of coating the photocatalyst impregnated in the impregnation step.

일 실시 예에서, 상기 코팅단계는, 투명 재질의 코팅액을 사용하여 상기 함침단계에서 함침시킨 광촉매 전체를 코팅하는 것을 특징으로 한다.In one embodiment, the coating step is characterized in that the entire photocatalyst impregnated in the impregnation step is coated using a transparent coating liquid.

일 실시 예에서, 상기 코팅단계는, 상기 함침단계에서 함침시킨 광촉매 중에서 기 설정해 둔 부분만을 투명 재질의 코팅액을 사용하여 코팅하는 것을 특징으로 한다.In one embodiment, the coating step is characterized in that only a previously set portion of the photocatalyst impregnated in the impregnation step is coated using a coating liquid made of a transparent material.

일 실시 예에서, 상기 광촉매 적용 건축자재 제조 방법은, 외부의 광원을 전달받아 상기 함침단계에서 함침시킨 광촉매에 공급하기 위한 광전달판을 광촉매의 상면에 일체로 또는 결합하여 형성시키는 광전달판형성단계를 더 포함하는 것을 특징으로 한다.In one embodiment, the photocatalyst-applied building material manufacturing method includes forming a light conduction plate integrally with or combined with an upper surface of the photocatalyst to receive an external light source and supply the light to the photocatalyst impregnated in the impregnation step. It is characterized in that it further comprises a step.

일 실시 예에서, 상기 광촉매 적용 건축자재 제조 방법은, 외부의 광원을 공급받아 상기 광전달판형성단계에서 형성시킨 광전달판에 전달하기 위한 광전달라인을 광전달판의 일측에 연결 형성시키는 광전달라인형성단계를 더 포함하는 것을 특징으로 한다.In one embodiment, the method of manufacturing a building material applied with a photocatalyst includes forming a light transmission line connected to one side of the light transmission plate for receiving an external light source and transmitting the light to the light transmission plate formed in the light transmission plate forming step. It is characterized in that it further comprises a transfer line forming step.

상술한 과제를 해결하는 수단으로는, 본 발명의 다른 한 특징에 따르면, 열처리 및 아연 도핑된 이산화티탄 광촉매를 액상화하는 액상화단계; 건축자재의 표면 거칠기 정도에 따라 이에 대응하여 건축자재의 표면을 처리하는 표면처리단계; 및 상기 액상화단계에서 액상화된 광촉매를 상기 표면처리단계에서 표면 처리한 건축자재에 함침시키는 함침단계를 포함하는 광촉매 적용 건축자재 제조 방법에 의해 제조된 광촉매 적용 건축자재를 제공한다.As means for solving the above problems, according to another feature of the present invention, a liquefaction step of liquefying the heat-treated and zinc-doped titanium dioxide photocatalyst; A surface treatment step of treating the surface of the building material in response to the degree of surface roughness of the building material; and an impregnation step of impregnating the surface-treated building material in the surface treatment step with the photocatalyst liquefied in the liquefaction step.

본 발명의 효과로는, 열처리 및 아연 도핑된 이산화티탄 광촉매를 건축자재의 표면에 함침시켜 고성능 저비용의 광촉매 적용 건축자재를 제조하도록 구현한 광촉매 적용 건축자재 제조 방법 및 이에 의해 제조된 광촉매 적용 건축자재를 제공함으로써, 광촉매 적용 건축자재 및 2차 제품을 SOC 시설물, 주거 및 다중이용시설 등에 적용하여 미세먼지 저감, 대기 정화, 실내 공기질 개선 등의 환경적인 측면에서 삶의 쾌적성을 향상시킬 수 있으며, 반응성이 높고 경제적으로 효율성이 있어 관련 시장의 확대가 가능하며, 고감도 반응형 광촉매를 사용하는 경우에 간단한 방법에 의한 제조가 가능하고, 대량 생산이 용이하고, 소재산업 이외의 다양한 분야에서도 손쉽게 응용이 가능하여, 산업발전에 큰 기여를 할 수 있다는 것이다.As an effect of the present invention, a photocatalyst-applied building material manufacturing method realized by impregnating the surface of a building material with heat-treated and zinc-doped titanium dioxide photocatalyst to manufacture a high-performance, low-cost photocatalyst-applied building material, and the photocatalyst-applied building material manufactured thereby By providing, it is possible to improve the comfort of life in terms of environmental aspects such as fine dust reduction, air purification, and indoor air quality improvement by applying photocatalyst-applied building materials and secondary products to SOC facilities, residential and multi-use facilities, etc. It is highly reactive and economically efficient, so it is possible to expand related markets, and when using a highly sensitive reactive photocatalyst, it is possible to manufacture by a simple method, and mass production is easy, and it is easy to apply in various fields other than the material industry. This means that it can make a significant contribution to industrial development.

도 1은 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제1예로 설명하는 도면이다.
도 2는 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제2예로 설명하는 도면이다.
도 3은 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제3예로 설명하는 도면이다.
도 4는 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제4예로 설명하는 도면이다.
1 is a view illustrating a method of manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a first example.
2 is a view illustrating a method for manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a second example.
3 is a view illustrating a method for manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a third example.
4 is a view illustrating a method for manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a fourth example.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시 예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시 예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시 예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. However, since the description of the present invention is only an embodiment for structural or functional description, the scope of the present invention should not be construed as being limited by the embodiments described in the text. That is, since the embodiment can be changed in various ways and can have various forms, it should be understood that the scope of the present invention includes equivalents capable of realizing the technical idea. In addition, since the object or effect presented in the present invention does not mean that a specific embodiment should include all of them or only such effects, the scope of the present invention should not be construed as being limited thereto.

본 발명에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.The meaning of terms described in the present invention should be understood as follows.

"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.Terms such as "first" and "second" are used to distinguish one component from another, and the scope of rights should not be limited by these terms. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element. It should be understood that when an element is referred to as “connected” to another element, it may be directly connected to the other element, but other elements may exist in the middle. On the other hand, when an element is referred to as being “directly connected” to another element, it should be understood that no intervening elements exist. Meanwhile, other expressions describing the relationship between components, such as “between” and “immediately between” or “adjacent to” and “directly adjacent to” should be interpreted similarly.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions should be understood to include plural expressions unless the context clearly dictates otherwise, and terms such as “comprise” or “having” refer to a described feature, number, step, operation, component, part, or It should be understood that it is intended to indicate that a combination exists, and does not preclude the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.

여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs, unless defined otherwise. Terms defined in commonly used dictionaries should be interpreted as consistent with meanings in the context of related art, and cannot be interpreted as having ideal or excessively formal meanings unless explicitly defined in the present invention.

이제 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법 및 이에 의해 제조된 광촉매 적용 건축자재에 대하여 도면을 참고로 하여 상세하게 설명한다.Now, a method for manufacturing a photocatalyst-applied building material according to an embodiment of the present invention and a photocatalyst-applied building material manufactured thereby will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제1예로 설명하는 도면이다.1 is a view illustrating a method of manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a first example.

도 1을 참조하면, 광촉매 적용 건축자재 제조 방법은, 액상화단계(S110), 표면처리단계(S120), 함침단계(S130)를 포함한다.Referring to FIG. 1 , the photocatalyst applied building material manufacturing method includes a liquefaction step (S110), a surface treatment step (S120), and an impregnation step (S130).

액상화단계(S110)는, 액상화기나 혼합기 등을 이용하여 열처리 및 아연 도핑된 이산화티탄(TiO2) 광촉매를 액상화해 준다.In the liquefaction step (S110), the heat-treated and zinc-doped titanium dioxide (TiO 2 ) photocatalyst is liquefied using a liquefier or a mixer.

일 실시 예에서, 액상화단계(S110)는, 액상의 광촉매 제조 시에, 열처리 및 아연 도핑된 이산화티탄 광촉매를 분말화시킨 후에, 증류수 100중량부에 대하여 분말 광촉매를 10 ~ 60 중량%로 혼합하여 광촉매 액상을 만들어 줄 수 있는데, 이때 1 중량% 미만으로 혼합 시에는 함침단계(S130)에서 광촉매가 충분히 함침되는 시간이 길어져 작업의 효율성이 떨어질 수 있으며, 60 중량% 이상으로 혼합 시에는 함침단계(S130)에서 광촉매가 충분히 함침되지 않을 수 있어 효능이 떨어질 수 있기 때문이다.In one embodiment, the liquefaction step (S110) is performed by mixing 10 to 60% by weight of the powdered photocatalyst with respect to 100 parts by weight of distilled water after heat-treating and pulverizing the zinc-doped titanium dioxide photocatalyst when preparing the liquid photocatalyst. The photocatalyst liquid phase can be made. At this time, when mixed at less than 1% by weight, the time for the photocatalyst to be sufficiently impregnated in the impregnation step (S130) may decrease, and the efficiency of the work may decrease, and when mixed at 60% by weight or more, the impregnation step ( This is because the photocatalyst may not be sufficiently impregnated in S130) and the efficacy may be reduced.

일 실시 예에서, 액상화단계(S110)는, 열처리 및 아연 도핑된 이산화티탄 광촉매를 나노 입자화한 후에 조촉매와 염기성 첨가제를 첨가하여 액상화할 수 있다. 이때, 분쇄기나 나노입자화기 등을 이용하여 산화티타늄을 330㎡/g 이상의 표면적과 10nm 내지 60nm의 입자 크기를 가지도록 나노 입자화시킬 수 있다.In one embodiment, in the liquefaction step (S110), after heat treatment and conversion of the zinc-doped titanium dioxide photocatalyst into nanoparticles, a cocatalyst and a basic additive may be added to liquefy the photocatalyst. At this time, the titanium oxide may be nano-particled to have a surface area of 330 m 2 /g or more and a particle size of 10 nm to 60 nm using a grinder or a nano-particle machine.

일 실시 예에서, 액상화단계(S110)는, 산화티타늄을 나노 입자화함으로써, 세기가 약한 자외선 파장을 나타내는 광원을 사용해도 다량의 과산소 라디칼을 생성하여, 유기물의 분해 능력이 우수하고, 건축물의 외벽, 내벽, 타일 등에 적용이 가능하며, 환경 변화에도 지속적인 내구성 및 안정성을 가지며, 반영구적인 특성을 가지게 된다.In one embodiment, in the liquefaction step (S110), by converting titanium oxide into nanoparticles, a large amount of peroxygen radicals are generated even when using a light source showing an ultraviolet wavelength with low intensity, and the decomposition ability of organic matter is excellent, and the building It can be applied to exterior walls, interior walls, tiles, etc., has continuous durability and stability even in environmental changes, and has semi-permanent characteristics.

일 실시 예에서, 액상화단계(S110)는, TiO2 및 증류수를 혼합한 현탁액에 아연분말을 첨가해서 교반하여 아연 도핑된 TiO2를 제조한 후에, 아연 도핑된 TiO2를 800℃ 내지 1000℃의 온도로 가열하여 열처리 및 아연 도핑된 TiO2 광촉매를 제조할 수 있다.In one embodiment, in the liquefaction step (S110), zinc powder is added to a suspension mixed with TiO2 and distilled water and stirred to prepare zinc doped TiO2, and then the zinc doped TiO2 is heated to a temperature of 800°C to 1000°C. Thus, a heat-treated and zinc-doped TiO2 photocatalyst can be prepared.

일 실시 예에서, 액상화단계(S110)는, TiO2의 경우에 금속 티타늄의 산화 형태인 티타늄 다이옥사이드를 사용함으로써, 광촉매적 특성이 우수하여 자외선을 받으면 뛰어난 광촉매 효과를 발휘할 수 있으며, 또한 그 결정형의 형태에 따라서 KA100, ST01, P25 TiO2 등의 다양한 종류를 사용할 수 있으며 이에 제한되는 것이 아니라, 가장 저렴한 가격의 범용 TiO2 아나타제형으로 KA100을 사용하여 제조하는 것이 바람직하다.In one embodiment, in the liquefaction step (S110), in the case of TiO2, by using titanium dioxide, which is an oxidized form of metal titanium, it has excellent photocatalytic properties and can exhibit an excellent photocatalytic effect when receiving ultraviolet rays, and also in its crystalline form. Depending on the method, various types such as KA100, ST01, and P25 TiO2 can be used, but it is not limited thereto, and it is preferable to manufacture using KA100 as the cheapest general-purpose TiO2 anatase type.

일 실시 예에서, 액상화단계(S110)는, TiO2 및 증류수를 1:1 비율로 혼합하여 현탁액을 만들어 줄 수 있는데, 이때 증류수의 비율이 TiO2보다 크게 되면 너무 묽은 용액으로 제조되어 아연 도핑이 잘 일어나지 않으며, 증류수의 비율이 TiO2 보다 작게 되면 교반을 통한 TiO2 상에 아연의 증착이 어려울 수 있기 때문이다.In one embodiment, in the liquefaction step (S110), TiO2 and distilled water may be mixed in a 1:1 ratio to make a suspension. At this time, if the ratio of distilled water is greater than TiO2, it is prepared as a too dilute solution and zinc doping does not occur easily. This is because deposition of zinc on TiO2 through stirring may be difficult when the ratio of distilled water is smaller than TiO2.

일 실시 예에서, 액상화단계(S110)는, 아연분말의 경우에 TiO2 분말을 기준으로 3 중량% 내지 9 중량%로 첨가할 수 있다. 이때, 아연분말을 3 중량%, 6 중량% 또는 9 중량%로 조절하여 이의 아연 첨가 효과를 확인한 결과, 아연분말을 3 중량% 내지 9 중량%로 첨가하는 것이 최적의 아연 도핑 현상을 일으키는 것을 확인할 수 있었다.In one embodiment, in the liquefaction step (S110), in the case of zinc powder, 3 to 9% by weight based on TiO2 powder may be added. At this time, as a result of confirming the effect of adding zinc by adjusting the amount of zinc powder to 3% by weight, 6% by weight or 9% by weight, it was confirmed that adding 3% to 9% by weight of zinc powder causes the optimal zinc doping phenomenon. could

일 실시 예에서, 액상화단계(S110)는, 열처리 온도를 800 ℃ 또는 1000 ℃로 조절하여 이의 열처리 효과를 확인할 수 있으며, 특히 600℃에서 열처리된 후 Zn 도핑된 샘플의 경우에 NOx의 어떠한 효과적인 분해도 나타내지 않았으며, XRD 데이터로부터 확인한 바, 600℃ 열처리는 Zn 도핑(3%, 6% 및 9%)과는 관계없이 어떠한 상전이의 결과도 나타내지 않았으며, NOx의 가장 우수한 광촉매 분해는 K-Zn-9-1000 및 K-Zn-6-800 샘플로부터 관찰되었으며, 이러한 두 개의 샘플은 루타일 상을 더 많은 부분 포함하고 아나타제 상은 더 적게 포함하였다.In one embodiment, in the liquefaction step (S110), the heat treatment effect can be checked by adjusting the heat treatment temperature to 800 ° C. or 1000 ° C. In particular, in the case of the Zn-doped sample after heat treatment at 600 ° C., any effective decomposition of NOx As confirmed from the XRD data, heat treatment at 600 ° C did not show any phase transition regardless of Zn doping (3%, 6%, and 9%), and the best photocatalytic decomposition of NOx was K-Zn- It was observed from samples 9-1000 and K-Zn-6-800, these two samples containing more of the rutile phase and less of the anatase phase.

일 실시 예에서, 액상화단계(S110)는, 실온에서 냉각한 후 냉각한 시료를 갈아서 가루로 제조할 수 있으며, 이를 통해서 광촉매에 적합한 미세한 가루 형태로 제조할 수 있으며, TiO2에 포함된 Zn 및 열처리에 의한 이의 물리화학적 성질의 변화를 통해 광촉매 활성이 증가하여 가시광선 영역에서도 광분해 효과가 나타난다.In one embodiment, in the liquefaction step (S110), after cooling at room temperature, the cooled sample may be ground to be prepared into powder, and through this, it may be prepared in the form of fine powder suitable for photocatalysts, and Zn and heat treatment included in TiO2 The photocatalytic activity is increased through the change of its physicochemical properties by the photolysis effect even in the visible light range.

표면처리단계(S120)는, 표면처리기나 그라인더 등을 이용하여 건축자재의 표면 거칠기 정도에 따라 이에 대응하여 건축자재의 표면을 처리해 준다.In the surface treatment step (S120), the surface of the building material is treated according to the degree of roughness of the surface of the building material using a surface treatment machine or a grinder.

일 실시 예에서, 표면처리단계(S120)는, 함침단계(S130)에서 광촉매가 충분히 함침될 수 있도록 건축자재의 종류에 따라 이에 대응하는 건축자재의 표준 표면 거칠기를 기 설정해 둘 수 있으며, 건축자재의 표면 거칠기를 측정할 수 있으며, 해당 측정한 표면 거칠기가 기 설정해 둔 표준 표면 거칠기가 되도록 건축자재의 표면을 처리해 줄 수 있다.In one embodiment, in the surface treatment step (S120), the standard surface roughness of the building material corresponding to the type of building material may be preset so that the photocatalyst can be sufficiently impregnated in the impregnation step (S130). The surface roughness of the can be measured, and the surface of the building material can be treated so that the measured surface roughness becomes a preset standard surface roughness.

일 실시 예에서, 표면처리단계(S120)는, 건축자재의 종류에 따라 이에 대응하는 기 설정해 둔 표준 표면 거칠기가 되도록 건축자재의 표면에 기공을 형성시킬 수 있다.In one embodiment, in the surface treatment step (S120), pores may be formed on the surface of the building material to have a predetermined standard surface roughness corresponding to the type of the building material.

함침단계(S130)는. 함침기나 도포기 등을 이용하여 액상화단계(S110)에서 액상화된 광촉매를 표면처리단계(S120)에서 표면 처리한 건축자재에 함침시켜 준다.The impregnation step (S130) is. The photocatalyst liquefied in the liquefaction step (S110) is impregnated into the surface-treated building material in the surface treatment step (S120) by using an impregnator or applicator.

일 실시 예에서, 함침단계(S130)는. 표면처리단계(S120)에서 건축자재의 표면에 형성시킨 기공에, 액상화단계(S110)에서 액상화된 광촉매를 함침시켜 줄 수 있다.In one embodiment, the impregnation step (S130). The photocatalyst liquefied in the liquefaction step (S110) may be impregnated into pores formed on the surface of the building material in the surface treatment step (S120).

상술한 바와 같은 구성을 가진 광촉매 적용 건축자재 제조 방법은, 열처리 및 아연 도핑된 이산화티탄 광촉매를 건축자재의 표면에 함침시켜 고성능 저비용의 광촉매 적용 건축자재를 제조하도록 구현함으로써, 광촉매 적용 건축자재 및 2차 제품을 SOC 시설물, 주거 및 다중이용시설 등에 적용하여 미세먼지 저감, 대기 정화, 실내 공기질 개선 등의 환경적인 측면에서 삶의 쾌적성을 향상시킬 수 있으며, 반응성이 높고 경제적으로 효율성이 있어 관련 시장의 확대가 가능하며, 고감도 반응형 광촉매를 사용하는 경우에 간단한 방법에 의한 제조가 가능하고, 대량 생산이 용이하고, 소재산업 이외의 다양한 분야에서도 손쉽게 응용이 가능하여, 산업발전에 큰 기여를 할 수 있다.The photocatalyst-applied building material manufacturing method having the configuration described above is implemented to manufacture a high-performance, low-cost photocatalyst-applied building material by impregnating the surface of the building material with heat-treated and zinc-doped titanium dioxide photocatalyst, thereby manufacturing a photocatalyst-applied building material and 2 Tea products can be applied to SOC facilities, residential and multi-use facilities to improve the comfort of life in environmental aspects such as fine dust reduction, air purification, and indoor air quality improvement, and are highly responsive and economically efficient. can be expanded, it can be manufactured by a simple method when using a highly sensitive reactive photocatalyst, mass production is easy, and it can be easily applied in various fields other than the material industry, making a great contribution to industrial development. can

도 2는 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제2예로 설명하는 도면이다.2 is a view illustrating a method for manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a second example.

도 2를 참조하면, 광촉매 적용 건축자재 제조 방법은, 액상화단계(S110), 표면처리단계(S120), 함침단계(S130), 거칠기생성단계(S140)를 포함한다. 여기서, 액상화단계(S110), 표면처리단계(S120), 함침단계(S130)는, 도 1의 구성요소와 동일하므로 그 설명을 생략하도록 한다.Referring to FIG. 2 , the photocatalyst-applied building material manufacturing method includes a liquefaction step (S110), a surface treatment step (S120), an impregnation step (S130), and a roughness generation step (S140). Here, since the liquefaction step (S110), the surface treatment step (S120), and the impregnation step (S130) are the same as those of FIG. 1, their descriptions will be omitted.

거칠기생성단계(S140)는, 건축자재 표면의 고유 심미성을 살려 주기 위해서, 표면처리기나 그라인더 등을 이용하여 건축자재 원래의 표면 거칠기가 될 수 있도록 함침단계(S130)에서 함침시킨 광촉매를 표면처리단계(S120)에서 측정한 표면 거칠기로 만들어 준다.In the roughness generation step (S140), the photocatalyst impregnated in the impregnation step (S130) is a surface treatment step to restore the original surface roughness of the building material by using a surface treatment machine or a grinder in order to preserve the unique aesthetics of the surface of the building material. It makes the surface roughness measured in (S120).

상술한 바와 같은 구성을 가진 광촉매 적용 건축자재 제조 방법은, 대기 정화, 방오, 항균, 물 분해, 전지화 등의 작용을 하는 기능성 소재로 광촉매를 적용하기 위해서, 반응성이 높은 광촉매를 사용하여 전축자재에 적용해 줌으로써, 옥외, 실내, 내장고 등의 공기 정화 기능과; 상수, 폐수, 지하수 등의 수질 정화 기능과; 휘발성 유기화합물(VOCs) 등의 유해물질 분해 기능과; 유기물 분해에 의한 방오, 탈취 기능에 활용할 수 있으며, 다르게는 식품 용기 등에 이용하여 에틸렌 분해에 의한 선도 유지 기능에도 활용할 수 있을 뿐만 아니라, 내장재, 위생 위료자재, 의류 등의 항균, 살균 기능과; 암 등과 같은 질병을 치료하는 의료 기능과; 오염된 토양의 정화 기능과; 광촉매에 의한 물의 분해에 의해 수소 제로, 인공 광합성 기능과; 도료, 코팅제, 인쇄, 광유기합성 등의 응용 기능에도 활용할 수 있다.The photocatalyst-applied building material manufacturing method having the above configuration is a pre-accumulator material using a highly reactive photocatalyst in order to apply the photocatalyst as a functional material that acts as air purification, antifouling, antibacterial, water decomposition, and electrification. By applying to, air purification functions such as outdoor, indoor, and interior storage; water quality purification functions such as water supply, wastewater, and underground water; a decomposition function of harmful substances such as volatile organic compounds (VOCs); It can be used for antifouling and deodorizing functions by decomposition of organic matter, and can also be used for freshness maintenance function by decomposing ethylene by using food containers, etc., as well as antibacterial and sterilizing functions such as interior materials, sanitary materials, and clothing; medical function of treating diseases such as cancer; purification function of contaminated soil; Hydrogen zero by decomposition of water by photocatalysis, and artificial photosynthesis function; It can also be used for application functions such as paints, coating agents, printing, and photoorganic synthesis.

도 3은 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제3예로 설명하는 도면이다.3 is a view illustrating a method for manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a third example.

도 3을 참조하면, 광촉매 적용 건축자재 제조 방법은, 액상화단계(S110), 표면처리단계(S120), 함침단계(S130), 평탄화단계(S150)를 포함한다. 여기서, 액상화단계(S110), 표면처리단계(S120), 함침단계(S130)는, 도 1의 구성요소와 동일하므로 그 설명을 생략하도록 한다.Referring to FIG. 3 , the photocatalyst-applied building material manufacturing method includes a liquefaction step (S110), a surface treatment step (S120), an impregnation step (S130), and a planarization step (S150). Here, since the liquefaction step (S110), the surface treatment step (S120), and the impregnation step (S130) are the same as those of FIG. 1, their descriptions will be omitted.

평탄화단계(S150)는, 광촉매 적용 건축자재의 심미성을 주기 위해서, 평탄화기나 롤러 등을 이용하여 함침단계(S130)에서 함침시킨 광촉매를 평탄화시켜 준다.In the flattening step (S150), the photocatalyst impregnated in the impregnation step (S130) is flattened using a flattener or a roller to give aesthetics to the photocatalyst-applied building material.

상술한 바와 같은 구성을 가진 광촉매 적용 건축자재 제조 방법은, 코팅단계(S160)를 더 포함할 수도 있다.The photocatalyst-applied building material manufacturing method having the configuration as described above may further include a coating step (S160).

코팅단계(S160)는, 코팅기나 스프레이 등을 이용하여 함침단계(S130)에서 함침시킨 광촉매를 코팅해 준다.In the coating step (S160), the photocatalyst impregnated in the impregnation step (S130) is coated using a coating machine or spray.

일 실시 예에서, 코팅단계(S160)는, 투명 재질의 코팅액을 사용하여 함침단계(S130)에서 함침시킨 광촉매 전체를 코팅해 줄 수 있다.In one embodiment, in the coating step (S160), the entire photocatalyst impregnated in the impregnation step (S130) may be coated using a transparent coating solution.

일 실시 예에서, 코팅단계(S160)는, 함침단계(S130)에서 함침시킨 광촉매 중에서 기 설정해 둔 부분(예를 들어, 장식 모양 부분, 광촉매가 필요한 부분 등)만을 투명 재질의 코팅액을 사용하여 코팅해 줄 수도 있다.In one embodiment, in the coating step (S160), only a predetermined portion (eg, a decorative shape portion, a portion requiring photocatalyst, etc.) of the photocatalyst impregnated in the impregnation step (S130) is coated using a transparent coating liquid. You can do it.

도 4는 본 발명의 실시 예에 따른 광촉매 적용 건축자재 제조 방법을 제3예로 설명하는 도면이다.4 is a view illustrating a method for manufacturing a building material using a photocatalyst according to an embodiment of the present invention as a third example.

도 4를 참조하면, 광촉매 적용 건축자재 제조 방법은, 액상화단계(S110), 표면처리단계(S120), 함침단계(S130), 광전달판형성단계(S170), 광전달라인형성단계(S180)를 포함한다. 여기서, 액상화단계(S110), 표면처리단계(S120), 함침단계(S130)는, 도 1의 구성요소와 동일하므로 그 설명을 생략하도록 한다.Referring to FIG. 4, the method for manufacturing a building material using a photocatalyst includes a liquefaction step (S110), a surface treatment step (S120), an impregnation step (S130), a light transmission plate formation step (S170), and a light transmission line formation step (S180). includes Here, since the liquefaction step (S110), the surface treatment step (S120), and the impregnation step (S130) are the same as those of FIG. 1, their descriptions will be omitted.

광전달판형성단계(S170)는, 외부의 광원을 전달받아 함침단계(S130)에서 함침시킨 광촉매에 공급해 주기 위해서, 광촉매의 상면에 일체로 또는 결합하여 광전달판을 형성시켜 준다.In the step of forming the light transmission plate (S170), a light transmission plate is formed integrally with or combined with the upper surface of the photocatalyst in order to receive an external light source and supply the light to the photocatalyst impregnated in the impregnation step (S130).

광전달라인형성단계(S180)는, 외부의 광원을 공급받아 광전달판형성단계(S170)에서 형성시킨 광전달판에 전달해 주기 위해서, 광전달판의 일측에 광전달라인을 연결 형성시켜 준다.The light transmission line forming step (S180) connects and forms a light transmission line to one side of the light transmission plate in order to receive an external light source and transmit it to the light transmission plate formed in the light transmission plate forming step (S170).

상술한 바와 같은 구성을 가진 광촉매 적용 건축자재 제조 방법에 의해 제조된 광촉매 적용 건축자재는, 액상화기나 혼합기 등을 이용하여 열처리 및 아연 도핑된 이산화티탄(TiO2) 광촉매를 액상화해 주는 액상화단계(S110); 표면처리기나 그라인더 등을 이용하여 건축자재의 표면 거칠기 정도에 따라 이에 대응하여 건축자재의 표면을 처리해 주는 표면처리단계(S120); 함침기나 도포기 등을 이용하여 액상화단계(S110)에서 액상화된 광촉매를 표면처리단계(S120)에서 표면 처리한 건축자재에 함침시켜 주는 함침단계(S130)를 포함하는 광촉매 적용 건축자재 제조 방법에 의해 제조된다.The photocatalyst-applied building material manufactured by the photocatalyst-applied building material manufacturing method having the above configuration is heat treated using a liquefier or a mixer, and a liquefaction step of liquefying the zinc-doped titanium dioxide (TiO2) photocatalyst (S110) ; A surface treatment step (S120) of treating the surface of the building material in response to the degree of surface roughness of the building material using a surface treatment machine or grinder; A photocatalyst-applied building material manufacturing method comprising an impregnation step (S130) of impregnating the surface-treated building material in the surface treatment step (S120) with the photocatalyst liquefied in the liquefaction step (S110) using an impregnator or applicator, etc. are manufactured

상술한 바와 같은 구성을 가진 광촉매 적용 건축자재 제조 방법에 의해 제조된 광촉매 적용 건축자재는, 경제적인 측면과 실용화 측면을 고려하여 대량 생산이 가능한 고성능 저비용 광촉매(TiO2)를 건축자재에 혼합하여 사용할 수 있도록 해 준다.The photocatalyst-applied building material manufactured by the photocatalyst-applied building material manufacturing method having the above configuration can be used by mixing high-performance, low-cost photocatalyst (TiO2) with building materials that can be mass-produced in consideration of economic and practical aspects. let it be

이상, 본 발명의 실시 예는 상술한 장치 및/또는 운용방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시 예의 구성에 대응하는 기능을 실현하기 위한 프로그램, 그 프로그램이 기록된 기록 매체 등을 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시 예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다. 이상에서 본 발명의 실시 예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.As described above, the embodiments of the present invention are not implemented only through the above-described device and/or operating method, but through a program for realizing functions corresponding to the configuration of the embodiment of the present invention and a recording medium on which the program is recorded. It may be implemented, and such an implementation can be easily implemented by an expert in the technical field to which the present invention belongs based on the description of the above-described embodiment. Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concept of the present invention defined in the following claims are also included in the scope of the present invention. that fall within the scope of the right.

S110: 액상화단계
S120: 표면처리단계
S130: 함침단계
S140: 거칠기생성단계
S150: 평탄화단계
S160: 코팅단계
S170: 광전달판형성단계
S180: 광전달라인형성단계
S110: liquefaction step
S120: Surface treatment step
S130: impregnation step
S140: roughness generation step
S150: planarization step
S160: coating step
S170: photoconductive plate formation step
S180: light transmission line formation step

Claims (5)

열처리 및 아연 도핑된 이산화티탄 광촉매를 액상화하는 액상화단계; 건축자재의 표면 거칠기 정도에 따라 이에 대응하여 건축자재의 표면을 처리하는 표면처리단계; 및 상기 액상화단계에서 액상화된 광촉매를 상기 표면처리단계에서 표면 처리한 건축자재에 함침시키는 함침단계를 포함하며;
상기 표면처리단계는, 건축자재의 종류에 따라 이에 대응하는 기 설정해 둔 표준 표면 거칠기가 되도록 건축자재의 표면에 기공을 형성시키며; 상기 함침단계는. 상기 표면처리단계에서 형성시킨 기공에, 상기 액상화단계에서 액상화된 광촉매를 함침시키며; 상기 함침단계에서 함침시킨 광촉매를 평탄화시키는 평탄화단계를 더 포함하며;
외부의 광원을 전달받아 상기 함침단계에서 함침시킨 광촉매에 공급하기 위한 광전달판을 광촉매의 상면에 결합하여 형성시키는 광전달판형성단계; 및 외부의 광원을 공급받아 상기 광전달판형성단계에서 형성시킨 광전달판에 전달하기 위한 광전달라인을 광전달판의 일측에 연결 형성시키는 광전달라인형성단계를 더 포함하는 것을 특징으로 하는 광촉매 적용 건축자재 제조 방법.
A liquefaction step of liquefying the heat-treated and zinc-doped titanium dioxide photocatalyst; A surface treatment step of treating the surface of the building material in response to the degree of surface roughness of the building material; and an impregnation step of impregnating the photocatalyst liquefied in the liquefaction step into the building material surface-treated in the surface treatment step;
In the surface treatment step, pores are formed on the surface of the building material to have a predetermined standard surface roughness corresponding to the type of the building material; The impregnation step. impregnating the photocatalyst liquefied in the liquefaction step into the pores formed in the surface treatment step; A planarization step of planarizing the photocatalyst impregnated in the impregnation step is further included;
a light conduction plate forming step in which a light conduction plate for receiving an external light source and supplying the light to the photocatalyst impregnated in the impregnation step is coupled to an upper surface of the photocatalyst; and a light transmission line forming step of connecting a light transmission line to one side of the light transmission plate for transmitting an external light source to the light transmission plate formed in the light transmission plate formation step. Methods for manufacturing applied building materials.
제1항에 있어서, 상기 액상화단계는,
열처리 및 아연 도핑된 이산화티탄 광촉매를 분말화시킨 후에, 증류수 100중량부에 대하여 분말 광촉매를 10 ~ 60 중량%로 혼합하여 광촉매 액상을 만드는 것을 특징으로 하는 광촉매 적용 건축자재 제조 방법.
The method of claim 1, wherein the liquefaction step,
After heat treatment and powdering the zinc-doped titanium dioxide photocatalyst, 10 to 60% by weight of the powdered photocatalyst is mixed with 100 parts by weight of distilled water to form a photocatalyst liquid phase.
제1항에 있어서, 상기 액상화단계는,
열처리 및 아연 도핑된 이산화티탄 광촉매를 나노 입자화한 후에 조촉매와 염기성 첨가제를 첨가하여 액상화하는 것을 특징으로 하는 광촉매 적용 건축자재 제조 방법.
The method of claim 1, wherein the liquefaction step,
A method for manufacturing a photocatalyst-applied building material, characterized in that, after heat treatment and zinc-doped titanium dioxide photocatalyst into nanoparticles, liquefaction is performed by adding a cocatalyst and a basic additive.
삭제delete 열처리 및 아연 도핑된 이산화티탄 광촉매를 액상화하는 액상화단계; 건축자재의 표면 거칠기 정도에 따라 이에 대응하여 건축자재의 표면을 처리하는 표면처리단계; 및 상기 액상화단계에서 액상화된 광촉매를 상기 표면처리단계에서 표면 처리한 건축자재에 함침시키는 함침단계를 포함하며;
상기 표면처리단계는, 건축자재의 종류에 따라 이에 대응하는 기 설정해 둔 표준 표면 거칠기가 되도록 건축자재의 표면에 기공을 형성시키며; 상기 함침단계는. 상기 표면처리단계에서 형성시킨 기공에, 상기 액상화단계에서 액상화된 광촉매를 함침시키며; 상기 함침단계에서 함침시킨 광촉매를 평탄화시키는 평탄화단계를 더 포함하며;
외부의 광원을 전달받아 상기 함침단계에서 함침시킨 광촉매에 공급하기 위한 광전달판을 광촉매의 상면에 결합하여 형성시키는 광전달판형성단계; 및 외부의 광원을 공급받아 상기 광전달판형성단계에서 형성시킨 광전달판에 전달하기 위한 광전달라인을 광전달판의 일측에 연결 형성시키는 광전달라인형성단계를 더 포함하는 것을 특징으로 하는 광촉매 적용 건축자재 제조 방법에 의해 제조된 광촉매 적용 건축자재.
A liquefaction step of liquefying the heat-treated and zinc-doped titanium dioxide photocatalyst; A surface treatment step of treating the surface of the building material in response to the degree of surface roughness of the building material; and an impregnation step of impregnating the photocatalyst liquefied in the liquefaction step into the building material surface-treated in the surface treatment step;
In the surface treatment step, pores are formed on the surface of the building material to have a predetermined standard surface roughness corresponding to the type of the building material; The impregnation step. impregnating the photocatalyst liquefied in the liquefaction step into the pores formed in the surface treatment step; A planarization step of planarizing the photocatalyst impregnated in the impregnation step is further included;
a light conduction plate forming step in which a light conduction plate for receiving an external light source and supplying the light to the photocatalyst impregnated in the impregnation step is coupled to an upper surface of the photocatalyst; and a light transmission line forming step of connecting a light transmission line to one side of the light transmission plate for transmitting an external light source to the light transmission plate formed in the light transmission plate formation step. A photocatalyst-applied building material manufactured by the applied building material manufacturing method.
KR1020200177356A 2020-12-17 2020-12-17 Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby KR102543191B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200177356A KR102543191B1 (en) 2020-12-17 2020-12-17 Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200177356A KR102543191B1 (en) 2020-12-17 2020-12-17 Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby

Publications (2)

Publication Number Publication Date
KR20220087035A KR20220087035A (en) 2022-06-24
KR102543191B1 true KR102543191B1 (en) 2023-06-14

Family

ID=82216091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200177356A KR102543191B1 (en) 2020-12-17 2020-12-17 Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby

Country Status (1)

Country Link
KR (1) KR102543191B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101840038B1 (en) * 2017-01-16 2018-03-19 주식회사 대수하이테크 Titanium dioxide composition and method for prepairing the same
JP2018516170A (en) * 2015-05-29 2018-06-21 日東電工株式会社 Photocatalytic coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066485A (en) 2003-06-09 2003-08-09 김운중 coating method of TiOCAT
KR100701275B1 (en) 2006-02-23 2007-03-29 주식회사 효성 A Carpet Wallboard Material with Photo-catalyst Layer
NZ618227A (en) * 2011-05-04 2016-03-31 Stewart Benson Averett Titanium dioxide photocatalytic compositions and uses thereof
KR101341250B1 (en) * 2011-11-28 2013-12-12 박홍욱 Ceramic coating materials with combustion/photo catalyst and coated materials for reduction of harmful gases using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516170A (en) * 2015-05-29 2018-06-21 日東電工株式会社 Photocatalytic coating
KR101840038B1 (en) * 2017-01-16 2018-03-19 주식회사 대수하이테크 Titanium dioxide composition and method for prepairing the same

Also Published As

Publication number Publication date
KR20220087035A (en) 2022-06-24

Similar Documents

Publication Publication Date Title
Anpo Utilization of TiO2 photocatalysts in green chemistry
Tung et al. Self-cleaning fibers via nanotechnology: a virtual reality
KR100723956B1 (en) Functional adsorbent and environment purification product
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
Zhang et al. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel
CA2624092C (en) Titanium oxide photocatalyst, method for producing same and use thereof
US8741349B2 (en) Antiviral material , antiviral film, antiviral fiber, and antiviral product
US20110064609A1 (en) High surface area ceramic coated fibers
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
WO2003048048A1 (en) Titanium dioxide photocatalyst and a method of preparation and uses of the same
KR100956843B1 (en) Antimicrobial photocatalyst, antimicrobial articles coated with photocatalyst and manufacturing method thereof
WO2003102096A1 (en) Antibacterial and anti-staining paint for building materia l and building material coated therewith
JP4327518B2 (en) Method for producing composite particles of titanium dioxide and condensed phosphate inactive as photocatalyst
KR102543191B1 (en) Method of manufacturing photo-catalyst applied building materials and photo-catalyst applied building materials manufactured thereby
KR102562529B1 (en) Transition Metal Doped Complex Photocatalyst and Manufacturing Method thereof
JP4526619B2 (en) Visible light active photocatalyst
KR102266706B1 (en) Photocatalytic composite composition containing titanium dioxide
KR102562523B1 (en) Complex Photocatalyst for Decomposition of Pollutants and Manufacturing Method thereof
Tung et al. Self‐Cleaning Fibers and Fabrics
JP2004082088A (en) Photocatalyst and photocatalyst material
CN109622021A (en) A kind of preparation method of copper ion-photo-catalytic sterilization taste removal film and its application on lamps and lanterns
Avraham‐Shinman et al. Photocatalysis by composite particles containing inert domains
JP2000262909A (en) Product having photocatalytic function
JP4098005B2 (en) Photocatalyst and photocatalytic material

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)