KR102516400B1 - Encreasing density of Ni-Co-Mn composite precursor using washing process - Google Patents

Encreasing density of Ni-Co-Mn composite precursor using washing process Download PDF

Info

Publication number
KR102516400B1
KR102516400B1 KR1020200158537A KR20200158537A KR102516400B1 KR 102516400 B1 KR102516400 B1 KR 102516400B1 KR 1020200158537 A KR1020200158537 A KR 1020200158537A KR 20200158537 A KR20200158537 A KR 20200158537A KR 102516400 B1 KR102516400 B1 KR 102516400B1
Authority
KR
South Korea
Prior art keywords
composite precursor
washing
distilled water
cleaning
density
Prior art date
Application number
KR1020200158537A
Other languages
Korean (ko)
Other versions
KR20220071432A (en
Inventor
우대중
인대민
Original Assignee
주식회사 에코앤드림
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코앤드림 filed Critical 주식회사 에코앤드림
Priority to KR1020200158537A priority Critical patent/KR102516400B1/en
Publication of KR20220071432A publication Critical patent/KR20220071432A/en
Application granted granted Critical
Publication of KR102516400B1 publication Critical patent/KR102516400B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 니켈-코발트-망간 복합전구체의 밀도 증가 방법에 관한 기술로서, 구체적으로는 공침 후에 제조되는 복합전구체를 본 발명의 신규한 세정 과정을 통해 복합전구체의 밀도를 향상시킬 수 있는 기술에 관한 것이다.The present invention relates to a method for increasing the density of a nickel-cobalt-manganese composite precursor, and specifically, to a technique for improving the density of a composite precursor prepared after coprecipitation through a novel cleaning process of the present invention. will be.

Description

니켈―코발트―망간 복합전구체의 세정을 통한 밀도 증가 방법{Encreasing density of Ni-Co-Mn composite precursor using washing process}Density increasing method through washing of nickel-cobalt-manganese composite precursor {Encreasing density of Ni-Co-Mn composite precursor using washing process}

본 발명은 니켈―코발트―망간의 3성분계 복합전구체(NixCoyMn1-x-y(OH)2)의 밀도 증가 방법에 관한 기술로서, 더욱 구체적으로는 본 발명은, 리튬이차전지용 양극 활물질로 사용되는 니켈―코발트―망간의 3성분계 복합전구체을 공침법에 의해 제조한 후에 이루어지는 세정(=세척) 공정을 개량하여, 세정에 이미 제조된 복합전구체의 밀도를 약 3% 정도 증가하는 기술에 관한 것이다.The present invention relates to a method for increasing the density of a nickel-cobalt-manganese ternary composite precursor (Ni x Co y Mn 1-xy (OH) 2 ), and more specifically, the present invention is a positive electrode active material for a lithium secondary battery. It relates to a technique for increasing the density of the composite precursor already produced by about 3% by improving the washing (= washing) process performed after the nickel-cobalt-manganese ternary composite precursor used is produced by the coprecipitation method. .

휴대용의 소형 전기ㆍ전자기기의 보급이 확산에 따라 니켈수소전지나 리튬 이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 또한, 이차전지는 하이브리드자동차(HEV), 전기자동차(EV) 등에 사용되는 등, 적용분야가 확대되면서 이차전지에 대한 연구와 개발이 활발히 이루어지고 있다. BACKGROUND OF THE INVENTION [0002] With the spread of portable small electrical and electronic devices, development of new secondary batteries such as nickel-metal hydride batteries and lithium secondary batteries is actively progressing. In addition, as secondary batteries are used in hybrid vehicles (HEV), electric vehicles (EV), etc., research and development on secondary batteries are being actively conducted as the application fields are expanding.

이차전지 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 리튬이차전지에 사용되는 양극 활물질로는 리튬 단독이 아닌 니켈, 코발트, 망간 등을 혼합하여 양극 활물질로 제조함으로써 에너지밀도 및 전기전도성 등의 양극 물성을 만족시키고 있다. Among secondary batteries, a lithium secondary battery uses carbon such as graphite as an anode active material, a metal oxide containing lithium as a cathode active material, and a non-aqueous solvent as an electrolyte. As a cathode active material used in a lithium secondary battery, it satisfies cathode physical properties such as energy density and electrical conductivity by preparing a cathode active material by mixing nickel, cobalt, manganese, etc. rather than lithium alone.

예를 들어, Li2CO3와 니켈-코발트-망간 전구체(NixCoyMn1-x-y)를 혼합 소성 가공하여 양극 활물질로 사용하고 있다. 통상 상기 전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제) 및 NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 상기 전구체의 침전이 일어난다.For example, a mixture of Li 2 CO 3 and a nickel-cobalt-manganese precursor (Ni x Co y Mn 1-xy ) is used as a cathode active material. Usually, the precursor is prepared using a co-precipitation method. After dissolving nickel salt, manganese salt, and cobalt salt in distilled water, the precursor is precipitated when an aqueous ammonia solution (chelating agent) and an aqueous NaOH solution (basic aqueous solution) are introduced into a reactor. this happens

이러한 복합전구체는 공침에 의해 제조된 후, 불순물을 제거하기 위한 세정(=세척) 과정이 필수적으로 필요하다. 예를 들어, 특허공개 제10-2015-0076305호에서는 세정액 분사기 및 망체를 포함하는 여과기를 포함하는 세정기 및 상기 여과기에 결합되어, 상기 여과기에 음압을 가하는 감압기를 포함하는 양극재 전구체의 세정 장치를 공개하고 있다. 또한, 특허공개 제10-2015-0093320호에서는 반응, 세정, 여과, 건조가 단일 공정에서 수행되는 수직형 쿠에트-테일러 반응장치를 수반한 공침반응기에 관한 기술을 공개하고 있다.After such a composite precursor is prepared by co-precipitation, a washing (= washing) process for removing impurities is essentially required. For example, in Patent Publication No. 10-2015-0076305, a cleaning device for a cathode material precursor including a cleaner including a cleaning solution sprayer and a filter including a net and a pressure reducer coupled to the filter and applying a negative pressure to the filter are revealing In addition, Patent Publication No. 10-2015-0093320 discloses a technology related to a co-precipitation reactor with a vertical Kuett-Taylor reactor in which reaction, washing, filtration, and drying are performed in a single process.

종래 복합전구체의 세정 관련 기술은 세정 장치에 대하여 신규한 기술을 공개하고 있으나, 세정을 통한 니켈-코발트-망간 복합전구체의 밀도 향상에 대해서는 연구가 이루어진바 없다.Conventional technologies related to cleaning composite precursors disclose new technologies for cleaning devices, but no research has been conducted on improving the density of nickel-cobalt-manganese composite precursors through cleaning.

특허공개 제10-2015-0076305호Patent Publication No. 10-2015-0076305 특허공개 제10-2015-0093320호Patent Publication No. 10-2015-0093320

본 발명은 공침법에 의해 제조된 니켈-코발트-망간 복합전구체의 밀도를 증가시키는 신규한 세정 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a novel cleaning method for increasing the density of a nickel-cobalt-manganese composite precursor prepared by a coprecipitation method.

특히, 본 발명은 종래 증류수 세정을 하는 세정 방법에 비해 3% 이상 밀도 증가를 도모할 수 있는 신규한 세정 방법을 제공하는 것을 목적으로 한다.In particular, an object of the present invention is to provide a novel cleaning method capable of increasing the density by 3% or more compared to the cleaning method of conventional distilled water cleaning.

본 발명은 상기 목적을 달성하기 위하여, 공침법에 의해 제조된 니켈-코발트-망간 복합전구체를 증류수로 세정하는 단계(1); 단계(1) 후의 복합전구체를 알칼리수로 세정하는 단계(2); 단계(2) 후의 복합전구체를 증류수를 이용하여 세정하는 단계(3-1)를 3회 반복하는 단계(3); 및 건조 단계(4)를 포함하는 니켈―코발트―망간 복합전구체의 세정을 통한 밀도 증가 방법을 제공한다.In order to achieve the above object, the present invention includes the steps (1) of washing the nickel-cobalt-manganese composite precursor prepared by the coprecipitation method with distilled water; Step (2) of washing the composite precursor after step (1) with alkaline water; (3) repeating step (3-1) of washing the composite precursor after step (2) with distilled water three times; and a drying step (4) to provide a method for increasing the density through cleaning of the nickel-cobalt-manganese composite precursor.

특히, 상기 단계(1)의 증류수 세정은 3회 반복할 수 있다.In particular, the distilled water washing in step (1) may be repeated three times.

특히, 상기 단계(1)은, 복합전구체의 증류수 세정 과정 및 상기 세정 과정 후 복합전구체 내에 남아 있는 증류수를 제거하기 위한 가압 과정을 포함할 수 있다.In particular, the step (1) may include a process for washing the composite precursor with distilled water and a pressurization process for removing distilled water remaining in the composite precursor after the washing process.

특히, 단계(2)는, 알칼리수를 이용한 세정 과정 및 상기 세정 과정 후 복합전구체 내에 남아 있는 알칼리수를 제거하기 위한 가압 과정을 포함할 수 있다.In particular, step (2) may include a washing process using alkaline water and a pressurization process for removing alkaline water remaining in the composite precursor after the washing process.

특히, 상기 단계(3-1)은, 복합전구체의 증류수 세정 과정 및 상기 세정 과정 후 복합전구체 내에 남아 있는 증류수를 제거하기 위한 가압 과정을 포함할 수 있다.In particular, the step (3-1) may include a process of washing the composite precursor with distilled water and a pressurization process for removing distilled water remaining in the composite precursor after the washing process.

특히, 상기 가압과정은 복합전구체가 놓여있는 반응기 내에 가스를 이용한 가압일 수 있다.In particular, the pressurization process may be pressurization using a gas in the reactor in which the composite precursor is placed.

특히, 상기 알칼리수는 NaOH 수용액일 수 있다.In particular, the alkaline water may be an aqueous solution of NaOH.

본 발명은 복합전구체 제조 과정인 공침법을 통한 밀도 증가 방법과는 달리 이미 공침법에 의해 제조된 복합전구체의 세정을 통해 밀도를 증가시킬 수 있다. 특히, 복합전구체의 제조 후 세정 과정은 반드시 필요한 과정이므로, 기존의 모든 공침법에 본 발명의 세정 방법이 적용 가능하다. Unlike the method of increasing the density through the coprecipitation method, which is a process for preparing the composite precursor, the present invention can increase the density through washing of the composite precursor already prepared by the coprecipitation method. In particular, since the cleaning process after preparation of the composite precursor is an indispensable process, the cleaning method of the present invention can be applied to all existing co-precipitation methods.

도 1은 비교예의 샘플에 대한 입도분포도 그래프이다.
도 2는 실시예의 샘플에 대한 입도분포도 그래프이다.
1 is a particle size distribution graph of samples of Comparative Example.
Figure 2 is a particle size distribution graph for the samples of the examples.

본 발명은 니켈-코발트-망간 복합전구체(NixCoyMn1-x-y(OH)2, 여기서, 0<x<1, 0<y<1, 0<x+y<1, 이하 편의상 "복합전구체"라 약칭함)의 공침 후 제조된 복합전구체의 밀도 증가 방법에 관한 기술이다. 특히, 본 발명은 공침에 이미 제조된 복합전구체를 세정 과정을 통해 밀도를 증가시키는 방법에 관한 기술이다. 종래 기술에서는 공침법에 의해 제조된 복합전구체의 세정 과정을 단순히 복합전구체 내의 불순물의 제거를 위한 공정으로만 사용하였으나, 본 발명에서는 세정을 통해 복합전구체의 밀도를 증가시키는 점에 특징이 있다.The present invention is a nickel-cobalt-manganese composite precursor (Ni x Co y Mn 1-xy (OH) 2 , where 0 <x <1, 0 <y <1, 0 <x+y <1, hereinafter for convenience, "composite It is a technology related to a method for increasing the density of a composite precursor prepared after co-precipitation of (abbreviated as "precursor"). In particular, the present invention relates to a method for increasing the density of a composite precursor already prepared by co-precipitation through a washing process. In the prior art, the cleaning process of the composite precursor prepared by the coprecipitation method was simply used as a process for removing impurities in the composite precursor, but the present invention is characterized in that the density of the composite precursor is increased through cleaning.

본 발명은 공침법에 의해 제조된 니켈-코발트-망간 복합전구체를 증류수로 세정하는 단계(1); 단계(1) 후의 복합전구체를 알칼리수로 세정하는 단계(2); 단계(2) 후의 복합전구체를 증류수를 이용하여 세정하는 단계(3-1)를 3회 반복하는 단계(3); 및 건조 단계(4)를 포함하는 니켈―코발트―망간 복합전구체의 세정을 통한 밀도 증가 방법을 포함한다.The present invention includes the steps (1) of washing the nickel-cobalt-manganese composite precursor prepared by the coprecipitation method with distilled water; Step (2) of washing the composite precursor after step (1) with alkaline water; (3) repeating step (3-1) of washing the composite precursor after step (2) with distilled water three times; and a method of increasing the density through washing of the nickel-cobalt-manganese composite precursor comprising a drying step (4).

각 단계에 대해 자세히 설명하면 아래와 같다.A detailed description of each step is as follows.

단계(1)은, 공침 단계 후에 복합전구체 내에 묻어 있는 각종 불순물 및 황산용액 등의 공침액을 제거하기 위한 증류수 세정 과정이다. 복합전구체가 공침된 슬러리를 하부에 망체(필터)가 설치되고 상부에 분사기가 설치된 세정장치를 통해 증류수(약 50 ~ 60℃)를 고압으로 분사하면서 세정액이 망체를 통과하도록 하면서 세정이 진행된다. 증류수 세정 후 세정장치 내의 압력을 높이기 위하여, 세정장치를 폐쇄한 후 질소, 아르곤 등의 다양한 불활성 가스 중 어느 하나로 세정장치에 고압으로 공급함으로써 복합전구체 내의 증류수 및 불순물들이 가압에 의해 복합전구체에서 빠져나가게 된다.Step (1) is a distilled water washing process for removing various impurities and a coprecipitation solution such as a sulfuric acid solution buried in the composite precursor after the coprecipitation step. The slurry in which the composite precursor is co-precipitated is sprayed with distilled water (about 50 to 60 ° C) at high pressure through a cleaning device with a net (filter) installed at the bottom and a sprayer installed at the top, while allowing the cleaning solution to pass through the net. In order to increase the pressure in the cleaning device after cleaning with distilled water, after closing the cleaning device, one of various inert gases such as nitrogen and argon is supplied to the cleaning device at high pressure so that distilled water and impurities in the composite precursor are expelled from the composite precursor by pressurization. do.

단계(2)는, 상기 증류수 세정 후 알칼리 세정을 하는 단계이다. 알칼리수, 예를 들어, NaOH, KOH, LiOH, NH4OH, Mg(OH)2, Ba(OH)2, CaOH 등의 알칼리염이 용해된 수용액을 이용하여 복합전구체를 세정한다. 이때 알칼리수는 상기 증류수 세정 단계에서의 세정장치를 이용하되 분사되는 세정액이 증류수에서 알칼리수로 대체되었을 뿐이다. 알칼리수의 세정, 예를 들어, 10분(대상 복합전구체의 양에 따라 세정 시간은 변동하므로 본 발명에서는 세정시간을 한정하지 않음) 동안 알칼리수로 세정한 후, 복합전구체 내의 알칼리수를 외부로 배출시키기 위하여 앞 단계와 마찬가지로 가스를 이용한 가압 과정을 더 추가한다. Step (2) is a step of alkali cleaning after the distilled water cleaning. Alkaline water, for example, NaOH, KOH, LiOH, NH 4 OH, Mg (OH) 2 , Ba (OH) 2 , Using an aqueous solution in which an alkali salt such as CaOH is dissolved is used to wash the composite precursor. At this time, the alkaline water is used by the cleaning device in the distilled water cleaning step, but the sprayed cleaning liquid is only replaced with the alkaline water from the distilled water. Alkaline water washing, for example, after washing with alkaline water for 10 minutes (the washing time varies according to the amount of the target composite precursor, so the washing time is not limited in the present invention), in order to discharge the alkaline water in the composite precursor to the outside As in the previous step, a pressurization process using gas is further added.

단계(3)은 알칼리 세정 후의 증류수 세정 과정으로서, 증류수 세정 과정을 3회 반복하는 것을 특징으로 한다. 단계(2)를 통해 복합전구체 내에 알칼리수를 제거하는데, 각 증류수 세정 후 가압 단계를 통해 복합전구체 내의 증류수를 없앤 후, 다시 증류수 세정을 반복하는 것이 바람직하다. Step (3) is a distilled water cleaning process after alkali cleaning, characterized in that the distilled water cleaning process is repeated three times. Alkaline water is removed from the composite precursor through step (2). It is preferable to remove the distilled water from the composite precursor through a pressurization step after each distilled water washing, and then repeat the distilled water washing again.

단계(4)는 최종적으로 건조된 복합전구체를 얻기 위한 건조 과정으로서 대기 중 또는 감압 하에서 일정 온도로 가온한 상태에서 건조할 수 있다.Step (4) is a drying process to obtain a finally dried composite precursor, which may be dried in a heated state at a constant temperature in the air or under reduced pressure.

상기 세정 단계들을 통해 본 발명에서는 복합전구체의 밀도가 증가하는 것을 발견하였다. 상기와 같은 특정한 세정 단계를 통해 복합전구체의 입자 크기는 변경하지 않지만, 입자 간의 충진 밀도가 증가하는 것으로 이해된다.Through the cleaning steps, it was found that the density of the composite precursor increased in the present invention. It is understood that the particle size of the composite precursor does not change through the specific cleaning step as described above, but the packing density between the particles increases.

이하에서는 본 발명의 세정 효과를 실험을 통해 설명하기로 한다.Hereinafter, the cleaning effect of the present invention will be described through experiments.

니켈-코발트-망간 복합전구체의 제조Preparation of nickel-cobalt-manganese composite precursor

황산니켈, 황산코발트, 황산망간을 0.6 : 0.2 : 0.2의 비율(몰비)로 혼합하여 2.5 M 농도의 공침용액을 준비하였고, 50% 농도의 수산화나트륨 수용액을 준비하였다. 상기 공침용액을 50 ~ 60℃로 유지되는 이온제거수가 포함된 이중수조구조인 100 L 공침반응기에 6.5 ~ 7.0 L/hr의 속도로 공급하였고, 공침 반응기 내부의 pH가 10.5 ~ 11.0이 유지되도록 상기 수산화나트륨 수용액을 가하였다. 첨가제로서 28% 농도의 암모니아 수용액을 공급하였다. 공침반응은 3시간 기준으로 니켈-코발트-망간 복합수산화물을 가라앉히고, 상등액을 제거하는 방법의 배치식 타입의 공침법으로 12시간 반응을 진행하였다.Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed at a molar ratio of 0.6:0.2:0.2 to prepare a 2.5 M coprecipitation solution, and a 50% sodium hydroxide aqueous solution was prepared. The coprecipitation solution was supplied at a rate of 6.5 to 7.0 L/hr to a 100 L coprecipitation reactor having a double water tank structure containing deionized water maintained at 50 to 60 ° C, and the pH inside the coprecipitation reactor was maintained at 10.5 to 11.0. Aqueous sodium hydroxide solution was added. A 28% aqueous ammonia solution was supplied as an additive. The co-precipitation reaction was carried out for 12 hours by a batch type co-precipitation method in which the nickel-cobalt-manganese composite hydroxide was settled on a 3-hour basis and the supernatant was removed.

위에서 제조된 복합전구체를 대상으로 아래 비교예와 실시예의 세정 실험을 진행하였다.The cleaning experiments of Comparative Examples and Examples below were conducted for the composite precursor prepared above.

비교예의 세정Cleaning of Comparative Examples

상기 공침에 의해 제조된 복합전구체를 증류수로 1회 세정한 후 불활성 가스로 세정기 내에 압력을 가하여 복합전구체 내의 증류수를 제거한 후, 건조 과정을 더 거쳐 복합전구체 샘플을 제조하였다.After washing the composite precursor prepared by the coprecipitation once with distilled water, pressure was applied in the scrubber with an inert gas to remove the distilled water in the composite precursor, and then a drying process was further performed to prepare a composite precursor sample.

실시예의 세정Cleaning of Examples

상기 공침에 의해 제조된 복합전구체를 증류수로 세정 후, NaOH 수용액으로 세정 후에 3회에 걸쳐 증류수로 세정하였다. 상기 알칼리수 세정 및 증류수 세정의 각 단계에서는 세정 후 불활성 가스로 세정기 내에 압력을 가하여 복합전구체 내에 잔존하는 알칼리수 또는 증류수를 최대한 배출하도록 하였다.The composite precursor prepared by the co-precipitation was washed with distilled water, washed with NaOH aqueous solution, and then washed with distilled water three times. In each step of the alkaline water washing and the distilled water washing, after washing, an inert gas was applied to pressurize the scrubber so that the remaining alkaline water or distilled water in the composite precursor was maximally discharged.

실험예 1 : 평균입자 크기 Experimental Example 1: Average particle size

도 1은 비교예 샘플의 입도분포도로서, 세정 후의 복합전구체의 평균입자 크기는 5.04 ㎛였다. 한편, 도 2는 실시에 샘플의 입도분포도로서, 세정 후의 복합전구체의 평균입자 크기는 5.04 ㎛였다. 즉, 본 발명의 세정 방법에 의해 복합전구체의 입자 크기는 변동이 없다는 점을 알 수 있었다.1 is a particle size distribution diagram of a comparative example sample, and the average particle size of the composite precursor after washing was 5.04 μm. On the other hand, Figure 2 is a particle size distribution diagram of the sample, the average particle size of the composite precursor after washing was 5.04 ㎛. That is, it was found that the particle size of the composite precursor was not changed by the cleaning method of the present invention.

실험예 2 : 탭밀도 Experimental Example 2: Tap Density

비교예 샘플의 탭밀도를 수차례 분석한 결과, 탭밀도는 평균 1.79 g/cm3이었다.As a result of analyzing the tap density of the sample of Comparative Example several times, the average tap density was 1.79 g/cm 3 .

한편, 본 발명의 실시예 샘플에 대해 탭밀도를 측정한 결과 평균 1.85 g/cm3로 비교예 샘플에 비해 0.06 g/cm3 증가하였다. 즉 비교예에 비해 약 3.3% 탭밀도가 증가하였다. 참고로, 3.3%의 탭밀도 증가는 매우 큰 밀도 증가에 해당하는 수치이다.On the other hand, as a result of measuring the tap density for the samples of the examples of the present invention, the average was 1.85 g/cm 3 , which was increased by 0.06 g/cm 3 compared to the sample of the comparative example. That is, the tap density increased by about 3.3% compared to the comparative example. For reference, an increase in tap density of 3.3% corresponds to a very large increase in density.

한편, 알칼리 세정 단계(2) 및 증류수 3회 세정(단계 3)를 3회(즉, 단계(2)->단계(3)->단계(2)->단계(3)..) 반복하여 세정을 추가하였다. 본 발명의 실시예에서 1회 더 반복하는 경우나 3회 더 반복하는 경우 모두 평균 탭밀도 약 1.85 g/cm3로 단계(2) 및 단계(3)을 추가 반복하더라도 평균 탭밀도의 변화가 없었다. On the other hand, the alkali cleaning step (2) and the distilled water three times washing (step 3) are repeated three times (ie, step (2) -> step (3) -> step (2) -> step (3) ...) Wash was added. In the case of repeating one more time or three more times in the embodiment of the present invention, the average tap density was about 1.85 g / cm 3 and there was no change in average tap density even if steps (2) and (3) were additionally repeated. .

Claims (6)

공침법에 의해 제조된 니켈-코발트-망간 복합전구체를 50 ~ 60℃의 증류수로 3회 세정하는 단계(1);
단계(1) 후의 복합전구체를 알칼리수인 NaOH 수용액으로 세정하는 단계(2);
단계(2) 후의 복합전구체를 증류수를 이용하여 세정하는 단계(3-1)를 3회 반복하는 단계(3); 및
건조 단계(4)를 포함하되,
상기 단계(1)은, 복합전구체의 증류수 세정 과정 및 상기 세정 과정 후 복합전구체 내에 남아 있는 증류수를 제거하기 위한 가스 가압 과정을 포함하며,
상기 단계(2)는, 알칼리수를 이용한 세정 과정 및 상기 세정 과정 후 복합전구체 내에 남아 있는 알칼리수를 제거하기 위한 가스 가압 과정을 포함하며,
상기 단계(3-1)은, 복합전구체의 증류수 세정 과정 및 상기 세정 과정 후 복합전구체 내에 남아 있는 증류수를 제거하기 위한 가스 가압 과정을 포함하는,
니켈―코발트―망간 복합전구체의 세정을 통한 밀도 증가 방법.

Step (1) washing the nickel-cobalt-manganese composite precursor prepared by the coprecipitation method with distilled water at 50 to 60 °C three times;
Step (2) washing the complex precursor after step (1) with an aqueous solution of NaOH, which is alkaline water;
(3) repeating step (3-1) of washing the composite precursor after step (2) with distilled water three times; and
Including a drying step (4),
The step (1) includes a distilled water cleaning process of the composite precursor and a gas pressurization process for removing distilled water remaining in the composite precursor after the washing process,
The step (2) includes a washing process using alkaline water and a gas pressurization process for removing alkaline water remaining in the composite precursor after the washing process,
The step (3-1) includes a distilled water cleaning process of the composite precursor and a gas pressurization process for removing the distilled water remaining in the composite precursor after the cleaning process.
A method for increasing the density of a nickel-cobalt-manganese composite precursor through cleaning.

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200158537A 2020-11-24 2020-11-24 Encreasing density of Ni-Co-Mn composite precursor using washing process KR102516400B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200158537A KR102516400B1 (en) 2020-11-24 2020-11-24 Encreasing density of Ni-Co-Mn composite precursor using washing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200158537A KR102516400B1 (en) 2020-11-24 2020-11-24 Encreasing density of Ni-Co-Mn composite precursor using washing process

Publications (2)

Publication Number Publication Date
KR20220071432A KR20220071432A (en) 2022-05-31
KR102516400B1 true KR102516400B1 (en) 2023-04-03

Family

ID=81780450

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200158537A KR102516400B1 (en) 2020-11-24 2020-11-24 Encreasing density of Ni-Co-Mn composite precursor using washing process

Country Status (1)

Country Link
KR (1) KR102516400B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150076305A (en) 2013-12-26 2015-07-07 주식회사 포스코 Apparatus for cleaning of positive active material precursor and method of cleaning of compound
KR101547550B1 (en) 2014-02-07 2015-08-26 주식회사 제이오 Co-precipitation reactor comprising Couette-Taylor vortex reactor performing reaction, washing, filtration and drying by one-step process
WO2018155745A1 (en) * 2017-02-27 2018-08-30 주식회사 이엔드디 Method for applying heteroatom coat to nickel-cobalt-manganese composite precursor
KR102166089B1 (en) * 2018-12-18 2020-10-15 주식회사 이엔드디 Washing method of Ni-Co-Mn composite precursor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
KR20220071432A (en) 2022-05-31

Similar Documents

Publication Publication Date Title
Lv et al. Electric field driven de-lithiation: a strategy towards comprehensive and efficient recycling of electrode materials from spent lithium ion batteries
CN110054226B (en) Preparation method of nickel-cobalt-manganese ternary cathode material with low surface residual alkali
US20180226639A1 (en) Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
CN111937220A (en) Method for recovering active metal of lithium secondary battery
CN112117507B (en) Method for efficiently recycling and regenerating waste lithium ion battery anode material
EP2891629B1 (en) Method of producing iron oxide nanoparticles
KR101950202B1 (en) Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area
CN109860536B (en) Lithium-rich manganese-based material and preparation method and application thereof
CN110957481A (en) Porous silicon-carbon composite material and preparation method thereof
CN111048862B (en) Method for efficiently recovering lithium ion battery anode and cathode materials as supercapacitor electrode materials
CN108910965B (en) Method for preparing ternary hydroxide precursor
EP2744023A1 (en) Lithium-rich anode material, lithium battery anode, and lithium battery
CN113582254A (en) Layered positive electrode material and preparation method and application thereof
CN112591806A (en) Method for recovering and regenerating anode active material of waste lithium ion battery
KR102516400B1 (en) Encreasing density of Ni-Co-Mn composite precursor using washing process
JP2018070442A (en) Nickel composite hydroxide and method for producing the same
CN109891641A (en) For the cobalt/cobalt oxide of lithium secondary battery, preparation method, by its formed for lithium secondary battery lithium and cobalt oxides and with include lithium and cobalt oxides cathode lithium secondary battery
CN114715956A (en) Modified porous nickel-rich cathode material and preparation method thereof
CN114906884A (en) Preparation method of fluorine-niobium double-doped lithium niobate-coated ternary material
CN112349890B (en) Graphene @ yolk-eggshell silicon-carbon composite material and preparation and application thereof
CN113903915A (en) Preparation method of graphene-coated porous lead oxide-lead sulfide composite material
CN114639889B (en) Method for in-situ restoration of waste lithium battery anode material by supercritical water
CN111628165B (en) Cathode material, preparation method thereof and lithium ion battery
KR102559734B1 (en) Manufacturing method of NCM precursor using recycled materials
CN113517431B (en) Preparation method of positive electrode composite material, positive electrode composite material and secondary battery

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant