KR102418802B1 - 표시장치 - Google Patents

표시장치 Download PDF

Info

Publication number
KR102418802B1
KR102418802B1 KR1020170056309A KR20170056309A KR102418802B1 KR 102418802 B1 KR102418802 B1 KR 102418802B1 KR 1020170056309 A KR1020170056309 A KR 1020170056309A KR 20170056309 A KR20170056309 A KR 20170056309A KR 102418802 B1 KR102418802 B1 KR 102418802B1
Authority
KR
South Korea
Prior art keywords
light
incident
cover substrate
display panel
polarization axis
Prior art date
Application number
KR1020170056309A
Other languages
English (en)
Other versions
KR20180122508A (ko
Inventor
이근식
추교섭
류승만
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020170056309A priority Critical patent/KR102418802B1/ko
Priority to US15/969,600 priority patent/US10395086B2/en
Priority to CN201810409961.6A priority patent/CN108877492B/zh
Publication of KR20180122508A publication Critical patent/KR20180122508A/ko
Application granted granted Critical
Publication of KR102418802B1 publication Critical patent/KR102418802B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Image Input (AREA)

Abstract

본 발명은 지문 인식 센서와 같은 이미지 센서를 내장한 평판 표시장치에 관한 것이다. 본 발명에 의한 표시장치는, 표시 패널 및 지향성 광 유닛을 포함한다. 표시 패널은, 표시 영역과 비 표시 영역이 정의되어 있다. 지향성 광 유닛은, 표시 패널을 수용하는 길이와 폭 그리고 일정한 두께를 갖고, 표시 패널의 상부 표면에 면 부착되며, 표시 영역으로 일정 방향성을 갖는 검출광을 제공한다. 상기 지향성 광 유닛은 커버 기판, 출광 소자, 입광 소자, 저 굴절층, 및 광원을 포함한다. 상기 입광 소자는 제1 편광축을 가지며, 상기 광원은 상기 제1 편광축과 평행한 제2 편광축으로 편광된 자외선을 상기 입광 소자에 제공한다.

Description

표시장치{Display Device}
본 발명은 지문 인식 센서와 같은 이미지 센서를 포함한 표시장치에 관한 것이다. 특히, 본 발명은 지향성 광을 제공하는 초박막형 기판과 광 이미지 센서를 포함하는 표시장치에 관한 것이다.
컴퓨터 기술의 발달에 따라 노트북 컴퓨터, 태블릿 피시(Tablet PC), 스마트폰(Smart Phone), 개인 휴대용 정보 단말기(Personal Digital Assistant), 현금 자동 입출금기(Automated Teller Machine), 검색 안내 시스템 등과 같은 다양한 용도의 컴퓨터 기반 시스템(Computer Based System)이 개발되어 왔다. 이들 시스템에는 통상적으로 개인 생활과 관련된 개인정보는 물론 영업정보나 영업기밀 등과 같이 비밀을 요하는 많은 데이터가 저장되어 있기 때문에, 이들 데이터를 보호하기 위해서는 보안을 강화해야 할 필요성이 있다.
이를 위해 종래부터 생체 정보를 인식할 수 있는 이미지 센서를 이용하여, 보안성을 강화하는 방법이 제안된 바 있다. 예를 들어, 손가락의 지문을 이용하여 시스템의 등록이나 인증을 수행함으로써 보안성을 강화할 수 있는 지문센서가 알려져 있다. 지문 센서는 인간의 손가락 지문을 감지하는 센서이다. 지문 센서는 광학식 지문 센서(Optical Fingerprint Sensor)와 정전용량식 지문 센서(Capacitive Fingerprint Sensor)로 크게 나누어진다.
광학식 지문 센서(Optical Fingerprint Sensor)는 내부에서 LED(Light Emitting Diode) 등의 광원을 이용하여 빛을 조사하고 지문의 융선(ridge)에 의해 반사된 빛을 CMOS(Complementary Metal Oxide Semiconductor) 이미지 센서를 통해 감지하는 원리를 이용한 것이다. 광학식 지문 센서는 LED를 이용해서 스캔을 해야 하기 때문에 스캔을 위한 부가 장비가 필요하다. 광학적 부가 장비를 구성해야 하므로, 스캔 가능한 크기를 크게 하는 데에 한계가 있다. 따라서, 표시 장치와 결합하는 등 다양한 응용에는 한계가 있다.
종래의 광학식 지문센서로는 2006년 7월 26일자로 등록된 "지문인식 센서를 구비한 영상 표시장치"란 명칭의 대한민국 등록특허 10-0608171과, 2016년 4월 21일자로 공개된 "지문 인식 소자를 포함한 표시장치"란 명칭의 대한민국 공개특허공보 10-2016-0043216이 알려져 있다.
상기 대한민국 공개공보에 기재된 광학식 지문 센서를 구비하는 표시장치는, 표시장치의 표시 영역을 터치 영역 및 지문 인식 영역으로 동시에 사용할 수 있도록 구성하고 있다. 하지만, 지문 인식을 위한 센싱용 빛이 지향성(혹은, Directivity)이 현저히 낮은 확산광을 사용한다. 따라서, 정확한 지문의 패턴을 인식하는 데에는 한계가 있다. 지향성이 높은 레이저 적외선과 같은 시준광(Collimated Light)을 사용하는 경우, 넓은 면적에 걸쳐 센싱용 빛을 조사하기 어렵기 때문에, 지문 인식 영역의 크기가 극히 한정된다. 또한, 지향성이 높은 시준광을 넓은 스캔 면적에 적용하기 위해서는, 스캔 기능을 부가하여야 하므로, 휴대용 평판 표시장치에 적용하기가 어렵다.
따라서, 지문 인식 센서를 내장하는 표시 장치에서는 주로 정전 용량식 지문센서를 적용하는 예가 많다. 하지만, 정전 용량식 지문 센서도 많은 문제점이 있다.
정전 용량식 지문 센서(Capacitive Fingerprint Sensor)는 지문 센서와 접촉되는 융선(Ridge)과 골(Valley) 사이에 대전되는 전기량의 차를 이용한 것이다. 종래의 정전 용량식 지문 센서로는 2013년 11월 21일자로 공개된 "정전 용량식 센서 패키징(Capacitive Sensor Packaging)"이란 명칭의 미국 공개특허 공보 US 2013/0307818가 알려져 있다.
상기 미국 공보에 기재된 정전 용량식 지문센서는 특정 푸시 버튼(Push Button)과 결합한 어셈블리 형태로 구성되어 있으며, 용량성 플레이트와 사용자의 지문(융선과 골) 사이의 정전용량을 측정하기 위한 회로가 인쇄된 실리콘 웨이퍼를 포함한다. 일반적으로 인간 지문의 융선과 골은 대략 300㎛~500㎛의 크기로 매우 미세하기 때문에, 상기 미국 공보의 정전 용량식 지문 센서는 고해상도 센서 어레이와 지문인식 처리를 위한 IC(Integrated Chip) 제작이 필요하고, 이를 위해 센서 어레이와 IC을 일체로 형성할 수 있는 실리콘 웨이퍼를 이용하고 있다.
그러나 실리콘 웨이퍼를 이용하여 고해상도의 센서 어레이와 IC를 함께 형성할 경우, 푸시 버튼과 함께 지문 센서를 결합하기 위한 어셈블리 구조가 필요하게 되므로 구성이 복잡해 질 뿐 아니라 비 표시 영역(베젤 영역)이 증가하는 문제점이 있었다. 또한, 푸시 버튼(예를 들면, 스마트폰의 홈 키)과 지문센서가 중첩되게 형성되므로, 그 두께가 증가할 뿐 아니라 지문 센싱 영역이 푸시 버튼의 크기에 좌우되는 문제점이 있었다.
이러한 문제점을 해결하기 위해 터치 센서 스크린의 영역을 지문식별 영역으로 이용하는 기술 등이 개발된 바 있다. 이러한 기술로서는 "지문식별용 용량성 터치 센서(capacitive touch sensor for identifying a fingerprint)"란 명칭으로 2013년 10월 22일 등록된 미국 등록특허 제 US8,564,314호와, "지문인식 일체형 정전용량 터치 스크린"이란 명칭으로 2014년 8월 18일 등록된 대한민국 등록특허 제10-1432988호가 알려져 있다.
스마트폰과 같은 개인 휴대용 표시장치에는 표시 패널 보호를 위한 보호 필름을 추가로 부착하는 경우가 많다. 상기와 같은 기술을 개인 휴대용 표시장치의 표시 영역을 지문 인식별 영역으로 적용하는 경우, 보호 필름을 부착하면, 지문 인식 기능이 현저히 저하될 수 있다. 일반적으로, 보호 필름을 부착하더라도 터치 기능은 그대로 사용할 수 있다. 하지만, 지문 인식은 아주 미세한 지문을 인식하여야 하기 때문에, 정전 용량의 미세한 변화를 감지해야 한다. 보호 필름의 두께가 아무리 얇더라도, 미세한 지문을 인식하는 데 필요한 정전 용량의 변화를 정확하게 감지하도록 하는 데에는 심각한 장애를 유발할 수 있다.
정전 용량식 지문센서를 내장한 표시 장치에서는 표시 장치의 겉 표면에 보호 필름 혹은 강화 유리를 부착하는 경우가 많은데, 이 경우 인식 능력이 현저히 저하될 수 있다. 따라서, 정전 용량식 지문 센서의 경우, 표시 기판의 두께에 대한 문제가 발생할 수 있다. 반면에, 광학식 지문 센서를 내장한 표시 장치에서는, 산란광을 사용하기 때문에 정확한 인식 능력이 어렵다. 정확한 인식 능력을 확보하기 위해 시준광을 사용하는 경우에는, 복잡하고 부피가 큰 광학 기구가 필요하므로 휴대성이 높은 평판용 표시 장치와 결합하기 어렵다.
따라서, 대면적 감지가 가능하고, 분해능 및 정확도가 우수하며, 초박막 구조를 갖는 새로운 방식의 광학식 이미지 인식 센서가 필요하다. 특히, 평판 표시장치와 결합하여, 다양한 정보 처리 장치를 개발하기에 용이한 광학식 이미지 인식 센서에 대한 필요성이 증가하고 있다.
본 발명의 목적은 상기 문제점들을 극복하기 위해 고안된 것으로, 초박막형 표시장치를 제공하는 데 있다. 본 발명의 다른 목적은, 표시 패널의 표시 영역 전체 혹은 대부분 영역에서 이미지를 인식할 수 있는 표시장치를 제공하는 데 있다. 본 발명의 또 다른 목적은, 지향성 광을 검출광으로 대면적에 고르게 제공하는 표시장치를 제공하는 데 있다. 본 발명의 또 다른 목적은, 지향성 광을 사용하며, 광 효율을 극대화함으로써, 검출 해상도와 민감도가 우수한 초박막형, 대화면형 표시장치를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명에 의한 이미지 인식 센서 내장형 평판 표시장치는, 표시 패널 및 지향성 광 유닛을 포함한다. 표시 패널은, 표시 영역과 비 표시 영역이 정의되어 있다. 지향성 광 유닛은, 표시 패널을 수용하는 길이와 폭 그리고 일정한 두께를 갖고, 표시 패널의 상부 표면에 면 부착되며, 표시 영역으로 일정 방향성을 갖는 검출광을 제공한다.
일례로, 지향성 광 유닛은, 커버 기판, 출광 소자, 입광 소자, 저 굴절층 그리고 광원을 포함한다. 커버 기판은, 길이와 폭에 대응하는 면적을 갖는다. 출광 소자는, 커버 기판의 하부 표면에서, 표시 영역에 대응하여 배치된다. 입광 소자는, 커버 기판의 하부 표면에서, 출광 소자의 일측변에서 표시 영역 외측에 배치된다. 저 굴절층은, 출광 소자 및 입광 소자의 하부 표면에 배치되며, 표시 패널의 상부 표면에 면 부착되며, 커버 기판 및 출광 소자보다 낮은 굴절율을 갖는다. 광원은, 표시 패널의 일측변에서 입광 소자와 대향하도록 배치된다.
일례로, 광원은, 입광 소자의 표면에 정의된 입사점으로 입사광을 제공한다. 입광 소자는, 입사광을 커버 기판 내부에서 전반사하는 입사각을 갖는 진행광으로 전환하여 커버 기판 내부로 입사시키는 홀로그래피 패턴을 구비한다. 출광 소자는, 진행광의 일부를 커버 기판의 상부 표면에서는 전반사하고 저 굴절층을 투과하는 조건을 만족하는, 반사각을 갖는 검출광으로 전환하는 홀로그래피 패턴을 구비한다.
일례로, 진행광은, 폭 방향 축과 길이 방향 축으로 이루어진 수평 평면에서는 확산각을 가지며, 길이 방향 축과 두께 방향 축으로 이루어진 수직 평면에서는 시준된 상태를 유지한다. 입사각은, 출광 소자와 저 굴절 층과의 계면에서의 전반사 임계각보다 큰 값을 갖는다. 반사각은, 커버 기판과 공기층과의 계면에서의 전반사 임계각보다는 크고, 출광 소자와 저 굴절 층과의 계면에서의 전반사 임계각보다는 작은 값을 갖는다.
일례로, 입광 소자는, 일정 방향으로 배치된 제1 편광축을 가진다. 광원은, 제1 편광축과 평행한 제2 편광축으로 편광된 자외선을 제공한다.
일례로, 출광 소자는, 제1 편광축과 평행한 제3 편광축을 갖는다.
일례로, 표시 패널은, 상부 표면에 배치되며, 제1 편광축과 평행한 제4 편광축을 갖는 편광판을 더 포함한다.
본 발명은 지향성(Directional) 광을 검출광으로 제공함으로써, 고 분해능의 이미지 인식 능력을 갖는 표시장치를 제공할 수 있다. 본 발명은, 홀로그래피 기술을 이용하여 시준된 적외선 레이저를 표시 패널의 표시 영역에 대응하는 대면적으로 확장시켜 검출광을 제공함으로써 대면적 인식이 가능한 표시장치를 제공할 수 있다. 본 발명은, 기존의 평판 표시장치의 화면 위에 얇은 필름형상을 갖는 지향성 광을 검출광으로 제공함으로써, 초박형의 표시장치를 제공할 수 있다. 또한, 홀로그래피 소자의 편광축과 평행한 편광을 제공하는 광원을 사용함으로써, 광 효율을 극대화하여, 고성능의 인식 능력을 갖는 표시장치를 제공할 수 있다.
도 1은 본 발명의 제1 실시 예에 의한 표시장치에 적용하는 지향성 광 기판의 구조를 나타내는 도면.
도 2는 도 1에 의한 지향성 광 기판 내부에서의 광 경로를 나타내는 단면도.
도 3은 본 발명의 제1 실시 예에 의한 지향성 광 유닛과 광 인식 센서를 포함하는 표시장치의 구조를 나타내는 도면.
도 4는 본 발명의 제1 실시 예에 의한 광 효율 극대화 구조를 갖는 표시장치의 구조를 나타낸 사시도.
도 5는 본 발명의 제2 실시 예에 의한 표시장치에 적용하는 지향성 광 기판의 구조를 나타내는 도면.
도 6은 본 발명의 제2 실시 예에 의한 지향성 광 유닛과 광 인식 센서를 포함하는 표시장치의 구조를 나타내는 도면.
도 7은 본 발명의 제2 실시 예에 의한 광 효율 극대화 구조를 갖는 표시장치의 구조를 나타낸 사시도.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시 예들을 설명한다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 실질적으로 동일한 구성 요소들을 의미한다. 이하의 설명에서, 본 발명과 관련된 공지 기술 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다. 또한, 이하의 설명에서 사용되는 구성요소 명칭은 명세서 작성의 용이함을 고려하여 선택된 것일 수 있는 것으로서, 실제 제품의 부품 명칭과는 상이할 수 있다.
<제1 실시 예>
이하, 도 1 및 2를 참조하여, 본 발명의 제1 실시 예에 대해 설명한다. 도 1은 본 발명의 제1 실시 예에 의한 표시장치에 적용하는 지향성 광 유닛의 구조를 나타내는 도면이다. 도 1에서 상부 도면은 XZ 평면에서 바라본 측면도이고, 하부 도면은 XY 평면에서 바라본 평면도이다.
도 1을 참조하면, 본 발명의 제1 실시 예에 의한 지향성 광 유닛은, 지향성 광 기판(SLS)과 광원(LS)을 포함한다. 지향성 광 기판(SLS)은, 커버 기판(CP), 출광 소자(VHOE), 입광 소자(CHOE) 및 저 굴절층(LR)을 포함한다. 커버 기판(CP)은 대략 장방형의 사각 판상 모양으로, 길이와 폭 그리고 두께를 갖는다. 이 출원의 도면들에서 길이는 X축, 폭은 Y축 그리고 두께는 Z축에 대응하여 표시한다.
지향성 광 유닛(SLS)은 시준된(collimated) 광을 대면적으로 퍼트려 제공하는 광학 장치이다. 따라서, 광원(LS)은 시준된 빛을 제공하는 것이 바람직하다. 예를 들어, 광원(LS)은 적외선 레이저를 제공하는 레이저 다이오드로 구성하는 것이 바람직하다. 적외선 레이저는 시준성이 매우 높으므로, 본 발명에 의한 지향성 광 유닛(SLS)용 광원(LS)으로 매우 적합하다. 혹은, 확산 각도가 10도 미만으로 매우 좁은 값을 갖는, 적외선을 제공하는 적외선 다이오드로 구성할 수도 있다. 적외선 다이오드에서 방출하는 적외선의 확산 각도가 10도 미만일 경우, 시준된 적외선은 아니더라도, 시준성이 높아 본 발명에 의한 지향성 광 유닛(SLS)용 광원(LS)으로 충분히 사용할 수 있다.
커버 기판(CP)의 하부 표면에는 출광 소자(VHOE)와 입광 소자(CHOE)가 면 부착되어 있다. 출광 소자(VHOE)는 출사광(300)을 제공하는 광학 소자이다. 따라서, 출광 소자(VHOE)는 이미지를 검출 및 인식하는 영역에 대응하도록 배치된다. 또는 지향성 광 유닛(SLS)을 평판 표시장치와 결합하는 경우, 출광 소자(VHOE)는 평판 표시장치의 면적에 대응하도록 배치될 수 있다.
입광 소자(CHOE)는 광원(LS)에서 제공하는 시준된 빛을 커버 기판(CP)에 대응하는 면적으로 퍼지면서 시준성을 갖도록 전환하는 광학 소자이다. 입광 소자는(CHOE) 출광 소자(VHOE)의 외측 영역에 배치하는 것이 바람직하다. 특히, 입광 소자(CHOE)는 광원(LS)과 대향하여 배치하는 것이 바람직하다.
출광 소자(VHOE) 및 입광 소자(CHOE)는 동일 평면 상에 배치하는 것이 바람직하다. 제조 공정을 고려하면, 하나의 필름 위에 출광 소자(VHOE)와 입광 소자(CHOE)의 영역을 나누어서 형성하는 것이 바람직하다. 출광 소자(VHOE)와 입광 소자(CHOE)는 홀로그래피 패턴을 포함하는 광학 소자일 수 있다. 이 경우, 출광 소자(VHOE)의 패턴을 갖는 마스터 필름과 입광 소자(CHOE)의 패턴을 갖는 마스터 필름을 인접하여 배치한 후, 하나의 홀로그래피 기록 필름에 두 홀로그래피 패턴을 동시에 복사하여, 출광 소자(VHOE) 및 입광 소자(CHOE)를 하나의 필름으로 형성할 수 있다.
출광 소자(VHOE) 및 입광 소자(CHOE)의 하부 표면에는 저 굴절층(LR)이 적층되어 있다. 저 굴절층(LR)은, 커버 기판(CP) 및 출광 소자(VHOE)보다 낮은 굴절율을 갖는 것이 바람직하다. 예를 들어, 커버 기판(CP)은 굴절율이 1.5인 투명한 강화 유리로 만들 수 있다. 출광 소자(VHOE)와 입광 소자(CHOE)는 투명한 홀로그래피 기록 필름으로서 굴절율이 커버 기판(CP)과 동일하거나 조금 더 큰 값을 가질 수 있다. 여기서는, 편의상 출광 소자(VHOE)와 입광 소자(CHOE)의 굴절율은 커버 기판(CP)의 굴절율과 동일한 것으로 설명한다. 저 굴절층(LR)의 굴절율은 인지하고자 하는 이미지 객체의 굴절율과 비슷한 것이 바람직하다. 예를 들어, 지문 인식에 적용하고자 하는 경우, 사람의 피부가 갖는 굴절율인 1.39와 유사한 1.4 정도의 굴절율을 가질 수 있다.
입광 소자(CHOE)의 하부 공간에는 입광 소자(CHOE)와 대향하도록 광원(LS)이 배치되어 있다. 광원(LS)은 레이저와 같이 시준성이 높은 빛을 제공하는 것이 바람직하다. 특히, 휴대용 표시장치에 지문 인식 기능을 내장하는 시스템에 적용하는 경우, 사람이 인지할 수 없는 빛인 적외선 레이저를 제공하는 것이 바람직하다. 예를 들어, 광원(LS)은 적외선 레이저를 제공하는 적외선 레이저 다이오드 혹은 확산 각도가 10도 미만의 값을 갖는 적외선을 제공하는 적외선 다이오드를 포함할 수 있다.
광원(LS)에서 제공된 시준광(Collimated Light)은 입사광(100)으로서 일정한 단면적을 갖고 입광 소자(CHOE)에 정의된 입사점(IP)으로 제공된다. 입사광(100)은 입사점(IP)의 표면에 대해 법선 방향으로 입사하는 것이 바람직하다. 하지만, 이에 국한되는 것은 아니며, 필요에 따라서는 입사점(IP) 표면의 법선에 대해 일정 정도 기울어진 각도로 입사할 수도 있다.
입광 소자(CHOE)는 입사광(100)을 입사각을 갖는 진행광(200)으로 전환하여 커버 기판(CP)의 내부로 보낸다. 여기서, 입사각은 커버 기판(CP)의 내부 전반사 임계각(Internal Total Reflection Critical Angle)보다 큰 값을 갖는 것이 바람직하다. 그 결과, 진행광(200)은 커버 기판(CP)의 내부에서 전반사를 하면서, 커버 기판(CP)의 길이 방향인 X축으로 진행한다.
출광 소자(VHOE)는 진행광(200)의 일부 광량을 출사광(300)으로 전환하여 커버 기판(CP)의 상부 표면으로 굴절 시킨다. 진행광(200)의 나머지 광량은 커버 기판(CP) 내부에서 전반사되어 진행한다. 출사광(300)은 커버 기판(CP)의 상부 표면에서는 전반사되지만, 하부 표면에서는 저 굴절층(LR)을 투과하여 지향성 광 기판(SLS) 외부로 출광된다. 즉, 출사광(300)은 커버 기판(CP)의 상부 표면에서 전반사되어, 하부 표면을 투과하는 검출광(혹은, '센싱광')(400)이 된다.
진행광(200)이 입광 소자(CHOE)에서 길이 방향으로 진행하면서, 출광 소자(VHOE)에 의해 점차적으로 출사광(300)을 방출한다. 이 때, 출사광(300)의 광량은 출광 소자(VHOE)의 광 추출 효율에 의해 결정된다. 예를 들어, 출광 소자(VHOE)의 광 추출 효율이 3%라고 하면, 첫 번째로 진행광(200)이 출광 소자(VHOE)에 닿은 지점인 첫 번째 발광 영역에서는 초기 입사광(100)의 3%에 해당하는 광량이 출사광(300)으로 추출된다. 97%의 진행광(200)은 계속 전반사되어 진행한다. 그 후, 두 번째 발광 영역에서는, 97%의 3%인 초기 입사광(100) 광량의 2.91%에 해당하는 광량이 출사광(300)으로 추출된다.
이러한 방식으로 커버 기판(CP)에서 입광 소자(CHOE)와 대향하는 끝 변에 다다를 때까지 출사광(300)이 추출된다. 이와 같이 균일한 출광 효율을 갖는 경우, 진행광(200)이 진행할 수록 추출되는 광량이 서서히 줄어든다. 진행광(200)이 진행하면서, 일정한 광량을 갖는 출사광(300)을 제공하기 위해서는, 출광 소자(VHOE)의 광 추출 효율이 지수함수적으로 점차 증가하는 값을 갖도록 설계하는 것이 바람직하다.
진행광(200)을 길이 방향 축과 두께 방향 축으로 이루어진 XZ 평면(혹은, '수직 평면') 상에서 보면, 입사광(100)의 시준된 상태를 그대로 유지한다. 반면에, 폭 방향 축과 길이 방향 축으로 이루어진 XY 평면(혹은, '수평 평면')에서는 확산각(φ)을 갖는 것이 바람직하다. 이는 이미지 검출 면적을 커버 기판(CP)의 면적에 대응하도록 설정하기 위함이다. 예를 들어, 출광 소자(VHOE)는 가급적, 커버 기판(CP) 면적의 대부분에 대응하도록 배치하는 것이 바람직하다. 또한, 확산각(φ)은 입사점(IP)에서 입광 소자(CHOE)와 대향하는 커버 기판(CP)의 타측변의 두 끝점(P1, P2)을 각각 연결하는 두 선분이 이루는 내측 각도와 같거나 큰 것이 바람직하다.
입광 소자(CHOE)가 배치된 영역을 광 입사부(LIN)로 정의할 수 있다. 또한, 출광 소자(VHOE)가 배치된 영역을 광 출사부(LOT)로 정의할 수 있다. 한편, 광 출사부(LOT)는 광이 진행하기도 하는 광 진행부이기도 하다. 도 1에서 입광 소자(CHOE)가 광 입사부(LIN) 전체 영역을 덮도록 배치된 것으로 도시하였으나, 입사점(IP)의 크기보다 조금 더 큰 크기를 갖는 정도이어도 충분하다.
예를 들어, 광원(LS)에서 제공하는 시준된 빛의 단면적이 0.5mm x 0.5mm인 정원인 경우, 입광 소자(CHOE)는 커버 기판(CP)의 폭에 대응하는 길이와 3mm ~ 5mm 정도의 폭을 가질 수 있다. 이 경우, 입광 소자(CHOE)는 커버 기판(CP)의 폭 방향으로 가로 질러 배치된다. 또는 입광 소자(CHOE)는 커버 기판(CP)의 폭 중에서, 중앙부 혹은 좌측 및 우측 중 어느 쪽으로 치우친 일부 영역에만 배치될 수도 있다.
이하, 도 2를 참조하여, 광원에서 제공된 시준된(Collimated) 적외선이 지향성 광 기판(SLS) 내부에서 어떠한 경로를 거쳐, 이미지 검출에 사용하는 지향성(Directional) 적외선으로 전환되는지 설명한다. 도 2는 도 1에 의한 지향성 광 기판 내부에서의 광 경로를 나타내는 단면도이다.
광원(LS)에서 제공된 입사광(100)은 입광 소자(CHOE)의 입사점(IP)의 표면에 대해 법선 방향으로 입사한다. 입광 소자(CHOE)는 입사광(100)을 입사각(θ)을 갖도록 굴절시킨 진행광(200)으로 전환하여 커버 기판(CP)의 내부로 보낸다.
진행광(200)의 입사각(θ)은 출광 소자(VHOE)와 저 굴절층(LR)의 계면에서의 전반사 임계각(TVHOE _ LR)보다 큰 값을 갖는 것이 바람직하다. 예를 들어, 커버 기판(CP) 및 출광 소자(VHOE)의 굴절율이 1.5이고, 저 굴절층(LR)의 굴절율이 1.4일 경우, 출광 소자(VHOE)와 저 굴절층(LR)의 계면에서의 전반사 임계각(TVHOE _ LR)은 약 69도로 계산된다. 따라서, 입사각(θ)은 69도보다 큰 값을 갖는 것이 바람직하다. 예를 들어, 입사각(θ)은 70도 내지 75 중 어느 한 값을 갖도록 설정할 수 있다.
커버 기판(CP)의 상부 표면은 공기층(AIR)과 접촉하고 있으므로, 진행광(200)은 커버 기판(CP)의 상부 표면에서 역시 전반사된다. 이는, 커버 기판(CP)과 공기층(AIR)의 계면에서의 전반사 임계각(TCP_AIR)은 약 41.4도이기 때문이다. 즉, 입사각(θ)이 출광 소자(VHOE)와 저 굴절층(LR)의 계면에서의 전반사 임계각(TVHOE_LR)보다 큰 값을 가지면, 이는 항상 커버 기판(CP)과 공기층(AIR)의 계면에서의 전반사 임계각(TCP_AIR)보다 큰 값이다.
출광 소자(VHOE)는 진행광(200)의 일정 광량을 반사각(α)을 갖는 출사광(300)으로 전환시켜 커버 기판(CP)의 내부로 되돌려 보낸다. 출사광(300)은 커버 기판(CP)의 상부 표면에 이미지를 갖는 객체가 접촉하는 경우, 그 이미지의 상을 인지하기 위한 광이다. 출사광(300)은 커버 기판(CP)의 표면에 아무 물체도 없는 경우에는, 전반사되어, 지향성 광 기판(SLS)의 하면 외부에 위치한 광 센서로 보내어져야 한다. 즉, 출사광(300)은 커버 기판(CP)의 상부 표면에서 전반사된 후에는 검출광(400)으로서 지향성 광 기판(SLS)의 하부 표면을 통해 외부로 출광된다.
특히, 출사광(300)은 커버 기판(CP) 표면 내에서 여러 지점에서 출광된다. 하지만, 출사광(300)들의 출광 방향은 항상 일정하다. 이와 같이 방향이 일정한 출사광(300)을 지향성(directional) 광이라고 한다. 또한, 일정 방향성을 갖는 출사광(300)은 일정 방향성을 갖는 검출광(400)으로 제공된다. 즉, 본 발명에 의한 지향성 광 기판(SLS)은 일정 방향성을 갖는 출사광(300) 및 검출광(400)을 제공하는 광소자를 의미한다.
지향성 광 기판(SLS)의 하부 표면에 배치된 저 굴절층(LR)을 통해 외부로 출광된 검출광(400)을 인식함으로써, 커버 기판(CP)의 상부 표면에 배치된 물체의 이미지를 판별할 수 있다. 이하에서는, 도 1에서 설명한 지향성 광 유닛을 응용한 이미지 인식 장치에 대해 설명한다. 특히, 지문 인식 센서를 내장한 평판 표시장치에 대해 설명한다. 도 3은 본 발명의 제1 실시 예에 의한 지향성 광 유닛과 광 인식 센서를 포함하는 표시장치의 구조를 나타내는 도면이다.
도 3을 참조하면, 본 발명의 제1 실시 예에 의한 표시장치는, 표시 패널(DP), 지향성 광 기판(SLS) 및 광원(LS)을 포함한다. 표시 패널(DP)에는 표시 영역(AA)과 비 표시 영역(NA)이 정의되어 있다. 표시 영역(AA)은 표시 패널(DP)의 중앙부 대부분을 차지하고, 비 표시 영역(NA)은 표시 영역의 주변에 배치된다. 표시 영역(AA)에는, 표시 패널(DP)이 나타내고자 하는 영상들이 표시되는 소자들이 배치되어 있다. 비 표시 영역(NA)에는 표시 영역에 배치된 소자들을 구동하기 위한 소자들이 배치되어 있다.
특히, 표시 영역(AA)에는, 영상을 표시하기 위한 다수 개의 화소 영역들이 매트릭스 방식으로 배열되어 있다. 이들 화소 영역에는 이미지 인식을 위한 광 센서들이 하나씩 배치되어 있다. 경우에 따라서는, 여러 개의 화소 영역들을 기본 단위로 하여, 하나씩 배치되어 있을 수 있다. 예를 들어, 2x2, 3x3 혹은 4x4 화소들마다 하나씩 광 센서가 배치될 수 있다.
지향성 광 기판(SLS)은, 일정 길이, 일정 폭 및 일정 두께를 갖는 얇고 넓은 판상형이다. 지향성 광 기판(SLS)의 길이와 폭은 표시 패널(DP)을 수용하기에 충분한 크기를 갖는 것이 바람직하다. 특히, 표시 패널(DP)의 전체 크기보다 조금 더 큰 크기를 갖는 것이 바람직하다. 적어도 표시 패널(DP)의 한쪽 변으로 더 연장된 부분을 갖는 것이 바람직하다. 예를 들어, 표시 패널(DP)의 한쪽 변으로 더 연장된 부분에는 광원(LS)을 배치한다.
지향성 광 기판(SLS)은 표시 패널(DP)의 상부 표면에 면 합착하여 결합될 수 있다. 지향성 광 기판(SLS)은, 앞에서 설명했듯이, 커버 기판(CP), 입광 소자(CHOE), 출광 소자(VHOE) 및 저 굴절층(LR)을 포함한다. 저 굴절층(LR)이 표시 패널(DP)의 상부 표면과 면 합착되는 것이 바람직하다. 여기서, 표시 패널(DP)의 상부 표면은, 표시 패널(DP)에서 제공되는 영상 정보가 출광되는 면을 말한다. 즉, 사용자가 영상을 관람할 때 바라보는 표시 패널(DP)의 표면을 말한다.
앞에서 설명한 바와 같이, 지향성 광 기판(SLS)에서는 하부 표면으로 즉, 표시 패널(DP)의 상부 표면으로, 이미지 검출광(400)을 제공한다. 그러면, 지향성 광 기판(SLS)의 하부에 배치된 표시 패널(DP)의 광 센서가 검출광(400)을 인지한다. 그 결과, 지향성 광 기판(SLS)의 상부 표면에 접촉하는 물체의 이미지를 인식할 수 있다.
좀 더 구체적으로 설명하면, 지향성 광 기판(SLS)의 출광 소자(VHOE)에 의해 만들어지 출사광(300)이 커버 기판(CP)의 상부 표면에 다다른다. 특히, 커버 기판(CP) 위에 이미지 객체(IM)가 놓여진 상태에서, 객체(IM)가 직접 커버 기판(CP)과 접촉하지 않은 곳에 다다른 출사광(300)은 전반사되어 검출광(400)으로서 표시 패널(DP)로 제공된다. 한편, 커버 기판(CP) 표면에서 객체(IM)가 직접 커버 기판(CP)과 접촉하는 부분에 다다른 출사광(300)은 외부로 굴절되어 나간다.
굴절율이 공기보다 큰 값을 갖는 객체(IM)가 커버 기판(CP)에 접촉한 부위에서는, 검출광(400)이 전반사되지 않고, 객체(IM) 쪽으로 굴절된다. 즉, 이미지 객체(IM)가 커버 기판(CP)과 접촉하는 부분에서는 출사광(300)이 흡수광(500)으로 되어 표시 패널(DP)의 광 센서로 제공되는 광량이 거의 없다.
그 결과, 표시 패널(DP)에는 출사광(300) 중에서 검출광(400)만 인지하고, 흡수광(500)은 인지할 수 없게 된다. 이와 같이 표시 패널(DP)의 광 센서들은, 커버 기판(CP)의 표면에서 반사된 검출광(400)의 반사 패턴을 인지함으로써 이미지의 패턴을 재현(reproduce)할 수 있다.
지향성 광 유닛을 지문 인식 장치에 적용하는 경우, 이미지 객체(IM)는 사람의 손가락(finger)이 된다. 그리고, 지문의 융기(R) 부분은 커버 기판(CP)의 표면과 접촉하고, 골(V) 부분은 커버 기판(CP)의 표면과 접촉하지 않는다. 골(V) 부분으로 간 출사광(300)은 전반사되어 검출광(400)으로 된다. 반면에, 융기(R) 부분으로 간 출사광(300)은 굴절되어 커버 기판(CP)의 외부로 빠져나가는 흡수광(500)이 된다.
도 3의 아래에 도시된 사시도를 더 참조하여 XY 평면상에서의 이미지 센싱에 대해 설명한다. 입사광(100)은 일정한 단면적을 갖는 시준된 적외선을 포함할 수 있다. 이를 위해 광원(LS)은 적외선 레이저를 제공하는 레이저 다이오드일 수 있다.
입사광(100)은 입광 소자(CHOE)에 의해 진행광(200)으로 변환된다. 이 때, 진행광(200)은, 길이 방향 축인 X축과 폭 방향 축인 Y축으로 이루어진 수평 평면인 XY 평면에서는 확산각(φ)을 가지도록 변환된다. 또한, 길이 방향 축인 X과 두께 방향 축인 Z축으로 이루어진 수직 평면인 XZ 평면에서는 원래의 시준된 상태를 유지한다.
여기서, 확산각(φ)은, 입사점(IP)에서 입광 소자(CHOE)와 대향하는 커버 기판(CP)의 타측변의 두 끝점을 각각 연결하는 두 선분이 이루는 내측 각도와 같거나 이보다 큰 것이 바람직하다. 이 경우, 진행광(200)은 확산각(φ)을 갖는 삼각형 형상으로 퍼지면서 진행한다. 이에 따라, 출사광(300) 역시 진행광(200)과 동일한 범위에 걸쳐 제공된다. 그 결과, 이미지 인식 영역은 삼각형 내부 영역이 된다. 따라서, 지문 인식 장치로 적용하는 경우, 도 3에서 빗금 친 원형으로 표시한 부분에 인식 영역(SA)을 설정할 수 있다.
도 3과 같이, 표시 패널의 중앙부 혹은 입광 소자(CHOE)와 대향하는 상단변의 일부에 인식 영역(SA)을 설정할 경우, 인식 영역(SA)에서 출사광(300)의 광량이 최대 값을 갖도록 설계하는 것이 바람직하다. 이를 위해서는, 출광 소자(VHOE)의 광 추출 효율이 인식 영역(SA)에 대응하는 부분에서 최대 값을 갖고, 다른 부분에서는 최소 값 혹은 '0'에 가까운 값을 갖도록 위치에 따른 함수 관계로 설계할 수 있다.
이하, 도 4를 참조하여, 본 발명의 제1 실시 예에 의한 표시장치에서 검출광의 광 효율을 극대화하는 구조에 대해 추가 설명한다. 도 4는 설명의 편의를 위해 도 3에 의한 표시장치를 개략화하여 도시하였다. 도 4는 본 발명의 제1 실시 예에 의한 광 효율 극대화 구조를 갖는 표시장치의 구조를 나타낸 사시도이다.
본 발명에 의한 광학식 이미지 센서는, 초박막형 광학식 이미지 센서를 구현하기 위해, 홀로그래피 소자를 구비하는 것을 특징으로 한다. 홀로그래피 소자는 기록 조건에 의해 특정 편광 상태를 갖도록 기록할 경우 효율이 높아지는 특성이 있다. 따라서, 본 발명에 의한 표시장치에서 편광을 사용하는 것이 바람직하다.
구체적으로, 도 4를 참조하여 설명한다. 본 발명의 제1 실시 예에서, 지향성 광 기판(SLS)에 포함된 입광 소자(CHOE)는, 광 효율을 극대화하기 위해 특정 편광축을 갖는 것이 바람직하다. 예를 들어, 입광 소자(CHOE)에는, 입사광(100)과 진행광(200)이 이루는 입사 평면(Plane of Incident)에 대해 수직 방향으로 입광 소자 편광축(CX)이 설정될 수 있다.
이 경우, 광원(LS)은 입광 소자 편광축(CX)과 평행한 방향으로 편광된 자외선을 제공하는 것이 바람직하다. 예를 들어, 광원(LS)은 입사광 편광축(LX)이 자외선 레이저를 제공하는 레이저 다이오드를 포함하는 것이 바람직하다.
또한, 출광 소자(VHOE)도 홀로그래피 소자로 형성하는 경우, 출광 효율을 극대화하기 위해 특정 편광축을 갖는 것이 바람직하다. 마찬가지로, 출광 소자(VHOE)도 입광 소자 편광축(CX) 및 입사광 편광축(LX)과 동일한 방향을 갖는 출광 소자 편광축(VX)을 갖는 홀로그래피 소자인 것이 바람직하다.
추가로, 표시 패널(DP)은 유기발광 다이오드 표시 패널(OLD)을 포함할 수 있다. 유기발광 다이오드 표시 패널(OLD)의 내부에는 표시 소자와 더불어 광 센서가 배치되어 있다. 이 경우, 유기발광 다이오드 표시 패널(OLD)의 상부 표면에는 편광판(PL)이 적층될 수 있다. 편광판(PL)은 외부 광이 유기발광 다이오드 표시 패널(OLD)의 표면에서 반사되어 표시 장치에서 제공하는 정보를 사용자가 인지하는 데 장애를 주는 것을 방지하기 위한 것이다. 따라서, 이미지 인식에 있어, 검출광의 광 효율을 극대화하기 위해, 편광판(PL)의 편광축(PX)도 광원 편광축(LX), 입광 소자 편광축(CX) 및 출광 소자 편광축(VX)과 평행하도록 배치하는 것이 바람직하다.
또 다른 예로, 도면으로 도시하지 않았으나, 표시 패널(DP)은 액정 표시 패널을 포함할 수 있다. 액정 표시 패널의 내부에는 표시 소자와 더불어 광 센서가 배치되어 있다. 또한, 액정 표시 패널의 상부 표면에는 상부 편광판이, 하부 표면에는 하부 편광판이 합착되어 있다. 그리고 상부 편광판과 하부 편광판의 편광축들을 서로 직교하여 배치된다. 따라서, 제1 실시 예에 의한 광학식 이미지 센서를 내장한 표시장치에서, 광원(LS)의 편광축(LX)과 액정 표시장치의 상부 편광판의 편광축이 일치되는 것이 바람직하다.
본 발명의 제1 실시 예에 의한 이미지 인식 센서를 구성하는 지향성 광 기판(SLS) 및 광원(LS)은, 광 효율을 극대화하기 위해서는, 광원 편광축(LX)과 입광 소자 편광축(CX) 및 출광 소자 편광축(VX)들이 동일한 방향성을 갖는 것이 바람직하다. 특히, 제1 실시 예에 의한 이미지 인식 센서 내장형 표시 장치에서는, 표시 패널의 상부면에 배치된 상부 편광판(PL)은, 광 효율을 극대화하기 위해서는, 광원 편광축(LX)과 입광 소자 편광축(CX) 및 출광 소자 편광축(VX)들이 동일한 방향성을 갖는 편광축(PX)을 갖는 것이 바람직하다.
<제2 실시 예>
이하, 도 5 내지 7을 참조하여, 본 발명의 제2 실시 예에 대해 설명한다. 제2 실시 예에서는, 기본적인 구성은 제1 실시 예의 것과 매우 유사하다. 차이가 있다면, 제1 실시 예에서는 진행광을 커버 기판 전체에 걸쳐 확산시키면서 가급적 넓은 면적에 걸쳐 이미지 인식을 수행하기 위한 지향성 광 유닛을 포함하는 반면, 제2 실시 예에서는, 진행광을 지정된 이미지 인식 영역으로만 조사시키고, 여기서 반사된 빛을 검출하여 이미지 인식을 수행하기 위한 지향성 광 유닛을 포함한다.
먼저, 도 5를 참조하여, 본 발명의 제2 실시 예에 의한 지향성 광 유닛에 대해 설명한다. 도 5는 본 발명의 제2 실시 예에 의한 표시장치에 적용하는 지향성 광 유닛의 구조를 나타내는 도면이다. 도 5에서 상부 도면은 XZ 평면에서 바라본 측면도이고, 하부 도면은 위에서 XY 평면에서 바라본 평면도이다.
도 5를 참조하면, 본 발명의 제2 실시 예에 의한 지향성 광 유닛은, 지향성 광 기판(SLS)과 광원(LS)을 포함한다. 지향성 광 기판(SLS)은, 커버 기판(CP), 출광 소자(VHOE) 및 입광 소자(CHOE)를 포함한다. 커버 기판(CP)은 대략 장방형의 사각 판상 모양으로, 길이와 폭 그리고 두께를 갖는다. 도 5에서는 길이는 X축, 폭은 Y축 그리고 두께는 Z축에 대응하여 표시한다.
지향성 광 유닛은 이미지 검출을 위한 광을 설정된 센싱 영역(혹은, 검출 영역)으로 제한적으로 확산시켜 제공하고, 이미지를 복제한 빛을 제공하는 광학 장치이다. 광원(LS)은 제1 실시 예의 것과 동일한 특성을 갖는 것이 바람직하다.
커버 기판(CP)의 상부 표면에는 센싱 영역(SA)(혹은, 검출 영역)이 정의되어 있다. 지문 인식 장치인 경우, 센싱 영역(SA)은 커버 기판(CP)의 표면 중에서 사용자가 자신의 지문을 위치하기에 적절한 위치에 설정하는 것이 바람직하다. 예를 들어, 장방형 커버 기판(CP)에서 일측변으로부터 1/3 지점의 중앙부에서 사각형의 영역을 정의할 수 있다. 이 경우 센싱 영역(SA)은 4mm X 4mm 내지 10mm X 10mm의 크기를 가질 수 있다. 여기서, 4mm X 4mm는 지문 인식을 위한 최소의 크기를 고려하여 설정한 것이다. 또한, 10mm X 10mm는 일반적인 사람의 엄지 지문의 평균 크기를 고려하여 설정한 것이다.
커버 기판(CP)의 하부 표면에는 입광 소자(CHOE)와 출광 소자(VHOE)가 면 부착되어 있다. 입광 소자(CHOE)는 광원(LS)에서 제공하는 작은 원형의 단면적을 갖는 빛을 센싱 영역(SA)에 대응하여 확산 및 확장시켜 제공하는 광학 소자이다. 입광 소자는(CHOE) 이미지 인식과는 직접 관련이 없으므로, 출광 소자(VHOE)의 외측 영역에 배치하는 것이 바람직하다. 특히, 입광 소자(CHOE)는 광원(LS)과 대향하여 배치된다.
출광 소자(VHOE)는 이미지 검출에 사용된 빛을 이미지 센서로 전송하는 광학 소자이다. 출광 소자(VHOE)는 센싱 영역(SA)의 표면에 배치된 객체에서 반사된 빛들이 도달하는 영역에 배치된다. 특히, 출광 소자(VHOE)는 이미지 검출의 정확도를 높이기 위해 커버 기판(CP)의 하부 표면에 대해 수직 방향으로 검출광을 제공하는 홀로그래피 소자인 것이 바람직하다. 출광 소자(VHOE)는 지향성 광 기판(SLS)의 외부에 특히, 커버 기판(CP)의 하부 표면 외부에 배치된 이미지 센서(혹은 검출기)로 검출광을 제공하는 홀로그래피 광학 소자인 것이 바람직하다.
입광 소자(CHOE)의 하부 공간에는 입광 소자(CHOE)와 대향하도록 광원(LS)이 배치되어 있다. 특히, 광원(LS)은 입광 소자(CHOE)와 대향하는 것이 바람직하다. 광원(LS)은 레이저와 같이 시준성이 높은 빛을 제공하는 것이 바람직하다. 휴대용 표시장치에 지문 인식 기능을 내장하는 시스템에 적용하는 경우, 사람이 인지할 수 없는 빛인 적외선 레이저를 제공하는 것이 바람직하다. 예를 들어, 광원(LS)은 적외선 레이저를 제공하는 레이저 다이오드로 구성할 수 있다.
광원(LS)에서 제공된 시준광(Collimated Light)은 입사광(100)으로서 점상(point shape) 혹은 작은 원형의 단면적을 갖고 입광 소자(CHOE)에 정의된 입사점(IP)으로 제공된다. 입사광(100)은 입사점(IP)의 표면에 대해 법선 방향으로 입사하는 것이 바람직하다. 하지만, 이에 국한되는 것은 아니며, 필요에 따라서는 입사점(IP) 표면의 법선에 대해 기울어진 각도로 입사할 수도 있다.
입광 소자(CHOE)는, 광원(LS)에서 제공된 입사광(100)을 이미지 검출을 위한 주사광(혹은, 스캔(scan)광)(20, 21)을 제공한다. 주사광(20, 21)은 커버 기판(CP)의 상부 표면에서 전반사 조건을 만족하도록 커버 기판(CP) 내부로 굴절된 빛이다. 입광 소자(CHOE)는 입사광(100)이 조사되는 입사점(IP)보다 큰 면적을 갖는 것이 바람직하다. 예를 들어, 광원(LS)에서 제공하는 시준된 빛의 단면적이 0.5mm x 0.5mm인 정원인 경우, 입광 소자(CHOE)는 커버 기판(CP)의 중앙에 배치되며, 3mm ~ 5mm정도의 폭과 길이를 갖는 사방형상일 수 있다.
점상 직진광인 입사광(100)이 입광 소자(CHOE)에 의해 변환된 주사광(20, 21)은 커버 기판(CP)의 상부 표면에 정의된 센싱 영역(SA)에 대응하는 면적으로 확산된 빛이다. 점상 단면을 갖는 광원(LS)을 일정 면적을 갖는 센싱 영역(SA)으로 확장시키기 위해서, 입광 소자(CHOE)는 XZ 평면상에서 확산각인 수직 확산각 θ를 갖고, XY 평면상에서 확산각인 수평 확산각 φ를 갖도록 확산시키는 홀로그래피 광학 소자이다.
이미지 검출에 사용된 주사광(20, 21)은 커버 기판(CP)의 표면에서 전반사되어, 출사광(300, 310)으로서 하부 표면으로 진행한다. 출광 소자(VHOE)는 출사광(300, 310)을 커버 기판(CP)의 표면에 대해 수직 방향으로 출광하도록 진행 방향을 바꾸어, 검출광(400, 410)으로 제공하는 홀로그래피 광학 소자인 것이 바람직하다. 따라서, 출광 소자(VHOE)는 출사광(300, 310)이 커버 기판(CP)의 하부 표면에 조사되는 영역에 배치되며, 출사광(300, 310)이 조사되는 영역보다 큰 면적을 갖는 것이 바람직하다.
출광 소자(VHOE) 및 입광 소자(CHOE)는 동일 평면 상에 배치될 수 있다. 제조 공정을 고려하면, 하나의 필름 위에 출광 소자(VHOE)와 입광 소자(CHOE)의 영역을 나누어서 형성하는 것이 바람직하다. 출광 소자(VHOE)와 입광 소자(CHOE)는 홀로그래피 패턴을 포함하는 광학 소자인 것이 바람직하다. 예를 들어, 출광 소자(VHOE)의 패턴을 갖는 마스터 필름과 입광 소자(CHOE)의 패턴을 갖는 마스터 필름을 적정 위치에 배치한 후, 하나의 홀로그래피 기록 필름에 두 홀로그래피 패턴을 동시에 복사할 수 있다.
이하, 본 발명에 의한 지향성 광 기판(SLS)에서 이미지 검출을 위한 구체적인 작동 과정에 대해 설명한다. 입광 소자(CHOE)에 의해 입사광(100)은 주사광(20, 21)으로 전환된다. 주사광(20, 21)은 커버 기판(CP)의 상부 표면에서 전반사 조건을 만족하며, 커버 기판(CP) 내부로 입사된다. 예를 들어, 입광 소자(CHOE)는 입사광(100)을 XZ 평면상에서 제1 입사각(θ1)을 갖는 제1 주사광(20)과 제2 입사각(θ2)을 갖는 제2 주사광(21) 사이의 범위 내에서 굴절된 확산광으로 변환된다. 여기서, 제1 입사각(θ1)과 제2 입사각(θ2)은 커버 기판(CP)과 공기층(AIR) 사이에서의 전반사 임계각(TCP_AIR)보다 큰 값을 갖는 것이 바람직하다.
제1 주사광(20)은 센싱 영역(SA) 중 광원(LS)과 가장 가까운 경계선으로 진행한다. 제2 주사광(21)은 센싱 영역(SA) 중 광원(LS)과 가장 먼 경계선으로 진행한다. 제1 주사광(20)의 제1 입사각(θ1) 및 제2 주사광(21)의 제2 입사각(θ2)은 커버 기판(CP)의 상부 표면에서 전반사 조건을 만족한다. 예를 들어, 제1 입사각(θ1)은 75 내지 80도의 값 중 어느 한 값을 가질 수 있다. 제2 입사각(θ2)은 82도 내지 87도의 값 중 어느 한 값을 가질 수 있다. 특히, 제1 입사각(θ1)과 제2 입사각(θ2)의 사이 각도인 수직 확산각(θ)은 2도 내지 12도 중 어느 한 값을 가질 수 있다. 가장 바람직하게는 수직 확산각(θ)은 약 7도의 값을 갖는다.
제1 주사광(200) 및 제2 주사광(210)들은, 폭 방향 축과 길이 방향 축으로 이루어진 XY 평면(혹은, '수평 평면')에서는 수평 확산각(φ)을 갖는 것이 바람직하다. 수평 확산각(φ)과 수직 확산각(θ)의 범위는 센싱 영역(SA)을 정의하는 확산각이다. 수평 확산각(φ)은, 센싱 영역(SA)의 가로 폭 범위를 결정할 수 있다. 예를 들어, 수평 확산각(φ)은, 30도 내지 60도 사이의 값을 가질 수 있다. 센싱 영역(SA)은 수직 확산각(θ), 수평 확산각(φ) 및 커버 기판(CP)의 두께 등에 의해 결정된다.
제1 주사광(20) 및 제2 주사광(21)은 커버 기판(CP)의 상부 표면에서 전반사되어 하부 표면으로 진행하는 제1 출사광(300) 및 제2 출사광(310)이 된다. 이 때, 제1 출사광(300)의 제1 반사각은 제1 입사각(θ1)과 동일하다. 마찬가지로 제2 출사광(310)의 제2 반사각도 제2 입사각(θ2)과 동일하다. 제1 출사광(300) 및 제2 출사광(310)이 커버 기판(CP)의 하부 표면에 도달한 전체 영역은, 센서 영역(SEA)(혹은 검출 소자 영역)에 해당한다. 여기서 센서 영역(SEA)은, 검출 소자들이 배치되는 영역에 대응한다.
출광 소자(VHOE)는 센서 영역(SEA)에 대응하여 배치되는 것이 바람직하다. 출광 소자(VHOE)가 없더라도, 커버 기판(CP)의 상부 표면에서 전반사된 제1 출사광(300)과 제2 출사광(310)은 커버 기판(CP)의 하부 표면에 공기보다 큰 굴절율을 갖는 기판 혹은 필름이 있다면, 외부로 출광될 수 있다. 하지만, 제1 출사광(300)과 제2 출사광(310)은 전반사 조건을 만족하는 반사각 및 입사각을 가지므로, 많은 광량이 커버 기판(CP) 내부로 반사된다. 이로인해 검출광의 강도가 저하되어 검출 능력이 저하된다. 따라서, 출사광들(300, 310)을 모두 광 센서로 보내기 위한 출광 소자(VHOE)가 배치되는 것이 바람직하다. 특히, 출광 소자(VHOE)는 반사각 θ1을 갖는 제1 출사광(300)과 반사각 θ2를 갖는 제2 출사광(310)을 커버 기판(CP)의 하부 표면에 대해 수직 방향으로 굴절시켜 외부로 출광시키는 홀로그래피 광학 소자인 것이 바람직하다.
센서 영역(SEA)은 제1 출사광(300) 및 제2 출사광(310)에 의해 그 크기가 결정된다. 센서 영역(SEA)은 입광 소자(CHOE)에서 센싱 영역(SA)을 거쳐 연속 확장된 형상을 가질 수 있다. 따라서, 센서 영역(SEA)은 센싱 영역(SA)보다 확산된 형상을 갖는다. 출광 소자(VHOE)는 센서 영역(SEA)보다 더 큰 크기를 갖는 것이 바람직하다.
출광 소자(VHOE)는, 제1 출사광(300) 및 제2 출사광(310)들을 커버 기판(CP)의 하부 표면 외부로 출광되는 제1 검출광(400) 및 제2 검출광(410)을 제공한다. 제1 검출광(400) 및 제2 검출광(410)은 지향성 광 기판(SLS)의 하부 표면에서 출광 소자(VHOE)에 대응하여 부착된 검출 소자로 제공된다. 지향성 광 기판(SLS)의 하부 표면에 배치된 검출 소자로 출광된 제1 검출광(400) 및 제2 검출광(410)을 인식함으로써, 커버 기판(CP)의 상부 표면에 배치된 물체의 이미지를 판별할 수 있다.
이하에서는, 도 5에서 설명한 지향성 광 유닛을 응용한 이미지 인식 장치에 대해 설명한다. 특히, 지문 인식 센서를 내장한 평판 표시장치에 대해 설명한다. 도 6은 본 발명의 제2 실시 예에 의한 지향성 광 유닛과 광 인식 센서를 포함하는 표시장치의 구조를 나타내는 도면이다.
도 6을 참조하면, 본 발명의 제2 실시 예에 의한 표시장치는, 표시 패널(DP), 지향성 광 기판(SLS) 및 광원(LS)을 포함한다. 표시 패널(DP)에는 표시 영역(AA)과 비 표시 영역(NA)이 정의되어 있다. 표시 영역(AA)은 표시 패널(DP)의 중앙부 대부분을 차지하고, 비 표시 영역(NA)은 표시 영역의 주변에 배치된다. 표시 영역(AA)에는, 표시 패널(DP)이 나타내고자 하는 영상들이 표시되는 소자들이 배치되어 있다. 비 표시 영역(NA)에는 표시 영역에 배치된 소자들을 구동하기 위한 소자들이 배치되어 있다.
특히, 표시 영역(AA)에는, 영상을 표시하기 위한 다수 개의 화소 영역들이 매트릭스 방식으로 배열되어 있다. 이들 화소 영역에는 이미지 인식을 위한 광 센서들이 하나씩 배치되어 있다. 경우에 따라서는, 여러 개의 화소 영역들을 기본 단위로 하여, 하나씩 배치되어 있을 수 있다. 예를 들어, 2x2, 3x3 혹은 4x4 화소들마다 하나씩 광 센서가 배치될 수 있다.
지향성 광 기판(SLS)은, 일정 길이, 일정 폭 및 일정 두께를 갖는 얇고 넓은 판상형이다. 지향성 광 기판(SLS)의 길이와 폭은 표시 패널(DP)을 수용하기에 충분한 크기를 갖는 것이 바람직하다. 특히, 표시 패널(DP)의 전체 크기보다 조금 더 큰 크기를 갖는 것이 바람직하다. 적어도 표시 패널(DP)의 한쪽 변으로 더 연장된 부분을 갖는 것이 바람직하다. 예를 들어, 표시 패널(DP)의 한쪽 변으로 더 연장된 부분에는 광원(LS)을 배치한다.
지향성 광 기판(SLS)은 표시 패널(DP)의 상부 표면에 면 합착하여 결합될 수 있다. 지향성 광 기판(SLS)은, 앞에서 설명했듯이, 커버 기판(CP), 입광 소자(CHOE) 및 출광 소자(VHOE)를 포함한다. 출광 소자(VHOE)는 표시 패널(DP)의 상부 표면과 면 합착되는 것이 바람직하다. 여기서, 표시 패널(DP)의 상부 표면은, 표시 패널(DP)에서 제공되는 영상 정보가 출광되는 면을 말한다. 즉, 사용자가 영상을 관람할 때 바라보는 표시 패널(DP)의 표면을 말한다.
앞에서 설명한 바와 같이, 지향성 광 기판(SLS)에서는 하부 표면으로 즉, 표시 패널(DP)의 상부 표면으로, 이미지 검출광(400, 410)을 제공한다. 그러면, 지향성 광 기판(SLS)의 하부에 배치된 표시 패널(DP)의 광 센서가 검출광(400, 410)을 인지한다. 그 결과, 지향성 광 기판(SLS)의 상부 표면에 접촉하는 물체의 이미지를 인식할 수 있다.
좀 더 구체적으로 설명하면, 지향성 광 기판(SLS)의 입광 소자(CHOE)에 의해 만들어진 주사광(20, 21)이 커버 기판(CP)의 상부 표면에 다다른다. 특히, 커버 기판(CP) 위에 이미지 객체(IM)가 배치되어 있을 때, 객체(IM)가 커버 기판(CP)과 직접 접촉하지 않은 곳에 다다른 주사광(20, 21)은 전반사되어 출사광(300, 310)으로, 다시 검출광(400, 410)으로서 표시 패널(DP)로 제공된다. 한편, 커버 기판(CP) 표면에서 객체(IM)가 직접 닿는 부분에 다다른 주사광(20', 21')은 외부로 굴절되어 나간다. 굴절율이 공기보다 큰 값을 갖는 객체(IM)가 커버 기판(CP)에 접촉한 부위에서는, 주사광(20', 21')이 전반사되지 않고, 객체(IM) 쪽으로 굴절된다. 즉, 이미지 객체(IM)가 있는 부분에서는 주사광(20', 21')이 흡수광(500, 510)으로 되어 표시 패널(DP)의 광 센서로 제공되는 광량이 거의 없다.
그 결과, 표시 패널(DP)에는 주사광(20, 21) 중에서 검출광(400, 410)만 인지하고, 흡수광(500, 510)은 인지할 수 없게 된다. 이와 같이 표시 패널(DP)의 광 센서들은, 커버 기판(CP)의 표면에서 반사되고, 수직 방향으로 조절된 검출광(400, 410)의 반사 패턴을 인지함으로써 이미지의 패턴을 재현(reproduce)할 수 있다.
지향성 광 유닛을 지문 인식 장치에 적용하는 경우, 이미지 객체(IM)는 사람의 손가락(finger)이 된다. 그리고, 지문의 융기(R) 부분은 커버 기판(CP)의 표면과 접촉하고, 골(V) 부분은 커버 기판(CP)의 표면과 접촉하지 않는다. 골(V) 부분으로 조사된 주사광(20, 21)은 전반사되어 출사광(300, 310)으로 된다. 반면에, 융기(R) 부분으로 간 주사광(20', 21')은 굴절되어 커버 기판(CP)의 외부로 빠져나가는 흡수광(500, 510)이 된다.
도 6의 아래에 도시된 사시도를 더 참조하여 XY 평면상에서의 이미지 센싱에 대해 설명한다. 입사광(100)은 일정한 단면적을 갖는 시준된 적외선을 포함할 수 있다. 이를 위해 광원(LS)은 적외선 레이저를 제공하는 레이저 다이오드일 수 있다.
입사광(100)은 입광 소자(CHOE)에 의해 주사광(20, 21)으로 변환된다. 이 때, 진행광(20, 21)은, 길이 방향 축인 X축과 폭 방향 축인 Y축으로 이루어진 수평 평면인 XY 평면에서는 수평 확산각(φ)을 가지도록 변환된다. 또한, 길이 방향 축인 X과 두께 방향 축인 Z축으로 이루어진 수직 평면인 XZ 평면에서는 수직 확산각(θ)을 가지도록 변환된다.
여기서, 수평 확산각(φ) 및 수직 확산각(θ)에 의해서, 커버 기판(CP)의 상부 표면에는 센싱 영역(SA)이 정의된다. 예를 들어, 도 6에서 빗금친 부분과 같이, 이미지 센싱 영역(SA)은 사다리꼴 사각형 내부 영역으로 결정될 수 있다.
본 발명에 의한 광학식 이미지 센서는, 초박막형 광학식 이미지 센서를 구현하기 위해, 홀로그래피 소자를 구비하는 것을 특징으로 한다. 홀로그래피 소자는 기록 조건에 의해 특정 편광 상태를 갖도록 기록할 경우 효율이 높아지는 특성이 있다. 따라서, 본 발명에 의한 표시장치에서 편광을 사용하는 것이 바람직하다.
구체적으로, 도 7을 참조하여 설명한다. 도 7은 본 발명의 제2 실시 예에 의한 광 효율 극대화 구조를 갖는 표시장치의 구조를 나타낸 사시도이다.
본 발명의 제2 실시 예에서도, 지향성 광 기판(SLS)에 포함된 입광 소자(CHOE)는, 광 효율을 극대화하기 위해 특정 편광축을 갖는 것이 바람직하다. 예를 들어, 입광 소자(CHOE)에는, 입사광(100)과 입광 소자(CHOE) 평면에 대한 수직선이 이루는 입사 평면(Plane of Incident)에 대해 수직 방향으로 입광 소자 편광축(CX)이 설정될 수 있다.
이 경우, 광원(LS)은 입광 소자 편광축(CX)과 평행한 방향으로 편광된 자외선을 제공하는 것이 바람직하다. 예를 들어, 광원(LS)은 입사광 편광축(LX)이 입광 소자 편광축(CX)과 평행하게 편광된 자외선 레이저를 제공하는 레이저 다이오드를 포함하는 것이 바람직하다.
또한, 출광 소자(VHOE)도 홀로그래피 소자로 형성하는 경우, 출광 효율을 극대화하기 위해 특정 편광축을 갖는 것이 바람직하다. 마찬가지로, 출광 소자(VHOE)도 입광 소자 편광축(CX) 및 입사광 편광축(LX)과 동일한 방향을 갖는 출광 소자 편광축(VX)을 갖는 홀로그래피 소자인 것이 바람직하다.
추가로, 표시 패널(DP)은 유기발광 다이오드 표시 패널(OLD)을 포함할 수 있다. 광 센서(SE)는 표시 패널(DP)의 하면의 외부에 배치되어 있다. 이 경우, 유기발광 다이오드 표시 패널(OLD)의 상부 표면에는 편광판(PL)이 적층될 수 있다. 편광판(PL)은 외부 광이 유기발광 다이오드 표시 패널(OLD)의 표면에서 반사되어 표시 장치에서 제공하는 정보를 사용자가 인지하는 데 장애를 주는 것을 방지하기 위한 것이다. 따라서, 이미지 인식에 있어, 검출광의 광 효율을 극대화하기 위해, 편광판(PL)의 편광축(PX)도 광원 편광축(LX), 입광 소자 편광축(CX) 및 출광 소자 편광축(VX)과 평행하도록 배치하는 것이 바람직하다.
또 다른 예로, 도면으로 도시하지 않았으나, 표시 패널(DP)은 액정 표시 패널을 포함할 수 있다. 광 센서(SE)는 표시 패널(DP)의 하면의 외부에 배치되어 있다. 또한, 액정 표시 패널의 상부 표면에는 상부 편광판이, 하부 표면에는 하부 편광판이 합착되어 있다. 따라서, 액정 표시 패널의 경우에는 광원(LS)에서 제공하는 빛이 액정 표시 패널의 상부 편광판과 하부 편광판에 광학적 영향을 받지 않는 파장 조건을 갖는 것이 바람직하다. 예를 들어, 광원(LS)에서는 편광된 자외선을 제공하고, 상부 편광판과 하부 편광판은 가시 광선 영역의 파장에만 영향을 주도록 설정하는 것이 바람직하다.
본 발명의 제2 실시 예에 의한 이미지 인식 센서를 구성하는 지향성 광 기판(SLS) 및 광원(LS)은, 광 효율을 극대화하기 위해서는, 광원 편광축(LX)과 입광 소자 편광축(CX) 및 출광 소자 편광축(VX)들이 동일한 방향성을 갖는 것이 바람직하다. 특히, 광 센서(SE)가 표시 패널(DP)의 내부에 배치되지 않고, 별도로 구성된 경우에는, 광원(LS)은 가시 광선에 영향을 주는 편광판에 편광 상태가 영향을 받지 않는 파장대역을 갖는 것이 바람직하다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양하게 변경 및 수정할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정해져야만 할 것이다.
DP: 표시 패널 SLS: 지향성 광 기판
CP: 커버 기판 CHOE: 입광 소자
VHOE: 출광 소자 LS: 광원
LR: 저 굴절 층 100: 입사광
200: 진행광 300, 310: 출사광
400, 410: 검출광 500, 510: 흡수광
SEA: 센서(검출 소자) 영역 SA: (이미지) 센싱 영역

Claims (9)

  1. 표시 영역과 비 표시 영역이 정의된 표시 패널; 그리고
    상기 표시 패널을 수용하는 길이와 폭 그리고 일정한 두께를 갖고, 상기 표시 패널의 상부 표면에 면 부착되며, 상기 표시 영역으로 일정 방향성을 갖는 검출광을 제공하는 지향성 광 유닛을 포함하고,
    상기 지향성 광 유닛은,
    커버 기판;
    상기 커버 기판의 하부 표면에서, 상기 표시 영역에 대응하여 배치된 출광 소자;
    상기 커버 기판의 하부 표면에서, 상기 출광 소자의 일측변에 이웃하도록 상기 표시 영역 외측에 배치된 입광 소자;
    상기 출광 소자 및 상기 입광 소자의 하부 표면에 배치되고, 상기 커버 기판 및 상기 출광 소자보다 낮은 굴절율을 갖는 저 굴절층; 그리고
    상기 표시 패널의 상기 일측변에서 상기 입광 소자와 대향하는 광원을 포함하고,
    상기 커버 기판은 상기 표시패널과 상기 광원을 덮는 길이, 폭 및 두께를 가지고,
    상기 입광 소자는 제1 편광축을 가지며;
    상기 광원은 상기 제1 편광축과 평행한 제2 편광축으로 편광된 자외선을 상기 입광 소자에 제공하는 표시장치.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 광원은, 상기 입광 소자의 표면에 정의된 입사점으로 입사광을 제공하며;
    상기 입광 소자는, 상기 입사광을 상기 커버 기판 내부에서 전반사하는 입사각을 갖는 진행광으로 전환하여 상기 커버 기판 내부로 입사시키는 홀로그래피 패턴을 구비하며; 그리고
    상기 출광 소자는, 상기 진행광의 일부를, 상기 커버 기판의 상부 표면에서는 전반사되고 상기 저 굴절층은 투과하는 조건을 만족하는, 반사각을 갖는 상기 검출광으로 전환하는 홀로그래피 패턴을 구비하는 표시장치.
  4. 제 3 항에 있어서,
    상기 진행광은, 상기 커버 기판의 폭 방향 축과 상기 커버 기판의 길이 방향 축으로 이루어진 수평 평면에서는 확산각을 가지며, 상기 커버 기판의 길이 방향 축과 두께 방향 축으로 이루어진 수직 평면에서 시준되며;
    상기 입사각은, 상기 출광 소자와 상기 저 굴절 층과의 계면에서의 전반사 임계각보다 큰 값을 갖고; 그리고
    상기 반사각은, 상기 커버 기판과 공기층과의 계면에서의 전반사 임계각보다는 크고, 상기 출광 소자와 상기 저 굴절 층과의 계면에서의 전반사 임계각보다는 작은 값을 갖는 표시장치.
  5. 삭제
  6. 제 1 항에 있어서,
    상기 출광 소자는, 상기 제1 편광축과 평행한 제3 편광축을 갖는 표시장치.
  7. 제 1 항에 있어서,
    상기 표시 패널은,
    상부 표면에 배치되며, 상기 제1 편광축과 평행한 제4 편광축을 갖는 편광판을 더 포함하는 표시장치.
  8. 제 1 항에 있어서,
    상기 표시패널은,
    상기 표시영역의 화소 영역에 배치된 광 센서들을 더 포함하고,
    상기 광 센서가 인지한 광을 바탕으로 상기 지향성 광 기판의 상부 표면에 접촉된 물체의 이미지가 인식되는 표시장치.
  9. 제 1 항에 있어서,
    상기 표시패널의 하면 외부에 배치된 광 센서를 더 포함하고,
    상기 광 센서가 인지한 광을 바탕으로 상기 지향성 광 기판의 상부 표면에 접촉된 물체의 이미지가 인식되는 표시장치.
KR1020170056309A 2017-05-02 2017-05-02 표시장치 KR102418802B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020170056309A KR102418802B1 (ko) 2017-05-02 2017-05-02 표시장치
US15/969,600 US10395086B2 (en) 2017-05-02 2018-05-02 Flat panel display embedding optical imaging sensor
CN201810409961.6A CN108877492B (zh) 2017-05-02 2018-05-02 嵌入光学成像传感器的平板显示器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170056309A KR102418802B1 (ko) 2017-05-02 2017-05-02 표시장치

Publications (2)

Publication Number Publication Date
KR20180122508A KR20180122508A (ko) 2018-11-13
KR102418802B1 true KR102418802B1 (ko) 2022-07-11

Family

ID=64015370

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170056309A KR102418802B1 (ko) 2017-05-02 2017-05-02 표시장치

Country Status (3)

Country Link
US (1) US10395086B2 (ko)
KR (1) KR102418802B1 (ko)
CN (1) CN108877492B (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040651B1 (ko) 2016-04-29 2019-11-06 엘지디스플레이 주식회사 광학식 이미지 인식 센서 내장형 평판 표시장치
US10713458B2 (en) 2016-05-23 2020-07-14 InSyte Systems Integrated light emitting display and sensors for detecting biologic characteristics
US10931859B2 (en) 2016-05-23 2021-02-23 InSyte Systems Light emitter and sensors for detecting biologic characteristics
KR102603597B1 (ko) * 2016-10-24 2023-11-21 엘지디스플레이 주식회사 지문센서 일체형 터치 스크린 장치와 그 구동방법
US10803286B2 (en) * 2018-07-25 2020-10-13 Shenzhen GOODIX Technology Co., Ltd. Under-screen optical fingerprint sensor based on optical imaging with an optical axis off-normal to the display screen surface
CN109690372A (zh) * 2018-12-04 2019-04-26 深圳市汇顶科技股份有限公司 背光模组、液晶模组、指纹识别装置和模组、移动终端
CN109784303B (zh) * 2019-01-29 2021-07-30 上海天马微电子有限公司 显示装置
CN110208982B (zh) * 2019-04-24 2021-05-07 荣耀终端有限公司 液晶显示装置
CN110350000A (zh) * 2019-05-23 2019-10-18 华为技术有限公司 一种显示屏及电子设备
CN112043285A (zh) * 2019-06-05 2020-12-08 上海耕岩智能科技有限公司 光线探测结构、指纹模组及终端
CN111788574B (zh) * 2019-06-17 2023-08-18 深圳市汇顶科技股份有限公司 具有集成有光电检测器的tft的oled显示屏
US11527587B2 (en) * 2019-06-17 2022-12-13 Shenzhen GOODIX Technology Co., Ltd. OLED display having TFT integrated with photodetectors
KR20210084879A (ko) * 2019-12-30 2021-07-08 엘지디스플레이 주식회사 디스플레이 장치
CN111837134A (zh) * 2020-01-21 2020-10-27 深圳市汇顶科技股份有限公司 光学指纹检测装置、触摸屏和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322550A1 (en) * 2009-06-18 2010-12-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical fingerprint navigation device with light guide film
US20160342282A1 (en) * 2014-01-16 2016-11-24 Flatfrog Laboratories Ab Touch-sensing quantum dot lcd panel

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745266A (en) * 1996-10-02 1998-04-28 Raytheon Company Quarter-wave film for brightness enhancement of holographic thin taillamp
US20040252867A1 (en) * 2000-01-05 2004-12-16 Je-Hsiung Lan Biometric sensor
US6805490B2 (en) * 2002-09-30 2004-10-19 Nokia Corporation Method and system for beam expansion in a display device
KR100608171B1 (ko) 2003-06-24 2006-08-02 주식회사 에스엘 엘씨디 지문인식센서를 구비한 영상표시장치
US7969422B2 (en) 2005-07-15 2011-06-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Pattern detection system
US8120239B2 (en) * 2006-08-16 2012-02-21 Samsung Electronics Co., Ltd. Infrared display with luminescent quantum dots
US7845841B2 (en) 2006-08-28 2010-12-07 Qualcomm Mems Technologies, Inc. Angle sweeping holographic illuminator
WO2008059098A1 (en) 2006-11-16 2008-05-22 Nanocomp Ltd An arrangement and a method for coupling light into a plate-like light guide
EP2188701B1 (en) 2007-08-03 2018-04-18 Microsoft Technology Licensing, LLC Multi-touch sensing through frustrated total internal reflection
JP2013511100A (ja) * 2009-11-17 2013-03-28 アールピーオー・ピーティワイ・リミテッド タッチ入力を受け付ける装置及び方法
KR101136153B1 (ko) * 2010-02-19 2012-04-16 성균관대학교산학협력단 지문 인식 또는 멀티 터치가 가능한 센서 그리드 방식의 투명 패널 사용자 입력 장치, 사용자 지문 인식 방법, 및 사용자 터치 인식 방법
JP4902768B2 (ja) 2010-05-11 2012-03-21 シャープ株式会社 光ポインティング装置およびそれを備えた電子機器
US8564314B2 (en) 2010-11-02 2013-10-22 Atmel Corporation Capacitive touch sensor for identifying a fingerprint
US8963886B2 (en) * 2011-07-13 2015-02-24 Flatfrog Laboratories Ab Touch-sensing display panel
US8884900B2 (en) * 2011-07-13 2014-11-11 Flatfrog Laboratories Ab Touch-sensing display apparatus and electronic device therewith
US9030440B2 (en) 2012-05-18 2015-05-12 Apple Inc. Capacitive sensor packaging
US9841563B2 (en) * 2012-08-04 2017-12-12 Paul Lapstun Shuttered waveguide light field display
KR101731141B1 (ko) * 2013-12-31 2017-04-28 엘지디스플레이 주식회사 평판 표시장치용 박막형 백 라이트 유닛
TW201530201A (zh) * 2014-01-24 2015-08-01 E Ink Holdings Inc 導光模組與具有導光模組的雙穩態顯示裝置
KR101432988B1 (ko) 2014-04-02 2014-08-29 (주)이미지스테크놀로지 지문 인식 일체형 정전용량 터치스크린
KR102206332B1 (ko) 2014-10-10 2021-01-25 엘지디스플레이 주식회사 지문 인식 소자를 포함한 표시 장치
US9829614B2 (en) * 2015-02-02 2017-11-28 Synaptics Incorporated Optical sensor using collimator
CN104751121B (zh) * 2015-03-05 2019-04-05 上海交通大学 基于光栅结构的光波导式指纹识别***
CN105184282B (zh) 2015-10-14 2019-04-23 京东方科技集团股份有限公司 光学指纹检测装置及显示设备
KR102040651B1 (ko) * 2016-04-29 2019-11-06 엘지디스플레이 주식회사 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102006267B1 (ko) * 2016-06-30 2019-10-02 엘지디스플레이 주식회사 광학식 이미지 인식 센서 내장형 평판 표시장치
CN106154398A (zh) * 2016-07-27 2016-11-23 京东方科技集团股份有限公司 一种侧入式背光模组及显示装置
CN107025451B (zh) * 2017-04-27 2019-11-08 上海天马微电子有限公司 一种显示面板及显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100322550A1 (en) * 2009-06-18 2010-12-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Optical fingerprint navigation device with light guide film
US20160342282A1 (en) * 2014-01-16 2016-11-24 Flatfrog Laboratories Ab Touch-sensing quantum dot lcd panel

Also Published As

Publication number Publication date
KR20180122508A (ko) 2018-11-13
US20180322325A1 (en) 2018-11-08
CN108877492A (zh) 2018-11-23
CN108877492B (zh) 2021-01-29
US10395086B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
KR102418802B1 (ko) 표시장치
KR102040651B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102515292B1 (ko) 박막 평판형 광학 이미지 센서 및 광학 이미지 센서 내장형 평판 표시장치
KR102006267B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102630571B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
US11393244B2 (en) Flat panel display embedding optical imaging sensor
US10776598B2 (en) Display device with optical image sensor device for fingerprint detection
KR102646158B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102460111B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102389197B1 (ko) 표시장치
KR102375705B1 (ko) 광학식 이미지 인식 센서를 구비한 평판 표시장치
KR20180073763A (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102440209B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
KR102629153B1 (ko) 광학식 이미지 인식 센서를 구비한 평판 표시장치
KR102503747B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant