KR102470605B1 - High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same - Google Patents

High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same Download PDF

Info

Publication number
KR102470605B1
KR102470605B1 KR1020160014141A KR20160014141A KR102470605B1 KR 102470605 B1 KR102470605 B1 KR 102470605B1 KR 1020160014141 A KR1020160014141 A KR 1020160014141A KR 20160014141 A KR20160014141 A KR 20160014141A KR 102470605 B1 KR102470605 B1 KR 102470605B1
Authority
KR
South Korea
Prior art keywords
prepreg
thermoplastic
resin
laminate
solvent
Prior art date
Application number
KR1020160014141A
Other languages
Korean (ko)
Other versions
KR20170092895A (en
Inventor
박근형
정훈희
조영대
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Priority to KR1020160014141A priority Critical patent/KR102470605B1/en
Publication of KR20170092895A publication Critical patent/KR20170092895A/en
Application granted granted Critical
Publication of KR102470605B1 publication Critical patent/KR102470605B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins

Abstract

함침도, 기계적 물성이 우수하며, 고광택 외관을 가지는 열가소성 프리프레그 라미네이트 및 그 제조방법이 개시된다. 상기 열가소성 프리프레그 라미네이트의 제조방법은 (a) 시트 형태의 보강 섬유에 제1 열가소성 수지가 용매에 용해되어 있는 수지 용액을 함침시킨 후, 용매를 제거하여, 제1 열가소성 수지가 함침된 1차 코팅 프리프레그를 제조하는 단계; (b) 상기 1차 코팅 프리프레그에 제2 열가소성 수지가 용매에 용해되어 있는 수지 용액을 함침시킨 후, 용매를 제거하여, 제1 및 2 열가소성 수지가 함침되어 있으며, 수지 함량율이 35 중량% 이상인(제1 및 2 열가소성 수지의 비율은 1: 0.1 내지 1) 열가소성 프리프레그를 제조하는 단계; (c) 상기 열가소성 프리프레그의 양면에 이형 필름을 부착시키고, 가열 및 가압하여 프리프레그 라미네이트를 제조하는 단계; 및 (d) 상기 프리프레그 라미네이트를 상기 제1 및 2 열가소성 수지의 유리전이온도까지 가열한 뒤, 성형한 다음, 냉각시키는 단계를 포함한다. Disclosed are a thermoplastic prepreg laminate having excellent impregnation, mechanical properties, and high gloss appearance, and a manufacturing method thereof. The manufacturing method of the thermoplastic prepreg laminate is (a) impregnating sheet-shaped reinforcing fibers with a resin solution in which the first thermoplastic resin is dissolved in a solvent, removing the solvent, and then first coating impregnated with the first thermoplastic resin. Preparing a prepreg; (b) The first coated prepreg is impregnated with a resin solution in which the second thermoplastic resin is dissolved in a solvent, and then the solvent is removed to impregnate the first and second thermoplastic resins, and the resin content is 35% by weight Preparing a thermoplastic prepreg having a ratio of 1:0.1 to 1 or more (the ratio of the first and second thermoplastic resins is 1:0.1 to 1); (c) attaching release films to both sides of the thermoplastic prepreg, heating and pressing to prepare a prepreg laminate; and (d) heating the prepreg laminate to the glass transition temperature of the first and second thermoplastic resins, molding it, and then cooling it.

Description

수지 함량율이 높은, 고광택 열가소성 프리프레그 라미네이트 및 그 제조방법{High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same}High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same}

본 발명은 수지 함량율이 높은, 고광택 열가소성 프리프레그 라미네이트 및 그 제조방법에 관한 것으로서, 더욱 상세하게는, 함침도와 기계적 물성이 우수하며, 고광택 외관을 가지는 열가소성 프리프레그 라미네이트 및 그 제조방법에 관한 것이다.The present invention relates to a high-gloss thermoplastic prepreg laminate having a high resin content and a method for manufacturing the same, and more particularly, to a thermoplastic prepreg laminate having excellent impregnation and mechanical properties and having a high-gloss appearance, and a method for manufacturing the same. .

프리프레그(prepreg)는 "Preimpregnated Material"의 약어로서, 보강 섬유(Reinforcement)를 기지재(Matrix)에 미리 함침시킨 시트(sheet) 형태의 제품을 의미하고, 지관(paper roll)에 감겨 공급되어 복합재료 성형을 위한 중간 재료로 사용된다. 상기 프리프레그는 기지재(Matrix)에 적용되는 수지의 종류에 따라 열경화성(Thermosetting) 프리프레그와 열가소성(Thermoplastic) 프리프레그로 분류하거나, 투입되는 보강 섬유(Reinforcement)의 형태에 따라, 일방향으로 정렬된 형태의 일방향(Unidirectional) 프리프레그와 직물 형태로 제조된 직물형(woven) 프리프레그로 구분되기도 한다. 도 1은 통상의 프리프레그 구성을 설명하기 위한 도면(A) 및 프리프레그의 예를 보여주는 사진(B 및 C)이다. 도 1의 A에 도시된 바와 같이, 보강 섬유(12)와 기지재(11)가 일체화되어, 프리프레그(13)를 형성하고, 도 1의 B 및 C에 도시된 바와 같이, 프리프레그(13)는 시트(sheet)의 형태로 제조되어, 지관에 감겨 공급되고, 사용시 원하는 길이만큼 재단되어 사용된다. 상기 프리프레그(13)는 보강 섬유(12)가 일방향으로 정렬된 형태의 일방향 열경화성 수지 기반 프리프레그(도 1의 B) 및 직물형 열가소성 수지 기반 프리프레그(15, 도 1의 C)로 구분되기도 한다. Prepreg is an abbreviation of "Preimpregnated Material", and refers to a product in the form of a sheet in which reinforcement is pre-impregnated into a matrix, and is supplied wound around a paper roll to form a composite material. It is used as an intermediate material for molding materials. The prepreg is classified into thermosetting prepreg and thermoplastic prepreg according to the type of resin applied to the matrix, or aligned in one direction according to the type of reinforcing fiber to be injected. It is also divided into unidirectional prepreg and woven prepreg manufactured in the form of a fabric. 1 is a drawing (A) for explaining a typical prepreg configuration and photographs (B and C) showing examples of the prepreg. As shown in A of FIG. 1, the reinforcing fibers 12 and the base material 11 are integrated to form the prepreg 13, and as shown in B and C of FIG. 1, the prepreg 13 ) is manufactured in the form of a sheet, wound on a paper tube, and supplied, and is cut to a desired length when used. The prepreg 13 is also divided into a unidirectional thermosetting resin-based prepreg in which reinforcing fibers 12 are aligned in one direction (FIG. 1B) and a fabric-type thermoplastic resin-based prepreg (15, FIG. 1C). do.

통상의 열경화성 프리프레그와 마찬가지로, 열가소성 프리프레그에 적용되는 보강섬유로는 강도와 탄성이 높은 탄소(Carbon) 섬유, 유리(Glass) 섬유 및 아라미드(Aramid) 섬유 등을 이용한다. 한편, 프리프레그 제조에 적용되는 기지재(Matrix)에 따라 상기 두 종류의 프리프레그가 뚜렷한 양상을 보이는데, 화학적 반응이 일어나지 않은, 함침 상태의 열경화성 프리프레그의 경우, 상온에서는 끈적임(Tackiness)이 있어 보관이 까다롭고 이형지(Releasing paper, 14) 또는 이형 필름(Releasing film) 등으로 제품을 보호해야 하는 번거로움이 있는 반면, 열가소성 프리프레그의 경우, 상온에서의 수지는 고상(solid-state) 형태를 띄므로, 보관이 용이하고 이형지(Releasing paper) 또는 이형 필름(Releasing film)과 같은 부자재 사용이 필요 없다는 장점이 있다. As with conventional thermosetting prepregs, carbon fibers, glass fibers, and aramid fibers having high strength and elasticity are used as reinforcing fibers applied to thermoplastic prepregs. On the other hand, depending on the matrix applied to prepreg manufacturing, the above two types of prepregs show distinct aspects. In the case of impregnated thermosetting prepregs without chemical reactions, they are tackiness at room temperature. While storage is difficult and it is cumbersome to protect the product with release paper (14) or release film, etc., in the case of thermoplastic prepreg, resin at room temperature is in a solid-state form. Since it is sticky, it has the advantage of being easy to store and not requiring the use of subsidiary materials such as release paper or release film.

열가소성 프리프레그 제조에 적용되는 열가소성 수지로는, 폴리아마이드, 폴리스티렌, 폴리에스테르, 폴리카보네이트, 방향족 및 지방족/지환족 폴리우레탄, 방향족 및 지방족/지환족 폴리우레탄-우레아, 방향족 및 지방족/지환족 열가소성 우레아, 아크릴 수지, 아크릴계 고분자, 아크릴계 공중합체, 비닐계 공중합체, SBR(아크릴로니트릴 부타디엔 스티렌)계 공중합체, COP(Cyclic Olefin Copolymer)계 고분자(예: 폴리노보넨), 폴리비닐크로라이드(PVC), 폴리비닐아세테이트, 페녹시 수지(예: PKHH), 폴리비닐부티랄, 폴리비닐알콜, 폴리에틸렌비닐알콜로 이루어진 군으로부터 하나 또는 2가지 이상을 선택하여 단독 또는 혼합하여 사용되며, 필요에 따라 선택된 열가소성 수지용액을 제조시에 난연제, 산화방지제, 자외선 차단제 등의 첨가제를 혼합할 수 있다.Thermoplastic resins applied to the production of thermoplastic prepregs include polyamide, polystyrene, polyester, polycarbonate, aromatic and aliphatic/cycloaliphatic polyurethane, aromatic and aliphatic/cycloaliphatic polyurethane-urea, aromatic and aliphatic/cycloaliphatic thermoplastics. Urea, acrylic resin, acrylic polymer, acrylic copolymer, vinyl copolymer, SBR (acrylonitrile butadiene styrene) copolymer, COP (Cyclic Olefin Copolymer) polymer (e.g. polynorbornene), polyvinyl chloride ( PVC), polyvinyl acetate, phenoxy resin (e.g., PKHH), polyvinyl butyral, polyvinyl alcohol, and polyethylene vinyl alcohol. When preparing the selected thermoplastic resin solution, additives such as flame retardants, antioxidants, and sunscreens may be mixed.

복합재료 성형에 프리프레그가 적용되는 이유는, 보다 우수하고 정밀한 성능을 위한 것으로서, 물성 측면에서는 보강재(보강 섬유)의 함량과 배열을 정확히 제어할 수 있어, 설계한 소재의 물성을 최대한 구현할 수 있으며, 높은 섬유 체적비를 가지는 성형물을 제조할 수 있어, 성형물의 기계적 강도가 우수하고, 이로 인해 최적의 물성 구현이 가능하며, 부품의 경량화가 가능하다는 장점이 있다. 프리프레그는 주로 시트 형태를 가지므로, 취급이 쉽고, 재단 성형의 특성상 가공에 필요한 부품의 수를 줄일 수 있어, 항공/우주, 자동차, 스포츠/레저, 토목/건축 등 여러 산업 분야에서 복합재 성형을 위한 중간재로 널리 사용되고 있다.The reason why prepreg is applied to composite molding is for better and more precise performance. In terms of physical properties, it is possible to accurately control the content and arrangement of reinforcing materials (reinforcing fibers), so that the physical properties of the designed material can be maximized. , It is possible to manufacture a molded article having a high fiber volume ratio, and the molded article has excellent mechanical strength, thereby enabling optimal physical properties and reducing the weight of parts. Prepreg is mainly in the form of a sheet, so it is easy to handle, and the number of parts required for processing can be reduced due to the nature of cutting and molding, so it can be used in composite molding in various industries such as aerospace/space, automobile, sports/leisure, civil engineering/construction, etc. It is widely used as an intermediate material for

한편, 프리프레그 개발 초기에는 비교적 제조가 용이한 열경화성 프리프레그가 주로 사용되었으나, 최근에는 대량 생산에 적합하고, 재활용(recycle)이 가능한 열가소성 프리프레그의 사용이 증가하고 있다. 열경화성 프리프레그를 제조하는 방식으로는 열용융법(hot melt process)과 용액법(solution process)으로 구분할 수 있다. 도 2는 통상의 열경화성 프리프레그 생산공정을 보여주는 도면으로서, 도 2의 A는 기지재(16)를 필름 형태(17)로 가공하는 공정도이고, 도 2의 B는 보강재(18)에 필름(17)을 함침하는 공정도이다. 열용융법의 경우, 도 2의 A 및 B에 도시된 바와 같이, 기지재(16)를 필름(17)으로 제조한 후, 열용융장치(19)를 이용하여 보강재(18)의 양면을 필름(17)으로 함침시키는 방식과, 기지재를 용융시키며 곧바로 보강재에 함침시키는 방식이 있으며, 용액법은 기지재를 용매에 용해시킨 솔루션(solution)에 보강재를 담근(dipping) 후, 열(heat)을 이용하여 용매만을 제거하는 방식이다.On the other hand, in the early days of prepreg development, thermosetting prepregs, which are relatively easy to manufacture, were mainly used, but recently, the use of thermoplastic prepregs suitable for mass production and recyclable is increasing. Methods for manufacturing thermosetting prepregs can be divided into a hot melt process and a solution process. 2 is a view showing a conventional thermosetting prepreg production process, A in FIG. 2 is a process diagram of processing a base material 16 into a film form 17, and B in FIG. 2 is a film 17 on a reinforcing material 18 ) is a process diagram for impregnating. In the case of the thermal melting method, as shown in A and B of FIG. 2, after the base material 16 is made into a film 17, both sides of the reinforcing material 18 are filmed using a thermal melting device 19. There is a method of impregnating with (17) and a method of melting the base material and immediately impregnating the reinforcing material. It is a method of removing only the solvent using .

열가소성 프리프레그를 제조하는 방식은, 상술한 열경화성 프리프레그의 제조방식인 열용융법 및 용액법을 기반으로 하여 기술 개발이 이루어져 왔다. 도 3은 통상의 열가소성 프리프레그 생산방식들을 보여주는 도면으로서, 도 3의 A는 필름법(Film Process), 도 3의 B는 직접 용융법(direct melt process), 도 3의 C는 파우더 코팅법(powder coating process), 도 3의 D는 혼방사 이용법(commingled yarn process)을 나타낸다. 열가소성 프리프레그를 제조하는 방식은, 열가소성 수지 공급 방식에 따라, 필름법, 직접 용융법, 파우더 코팅법, 혼방사 이용법 및 용액법 등으로 다양하나, 경제성, 생산 용이성, 성형물의 품질 등을 감안할 때, 필름법이 가장 널리 이용되고 있다.The method of manufacturing thermoplastic prepreg has been developed based on the thermal melting method and the solution method, which are the methods of manufacturing thermosetting prepreg described above. 3 is a view showing typical thermoplastic prepreg production methods, in which A in FIG. 3 is a film process, B in FIG. 3 is a direct melt process, and C in FIG. 3 is a powder coating method ( powder coating process), and D in FIG. 3 shows a commingled yarn process. Methods for manufacturing thermoplastic prepregs vary according to the thermoplastic resin supply method, such as film method, direct melting method, powder coating method, mixed yarn method, and solution method. The film method is the most widely used.

필름법을 이용한 열가소성 프리프레그 제조 공정의 경우, 다른 공정에 비해, 많은 장점을 가지고 있으나, 열가소성 수지의 용융 점도(점성도, viscosity)가 매우 높아, 보강 섬유에 수지를 균일하게 함침시키기 어려우며, 함침도가 높은 고품위 열가소성 프리프레그를 생산하기 위해서는, 생산 온도를 과도하게 높이거나, 생산 속도를 낮게 설정해야 하는 문제가 있다. 또한, 열가소성 수지의 용융 점도를 낮추고 함침성을 향상시키기 위해, 수지 필름의 융점보다 훨씬 높은 온도로 가열하거나 생산 속도를 늦춰 고온 체류 시간을 증가시키면, 수지가 열분해(thermal decomposition)되어, 프리프레그의 물성이 저하될 우려가 있다. 이러한 함침의 어려움 때문에, 물성의 저하에도 불구하고, 용융점도가 낮은 저분자량의 수지 필름을 사용하는 경우도 있으나, 이 경우, 분자량이 큰 수지를 사용하는 경우보다, 용융 점도가 낮아 생산에는 유리하지만, 기계적 물성이 현저히 저하되는 문제점이 있다.The thermoplastic prepreg manufacturing process using the film method has many advantages compared to other processes, but the melt viscosity (viscosity) of the thermoplastic resin is very high, making it difficult to uniformly impregnate the reinforcing fiber with the resin. In order to produce a high-quality thermoplastic prepreg with high , there is a problem in that the production temperature must be excessively increased or the production rate must be set low. In addition, in order to lower the melt viscosity of the thermoplastic resin and improve the impregnability, if the high temperature residence time is increased by heating to a temperature much higher than the melting point of the resin film or by slowing down the production rate, the resin thermally decomposes, resulting in the formation of prepreg. There is a risk of deterioration of physical properties. Due to the difficulty of such impregnation, despite the deterioration of physical properties, there are cases where a low molecular weight resin film having a low melt viscosity is used. , there is a problem that the mechanical properties are significantly deteriorated.

보강 섬유(Reinforcement)에 따른, 적정한 수지 함량율(Resin content)과 높은 함침율(rate of impregnation)이 프리프레그의 제조에 중요한 요소가 되는 것은 제품의 외관과 기계적 물성이 수지 함량율(Resin content)과 함침도(Rate of impregnation)에 의존하기 때문이다. 즉, 다시 말해, 기지재(Matrix)가 보강재(Reinforcement)를 기계적인 마모로부터 보호하고, 보강재 사이에서 응력을 전달하는 역할을 하기 때문인데, 만약, 기지재(Matrix)의 함량율이 낮아서 성형 후의 부품 외관에 섬유가 드러날 경우, 고품질의 외관을 구현하기가 까다로울 뿐만 아니라, 제품 내부의 특정 부위에서 수지가 부족할 경우, 보강 섬유가 받은 응력을 이웃한 보강재로 전달하지 못하여 파단을 발생시키는 원인이 될 수 있다. 이와 유사하게, 공정상의 문제로 인해 함침율이 낮은 경우에도, 특정 부위에서 응력이 집중되어 파단이 되거나, 층간 분리를 발생시켜 기계적 물성도가 저하되기도 한다. Appropriate resin content and high rate of impregnation according to the reinforcement fibers are important factors in the manufacture of prepregs because the appearance and mechanical properties of the product depend on the resin content. This is because it depends on the rate of impregnation. In other words, this is because the matrix protects the reinforcement from mechanical wear and transmits stress between the reinforcement. If the fiber is exposed on the exterior of the part, it is not only difficult to realize a high-quality appearance, but if the resin is insufficient in a specific area inside the product, the stress received by the reinforcing fiber cannot be transferred to the neighboring reinforcing material, which can cause breakage. can Similarly, even when the impregnation rate is low due to a problem in the process, stress is concentrated in a specific area, resulting in fracture or deterioration in mechanical properties due to interlayer separation.

또한, 복합 재료를 사용하여 성형한 부품 외관의 경우, 성형 공정 중에 사용된 이형 필름(Releasing film) 또는 이형제(Releasing agent)의 미세 표면 또는 잔류 물질 등이 성형 후에도 외관에 나타나, 고품질의 외관을 구현하기가 까다롭다. 그리하여, 고객 요구 조건에 따라 도장 공정이 추가되는 경우가 많은데, 이는 상당한 시간과 비용이 추가되어, 작업성 및 생산성을 저하시키는 요인이 된다. In addition, in the case of the exterior of a part molded using a composite material, the release film or release agent used during the molding process has a fine surface or residual material that appears on the exterior even after molding, realizing a high-quality appearance. It's tricky to do. Thus, in many cases, a painting process is added according to customer requirements, which adds significant time and cost, and becomes a factor that deteriorates workability and productivity.

따라서, 수지의 높은 용융 점도(점성도, viscosity) 특성으로 인해 함침성 확보가 어려운 필름법을 대신하여, 수지 함량율이 높고, 함침성이 우수하며, 도장 공정을 도입하지 않아도 고광택 외관이 구현되는 프리프레그 제조 및 복합 소재 성형 기술 확보가 선행되어야 한다. Therefore, instead of the film method, which is difficult to secure impregnation due to the high melt viscosity (viscosity) of the resin, the prepreg has a high resin content, excellent impregnation, and a high gloss appearance without introducing a painting process. Leg manufacturing and composite material molding technology must be secured first.

따라서, 본 발명의 목적은, 보강재를 열가소성인 기지재 용액(solution)에 담그는(dipping) 용액법을 적용하여 높은 수지 함량율과 우수한 함침도를 확보하고, 도장 공정 없이 고광택 외관을 가지는 열가소성 프리프레그 라미네이트 및 그의 제조방법을 제공하는 것이다.Therefore, an object of the present invention is to secure a high resin content rate and excellent impregnation degree by applying a dipping solution method of a reinforcing material in a thermoplastic base material solution, and to obtain a thermoplastic prepreg having a high gloss appearance without a painting process. It is to provide a laminate and a manufacturing method thereof.

상기 목적을 달성하기 위하여, 본 발명은 상기 목적을 달성하기 위하여, 본 발명은, (a) 시트 형태의 보강 섬유에 제1 열가소성 수지가 용매에 용해되어 있는 수지 용액을 함침시킨 후, 용매를 제거하여, 제1 열가소성 수지가 함침된 1차 코팅 프리프레그를 제조하는 단계; (b) 상기 1차 코팅 프리프레그에 제2 열가소성 수지가 용매에 용해되어 있는 수지 용액을 함침시킨 후, 용매를 제거하여, 제1 및 2 열가소성 수지가 함침되어 있으며, 수지 함량율이 35 중량% 이상인(제1 및 2 열가소성 수지의 비율은 1: 0.1 내지 1) 열가소성 프리프레그를 제조하는 단계; (c) 상기 열가소성 프리프레그의 양면에 이형 필름을 부착시키고, 가열 및 가압하여 프리프레그 라미네이트를 제조하는 단계; 및 (d) 상기 프리프레그 라미네이트를 상기 제1 및 2 열가소성 수지의 유리전이온도까지 가열한 뒤 예열하고, 그 이상의 적정 온도에서 성형한 다음, 냉각시키는 단계를 포함하는 프리프레그 라미네이트의 제조방법을 제공한다.In order to achieve the above object, the present invention provides (a) impregnating a sheet-shaped reinforcing fiber with a resin solution in which a first thermoplastic resin is dissolved in a solvent, and then removing the solvent. To prepare a primary coating prepreg impregnated with a first thermoplastic resin; (b) The first coated prepreg is impregnated with a resin solution in which the second thermoplastic resin is dissolved in a solvent, and then the solvent is removed to impregnate the first and second thermoplastic resins, and the resin content is 35% by weight Preparing a thermoplastic prepreg having a ratio of 1:0.1 to 1 or more (the ratio of the first and second thermoplastic resins is 1:0.1 to 1); (c) attaching release films to both sides of the thermoplastic prepreg, heating and pressing to prepare a prepreg laminate; and (d) heating the prepreg laminate to the glass transition temperature of the first and second thermoplastic resins, preheating the prepreg laminate, forming the prepreg laminate at an appropriate temperature higher than that, and then cooling the prepreg laminate. do.

본 발명에 따른 열가소성 프리프레그 라미네이트 및 그 제조 방법은, 2회 반복 담금 방식의 용액법을 수행하여 높은 수지 함량율과 우수한 함침도를 확보할 수 있다. 또한, 급속 가열 및 냉각 시스템을 적용하여, 부품 성형에 수반되는 도장 공정 없이, 고품질의 고광택 외관을 구현할 수 있다.The thermoplastic prepreg laminate and the manufacturing method thereof according to the present invention can secure a high resin content rate and excellent impregnation degree by performing a two-time repeated immersion solution method. In addition, by applying a rapid heating and cooling system, a high-quality, high-gloss exterior can be realized without a painting process accompanying molding of the part.

도 1은 통상의 프리프레그 구성을 설명하기 위한 도면 및 프리프레그의 일 예를 보여주는 사진.
도 2는 통상의 열경화성 프리프레그 생산공정을 보여주는 도면.
도 3은 통상의 열가소성 프리프레그 생산방식들을 보여주는 도면.
도 4는 본 발명의 일 실시예에 따른 열가소성 프리프레그의 제조방법을 보여주는 도면.
도 5는 본 발명에 일 실시예에 따른 프리프레그의 함침 원리를 보여주는 도면.
도 6은 본 발명의 일 실시예에 따른 열가소성 프리프레그 라미네이트의 제조방법을 보여주는 도면.
도 7은 본 발명의 일 실시예에 따른 열가소성 프리프레그 라미네이트 표면 및 비교예에 따라 수분 및 잔류 가스 제거를 하지 않고 성형한 라미네이트의 표면 비교 사진.
도 8은 본 발명의 일 실시예에 따른 열가소성 프리프레그 라미네이트 및 비교예에 따른 열가소성 프리프레그 라미네이트의 단면을 보여주는 사진.
도 9는 본 발명의 일 실시예에 따른 고광택 라미네이트의 제조 방법을 보여주는 도면.
도 10은 본 발명의 일 실시예에 따른 열가소성 프리프레그 라미네이트 및 비교예에 따른 열가소성 프리프레그 라미네이트의 외관을 보여주는 사진.
1 is a drawing for explaining a typical prepreg configuration and a photograph showing an example of the prepreg.
2 is a view showing a conventional thermosetting prepreg production process.
Figure 3 is a view showing conventional thermoplastic prepreg production methods.
4 is a view showing a method for manufacturing a thermoplastic prepreg according to an embodiment of the present invention.
5 is a view showing the impregnation principle of prepreg according to an embodiment of the present invention.
6 is a view showing a manufacturing method of a thermoplastic prepreg laminate according to an embodiment of the present invention.
Figure 7 is a photograph of the surface of a thermoplastic prepreg laminate according to an embodiment of the present invention and a laminate molded without removing moisture and residual gas according to a comparative example.
8 is a photograph showing cross-sections of a thermoplastic prepreg laminate according to an embodiment of the present invention and a thermoplastic prepreg laminate according to a comparative example.
9 is a view showing a manufacturing method of a high gloss laminate according to an embodiment of the present invention.
10 is a photograph showing appearances of a thermoplastic prepreg laminate according to an embodiment of the present invention and a thermoplastic prepreg laminate according to a comparative example.

이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.

본 발명의 수지 함량율이 높은, 고광택 열가소성 프리프레그 라미네이트는 높은 수지 함량 및 함침도가 우수하고, 고광택의 외관을 가지는 것으로서, 도 4는 본 발명의 일 실시예에 따른 열가소성 프리프레그의 제조방법을 보여주는 도면이고, 도 5는 본 발명에 일 실시예에 따른 프리프레그의 함침 원리를 보여주는 도면이다. 도 4 및 5에 도시된 바와 같이, 롤(roll, 20)에서 제직(weaving)된 직물 시트 형태의 보강 섬유(21)가 풀려 나오면서, 제1 열가소성 수지가 용매에 용해되어 있는 수지 용액(solution, 22)이 채워져 있는 제1 배스(bath, 23) 내로 투입 및 통과된다. 제1 배스(23)를 통과하여 수지 용액(22)이 함침된 보강 섬유는 제1 스퀴징 롤(squeezing roll, 24)을 통과하면서, 수지 용액(22)이 함침된 보강 섬유(21)의 표면이 평탄하게 되고, 수지 용액(22)이 보강 섬유(21)의 사이 사이로 균일하게 분산된다. The high-gloss thermoplastic prepreg laminate having a high resin content ratio of the present invention has a high resin content and excellent impregnation, and has a high-gloss appearance. 5 is a view showing the impregnation principle of prepreg according to an embodiment of the present invention. As shown in FIGS. 4 and 5, as the reinforcing fibers 21 in the form of a fabric sheet woven from a roll 20 are released, a resin solution in which the first thermoplastic resin is dissolved in a solvent is released. 22) is put into and passed into a first bath 23 filled therewith. The reinforcing fibers impregnated with the resin solution 22 pass through the first bath 23 while passing through the first squeezing roll 24, the surface of the reinforcing fibers 21 impregnated with the resin solution 22 This becomes flat, and the resin solution 22 is uniformly dispersed between the reinforcing fibers 21.

다음으로, 제1 스퀴징 롤(squeezing roll, 24)을 통과하여 수지 용액이 함침된 보강 섬유는 열원(heating source, 26)이 구비되어 있는 제 1 가열 챔버(heating chamber, 25)로 투입되는데, 여기에서는 끓는점(boiling point)이 낮은 용매(솔벤트)가 제거(휘발)됨으로써, 시트 형태의 보강 섬유에는 제1 열가소성 수지만이 잔류하게 되어, 1차 코팅 프리프레그(27)가 제조된다. 만일, 보강 섬유의 단위면적 당 중량(FAW, Fiber Areal Weight)이 180 g/m2 이상인 경우, 제 2 배스(bath, 28)와 제 2 가열 챔버(31)를 적용한 더블 코팅(Double coating) 공정을 수행하여, 적정한 수지 함량을 확보한다. 다시 말하면, 도 5의 B와 같이 1차 코팅 공정에서 사용된 수지 용액(솔루션)은 보강 섬유 원단(35) 내부로 침투하게 되고, 제 1 가열 챔버(25)를 통과한 후, 용매(용제)는 휘발되고, 제 1 열가소성 수지 고형분(36)은 보강 섬유 원단 내부(예를 들면, 중앙)에서부터 위치하게 된다. Next, the reinforcing fibers impregnated with the resin solution passing through the first squeezing roll 24 are introduced into a first heating chamber 25 equipped with a heating source 26, Here, by removing (volatilizing) a solvent (solvent) having a low boiling point, only the first thermoplastic resin remains in the sheet-shaped reinforcing fibers, and the primary coating prepreg 27 is manufactured. If the fiber areal weight (FAW) of the reinforcing fiber is 180 g/m 2 or more, a double coating process using a second bath 28 and a second heating chamber 31 By performing, to ensure an appropriate resin content. In other words, as shown in B of FIG. 5, the resin solution (solution) used in the first coating process penetrates into the reinforcing fiber fabric 35, passes through the first heating chamber 25, and then the solvent (solvent) is volatilized, and the first thermoplastic resin solid content 36 is located from the inside (eg, the center) of the reinforcing fiber fabric.

1차 코팅 공정 후의 프리프레그(27)를 제2 열가소성 수지 용액(solution, 29)이 채워져 있는 제2 배스(bath, 28) 내로 투입 및 통과된다. 제2 배스(28)를 통과하여 수지 용액이 함침된 1차 코팅 프리프레그(27)는 제2 스퀴징 롤(squeezing roll, 30)을 통과하면서, 수지 용액(29)이 함침된 1차 코팅 프리프레그의 표면이 평탄하게 되고, 수지 용액(29)이 제 1 열가소성 수지 고형분(36)이 침투하지 못한 내부 영역과 외관에 균일하게 분산된다. The prepreg 27 after the first coating process is put into and passed through a second bath 28 filled with a second thermoplastic resin solution 29 . The first coating prepreg 27 impregnated with the resin solution passes through the second bath 28 while passing through the second squeezing roll 30, the first coating prepreg impregnated with the resin solution 29 The surface of the leg is flattened, and the resin solution 29 is uniformly dispersed in the exterior and inner regions where the first thermoplastic resin solids 36 have not penetrated.

다음으로, 제2 스퀴징 롤(squeezing roll, 30)을 통과하여 수지 용액(29)이 함침된 1차 코팅 프리프레그는 열원(heating source, 32)이 구비되어 있는 제2 가열 챔버(heating chamber, 31)로 투입되는데, 여기에서는 끓는점(boiling point)이 낮은 용매(솔벤트)가 제거(휘발)됨으로써, 시트 형태의 1차 코팅 프리프레그에는 제1 열가소성 수지가 침투하지 못한 내부 영역 및 외관에 잔류하게 되어, 높은 수지 함량율(35 중량% 이상, 바람직하게는 35 내지 55 중량%, 제1 및 2 열가소성 수지의 함량비는 1: 0.1 내지 1, 바람직하게는 1: 0.5 내지 0.8)을 가지는 열가소성 프리프레그(2차 코팅 프리프레그, 33)가 제조된다. 요약하자면, 열가소성 수지의 높은 점도 특성을 낮추기 위해, 용매를 다량 추가하여 용액(고형분 및 용매 함량 비는 1: 2 내지 5, 바람직하게는 1: 3 내지 4)을 제조하게 되는데, 용매가 다량 함유된 용액을 통과한 열가소성 프리프레그는 가열 챔버를 통과하면서 용매가 제거되는 만큼, 1차 코팅 후 프리프레그에 잔류하는 열가소성 수지 함량율은 15 내지 30 중량%이 측정된다. 1차 코팅 제품의 건전성을 검증하기 위한 방법으로서, 인장시험시편을 제조하여 인장시험 수행 시, 최대인장강도에 도달하기 전에 수지 함량 미달로 인한 파단 또는 층간 분리가 발생하게 된다. 한편, 코팅 공정을 3회 이상 수행할 경우, 수지 함량율이 60 내지 80 중량%까지 상승하게 되고, 이로 인해 발생한 보강재의 섬유체적비율 감소가 원인이 되어 기계적 물성이 현저히 낮아질 수 있다. 그러므로, 2차 코팅 공정을 적용하여, 수지 함량율을 35 내지 55 중량%으로 조절해야만 열가소성 프리프레그의 최대 인장강도를 확보할 수 있다.Next, the primary coating prepreg impregnated with the resin solution 29 passes through a second squeezing roll 30 and is provided with a heating source 32 in a second heating chamber. 31), where the solvent with a low boiling point is removed (volatilized), so that the primary coating prepreg in the form of a sheet remains in the inner region and exterior where the first thermoplastic resin has not penetrated. So, the thermoplastic prep has a high resin content (35% by weight or more, preferably 35 to 55% by weight, the content ratio of the first and second thermoplastic resins is 1: 0.1 to 1, preferably 1: 0.5 to 0.8) A leg (secondary coating prepreg, 33) is prepared. In summary, in order to lower the high viscosity characteristics of the thermoplastic resin, a large amount of solvent is added to prepare a solution (solid content and solvent content ratio of 1: 2 to 5, preferably 1: 3 to 4), which contains a large amount of solvent. As the solvent is removed from the thermoplastic prepreg that has passed the solution through the heating chamber, the content of the thermoplastic resin remaining in the prepreg after the first coating is measured to be 15 to 30% by weight. As a method for verifying the soundness of the primary coating product, when a tensile test specimen is prepared and a tensile test is performed, fracture or interlayer separation occurs due to insufficient resin content before the maximum tensile strength is reached. On the other hand, when the coating process is performed three or more times, the resin content ratio rises to 60 to 80% by weight, which causes a decrease in the fiber volume ratio of the reinforcing material, and thus mechanical properties may be significantly lowered. Therefore, the maximum tensile strength of the thermoplastic prepreg can be secured only when the resin content is adjusted to 35 to 55% by weight by applying the secondary coating process.

상기 제1 및 2 가열 챔버(25, 31) 내 열원(26, 32)의 온도는 사용되는 용매의 종류에 따라 달라지는 것으로서, 각 용매의 끓는점보다 약 20 내지 30 ℃ 정도 높다. 또한, 상기 보강 섬유의 이동속도는 1 내지 5 m/min, 바람직하게는 1 내지 2 m/min이다. 상기 보강 섬유의 이동속도가 너무 느리면, 제조시간이 길어질 수 있고, 너무 빠르면, 용매가 보강섬유 내에 잔류하여 있을 수 있다.The temperature of the heat sources 26 and 32 in the first and second heating chambers 25 and 31 varies depending on the type of solvent used, and is about 20 to 30 °C higher than the boiling point of each solvent. In addition, the moving speed of the reinforcing fibers is 1 to 5 m/min, preferably 1 to 2 m/min. If the moving speed of the reinforcing fibers is too slow, the manufacturing time may be long, and if it is too fast, the solvent may remain in the reinforcing fibers.

상기 제 1 열가소성 수지(36)와 제 2 열가소성 수지(37)는 동일 또는 이종 수지 모두 적용 가능하며, 후술되는 공정인, 라미네이트 제조 공정 중에 함침성 확보가 가능하므로, 프리프레그 제조 단계에서는 함침성의 확보보다는 섬유와 섬유 사이에 열가소성 수지를 잔류시켜 함침 거리를 최소화하는데 목적이 있다. 한편, 이와 같은 공정 조건은 적용 설비 환경을 적절히 이용하여 변경될 수 있으며, 제조된 직물형 열가소성 프리프레그(34)의 보관 및 공급 방법도 필요에 따라 달라질 수 있다.The first thermoplastic resin 36 and the second thermoplastic resin 37 can be applied to both the same or different resins, and since impregnation can be secured during the laminate manufacturing process, which will be described later, the impregnation is secured in the prepreg manufacturing step. Rather, the purpose is to minimize the impregnation distance by remaining the thermoplastic resin between the fibers. On the other hand, such process conditions may be changed by appropriately using the environment of the applied equipment, and the storage and supply method of the fabric-type thermoplastic prepreg 34 may also be changed as needed.

상기 보강 섬유(21)로는 프리프레그의 제조에 사용되는 통상의 보강 섬유를 제한 없이 사용할 수 있으며, 예를 들면, 강도와 탄성이 높은 탄소 섬유(carbon fiber), 유리 섬유(glass fiber), 아라미드 섬유(aramid fiber), 현무 섬유, 보론 섬유(boron fiber) 및 이들의 혼합물 등을 사용할 수 있다. 또한, 상기 보강 섬유(21)는 상술한 제조 방법에 나타낸 바와 같이, 일방향으로 배열된 섬유이거나, 직물 형태의 섬유일 수 있고, 그 두께는, 보강 섬유로서 사용될 수 있는 한 특별히 한정되지 않는다. 한편, 상기 보강 섬유(21)를 공급하는 보강 섬유 공급 장치는, 직물형 또는 일방향 보강 섬유를 공급하는 통상의 공급 장치로서, 사용 조건 및 환경에 따라 달라질 수 있다.As the reinforcing fiber 21, ordinary reinforcing fibers used in the manufacture of prepregs can be used without limitation, for example, carbon fiber, glass fiber, and aramid fiber having high strength and elasticity. (aramid fiber), basalt fiber, boron fiber, and mixtures thereof may be used. In addition, as shown in the above-described manufacturing method, the reinforcing fibers 21 may be fibers arranged in one direction or fibers in the form of a fabric, and their thickness is not particularly limited as long as they can be used as reinforcing fibers. Meanwhile, the reinforcing fiber supplying device for supplying the reinforcing fibers 21 is a general supplying device for supplying fabric-type or unidirectional reinforcing fibers, and may vary depending on use conditions and environments.

본 발명에 있어서, 보강 섬유(21)에 제1 및 2 열가소성 수지를 용매에 용해되어 있는 용액의 형태로 이용하는 것은, 수지의 점도를 낮추어 제1 및 2 열가소성 수지를 보강 섬유(21) 내에 보다 용이하게 침투시키기 위함이다.In the present invention, the use of the first and second thermoplastic resins in the form of a solution dissolved in a solvent in the reinforcing fibers 21 lowers the viscosity of the resin, making it easier to place the first and second thermoplastic resins in the reinforcing fibers 21. in order to infiltrate

상기 제1 및 제2 열가소성 수지는 동종으로 이루어지거나, 수지 간 친화력(compatibility) 또는 혼용성에 의해 계면에서 물성이 저하되지 않는 이종의 수지로 이루어질 수 있는 것으로서, 통상의 다양한 열가소성 수지로 이루어질 수 있고, 바람직하게는 각각 폴리아마이드, 폴리스티렌, 폴리에스테르, 폴리카보네이트, 방향족 및 지방족/지환족 폴리우레탄, 방향족 및 지방족/지환족 폴리우레탄-우레아, 방향족 및 지방족/지환족 열가소성 우레아, 아크릴 수지, 아크릴계 고분자, 아크릴계 공중합체, 비닐계 공중합체, 스티렌 부타디엔 고무(SBR, 예를 들면, 아크릴로니트릴 부타디엔 스티렌)계 공중합체, 환형 올레핀 공중합체(Cyclic Olefin Copolymer, COP)계 고분자(예:폴리노보넨), 폴리비닐크로라이드(PVC), 폴리비닐아세테이트, 페녹시 수지(예: PKHH), 폴리비닐부티랄, 폴리비닐알콜 및 폴리에틸렌비닐알콜로 이루어진 군으로부터 하나 또는 2가지 이상을 선택하여 단독 또는 혼합하여 사용할 수 있고, 필요에 따라, 수지 용액 제조시, 통상적으로 이용되는 난연제, 난연보조제, 산화방지제, 자외선 차단제 등의 첨가제를 더욱 포함할 수 있다. The first and second thermoplastic resins may be made of the same type or of different types of resins whose physical properties are not deteriorated at the interface due to compatibility or miscibility between resins, and may be made of various conventional thermoplastic resins, Preferably polyamide, polystyrene, polyester, polycarbonate, aromatic and aliphatic / cycloaliphatic polyurethane, aromatic and aliphatic / cycloaliphatic polyurethane-urea, aromatic and aliphatic / cycloaliphatic thermoplastic urea, acrylic resin, acrylic polymer, Acrylic copolymers, vinyl copolymers, styrene butadiene rubber (SBR, for example, acrylonitrile butadiene styrene) copolymers, cyclic olefin copolymers (Cyclic Olefin Copolymer, COP) polymers (eg polynorbornene), One or two or more selected from the group consisting of polyvinyl chloride (PVC), polyvinyl acetate, phenoxy resin (eg PKHH), polyvinyl butyral, polyvinyl alcohol and polyethylene vinyl alcohol can be used alone or in combination. and, if necessary, additives such as a flame retardant, a flame retardant aid, an antioxidant, and a sunscreen that are commonly used when preparing a resin solution may be further included.

또한, 상기 제1 및 2 열가소성 수지가 용해되어 있는 용액의 용매는 적용되는 열가소성 수지에 따라 통상적으로 이용되는 용매 중에 선택될 수 있고, 한 종류의 용매를 사용할 수도 있으나, 두 종류 이상의 용매를 혼합한 혼합용매를 사용하여도 무방하며, 바람직하게는, 물, 프로필렌 글리콜 모노메틸에테르(propylene glycol monomethyl ether, PM), 톨루엔, 메틸에틸케톤, 테트라 하이드로 퓨란(tetra hydrofuran) 및 이들의 혼합물 등을 사용할 수 있고, 예를 들어, 물 20 내지 80 중량%와 프로필렌 글리콜 모노메틸에테르(propylene glycol monomethyl ether, PM), 톨루엔, 메틸에틸케톤, 테트라 하이드로 퓨란(tetra hydrofuran) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 용매 20 내지 40 중량%의 혼합 용매를 사용할 수 있다. 상기 예시된 혼합 용매의 경우, 후술되는 실시예에서와 같이, 열가소성 폴리우레탄 고형분 및 메틸에틸케톤의 함량비가 1: 2 내지 3으로 이루어진 용액의 점도를 낮추기 위해, 테트라 하이드로 퓨란(tetra hydrofuran)을 용액의 20 내지 50 중량%만큼 추가하여 적절한 점도 특성을 보이는 용액을 제조하였으며, 이는 2 종류 이상의 용매가 혼합된 용액을 적용한 사례라고 할 수 있다.In addition, the solvent of the solution in which the first and second thermoplastic resins are dissolved may be selected from commonly used solvents according to the applied thermoplastic resin, and one type of solvent may be used, but a mixture of two or more types of solvents may be used. Mixed solvents may be used, and preferably, water, propylene glycol monomethyl ether (PM), toluene, methyl ethyl ketone, tetra hydrofuran, and mixtures thereof may be used. And, for example, 20 to 80% by weight of water and propylene glycol monomethyl ether (PM), toluene, methyl ethyl ketone, tetra hydrofuran (tetra hydrofuran), and is selected from the group consisting of mixtures thereof A mixed solvent of 20 to 40% by weight of solvent may be used. In the case of the above-exemplified mixed solvent, tetra hydrofuran is added to the solution in order to lower the viscosity of the solution composed of thermoplastic polyurethane solids and methyl ethyl ketone in a content ratio of 1: 2 to 3, as in the examples described later. 20 to 50% by weight of was added to prepare a solution showing appropriate viscosity characteristics, which can be said to be a case of applying a mixed solution of two or more types of solvents.

다음으로, 상기 직물형 열가소성 프리프레그를 이용한 라미네이트의 제조 방법을 설명한다. 도 6은 본 발명의 일 실시예에 따른 열가소성 프리프레그 라미네이트의 제조방법을 보여주는 도면이다. 도 6에 도시된 바와 같이, 가열 및 가압이 동시에 가능한 유압(Hydraulic) 구동 방식의 핫 프레스(Hot Press)에 단일 또는 복수의 열가소성 프리프레그(42)를 적층하여 투입한다. 이 때, 적층된 프리프레그(42)의 상/하면에 이형 필름(41, 43)을 부착시킨 다음, 강판(steel plate, 40, 44)를 상/하 면에 위치시켜, 가열과 가압 공정을 동시에 수행한다. 여기서, 보다 균일한 압력 분포를 위해, 핫 프레스(Hot Press)의 상부 압판(Platen, 38)과 상부 강판(steel plate, 40) 사이 또는 하부 압판(Platen, 46)과 하부 강판(steel plate, 44) 사이에 내열 탄성 매트(39, 45)를 투입하여 이용할 수 있다. 상기 라미네이트를 제조하기 위한 성형 압력은 1 내지 5 MPa로 설정하고, 최고 성형 온도는 적용 열가소성 수지의 녹는점보다 20 내지 30℃ 이상으로 두는 것이 바람직하며, 5 내지 30분 동안 유지하도록 한다. 성형 후, 냉각 공정은 서냉 또는 급속 냉각 방식 등 설비 환경에 따라 다를 수 있으나, 적용되는 열가소성 수지의 종류에 따라, 장시간의 가열로 인한 열분해(thermal decomposition)가 발생할 수 있으므로, 이를 방지하기 위하여, 30 분 내지 2 시간 이내에 상온까지 냉각시키는 공정이 바람직하다. Next, a method for manufacturing a laminate using the fabric-type thermoplastic prepreg will be described. 6 is a view showing a method of manufacturing a thermoplastic prepreg laminate according to an embodiment of the present invention. As shown in FIG. 6, single or multiple thermoplastic prepregs 42 are stacked and put into a hydraulically driven hot press capable of simultaneous heating and pressurization. At this time, release films 41 and 43 are attached to the upper and lower surfaces of the laminated prepreg 42, and then steel plates 40 and 44 are placed on the upper and lower surfaces to perform heating and pressing processes. perform at the same time Here, for a more uniform pressure distribution, between the upper platen (38) and the upper steel plate (40) or the lower platen (46) and the lower steel plate (steel plate, 44) of the hot press (Hot Press) ) It can be used by inserting heat-resistant elastic mats 39 and 45 between them. The molding pressure for producing the laminate is set to 1 to 5 MPa, and the highest molding temperature is preferably set to 20 to 30 ° C. or higher than the melting point of the applied thermoplastic resin, and maintained for 5 to 30 minutes. After molding, the cooling process may vary depending on the equipment environment, such as slow cooling or rapid cooling, but depending on the type of thermoplastic resin applied, thermal decomposition due to prolonged heating may occur. To prevent this, 30 A process of cooling to room temperature within a minute to two hours is preferred.

이로써, 단일 또는 복수로 적층한 프리프레그가 단일체를 이루게 되어, 하나의 라미네이트(Laminate)가 성형된다. 이 공정에서는, 라미네이트에 전달되는 열과 압력으로 인해, 프리프레그 내부에 잔존해 있을 수 있는 용매(solvent) 또는 수분이 휘발 및 제거되며, 그 미세 공간은 열(Heat)로 인해 용융 흐름성(Melting Flow)을 가지게 된 열가소성 수지가 다시 채우게 된다. 필요에 따라, 상기 프리프레그는 가열 및 가압 공정 전에, 예열 공정을 더욱 수행할 수 있다. 예열 공정 수행 시, 용매(solvent) 또는 수분을 효과적으로 휘발 및 제거할 수 있어 건전한 라미네이트를 성형하는 데 효과적일 수 있으며, 가압 후에 라미네이트(Laminate)에 전달된 압력은 수지의 이동을 돕고, 수지가 균일하게 분포하도록 돕는 역할을 한다. 상기 예열 공정은, 적용된 용매의 종류에 따라 달라질 수 있는데, 예를 들면, 투입된 용매의 끓는점을 상회하는 100 내지 150 ℃, 바람직하게는 120 내지 140 ℃의 온도 하에서, 10 내지 30 분, 바람직하게는 15 내지 20 분 동안 예열하는 공정이다.As a result, the single or multi-layered prepregs form a single body, and one laminate is molded. In this process, due to the heat and pressure transmitted to the laminate, the solvent or moisture that may remain inside the prepreg is volatilized and removed, and the microspace has a melting flow due to heat. ) is refilled by the thermoplastic resin. If necessary, the prepreg may be further subjected to a preheating process before the heating and pressing process. During the preheating process, solvent or moisture can be effectively volatilized and removed, which can be effective in forming a sound laminate, and the pressure transmitted to the laminate after pressing helps the resin to move and makes the resin uniform It helps to spread evenly. The preheating process may vary depending on the type of solvent applied, for example, 10 to 30 minutes, preferably at a temperature of 100 to 150 ° C., preferably 120 to 140 ° C., above the boiling point of the solvent introduced. It is a process of preheating for 15 to 20 minutes.

다음으로, 열가소성 프리프레그 라미네이트를 적용한, 도장 공정 없이 고품질의 고광택 외관 확보가 가능한 성형 공정을 설명한다. 고품질의 고광택 외관을 확보하기 위해서는 다음의 두 조건을 만족시켜야 한다. 첫째, 제품 외관은 수지 함량율이 부족하여 섬유가 드러나지 않도록 표면(Outer surface)은 열가소성 수지층(layer)만으로 이루어져야 한다. 앞서 언급한 바와 같이, 이를 위해서는, 프리프레그 제조 공정에서부터 더블 코팅(Double coating) 등과 같은 작업을 거쳐 충분한 수지의 확보가 필요하다. 둘째, 냉각 속도를 초당 -1 내지 -5 ℃, 바람직하게는 -2 내지 -3 ℃ 수준으로 빠르게 하여, 결정화를 최소화시킨다. 이와 같은, 냉각(급냉) 공정은 용융된 고분자 사슬(Polymer Chain)들이 모여 배향(align)이 되기 전에 냉각이 되게 함으로써 결정화될 수 있는 시간을 주지 않는 효과로 인해 결정화도를 최소화하여 최종적으로 투명성을 유지하게 할 수 있다. Next, a molding process in which a high-quality, high-gloss appearance can be secured without a painting process using a thermoplastic prepreg laminate will be described. In order to secure a high-quality, high-gloss exterior, the following two conditions must be satisfied. First, the outer surface of the product must be made of only a thermoplastic resin layer so that fibers are not exposed due to insufficient resin content. As mentioned above, for this, it is necessary to secure sufficient resin through operations such as double coating from the prepreg manufacturing process. Second, crystallization is minimized by increasing the cooling rate to -1 to -5 °C per second, preferably -2 to -3 °C per second. Such a cooling (quick cooling) process minimizes crystallinity due to the effect of not giving time for crystallization by allowing molten polymer chains to cool before being aligned and finally maintaining transparency. can do

수지 함량율이 높은 프리프레그는 높은 기계적 물성 확보를 가능하게 할 뿐만 아니라, 외관에 풍부한 수지층(layer)로 인해, 고품질의 고광택 외관을 가지는 라미네이트 성형을 가능하게 한다. 수지 함량이 부족한 프리프레그의 경우, 핫 프레스(Hot Press)를 이용한 라미네이트 성형 단계에서부터 외관에 수지 부족 현상이 발생할 수 있으며, 수지 함량이 높은, 예를 들어 수지 함량율이 50 중량(wt.)% 인 프리프레그라 할지라도, 라미네이트를 성형할 때에는, 앞서 언급한 라미네이트 양면에 부착한 이형 필름(Releasing Film)의 미세 패턴 또는 이형제 (Releasing Agent) 잔류 성분이 라미네이트 외관에 잔존하여, 고품질의 고광택 외관 구현이 불가하다. 이를 해결하기 위해서는, 비결정성 열가소성 수지는 투명성이, 결정성 열가소성 수지는 낮은 결정화도가 확보되어야 하는데, 급속 가열 및 냉각(급속냉각) 시스템이 갖추어진 금형과 가압이 가능한 프레스 설비가 적절하다. 이러한 설비들을 '히트 앤 쿨(Heat and Cool)'시스템이라고 통칭한다. A prepreg with a high resin content not only enables high mechanical properties to be secured, but also enables laminate molding having a high-quality, high-gloss appearance due to an abundant resin layer on the exterior. In the case of a prepreg with insufficient resin content, resin deficiency may occur in the appearance from the laminate molding step using a hot press, and the resin content is high, for example, the resin content rate is 50% by weight (wt.)%. Even in prepreg, when forming a laminate, the fine pattern of the release film attached to both sides of the aforementioned laminate or residual components of the releasing agent remain on the exterior of the laminate, realizing a high-quality, high-gloss appearance this is impossible In order to solve this problem, the transparency of the amorphous thermoplastic resin and the low crystallinity of the crystalline thermoplastic resin must be secured, and a mold equipped with a rapid heating and cooling (quick cooling) system and a press facility capable of pressurization are appropriate. These facilities are collectively referred to as 'heat and cool' systems.

이에, 급속 가열 및 급냉 시스템이 구축된 금형에 라미네이트를 투입한 후, 적용 열가소성 수지의 유리 전이 온도(Glass Transition Temperature)까지 가열한 시점에서 압력을 가하면서 최고 성형 온도, 예를 들면, 140 내지 350 ℃, 바람직하게는 160 내지 320 ℃의 온도까지 승온시킨다. 최고 성형 온도 설정은, 적용된 열가소성 수지에 따라 다르게 설정될 수 있으며, 수지의 녹는점(Melting Point)보다 20 내지 30 ℃ 이상의 온도로 설정하는 것이 바람직하다. 최고 성형 온도에서 수 초간, 바람직하게는 1 내지 10 초, 더욱 바람직하게는 2 내지 5 초 동안 유지한 뒤, -1 내지 -5 ℃/sec, 바람직하게는 -2 내지 -3 ℃/sec의 냉각 속도로 급냉시킨 다음, 탈형 공정을 거치면 고품질의 고광택 외관을 가지는 열가소성 프리프레그 라미네이트를 제조할 수 있음은 물론, 3차원 형상을 가지는 금형을 이용하여 성형품을 제조할 수 있다. Therefore, after putting the laminate into a mold with a rapid heating and cooling system, the maximum molding temperature, for example, 140 to 350, while applying pressure at the time of heating to the glass transition temperature of the applied thermoplastic resin The temperature is raised to a temperature of 160 to 320 °C, preferably. The setting of the maximum molding temperature may be set differently depending on the applied thermoplastic resin, and it is preferable to set the temperature at 20 to 30 ° C. or higher than the melting point of the resin. After holding at the maximum molding temperature for several seconds, preferably 1 to 10 seconds, more preferably 2 to 5 seconds, cooling at -1 to -5 °C/sec, preferably -2 to -3 °C/sec After quenching at a high speed and then going through a demolding process, a thermoplastic prepreg laminate having a high-quality, high-gloss appearance can be manufactured, as well as a molded article can be manufactured using a mold having a three-dimensional shape.

이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시 예는 본 발명을 예시하기 위한 것으로서, 본 발명이 하기 실시 예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through specific examples. The following examples are intended to illustrate the present invention, but the present invention is not limited by the following examples.

[실시예 1 내지 3 및 비교예 1 내지 3] 수지 함량율이 높은 열가소성 프리프레그의 제조 [Examples 1 to 3 and Comparative Examples 1 to 3] Preparation of thermoplastic prepregs with high resin content

카본 섬유(TR-30S, MRC사)를 사용하여 사용두께가 0.24 mm이고, 밀도(density, counts/in2)가 12.5/13.5이고, fiber areal weight(FAW)는 204 gsm이며, 경사(warf)와 위사(weft)가 2 카운트(counts)씩 교차되어 제직된(직물 스타일: 2 X 2 TWILL) 카본 섬유 직물을 보강 섬유 시트(sheet)로 사용하였고, 배스(bath)에 투입되는 열가소성 수지 용액으로는 밀도(ρ)가 1.2 g/cm3인 용액형 열가소성 폴리우레탄(TPU(thermoplastic polyurethane), CTS)을 사용하였다. 열가소성 폴리우레탄에 사용되는 용매(솔벤트, solvent)로는 2 종류를 혼합하여 사용하였는데, 우선, 밀도가 0.8 g/cm3이고, 끓는점이 80 ℃인 메틸에틸케톤(MEK, methyl ethyl ketone, 이하 제1 솔벤트라고 한다)과 상기 열가소성 수지인 폴리우레탄 고형분과의 배합 비율을 65 : 35로 혼합한 수지 용액에, 추가로 밀도가 0.9 g/cm3이고, 끓는점이 66 ℃인 테트라하이드로퓨란(THF, tetra hydro furan, 이하 제2 솔벤트라고 한다)을, 적정 비율로 배합한 후, 배스에 투입하였다. 제 2 솔벤트를 투입하는 이유는 용액코팅(solution coating) 공정에 적합한 저 점도(약 1,000 cps) 상태로 맞추고 끓는점이 낮아서 최종 프리프레그 라미네이트의 잔존 용매함량을 낮추기 위함이며, 이는 고형분 비율이 낮아지게 하는 원인이 되므로, 목적으로 하는 수지 함량 율을 고려하여 최적 배합 비를 설정하는 작업이 필요하다. 가열 챔버(heating chamber) 내 열원(heating source)의 온도는 최고 125 ℃로 설정하였으며, 적정 온도 구배(t)를 적용하였다. 온도 구배는 사용되는 제1 솔벤트(solvent) 또는 제2 솔벤트(solvent)의 끓는 점(Boiling Point)에 따라 다르게 설정되어야 한다. 이때, 설비 주변의 온도는 상온으로 하고, 습도는 60 % 이하로 맞추는 것이 바람직하다. 상기 보강 섬유(배스에 투입되기 이전) 또는 수지 용액이 함침된 보강 섬유(배스를 통과한 후)의 이동 속도는, 제1 및 제2 솔벤트를 완전히 휘발시키기 위하여 1.5 m/min의 저속으로 설정하였으며, 스퀴징 롤(squeezing roll)의 간격을 조절하여 보강 섬유 내에 수지가 균일하게 분포되도록 하였다. 가열 챔버를 통과한 후, 냉각 롤(cooling roll)을 거쳐 권취하게 되면 상기 조건 및 환경 하에서(각 제조 예마다, 배스 내 수지 용액에 포함되는 솔벤트 및 수지의 배합 비율만 변경하였다), 상기 보강 섬유가 배스 및 가열 챔버를 통과함으로써 직물형 열가소성 프리프레그가 제조되었다. 본 실시 예에서는 더블 코팅 공정을 적용하였으며, 중량법을 적용하여 각각의 실시예에 따른 싱글 코팅과 더블 코팅 후의 수지 함량율을 하기 표 1에 나타내었다.Using carbon fiber (TR-30S, MRC), the used thickness is 0.24 mm, the density (density, counts/in 2 ) is 12.5/13.5, the fiber areal weight (FAW) is 204 gsm, and the warp A carbon fiber fabric woven by alternating 2 counts of weft and weft (fabric style: 2 X 2 TWILL) was used as a reinforcing fiber sheet, and as a thermoplastic resin solution injected into the bath. used a solution-type thermoplastic polyurethane (CTS) having a density (ρ) of 1.2 g/cm 3 . As a solvent (solvent) used in thermoplastic polyurethane, two types were mixed and used. First, methyl ethyl ketone (MEK) having a density of 0.8 g/cm 3 and a boiling point of 80 °C was used. solvent) and the thermoplastic resin, the polyurethane solid content, in a resin solution mixed at a mixing ratio of 65:35, and tetrahydrofuran (THF, tetrahydrofuran) having a density of 0.9 g/cm 3 and a boiling point of 66 °C. After mixing hydro furan (hereinafter referred to as the second solvent) in an appropriate ratio, it was introduced into the bath. The reason for introducing the second solvent is to set it to a low viscosity (about 1,000 cps) suitable for the solution coating process and to lower the residual solvent content of the final prepreg laminate due to its low boiling point, which lowers the solid content ratio. cause, it is necessary to set the optimal mixing ratio in consideration of the target resin content. The temperature of the heating source in the heating chamber was set to a maximum of 125 ° C, and an appropriate temperature gradient (t) was applied. The temperature gradient must be set differently according to the boiling point of the first solvent or the second solvent used. At this time, it is preferable to set the temperature around the facility to room temperature and set the humidity to 60% or less. The moving speed of the reinforcing fibers (before being introduced into the bath) or the reinforcing fibers impregnated with the resin solution (after passing through the bath) was set at a low speed of 1.5 m/min in order to completely volatilize the first and second solvents , The resin was uniformly distributed in the reinforcing fibers by adjusting the spacing of the squeezing rolls. After passing through the heating chamber, when wound through a cooling roll, under the above conditions and environment (for each manufacturing example, only the mixing ratio of the solvent and the resin contained in the resin solution in the bath was changed), the reinforcing fiber A fabric-like thermoplastic prepreg was produced by passing it through a bath and a heating chamber. In this embodiment, a double coating process was applied, and the resin content ratio after single coating and double coating according to each example by applying the weight method is shown in Table 1 below.

보강 섬유/수지Reinforcing Fiber/Resin 1차 코팅 후 수지 함량율
(중량%)
Resin content rate after 1st coating
(weight%)
더블 코팅 후 수지 함량율
(중량%)
Resin content rate after double coating
(weight%)
실시예 1Example 1 카본 섬유/열가소성
폴리우레탄(TPU)
Carbon Fiber/Thermoplastic
Polyurethane (TPU)
-- 38.638.6
실시예 2Example 2 -- 50.450.4 실시예 3Example 3 -- 54.754.7 비교예 1Comparative Example 1 24.824.8 -- 비교예 2Comparative Example 2 28.528.5 -- 비교예 3Comparative Example 3 30.230.2 --

통상적으로, 기술 문헌에서 권장하는, 직물(woven fabric)을 적용한 프리프레그 보강 섬유의 섬유 체적 함유율(Fiber Volume Fraction, FVF)은 0.4 내지 0.55이다. 카본 섬유의 비중은 1.8 g/cm3, 열가소성 폴리우레탄의 비중은 1.2 g/cm3 이라 할 때, 하기 수학식 1 및 2를 적용하여 보강 섬유 및 수지의 함량율을 계산하였다. 하기 수학식 1 및 2에서, Vf는 섬유체적 함유율을, Wf는 섬유중량 비율을, ρf는 보강섬유의 비중을, ρm은 기지재, 즉, 수지의 비중을 의미한다.Typically, the fiber volume fraction (FVF) of prepreg reinforcing fibers applied with woven fabric, recommended in technical literature, is 0.4 to 0.55. When the specific gravity of carbon fiber is 1.8 g/cm 3 and the specific gravity of thermoplastic polyurethane is 1.2 g/cm 3 , the following Equations 1 and 2 are applied to calculate the content ratio of reinforcing fiber and resin. In Equations 1 and 2 below, V f is the fiber volume content, W f is the fiber weight ratio, ρ f is the specific gravity of the reinforcing fibers, and ρ m is the specific gravity of the base material, that is, the resin.

[수학식 1][Equation 1]

Figure 112016012212100-pat00001
Figure 112016012212100-pat00001

[수학식 2][Equation 2]

Figure 112016012212100-pat00002
Figure 112016012212100-pat00002

직물(Woven fabric)을 적용한 프리프레그 보강 섬유의 적정 섬유 체적 함유 율이 0.4 내지 0.55임을 감안하여, 수지의 적정 함량율을 환산할 수 있는데, 그 값은 35 내지 50 중량(wt)% 임을 확인할 수 있다. 상기 표 1에 명시된 실시예 1 내지 3의 1차 코팅 후의 수지 함량율은 24.8 내지 30.2 중량(wt)%로 적정 함량율 범위에 도달하지 못한다. 따라서, 제품 외관에 수지 함량이 풍부할 뿐 만 아니라, 적정 수지 함량 조건을 만족시키기 위해서는 수지 함량율이 높은 프리프레그 제조가 요구되며, 이에 대한 방안으로서, 더블 코팅 공정을 적용하였다. Considering that the appropriate fiber volume content of the prepreg reinforcing fiber to which the woven fabric is applied is 0.4 to 0.55, the appropriate content of the resin can be converted, and it can be confirmed that the value is 35 to 50% by weight (wt) have. The resin content rate after the first coating of Examples 1 to 3 specified in Table 1 is 24.8 to 30.2 weight (wt)%, which does not reach the appropriate content rate range. Therefore, in order to satisfy the proper resin content conditions as well as the product appearance with rich resin content, prepreg manufacturing with high resin content is required. As a solution to this, a double coating process was applied.

더블 코팅 공정 적용 결과, 실시예 1 내지 3의 수지 함량율은 38.6 내지 54.5 중량(wt.)%로 적정 수지 함량율을 상회하는 값이 측정되었으며, 표 2는 더블 코팅 후의 프리프레그의 수지 함량율과 이를 적용하여 성형한 라미네이트의 수지 함량율 비교를 보여 준다. 약 1.2 내지 2.7 중량(wt)%의 수지 함량율 차이를 보이는 원인으로는, 첫째, 핫 프레스(Hot Press)의 높은 열과 압력(2 내지 4 MPa)으로 인해, 열가소성 폴리우레탄 수지가 외부로 짜내어 지게 되고(squeezed), 둘째, 프리프레그 내에 잔존해 있는 수분 또는 미량의 용매(solvent)까지 제거되기 때문이다. As a result of applying the double coating process, the resin content of Examples 1 to 3 was 38.6 to 54.5 wt.%, which exceeded the appropriate resin content. Table 2 shows the resin content of the prepreg after double coating. and a comparison of the resin content of laminates molded using the same. The reason for the difference in resin content of about 1.2 to 2.7 weight (wt)% is, first, due to the high heat and pressure (2 to 4 MPa) of the hot press, the thermoplastic polyurethane resin is squeezed out This is because it is squeezed, and secondly, moisture or trace amounts of solvent remaining in the prepreg are removed.

보강 섬유/수지Reinforcing Fiber/Resin 더블 코팅 후 수지 함량율
(중량%)
Resin content rate after double coating
(weight%)
라미네이트의 수지 함량율
(중량%)
Resin content rate of laminate
(weight%)
실시예 1Example 1 카본 섬유/
열가소성
폴리우레탄(TPU)
carbon fiber/
thermoplastic
Polyurethane (TPU)
38.638.6 37.437.4
실시예 2Example 2 50.450.4 48.848.8 실시예 3Example 3 54.754.7 52.052.0

프리프레그의 건전성을 확인하는 방법으로서, 1차 코팅 후의 프리프레그를 적층하여 성형한 라미네이트(비교예 1 내지 3)와 필름법으로 성형한 라미네이트(비교예 4)의 인장 강도를 더블 코팅 후 성형한 라미네이트의 인장 강도와 비교하였다. As a method of confirming the soundness of the prepreg, the tensile strength of the laminate (Comparative Examples 1 to 3) formed by laminating the prepreg after the first coating and the laminate formed by the film method (Comparative Example 4) was molded after double coating. The tensile strength of the laminate was compared.

[실시예 4 내지 6 및 비교예 4 내지 7] 열가소성 프리프레그 라미네이트의 제조 [Examples 4 to 6 and Comparative Examples 4 to 7] Preparation of thermoplastic prepreg laminates

라미네이트를 성형하기 위해, 30 TON 핫 프레스(PHI社, 미국)를 사용하였으며, 비교예 7에 사용된 열가소성 폴리우레탄(TPU) 필름은 ISOPLASTㄾ 300 ETPU(100 μm, TPU, Lubrizol社 제품)로 선정하였으며 실시예 2와 동등한 수지 함량율을 얻을 수 있도록 카본 파이버 직물(fabric)과 교차시켜 적층하였으며, 실시예와 동일한 카본 섬유 원단을 사용하였다. 핫 프레스의 최고 온도는 180 ℃, 압력은 2 MPa로 설정하였으며, 최고 성형 온도에서 10 분을 유지하고 서냉 시켜 9 겹(plies)의 2 ~ 2.2 mm 두께를 가지는 라미네이트를 성형하였다. 인장 강도의 시험 규격은, 복합재료의 시편 시험에 통상적으로 적용 중인 ASTM D-3039를 적용하였고, 사용된 인장 시험 장비는 UTM 8501(Instron社, 미국)이며, 시험 속도는 2.0 mm/min으로 설정하였다. 시편 종류는 실시군 3종 및 비교군 4종이며, 각 군당의 시료 수는 5개로 정하였다. 이에 대한 결과를 표 3에 정리하였고, 실시군과 비교군의 수지 함량율과 최대 인장강도 값을 나타내었다. 한편, 하기 표 3의 항목 중의 하나인 라미네이트(Laminate) 구조는 프리프레그 및 필름 형태의 열가소성 폴리우레탄 수지의 적층 패턴을 나타내는 것으로서, 비교예 7를 제외한 6종 모두, 용액법에 의해 제조된 프리프레그 9 장을 종 방향(Longitudinal)으로 적층하였으며, 실시예 4 내지 6은 더블 코팅 공정을 적용한 반면, 비교예 4 에서 6은 기존 공정인 싱글 코팅을 적용하여 제조한 프리프레그를 적층하여 성형한 라미네이트이다. 마지막으로, 비교예 7에 표기되어 있는 라미네이트(Laminate) 구조는 필름과 원단의 적층 패턴을 보여 주고 있다. 이는 섬유 함량율 및 대칭 구조를 이루기 위함이며, 라미네이트 외관에는 필름 1장을 투입하고, 원단과 원단 사이에는 필름 2장을 투입하여 총 9장의 원단과 18장의 필름을 적층하여 라미네이트를 성형하였다.To mold the laminate, a 30 TON hot press (PHI, USA) was used, and the thermoplastic polyurethane (TPU) film used in Comparative Example 7 was selected as ISOPLAST® 300 ETPU (100 μm, TPU, manufactured by Lubrizol) It was laminated by crossing with a carbon fiber fabric so as to obtain a resin content equal to that of Example 2, and the same carbon fiber fabric as in Example was used. The maximum temperature of the hot press was set to 180 °C and the pressure was set to 2 MPa, and 9 plies of 2 to 2.2 mm thick laminates were molded by maintaining the maximum molding temperature for 10 minutes and slowly cooling. As for the test standard for tensile strength, ASTM D-3039, which is commonly applied to test specimens of composite materials, was applied, the tensile test equipment used was UTM 8501 (Instron, USA), and the test speed was set at 2.0 mm/min. did Specimen types were 3 types of test groups and 4 types of control groups, and the number of samples per group was set at 5 pieces. The results are summarized in Table 3, and the resin content ratio and maximum tensile strength values of the practical group and the comparative group are shown. On the other hand, the laminate structure, which is one of the items in Table 3 below, represents the laminated pattern of the prepreg and the thermoplastic polyurethane resin in the form of a film, and all six types except for Comparative Example 7 were prepared by the solution method. Nine sheets were laminated in the longitudinal direction (Longitudinal), and Examples 4 to 6 applied a double coating process, whereas Comparative Examples 4 to 6 were laminated by laminating prepregs manufactured by applying a single coating process, which was an existing process. . Finally, the laminate structure indicated in Comparative Example 7 shows the laminated pattern of the film and the fabric. This is to achieve fiber content and a symmetrical structure. One film was put into the exterior of the laminate, and two films were put between the fabric and fabric, and a total of 9 fabrics and 18 films were laminated to form a laminate.

Sample IDSample ID Laminate 구조Laminate structure 제조 공법manufacturing method 실시예 4Example 4 제조예 1 x 9 pliesProduction Example 1 x 9 plies 더블 코팅double coated 실시예 5Example 5 제조예 2 x 9 pliesProduction Example 2 x 9 plies 더블 코팅double coated 실시예 6Example 6 제조예 3 x 9 pliesProduction Example 3 x 9 plies 더블 코팅double coated 비교예 4Comparative Example 4 제조예 1 x 9 pliesProduction Example 1 x 9 plies 싱글 코팅single coated 비교예 5Comparative Example 5 제조예 2 x 9 pliesProduction Example 2 x 9 plies 싱글 코팅single coated 비교예 6Comparative Example 6 제조예 3 x 9 pliesProduction Example 3 x 9 plies 싱글 코팅single coated 비교예 7Comparative Example 7 [F/S/F/F/...F/F/S/F][F/S/F/F/...F/F/S/F] 필름법film method

실시예 4 및 비교예 4에서는 '히트 앤 쿨'시스템의 대표적인 예인 '나다 이노베이션(NADA Innovation, 한국)'의 'E-MOLD' 금형을 적용하였다. 'E-MOLD'는 하나의 금형 내부에는 히팅 코어(Heating Core) 케이블(48)을, 또 다른 하나의 금형 내부에는 칠러(Chiller)와 연결된 급냉 코어(Cooling core) 케이블(50)을 설치시켜, 급속 가열 후 가압하여 성형을 한 다음, 금형이 접촉한 상태에서 열전도(Thermal Conduction)로 인한 급냉 공정이 가능하도록 만든 금형 시스템이다. In Example 4 and Comparative Example 4, the 'E-MOLD' mold of 'NADA Innovation (Korea)', which is a representative example of the 'heat and cool' system, was applied. 'E-MOLD' installs a heating core cable 48 inside one mold and a cooling core cable 50 connected to a chiller inside another mold, It is a mold system that enables rapid cooling by thermal conduction in a state of contact between molds after molding by pressurizing after rapid heating.

Sample IDSample ID 적용 프리프레그의 수지 함량율(중량%)Resin content rate (% by weight) of applied prepreg 라미네이트 성형 공정Laminate Forming Process 실시예 4Example 4 54.754.7 핫 프레스(Hot Press) → E-MOLDHot Press → E-MOLD 비교예 4Comparative Example 4 54.754.7 핫 프레스(Hot Press)Hot Press 비교예 5Comparative Example 5 24.824.8 핫 프레스(Hot Press) → E-MOLDHot Press → E-MOLD 비교예 6Comparative Example 6 24.824.8 핫 프레스(Hot Press)Hot Press

상기 표 4는 고품질의 고광택 외관 구현을 위해, 'E-MOLD'금형을 적용한 실시예를 보여 준다. 외관 비교를 위해, 비교예 4는 동일한 수지 함량율을 가지는 프리프레그를 사용하여 일반 핫 프레스(Hot Press)로 성형한 라미네이트이며, 비교 예 5는 수지 함량율이 상대적으로 부족한 프리프레그를 적용한 라미네이트로 'E-MOLD'금형으로 적용 하였으며, 비교예 6는 비교예 5와 동일한 소재를 적용하였으나, 일반 핫 프레스(Hot Press) 공정만을 적용한 예이다. 도 9는 E-MOLD'금형을 이용한 고광택 라미네이트(52) 제조 공정을 보여 주고 있다.'E-MOLD' 적용 시, 성형 전의 라미네이트 내부에 존재할 수 있는 수분이나 잔류 가스 등은 표면 불량을 발생시키는 원인이 될 수 있기 때문에, 도 9-B와 같이, 가압 전, 히팅 코어(Heating Core) 케이블(48)로 인해 가열된 몰드 면(49)과 라미네이트(47) 간의 거리를 1 내지 2 mm 두고 약 1 분간 예열하여 수분과 잔류 가스를 외부로 빼 내는 공정을 추가하였다. 예열 공정 후, 도 9-C와 같이 가압을 하고 1 분 이내로 압력을 유지하는데, 이 공정 중에 급냉 코어(Cooling core) 케이블(50)이 작동하지 않은 금형(51)은 열전도(Thermal Conduction)으로 인해, 가열된다. 라미네이트에 가열 및 가압 공정 완료 후, 칠러(Chiller)를 가동하면, 칠러(Chiller)와 연결된 급냉 코어(Cooling core) 케이블은 두 개의 금형(49, 51)을 초당 -2 내지 -3 ℃ 수준으로 급냉시켜, 고광택 라미네이트(52)를 제조할 수 있게 된다.Table 4 above shows an embodiment in which an 'E-MOLD' mold is applied to realize a high-quality, high-gloss appearance. For comparison of appearance, Comparative Example 4 is a laminate formed by a general hot press using prepregs having the same resin content, and Comparative Example 5 is a laminate using a prepreg having a relatively poor resin content. It was applied as an 'E-MOLD' mold, and Comparative Example 6 applied the same material as Comparative Example 5, but only a general hot press process was applied. Figure 9 shows the manufacturing process of the high-gloss laminate 52 using the 'E-MOLD' mold. When 'E-MOLD' is applied, moisture or residual gas that may exist inside the laminate before molding is a cause of surface defects. Since it can be, as shown in FIG. 9-B, before pressing, the distance between the heated mold surface 49 and the laminate 47 due to the heating core cable 48 is 1 to 2 mm and about 1 A step of preheating for a minute to remove moisture and residual gas to the outside was added. After the preheating process, pressurization is applied and the pressure is maintained within 1 minute as shown in FIG. 9-C. During this process, the mold 51 in which the cooling core cable 50 does not operate is , is heated. After completing the heating and pressing process on the laminate, when the chiller is operated, the cooling core cable connected to the chiller rapidly cools the two molds (49, 51) at -2 to -3 ° C per second. In this way, a high gloss laminate 52 can be manufactured.

[실험예 1] 열가소성 프리프레그 라미네이트의 특성 평가 [Experimental Example 1] Characteristic evaluation of thermoplastic prepreg laminate

상기 실시예 4 내지 6 및 비교예 4 내지 7에서 제조된 열가소성 프리프레그 라미네이트를 상기 실시예 1 내지 3 및 비교예 1 내지 3에 기술한 수학식 1 및 2를 이용하여 수지의 함량율(RC)과, 섬유 체적 함유율(FVF)을 측정하였으며, 최대인장강도는 복합재료의 시편 시험에 통상적으로 적용 중인 ASTM D-3039 규격에 의거하여 측정하여, 그 결과를 하기 표 5에 나타내었다.The resin content ratio (RC) of the thermoplastic prepreg laminates prepared in Examples 4 to 6 and Comparative Examples 4 to 7 was obtained by using Equations 1 and 2 described in Examples 1 to 3 and Comparative Examples 1 to 3 And, the fiber volume content (FVF) was measured, and the ultimate tensile strength was measured according to the ASTM D-3039 standard, which is commonly applied to test specimens of composite materials, and the results are shown in Table 5 below.

Sample IDSample ID RC[wt.%]RC[wt.%] Fiber Volume Fraction [vol.%]Fiber Volume Fraction [vol.%] 최대인장강도[MPa]Ultimate tensile strength [MPa] 실시 예 4Example 4 37.437.4 52.752.7 640640 실시 예 5Example 5 48.848.8 41.241.2 735735 실시 예 6Example 6 52.252.2 37.937.9 697697 비교 예 4Comparative Example 4 24.024.0 67.967.9 460460 비교 예 5Comparative Example 5 27.727.7 63.563.5 492492 비교 예 6Comparative Example 6 28.928.9 62.162.1 515515 비교 예 7Comparative Example 7 49.649.6 40.440.4 568568

상기 표 5에 나타낸 바와 같이, 실시예 4 내지 6의 최대 인장 강도 값은, 싱글 코팅 공정을 적용한(상대적으로 수지 함량율이 적은) 비교예 4 내지 6의 최대 인장 강도 값에 비해, 43 내지 60 % 향상되는 것을 알 수 있다. 체적에 비례하여 재료의 강도 및 강성 등의 특성에 영향을 나타내는 법칙인 '복합법칙(Rule of Mixture)'에 의하면, 수지 함량율이 낮을수록, 즉 섬유 체적 함유율(FVF)이 높을수록 인장 강도 값이 높아야 하나, 비교예 4 내지 6과 같이 적정 섬유 체적 함유율에 미치지 못할 경우, 라미네이트 내에 열가소성 폴리우레탄 수지가 채워지지 않은 부분, 즉 공극(Void)이 다수 발생하게 된다. 동일한 섬유 체적 함유율을 가지는 열경화성 수지 기반 라미네이트와 비교 시, 열가소성 수지의 공통적인 특성인 높은 점도로 인해 흐름성이 부족하여, 공극이 발생하는 확률이 상대적으로 높아지게 된다. 이러한 공극(Void)은 인장 하중이 주변 보강 섬유로 전달이 되지 않게 하는 역할을 하게 되어 파단이 시작되는 지점이 된다. 따라서, 열가소성 폴리우레탄을 포함하는 열가소성 수지를 적용한 프리프레그 라미네이트 내의 공극을 최소화하기 위한 방법으로는 수지 함량율이 높은 프리프레그를 제조한 후, 높은 열로 수지의 유동성을 확보하고, 높은 압력으로 라미네이트 내의 수분 또는 잔류 가스 등을 제거 또는 외부로 밀어 낸 다음, 잉여 수지가 그 공간을 채우도록 유도하는 공정 적용이 바람직하다. 도 7은 수분 또는 잔류가스가 라미네이트의 외관에 영향을 끼치는 양상을 보여 주고 있다. 도 7-A는 정상적인 공정을 적용한 실시예이며, 도 7-B는 수분 또는 잔류가스가 가열된 후, 기포가 발생하여 라미네이트의 외관에 드러나거나 또는 내부에 갇히게 된 비교예이다. 따라서, 기계적 물성 저하의 요인이 될 수 있는 수분 또는 잔류가스를 사전 건조 공정이나 적정한 예열 공정으로써 제거해야 한다.As shown in Table 5, the maximum tensile strength values of Examples 4 to 6 were 43 to 60 compared to the maximum tensile strength values of Comparative Examples 4 to 6 to which a single coating process was applied (a relatively small resin content). % improvement can be seen. According to the 'Rule of Mixture', which is a law that affects properties such as strength and stiffness in proportion to volume, the lower the resin content, that is, the higher the fiber volume content (FVF), the higher the tensile strength value Should be high, but if it does not reach the proper fiber volume content as in Comparative Examples 4 to 6, a large number of areas in the laminate that are not filled with the thermoplastic polyurethane resin, that is, voids, are generated. Compared to thermosetting resin-based laminates having the same fiber volume content, flowability is insufficient due to high viscosity, which is a common characteristic of thermoplastic resins, resulting in a relatively high probability of occurrence of voids. These voids play a role in preventing the transfer of tensile load to the surrounding reinforcing fibers, and thus become a point at which fracture starts. Therefore, as a method for minimizing the voids in the prepreg laminate to which a thermoplastic resin including thermoplastic polyurethane is applied, a prepreg having a high resin content is prepared, fluidity of the resin is secured with high heat, and high pressure is applied to the inside of the laminate. It is preferable to apply a process in which moisture or residual gas is removed or pushed out, and then surplus resin is induced to fill the space. 7 shows how moisture or residual gas affects the appearance of the laminate. 7-A is an example in which a normal process is applied, and FIG. 7-B is a comparative example in which air bubbles are generated on the exterior of the laminate or trapped inside after moisture or residual gas is heated. Therefore, moisture or residual gas, which may cause deterioration of mechanical properties, must be removed by a pre-drying process or an appropriate preheating process.

상기 표 5의 실시예 4와 실시예 5의 결과를 비교해 볼 때, 섬유 체적 함유 율(FVF)이 50 vol.% 이하일 때, 즉 수지 함량율을 35 중량(wt.)% 이상 확보하는 것이 건전한 라미네이트를 성형하기 위한 조건이라 할 수 있다. 상세하게는, 상기 표 5의 실시예 5의 결과를 참고 시, 최대 인장 강도를 보이는 수지 함량율 범위는 35 내지 55 중량(wt.)% 구간이라는 것을 예상할 수 있다. 앞서 언급한 바와 같이, 사용두께가 0.24 mm이고, 밀도(density, counts/in2)가 12.5/13.5이고, fiber areal weight(FAW)는 204 gsm인 카본 섬유 직물의 경우, 수지 함량율이 35 중량% 미만인 제품에 대해서는, 수지 부족으로 인해 함침성 확보가 되지 않음에 따라 기계적 물성 저하가 발생하였음을 확인할 수 있다. 한편, 수지 함량율이 55 중량% 이상인 제품에 대해서는 섬유 체적 비율 감소로 인해 낮은 기계적 물성을 보이는 것을 감안한다면, 수지 함량 율을 35 내지 55내지 중량% 구간에 분포시키기 위한 공정이 설정되어야 하며, 이를 위해서는 2회 코팅 공정이 바람직하다고 할 수 있다. Comparing the results of Example 4 and Example 5 in Table 5, it is sound when the fiber volume content (FVF) is 50 vol.% or less, that is, the resin content is 35 wt.% or more. It can be said that it is a condition for forming a laminate. Specifically, referring to the results of Example 5 in Table 5, it can be expected that the range of the resin content showing the maximum tensile strength is 35 to 55 wt.%. As mentioned above, in the case of a carbon fiber fabric having a used thickness of 0.24 mm, a density (density, counts/in 2 ) of 12.5/13.5, and a fiber areal weight (FAW) of 204 gsm, the resin content ratio is 35 weight For products with less than %, it can be confirmed that mechanical property degradation occurred as impregnability was not secured due to lack of resin. On the other hand, considering that products with a resin content of 55% by weight or more show low mechanical properties due to a decrease in the fiber volume ratio, a process for distributing the resin content in the range of 35 to 55% by weight should be set. For this, it can be said that a two-time coating process is preferable.

마지막으로, 상기 표 5의 비교예 7은 필름법을 적용하여 성형한 라미네이트의 최대 인장 강도 값을 보여 준다. 이 값은 동등 수지 함량율을 보이는 실시예 5와 비교 시, 실시예 5의 최대 인장 강도 값의 77% 수준이며, 원인으로는 핫 프레스(Hot Press)의 열로 인해, 열가소성 우레탄 수지가 필름 형태에서 어느 정도 유동성을 가지나 카본 파이버 원단 안으로 침투하기에는 유동성이 충분하지 않았다는 것을 예상할 수 있다. Finally, Comparative Example 7 of Table 5 shows the maximum tensile strength values of laminates molded by applying the film method. This value is 77% of the maximum tensile strength value of Example 5 compared to Example 5 showing the equivalent resin content, and the cause is due to the heat of the hot press, the thermoplastic urethane resin in the form of a film Although it has some fluidity, it can be expected that the fluidity was not sufficient to penetrate into the carbon fiber fabric.

[실험예 2] 열가소성 프리프레그 라미네이트의 인장 강도 분석 [Experimental Example 2] Tensile strength analysis of thermoplastic prepreg laminate

인장 강도 값이 차이가 나는 원인을 분석하기 위해, 단면 분석을 수행하였다. 사용 장비는 올림푸스社의 DSX500이며, 관찰 모드는 BF(Bright Field)와 DF(Dark Field)와의 병합 모드를 적용하였다. 도 8의 A는 실시예인 더블코팅을 적용한 프리프레그로 성형한 라미네이트의 단면이며, 도 8의 B는 비교예 중의 하나인 필름법을 적용한 라미네이트의 단면이다. 도 8의 A에서는 보강섬유 사이로 빈 공간(void) 없이 열가소성 폴리우레탄 수지가 채워져 있는 반면, 도 8의 B를 확대하여 관찰했을 경우, 열가소성 수지가 침투하기 어려운 영역인 경사(Warf)와 위사(Weft)가 맞닿은 위치로 필름상태에서 용융된 열가소성 폴리우레탄 수지가 침투하지 못한 것을 확인할 수 있다. 뿐만 아니라, 보강 섬유가 위치하지 않고, 열가소성 폴리우레탄 필름 2장이 겹쳐지는 영역에서도 수지가 채워지지 않은 영역이 있음을 관찰할 수 있다. 필름법에 적합하게 라미네이트의 성형시간을 길게 둔다면, 함침성은 개선되고, 위와 같은 물성 저하의 원인이 제거된다고 할 수 있으나, 실시 예와 성형 조건이 동일한 조건에서는 필름법을 적용한 비교예 4는 앞에서 언급한 함침성 부족 등의 원인으로 인해, 실시예보다 낮은 인장 강도 값을 가지게 된다. 이는 비교예 1 내지 3의 결과에서 언급한, 라미네이트 내에 열가소성 폴리우레탄 수지의 함침량이 부족한 영역, 즉 공극(void)에서 응력 집중이 발생하여 파단이 시작된 것과 유사한 현상이라 할 수 있다. In order to analyze the cause of the difference in tensile strength values, cross-sectional analysis was performed. The equipment used was the DSX500 of Olympus, and the observation mode was a merge mode with BF (Bright Field) and DF (Dark Field). 8A is a cross-section of a laminate molded from a prepreg applied with double coating, which is an example, and B in FIG. 8 is a cross-section of a laminate to which a film method, which is one of comparative examples, is applied. In FIG. 8A, the thermoplastic polyurethane resin is filled without voids between the reinforcing fibers, whereas in the case of enlarged observation of FIG. ), it can be confirmed that the thermoplastic polyurethane resin melted in the film state did not penetrate into the contact position. In addition, it can be observed that there is a region where the reinforcing fibers are not located and the resin is not filled even in the region where the two thermoplastic polyurethane films are overlapped. If the molding time of the laminate is set long enough to suit the film method, the impregnation property is improved and the above causes of deterioration in physical properties are eliminated. Due to reasons such as lack of impregnability, the tensile strength value is lower than that of the examples. This can be said to be similar to the phenomenon mentioned in the results of Comparative Examples 1 to 3, where stress concentration occurred in the region where the impregnated amount of the thermoplastic polyurethane resin was insufficient in the laminate, that is, the void, and fracture started.

[실험예 3] 열가소성 프리프레그 라미네이트의 외관 비교 [Experimental Example 3] Comparison of appearances of thermoplastic prepreg laminates

도 10은 표 4에 명시된 실시예 4(a) 및 비교예 4 내지 6(b 내지 d)의 라미네이트 외관 상태를 보여주는 사진이다. 도 10의 A는, 열가소성 폴리우레탄을 포함한 열가소성 수지를 적용하여, 고품질의 고광택 외관을 가지는 프리프레그 라미네이트 성형을 위해서는, 급속 가열 및 급냉 시스템이 갖추어진 금형이 적합함을 보여 준다. 나아가, 이러한 고품질의 고광택 외관은 고객 요구 조건에 따라 도장 작업을 거치지 않아, 높은 생산성과 원가 절감 효과를 얻을 수 있다.10 is a photograph showing the appearance of the laminates of Example 4 (a) and Comparative Examples 4 to 6 (b to d) specified in Table 4. 10A shows that a mold equipped with a rapid heating and cooling system is suitable for molding a prepreg laminate having a high-quality, high-gloss appearance by applying a thermoplastic resin including thermoplastic polyurethane. Furthermore, this high-quality, high-gloss exterior does not require painting according to customer requirements, so high productivity and cost reduction can be obtained.

Claims (9)

(a) 시트 형태의 보강 섬유에 제1 열가소성 수지가 용매에 용해되어 있는 수지 용액을 함침시킨 후, 제1 스퀴징 롤을 통과시켜 상기 제1 열가소성 수지를 상기 보강 섬유에 분산시키고 제1 가열 챔버를 통해 용매를 제거하여, 제1 열가소성 수지가 함침된 1차 코팅 프리프레그를 제조하는 단계;
(b) 상기 1차 코팅 프리프레그에 제2 열가소성 수지가 용매에 용해되어 있는 수지 용액을 함침시킨 후, 제2 스퀴징 롤을 통과시켜 상기 제2 열가소성 수지를 상기 1차 코팅 프리프레그의 내부 영역과 외관에 균일하게 분산시키고 제2 가열 챔버를 통해 용매를 제거하여, 제1 및 2 열가소성 수지가 함침되어 있으며, 상기 제1 열가소성 수지 및 상기 제2 열가소성 수지의 비율은 1:0.1 내지 1인 열가소성 프리프레그를 제조하는 단계;
(c) 상기 열가소성 프리프레그의 양면에 이형 필름을 부착시키고, 가열 및 가압하여 프리프레그 라미네이트를 제조하는 단계; 및
(d) 상기 프리프레그 라미네이트를 상기 제1 및 2 열가소성 수지의 유리전이온도까지 가열한 뒤, 성형한 다음, 냉각시키는 단계를 포함하는 프리프레그 라미네이트의 제조방법으로,
상기 열가소성 프리프레그를 제조하는 단계에서 수학식 1 및 2에 따른 수지 함량율은 38.6 내지 54.7 중량%인, 프리프레그 라미네이트의 제조방법:
(수학식 1)
Figure 112022108968202-pat00013

(수학식 2)
Figure 112022108968202-pat00014

수학식 1 및 2에서 Vf는 섬유체적 함유율을, Wf는 섬유중량 비율을, ρf는 보강섬유의 비중을, ρm은 수지의 비중을 나타낸다.
(a) After impregnating sheet-shaped reinforcing fibers with a resin solution in which a first thermoplastic resin is dissolved in a solvent, dispersing the first thermoplastic resin in the reinforcing fibers by passing them through a first squeezing roll, and then dispersing the first thermoplastic resin in a first heating chamber Preparing a primary coating prepreg impregnated with a first thermoplastic resin by removing the solvent through;
(b) After impregnating the first coated prepreg with a resin solution in which the second thermoplastic resin is dissolved in a solvent, the second thermoplastic resin is passed through a second squeezing roll to the inner region of the first coated prepreg. and uniformly dispersed in the exterior and removing the solvent through a second heating chamber, impregnated with first and second thermoplastic resins, wherein the ratio of the first thermoplastic resin and the second thermoplastic resin is 1:0.1 to 1. Preparing a prepreg;
(c) attaching release films to both sides of the thermoplastic prepreg, heating and pressing to prepare a prepreg laminate; and
(d) a prepreg laminate manufacturing method comprising the step of heating the prepreg laminate to the glass transition temperature of the first and second thermoplastic resins, molding it, and then cooling it,
In the step of preparing the thermoplastic prepreg, the resin content according to Equations 1 and 2 is 38.6 to 54.7% by weight, manufacturing method of prepreg laminate:
(Equation 1)
Figure 112022108968202-pat00013

(Equation 2)
Figure 112022108968202-pat00014

In Equations 1 and 2, Vf represents the fiber volume content, Wf represents the fiber weight ratio, ρf represents the specific gravity of the reinforcing fibers, and ρm represents the specific gravity of the resin.
제 1항에 있어서, 상기 (c) 단계의 열가소성 프리프레그는 다수의 열가소성 프리프레그가 적층된 것인, 프리프레그 라미네이트의 제조방법.The method of claim 1, wherein the thermoplastic prepreg in step (c) is a laminate of a plurality of thermoplastic prepregs. 제 1항에 있어서, 상기 (b) 단계와 (c) 단계 사이에는, 용매 및 수분을 더욱 제거하기 위하여, 열가소성 프리프레그를 100 내지 150 ℃의 온도로 10 내지 30 분 동안 예열하는 단계를 더욱 포함하는 것인, 프리프레그 라미네이트의 제조방법.The method of claim 1, further comprising preheating the thermoplastic prepreg at a temperature of 100 to 150 ° C. for 10 to 30 minutes to further remove solvent and moisture between steps (b) and (c). A method for producing a prepreg laminate, which is to do. 제 1항에 있어서, 상기 (d) 단계의 냉각은 - 1 내지 - 5 ℃/sec의 냉각 속도로 냉각시키는 것인, 프리프레그 라미네이트의 제조방법.The method of claim 1, wherein the cooling in step (d) is performed at a cooling rate of -1 to -5 °C/sec. 제 1항에 있어서, 상기 (d) 단계의 성형은 유리전이온도까지 가열한 제1 및 2 열가소성 수지에 압력을 가하고, 상기 제1 및 2 열가소성 수지의 녹는점보다 20 내지 30 ℃ 높은 온도에서 수행되는 것인, 프리프레그 라미네이트의 제조방법.The method of claim 1, wherein the molding in step (d) is performed by applying pressure to the first and second thermoplastic resins heated to the glass transition temperature, and at a temperature 20 to 30 ° C. higher than the melting point of the first and second thermoplastic resins. That is, a method for producing a prepreg laminate. 제 1항에 있어서, 상기 제1 및 2 열가소성 수지는 각각 폴리아마이드, 폴리스티렌, 폴리에스테르, 폴리카보네이트, 방향족 및 지방족/지환족 폴리우레탄, 방향족 및 지방족/지환족 폴리우레탄-우레아, 방향족 및 지방족/지환족 열가소성 우레아, 아크릴 수지, 아크릴계 고분자, 아크릴계 공중합체, 비닐계 공중합체, 스티렌 부타디엔 고무계 공중합체, 환형 올레핀 공중합체, 폴리비닐크로라이드, 폴리비닐아세테이트, 페녹시 수지, 폴리비닐부티랄, 폴리비닐알콜, 폴리에틸렌비닐알콜 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 프리프레그 라미네이트의 제조방법.The method of claim 1, wherein the first and second thermoplastic resins are respectively polyamide, polystyrene, polyester, polycarbonate, aromatic and aliphatic/cycloaliphatic polyurethane, aromatic and aliphatic/cycloaliphatic polyurethane-urea, aromatic and aliphatic/ Alicyclic thermoplastic urea, acrylic resin, acrylic polymer, acrylic copolymer, vinyl copolymer, styrene butadiene rubber copolymer, cyclic olefin copolymer, polyvinyl chloride, polyvinyl acetate, phenoxy resin, polyvinyl butyral, poly A method for producing a prepreg laminate selected from the group consisting of vinyl alcohol, polyethylene vinyl alcohol, and mixtures thereof. 제 1항에 있어서, 상기 보강 섬유는 탄소 섬유, 유리섬유, 아라미드 섬유, 현무섬유, 보론 섬유 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 프리프레그 라미네이트의 제조방법.The method of claim 1, wherein the reinforcing fibers are selected from the group consisting of carbon fibers, glass fibers, aramid fibers, basalt fibers, boron fibers, and mixtures thereof. 제1항에 따라 제조된 프리프레그 라미네이트.A prepreg laminate prepared according to claim 1 . 제1항에 따라 제조된 프리프레그 라미네이트를 3차원 형상의 금형에 투입하여 제조되는, 프리프레그 라미네이트 성형품.A prepreg laminate molded article manufactured by putting the prepreg laminate manufactured according to claim 1 into a three-dimensional mold.
KR1020160014141A 2016-02-04 2016-02-04 High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same KR102470605B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160014141A KR102470605B1 (en) 2016-02-04 2016-02-04 High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160014141A KR102470605B1 (en) 2016-02-04 2016-02-04 High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same

Publications (2)

Publication Number Publication Date
KR20170092895A KR20170092895A (en) 2017-08-14
KR102470605B1 true KR102470605B1 (en) 2022-11-23

Family

ID=60142301

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160014141A KR102470605B1 (en) 2016-02-04 2016-02-04 High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same

Country Status (1)

Country Link
KR (1) KR102470605B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990753A (en) * 2022-06-17 2022-09-02 烟台经纬智能科技有限公司 Luminescent color-changing fiber and one-step forming preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034728A (en) * 2001-07-24 2003-02-07 Asahi Schwebel Co Ltd Low dielectric constant prepreg
JP2010180343A (en) * 2009-02-06 2010-08-19 Sumitomo Bakelite Co Ltd Prepreg, method for producing prepreg, and laminated sheet
JP2013103481A (en) * 2011-11-16 2013-05-30 Teijin Ltd Method for producing composite material molded article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150081561A (en) * 2014-01-06 2015-07-15 에스케이케미칼주식회사 Thermoplastic prepreg laminate and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034728A (en) * 2001-07-24 2003-02-07 Asahi Schwebel Co Ltd Low dielectric constant prepreg
JP2010180343A (en) * 2009-02-06 2010-08-19 Sumitomo Bakelite Co Ltd Prepreg, method for producing prepreg, and laminated sheet
JP2013103481A (en) * 2011-11-16 2013-05-30 Teijin Ltd Method for producing composite material molded article

Also Published As

Publication number Publication date
KR20170092895A (en) 2017-08-14

Similar Documents

Publication Publication Date Title
US9550330B2 (en) Thermoplastic composites and methods of making and using same
EP1085968B1 (en) Composite articles including prepregs, preforms, laminates and sandwich moldings, and methods of making the same
AU2010259207B2 (en) Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
US9963586B2 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
EP0963286B1 (en) Improvements in or relating to moulding methods
KR102470605B1 (en) High-glossy thermoplastic prepreg laminates which have high resin contents, and method for producing the same
JP2023503032A (en) FIBER REINFORCED THERMOPLASTIC COMPOSITE SHEET AND METHOD OF MAKING SAME
US20190001593A1 (en) Fiber composites with reduced surface roughness and methods for making them
KR20150081561A (en) Thermoplastic prepreg laminate and method for producing the same
EP3585607B1 (en) Fiber composite with reduced surface roughness and method for its manufacture
KR20180079729A (en) Quasi-Isotropic Product using the fiber reinforced composite material and manufacturing method therof
NL2014282B1 (en) Consolidation Cycle.
JP6012653B2 (en) Manufacturing method of fiber reinforced plastic molding
EP1312453A2 (en) Composite articles including prepregs, preforms, laminates and sandwich moldings and methods of making the same
KR101159932B1 (en) A method of preparing thermoplastic prepreg and thermoplastic prepreg prepared by the same
AU2010298260B2 (en) Thermoplastic composites and methods of making and using same
CN116917118A (en) Anti-stab material in roll form, method and apparatus for producing same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant