KR102393117B1 - Manufacturing method of n-doped titanium dioxide nanotubes/graphitic carbon nitride composites for photocatalyst - Google Patents

Manufacturing method of n-doped titanium dioxide nanotubes/graphitic carbon nitride composites for photocatalyst Download PDF

Info

Publication number
KR102393117B1
KR102393117B1 KR1020200119670A KR20200119670A KR102393117B1 KR 102393117 B1 KR102393117 B1 KR 102393117B1 KR 1020200119670 A KR1020200119670 A KR 1020200119670A KR 20200119670 A KR20200119670 A KR 20200119670A KR 102393117 B1 KR102393117 B1 KR 102393117B1
Authority
KR
South Korea
Prior art keywords
nitrogen
carbon nitride
doped titanium
mixing
preparing
Prior art date
Application number
KR1020200119670A
Other languages
Korean (ko)
Other versions
KR20220037109A (en
Inventor
박수진
문성준
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020200119670A priority Critical patent/KR102393117B1/en
Publication of KR20220037109A publication Critical patent/KR20220037109A/en
Application granted granted Critical
Publication of KR102393117B1 publication Critical patent/KR102393117B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • B01J37/105Hydropyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

본 발명은 대기 및 수질 정화, 항균, 탈취를 위한 친환경 소재 등 여러 분야에서 응용 가능한 광촉매용 질소 도핑된 이산화티타늄 나노튜브/카본 나이트라이드 복합체의 제조 방법을 제공하기 위한 것이다.
보다 상세하게는 1) 우레아, 암모니아 및 증류수를 혼합하여 A혼합용액을 준비하는 단계, 2) 전구체 티타늄 이소프록사이드 (Titanium Isopropoxside, TTIP), 에틸렌 글리콜 및 증류수를 혼합하여 B혼합용액을 준비하는 단계, 3) 상기 A혼합용액과 B혼합용액을 혼합한 후 황산을 첨가하여 pH 4.3으로 조정하고 여과 및 건조한 혼합물을 준비하는 단계, 4) 상기 혼합물을 소성하여 질소 도핑된 티타늄 나노파티클을 제조하는 단계, 5) 멜라민을 고온 열처리하여 카본 나이트라이드를 제조하는 단계; 6) teflon-lined autoclave에서 제조된 시료들을 수열합성, 보다 자세하게 상기 질소 도핑된 티타늄 나노파티클과 카본 나이트라이드를 혼합 후 NaOH 수용액을 이용하여 수열합성 하는 단계를 포함한다.
본 발명은 우수한 기공 구조, 높은 가시광 흡수량을 보이며, 반복적인 광분해 과정에서의 우수한 재생성으로 인해 수질 정화 및 항균, 탈취를 위한 친환경 소재인 광촉매용 질소 도핑된 이산화티타늄 나노튜브/카본 나이트라이드의 복합체 제조방법을 제공하는 효과가 있다.
An object of the present invention is to provide a method for manufacturing a nitrogen-doped titanium dioxide nanotube/carbon nitride composite for photocatalysts applicable in various fields such as environment-friendly materials for air and water purification, antibacterial, and deodorization.
In more detail, 1) preparing a mixed solution by mixing urea, ammonia and distilled water, 2) preparing a mixed solution B by mixing the precursor titanium isopropoxside (Titanium Isopropoxside, TTIP), ethylene glycol and distilled water , 3) After mixing the A mixed solution and B mixed solution, adding sulfuric acid to adjust the pH to 4.3, filtering and preparing a dry mixture, 4) calcining the mixture to prepare nitrogen-doped titanium nanoparticles , 5) high-temperature heat treatment of melamine to prepare carbon nitride; 6) Hydrothermal synthesis of samples prepared in a teflon-lined autoclave, more specifically, mixing the nitrogen-doped titanium nanoparticles with carbon nitride, followed by hydrothermal synthesis using an aqueous NaOH solution.
The present invention shows an excellent pore structure, high visible light absorption, and excellent regeneration in the repeated photolysis process, which is an eco-friendly material for water purification, antibacterial, and deodorization, nitrogen-doped titanium dioxide nanotube/carbon nitride composite for photocatalyst It has the effect of providing a method.

Description

광촉매용 질소 도핑된 이산화티타늄 나노튜브/카본 나이트라이드의 복합체 제조방법{MANUFACTURING METHOD OF N-DOPED TITANIUM DIOXIDE NANOTUBES/GRAPHITIC CARBON NITRIDE COMPOSITES FOR PHOTOCATALYST}Manufacturing method of nitrogen-doped titanium dioxide nanotube/carbon nitride composite for photocatalyst

본 발명은 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체의 제조 방법에 관한 것으로서, 더욱 상세하게는 기존의 제조방법과는 다른 방법으로 제조된 고효율 광촉매를 제공하는 것이다.The present invention relates to a method for manufacturing a nitrogen-doped titanium nanotube/carbon nitride composite, and more particularly, to providing a high-efficiency photocatalyst manufactured by a method different from the conventional manufacturing method.

세계적으로 산업구조의 고도화 및 문명의 발달함에 따라 환경문제는 날로 심각해지고 있다. 그중 수질 오염은 가장 심각한 문제이며, 유해 물질을 함유 한 폐수는 수질을 오염시킬뿐 아니라 인체 건강에 부정적인 영향을 미친다. 이러한 수자원 오염은 자연적인 순환으로는 해결할 수 없는 상황이다. 이에 따른 친환경적 기술로 흡착, 흡수, 광촉매의 산화 환원 반응 등의 방법이 있다. 그중 광촉매는 밴드갭 이상의 에너지를 받으면 전자와 정공이 형성되며, 이는 물 분자와 반응하여, 강력한 산화력을 가지는 라디칼을 형성한다. 또한, 대기 환경에서의 물 분자와도 반응하므로, 대기 및 수질 정화, 항균, 탈취를 위한 친환경 소재 등 여러 분야에서 광촉매로서 응용가능하다. 특히 이산화 티타늄은 현재 다양한 분야에서 널리 사용되어온 반도체중 하나로 낮은 가격, 우수한 환경 친화성, 화학적 안정성으로 각광받고 있다. 또한 유기체에 영향을 미치지 않고 향균 작용이 강한 비 독성 물질이며, 산화력은 다른 물질을 분해 할 수있을 정도로 강하며 환경에 적합하다. 하지만 가시광선 영역의 광을 흡수하지 못한다는 단점을 가지고 있다. 따라서 이상적인 광촉매를 위해 우수한 표면 특성을 가지며, 지속적으로 전자와 정공의 재결합을 막고, 밴드갭을 감소시킴으로 가시광선 영역의 광을 흡수하도록 제조하는 것이 필요한 실정이다. With the advancement of industrial structure and the development of civilization around the world, environmental problems are getting serious day by day. Among them, water pollution is the most serious problem, and wastewater containing harmful substances not only pollutes water quality, but also negatively affects human health. Such water pollution is a situation that cannot be solved by natural circulation. As an eco-friendly technology, there are methods such as adsorption, absorption, and photocatalyst oxidation-reduction reaction. Among them, when the photocatalyst receives energy greater than the band gap, electrons and holes are formed, which react with water molecules to form radicals with strong oxidizing power. In addition, since it also reacts with water molecules in the atmospheric environment, it can be applied as a photocatalyst in various fields such as environment-friendly materials for air and water purification, antibacterial, and deodorization. In particular, titanium dioxide is one of the semiconductors that have been widely used in various fields, and is attracting attention for its low price, excellent environmental friendliness, and chemical stability. In addition, it is a non-toxic substance with strong antibacterial action without affecting the organism, and its oxidizing power is strong enough to decompose other substances, and it is suitable for the environment. However, it has a disadvantage in that it cannot absorb light in the visible region. Therefore, for an ideal photocatalyst, it is necessary to have excellent surface properties, to continuously prevent recombination of electrons and holes, and to absorb light in the visible region by reducing the band gap.

이에 본 발명자는 폐수처리 효율 향상을 목적으로하는 혁신적인 광촉매 활성의 소재를 개발하기위해 질소 도핑된 이산화티타늄 나노튜브/카본 나이트라이드 복합체를 이용한 고효율 광촉매 제조방법을 제공한다.Accordingly, the present inventors provide a high-efficiency photocatalyst manufacturing method using a nitrogen-doped titanium dioxide nanotube/carbon nitride composite in order to develop an innovative photocatalytically active material for the purpose of improving wastewater treatment efficiency.

(공개특허공보) 10-2020-0079890(Patent Publication) 10-2020-0079890

본 발명은 광촉매용 질소 도핑된 이산화티타늄 나노튜브 제조하는 방법, 멜라민의 열처리 방법을 이용한 카본 나이트라이드 제조방법과, 상기 제조된 질소 도핑된 이산화티타늄 나노튜브와 카본 나이트라이드를 수열합성하여 최적의 조합을 통해 우수한 광촉매적 분해거동이 향상된 특성을 가지는 복합체를 제조 하는 것을 목적으로 한다. The present invention provides a method for producing nitrogen-doped titanium dioxide nanotubes for a photocatalyst, a method for producing carbon nitride using a heat treatment method for melamine, and hydrothermal synthesis of the nitrogen-doped titanium dioxide nanotubes and carbon nitride prepared above to optimal combination The purpose of this is to prepare a composite with improved properties of excellent photocatalytic decomposition behavior.

상기 목적을 달성하기 위하여, 본 발명은 난분해성 폐수 처리용 새로운 모폴로지의 티타늄 다이옥사이드 광촉매의 제조방법에 있어서 1) 우레아, 암모니아 및 증류수를 혼합하여 A혼합용액을 준비하는 단계, 2) 전구체 티타늄 이소프록사이드 (Titanium Isopropoxside, TTIP), 에틸렌 글리콜 및 증류수를 혼합하여 B혼합용액을 준비하는 단계, 3) 상기 A혼합용액과 B혼합용액을 혼합한 후 황산을 첨가하여 pH4.3으로 조정하고 여과 및 건조한 혼합물을 준비하는 단계, 4) 상기 혼합물을 소성하여 질소 도핑된 티타늄 나노파티클을 제조하는 단계, 5) 멜라민을 고온 열처리하여 카본 나이트라이드를 제조하는 단계; 6) 상기 카본 나이트라이드와 상기 질소 도핑된 티타늄 나노파티클을 혼합 후 NaOH 수용액을 이용하여 수열합성하는 단계를 포함하는 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체를 제조하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for preparing a titanium dioxide photocatalyst of a novel morphology for treatment of recalcitrant wastewater, 1) preparing a mixed solution A by mixing urea, ammonia and distilled water, 2) precursor titanium isoproc Side (Titanium Isopropoxside, TTIP), ethylene glycol and distilled water to prepare a mixed solution B, 3) After mixing the A mixed solution and B mixed solution, sulfuric acid is added to adjust the pH to 4.3, filtered and dried preparing a mixture, 4) calcining the mixture to prepare nitrogen-doped titanium nanoparticles, 5) high-temperature heat treatment of melamine to prepare carbon nitride; 6) It provides a method for preparing a nitrogen-doped titanium nanotube/carbon nitride composite comprising the step of hydrothermal synthesis using an aqueous NaOH solution after mixing the carbon nitride and the nitrogen-doped titanium nanoparticles.

상기와 같은 본 발명에 따르면, 제조된 광촉매용 질소 도핑된 이산화티타늄 나노튜브/카본 나이트라이드 복합체는 수열합성으로 인하여 비표면적이 우수한 나노튜브형상의 모폴로지, 낮은 전자-정공쌍 재결합율을 나타내며, 카본 나이트라이드의 첨가는 밴드갭을 감소시켜 광원의 가시광 영역을 효율적으로 사용 가능하게 함에 따라, 향상된 광촉매적 효율로 고도정수처리용 소재, 태양전지, 향균, 등 여러 분야에 응용이 가능한 고부가가치를 창출할 수 있는 효과가 있다.According to the present invention as described above, the prepared nitrogen-doped titanium dioxide nanotube/carbon nitride composite for photocatalyst exhibits a nanotube-shaped morphology with excellent specific surface area due to hydrothermal synthesis and a low electron-hole pair recombination rate due to hydrothermal synthesis. As the addition of Ride reduces the band gap and enables efficient use of the visible light region of the light source, it is possible to create high added value that can be applied to various fields such as materials for advanced water purification with improved photocatalytic efficiency, solar cells, antibacterial, etc. can have an effect.

도 1은 본 발명에서 얻어진 질소 도핑된 티타늄 나노튜브의 주사전자 현미경(scanning electron microscope, SEM) 사진이다.
도 2은 본 발명에서 얻어진 질소 도핑된 티타늄 나노튜브와, 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체의 투과전자현미경(Transmission electron microscopy, TEM) 사진이다.
도 3은 본 발명에서 얻어진 광촉매용 질소 도핑된 이산화티타늄 나노튜브/카본 나이트라이드 복합화를 통해 제조된 새로운 복합체의 가시광선 조사시간에 따른 로다민 비(rhodamine B) 분해 곡선이다.
1 is a scanning electron microscope (SEM) photograph of nitrogen-doped titanium nanotubes obtained in the present invention.
2 is a transmission electron microscopy (TEM) photograph of a nitrogen-doped titanium nanotube obtained in the present invention and a nitrogen-doped titanium nanotube/carbon nitride composite.
Figure 3 is a rhodamine ratio (rhodamine B) decomposition curve according to the visible light irradiation time of the new composite prepared through the nitrogen-doped titanium dioxide nanotube/carbon nitride composite obtained in the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 형태에 따른 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체 제조 방법을 제공한다.A nitrogen-doped titanium nanotube/carbon nitride composite manufacturing method according to an aspect of the present invention is provided.

상기 질소 도핑된 티타늄 나노튜브/환원된 그래핀 옥사이드 복합체 제조 방법은 1) 우레아, 암모니아 및 증류수를 혼합하여 A혼합용액을 준비하는 단계, 2) 전구체 티타늄 이소프록사이드 (Titanium Isopropoxside, TTIP), 에틸렌 글리콜 및 증류수를 혼합하여 B혼합용액을 준비하는 단계, 3) 상기 A혼합용액과 B혼합용액을 혼합한 후 황산을 첨가하여 pH 4.0 내지 4.6으로 조정하고 여과 및 건조한 혼합물을 준비하는 단계, 4) 상기 혼합물을 소성하여 질소 도핑된 티타늄 나노파티클을 제조하는 단계, 5) 멜라민을 고온 열처리하여 카본 나이트라이드를 제조하는 단계; 6) 상기 카본 나이트라이드와 상기 질소 도핑된 티타늄 나노파티클을 혼합 후 NaOH 수용액을 이용하여 수열합성하는 단계를 포함한다.The nitrogen-doped titanium nanotube/reduced graphene oxide composite manufacturing method includes 1) preparing a mixed solution A by mixing urea, ammonia and distilled water, 2) precursor titanium isopropoxside (Titanium Isopropoxside, TTIP), ethylene Preparing a mixed solution B by mixing glycol and distilled water, 3) mixing the mixed solution A and B, adjusting the pH to 4.0 to 4.6 by adding sulfuric acid, filtration and preparing a dry mixture, 4) sintering the mixture to prepare nitrogen-doped titanium nanoparticles; 5) high-temperature heat treatment of melamine to prepare carbon nitride; 6) mixing the carbon nitride and the nitrogen-doped titanium nanoparticles and then hydrothermal synthesis using an aqueous NaOH solution.

상기 우레아는 6 g 내지 24 g이 첨가될 수 있으며, 상기 티타늄 이소프록사이드 (Titanium Isopropoxside, TTIP)는 20 ml 내지 50 ml 첨가될 수 있다.6 g to 24 g of urea may be added, and 20 ml to 50 ml of titanium isopropoxside (TTIP) may be added.

상기 소성은 200℃ 내지 600℃의 온도로 2시간 내지 4시간 동안 수행할 수 있다.The sintering may be performed at a temperature of 200° C. to 600° C. for 2 hours to 4 hours.

상기 카본 나이트라이드를 합성하기위해 멜라민을 400℃ 내지 700℃의 온도에서 2시간 내지 4시간 동안 수행 할 수 있다. In order to synthesize the carbon nitride, melamine may be performed at a temperature of 400° C. to 700° C. for 2 hours to 4 hours.

상기 6)단계의 카본 나이트라이드는 1 wt.% 내지 10 wt.%로 질소 도핑된 티타늄 나노 파티클과 혼합될 수 있으며, 상기 카본 나이트라이드와 상기 질소도핑된 티타늄 나노 파티클의 합이 100 wt.% 이다.The carbon nitride in step 6) may be mixed with nitrogen-doped titanium nanoparticles in an amount of 1 wt.% to 10 wt.%, and the sum of the carbon nitride and the nitrogen-doped titanium nanoparticles is 100 wt.% am.

상기 NaOH 수용액은 4M 내지 12M 농도를 사용하고, 상기 수열반응은 120℃ 내지 200℃의 온도에서 10시간 내지 24시간 동안 반응 할 수 있다.The NaOH aqueous solution uses a concentration of 4M to 12M, and the hydrothermal reaction may be performed at a temperature of 120°C to 200°C for 10 hours to 24 hours.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. Example 1 .

우레아 6 g, 10 mL의 암모니아수, 70 mL의 증류수를 1시간 동안 교반하여 균질된 A혼합용액을 제조하여 준비한다.Prepare a homogeneous mixed solution A by stirring 6 g of urea, 10 mL of aqueous ammonia, and 70 mL of distilled water for 1 hour.

TTIP 20 mL, 에틸렌 글리콜 10 mL 및 증류수 50 mL를 넣고 1시간 동안 교반시켜 B혼합용액을 제조하여 준비한다.Add 20 mL of TTIP, 10 mL of ethylene glycol, and 50 mL of distilled water, and stir for 1 hour to prepare a mixed solution B.

상기 A혼합용액과 B혼합용액을 혼합하고, 1M 황산을 첨가하여 pH를 4.3으로 조정시킨 후, 30분간 초음파처리 해준다. 생성물을 여과시킨후 90℃의 진공오븐에서 12시간 동안 건조 시킨다.The A mixed solution and B mixed solution are mixed, the pH is adjusted to 4.3 by adding 1M sulfuric acid, and then sonicated for 30 minutes. After filtering the product, it is dried in a vacuum oven at 90° C. for 12 hours.

상기 건조 후 만들어진 생성물을 200℃의 온도에서 1시간 동안 소성시켜 질소 도핑된 티타늄 나노파티클을 제조한다.Nitrogen-doped titanium nanoparticles are prepared by calcining the product made after drying at a temperature of 200° C. for 1 hour.

카본 나이트라이드를 합성하기 위해 멜라민을 400℃의 온도에서 2시간 동안 유지시킨다.Melamine is maintained at a temperature of 400° C. for 2 hours to synthesize carbon nitride.

상기 제조된 질소 도핑 티타늄 나노파티클 99wt.%와 카본 나이트라이드 1 wt.%를 혼합한 후 4M NaOH 수용액을 사용하여 1시간 동안 교반시킨 후 Teflon line autoclave에 넣고 120℃에서 2시간 동안 반응 시켰다. 마지막으로 반응을 마친 현탁액을 건조시켜 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체를 제조 하였다.After mixing 99 wt.% of the nitrogen-doped titanium nanoparticles prepared above and 1 wt.% of carbon nitride, the mixture was stirred for 1 hour using a 4M aqueous NaOH solution, and then placed in a Teflon line autoclave and reacted at 120° C. for 2 hours. Finally, the reaction suspension was dried to prepare a nitrogen-doped titanium nanotube/carbon nitride composite.

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, 우레아 첨가량을 9 g, TTIP 첨가량을 25 mL로 하여, 만들어진 생성물을 300℃ 온도에서 1시간 동안 소성시킨다. 멜라민 열처리 온도를 470℃에서 2시간 동안 소성, 상기 제조된 질소 도핑된 티타늄 나노파티클 97 wt.%와 카본 나이트라이드 3 wt.%를 혼합한 후 6M NaOH 수용액을 이용하여 140℃의 온도로 4시간 동안 수열합성해서 수행하였다. The same procedure as in Example 1 was performed, except that the amount of urea added was 9 g and the amount of TTIP added was 25 mL, and the resulting product was calcined at 300° C. for 1 hour. The melamine heat treatment temperature was calcined at 470° C. for 2 hours, 97 wt.% of the nitrogen-doped titanium nanoparticles prepared above and 3 wt.% of carbon nitride were mixed, and then 6M NaOH aqueous solution was used at a temperature of 140° C. for 4 hours. During the hydrothermal synthesis was carried out.

실시예 3.Example 3.

상기 실시예 2와 동일하게 과정을 실시하되, 우레아 첨가량을 12 g, TTIP 첨가량을 30 mL로 한다. 멜라민 열처리 온도를 500℃에서 2시간 동안 소성, 상기 제조된 질소 도핑된 티타늄 나노파티클 95 wt.%와 카본 나이트라이드를 5 wt.%를 혼합한 후 6M NaOH 수용액을 이용하여 160℃의 온도로 6시간 동안 수열합성해서 수행하였다. The same procedure was carried out as in Example 2, except that the amount of urea added was 12 g and the amount of TTIP added was 30 mL. After calcining the melamine heat treatment temperature at 500 ° C. for 2 hours, mixing 95 wt. % of the nitrogen-doped titanium nanoparticles prepared above and 5 wt. Hydrothermal synthesis was carried out for a period of time.

실시예 4.Example 4.

상기 실시예 3과 동일하게 과정을 실시하되, 우레아 첨가량을 15 g, TTIP 첨가량을 30 mL로 하며, 만들어진 생성물을 400℃온도에서 2시간 동안 소성시킨다. 멜라민 열처리 온도를 550℃에서 2시간동안 소성, 상기 제조된 질소 도핑된 티타늄 나노파티클 93 wt.%와 카본 나이트라이드 함량 7 wt.%를 혼합하고, 복합체 제조시 8M NaOH 수용액을 이용하여 180℃의 온도로 10시간 동안 수열합성해서 수행하였다.The same procedure was carried out as in Example 3, except that the amount of urea added was 15 g and the amount of TTIP added was 30 mL, and the resulting product was calcined at 400° C. for 2 hours. The melamine heat treatment temperature was calcined at 550 ° C. for 2 hours, 93 wt. % of the nitrogen-doped titanium nanoparticles prepared above and 7 wt. It was carried out by hydrothermal synthesis at a temperature for 10 hours.

실시예 5.Example 5.

상기 실시예 4와 동일하게 과정을 실시하되, 우레아 첨가량을 18 g, TTIP 첨가량을 35 mL로 하여 만들어진 생성물을 400℃온도에서 4시간 동안 소성시킨다. 멜라민 열처리 온도를 550℃에서 2시간동안 소성, 상기 제조된 질소 도핑된 티타늄 나노파티클 90 wt.%와 카본 나이트라이드 함량 10 wt.%를 혼합하고, 복합체 제조시 10M NaOH 수용액을 이용하여 180℃의 온도로 10시간 동안 수열합성해서 수행하였다.The process was carried out in the same manner as in Example 4, but the product prepared by adding urea to 18 g and TTIP to 35 mL was calcined at 400° C. for 4 hours. The melamine heat treatment temperature was sintered at 550 ° C. for 2 hours, 90 wt. % of the nitrogen-doped titanium nanoparticles prepared above and 10 wt. % of carbon nitride were mixed, and 10 M NaOH aqueous solution was used to prepare the composite. It was carried out by hydrothermal synthesis at a temperature for 10 hours.

실시예 6.Example 6.

상기 실시예 5와 동일하게 과정을 실시하되, 우레아 첨가량을 21 g, TTIP 첨가량을 35 mL로 하며, 만들어진 생성물을 500℃온도에서 4시간 동안 소성시킨다. 멜라민 열처리 온도를 600℃에서 2시간 동안 소성, 상기 제조된 질소 도핑된 티타늄 나노파티클 85 wt.%와 카본 나이트라이드 함량 15 wt.%를 혼합하고, 복합체 제조시 10M NaOH 수용액을 200℃의 온도로 18시간 동안 수열합성해서 수행하였다.The same procedure was carried out as in Example 5, except that the amount of urea added was 21 g and the amount of TTIP added was 35 mL, and the resulting product was calcined at 500° C. for 4 hours. The melamine heat treatment temperature was calcined at 600° C. for 2 hours, the prepared nitrogen-doped titanium nanoparticles 85 wt.% and carbon nitride content 15 wt.% were mixed, and 10M NaOH aqueous solution was heated to a temperature of 200° C. Hydrothermal synthesis was carried out for 18 hours.

실시예 7.Example 7.

상기 실시예 6과 동일하게 과정을 실시하되, 우레아 첨가량을 24 g, TTIP 첨가량을 40 mL로 하며, 만들어진 생성물을 600℃온도에서 6시간 동안 소성시킨다. 멜라민 열처리 온도를 700℃에서 2시간 동안 소성, 상기 제조된 질소 도핑된 티타늄 나노파티클 80 wt.%와 카본 나이트라이드 함량 20 wt.%를 혼합하고, 복합체 제조 시 수용액 12M NaOH 수용액을 이용하여 200℃의 온도로 24시간 동안 수열합성해서 수행하였다.The same procedure was carried out as in Example 6, except that the amount of urea added was 24 g and the amount of TTIP added was 40 mL, and the resulting product was calcined at a temperature of 600° C. for 6 hours. The melamine heat treatment temperature was calcined at 700 ° C. for 2 hours, 80 wt. % of the nitrogen-doped titanium nanoparticles prepared above and 20 wt. It was carried out by hydrothermal synthesis at a temperature of 24 hours.

비교예 1.Comparative Example 1.

상기 실시예 4와 동일하게 과정을 실시하되, 우레아와 수열합성 반응을 하지 않고 수행하였다.The procedure was carried out in the same manner as in Example 4, but without hydrothermal reaction with urea.

비교예 2.Comparative Example 2.

상기 실시예 5와 동일하게 과정을 실시하되, 수열합성 과정 시 카본 나이트라이드를 첨가하지 않고 수행하였다.The same procedure as in Example 5 was performed, except that carbon nitride was not added during the hydrothermal synthesis.

상기 실시예 1 내지 7, 비교예 1과 2에 따른 제조조건을 하기 표 1에 도시하였다.The manufacturing conditions according to Examples 1 to 7 and Comparative Examples 1 and 2 are shown in Table 1 below.

Figure 112020098718155-pat00001
Figure 112020098718155-pat00001

상기 [표 1]은 본 발명에 따른 구형 티타늄 다이옥사이드의 제조조건을 나타낸 것이다.The [Table 1] shows the manufacturing conditions of the spherical titanium dioxide according to the present invention.

측정예 1. 실시예에 따라 제조한 질소 도핑된 티타늄 나노튜브의 모폴로지 및 표면구조 관찰Measurement Example 1. Observation of morphology and surface structure of nitrogen-doped titanium nanotubes prepared according to Examples

High Resolution Scanning Electron Microscopy (SU 8010, Hitach Co., Ltd.)을 통해 실시예에 따라 제조한 질소 도핑된 티타늄 나노튜브의 모폴로지 및 표면 구조를 관찰 하였다. 관찰결과는 도 1에 도시하였다.The morphology and surface structure of the nitrogen-doped titanium nanotubes prepared according to Examples were observed through High Resolution Scanning Electron Microscopy (SU 8010, Hitach Co., Ltd.). The observation results are shown in FIG. 1 .

측정예 2. 실시예에 따라 제조한 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체의 모폴로지 및 표면구조 관찰Measurement Example 2. Observation of morphology and surface structure of nitrogen-doped titanium nanotube/carbon nitride composite prepared according to Example

Transmission Electron Microscope (TEM-2100F, JEOL Co., USA)를 통해 본 발명에서 제조한 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체의 모폴로지 및 표면구조를 관찰하였다.Nitrogen-doped titanium nanotube/carbon nitride prepared in the present invention through a Transmission Electron Microscope (TEM-2100F, JEOL Co., USA) The morphology and surface structure of the composite were observed.

관찰결과는 도 2에 도시하였다.The observation results are shown in FIG. 2 .

도 2를 참조하면, 도 1(SEM)보다 더 자세하게 확인 할 수 있는 방법이 TEM을 이용하는 것입니다. 왼쪽 그림은 나노튜브형상만 나타나 있으며, 오른쪽 그림은 카본 나이트라이드와 나노튜브가 같이 복합화 되어있는걸 확인할 수 있다.Referring to FIG. 2 , a method that can be confirmed in more detail than FIG. 1 (SEM) is to use TEM. In the picture on the left, only the nanotube shape is shown, and in the picture on the right, it can be seen that carbon nitride and nanotubes are complexed together.

측정예 3. 실시예1 내지 8, 비교예 1,2에 따라 제조한 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체의 광분해 능력 측정Measurement Example 3. Measurement of photolysis ability of nitrogen-doped titanium nanotube/carbon nitride composites prepared according to Examples 1 to 8 and Comparative Examples 1 and 2

본 발명에 따른 구형 이산화 티타늄/카본 나이트라이드 복합체의 광분해 능력 측정을 위해, Solar simulator (Model 11000, Abet Technologies, USA)을 태양광 조사와 함께 교반이 될 수 있도록 설치하고, 반응기는 70 mL 비커를 사용했고 10ppm 로다민 비 50 mL와 제조된 복합체 0.02 g을 첨가하였다. 우선 외부의 빛이 들어오지 않는 암실 조건에서 제조된 복합체를 로다민 비 (rhodamine B) 용액과 30 분 동안 안정화 시킨 후 태양광과 함께 교반시켜 로다민 비 (rhodamine B)를 광분해 시켰다. 광분해율 측정을 위해 UV-Vis spectrophotometer (S-3100, Scinco Co., Korea)를 사용하였고, 15분 간격으로 2시간 동안 시료를 채취해 흡광도를 통해 농도 감소를 확인하였다.To measure the photolysis ability of the spherical titanium dioxide/carbon nitride composite according to the present invention, a Solar simulator (Model 11000, Abet Technologies, USA) was installed so that it could be stirred with sunlight irradiation, and the reactor was equipped with a 70 mL beaker. 50 mL of 10 ppm rhodamine ratio and 0.02 g of the prepared complex were added. First, the complex prepared in a dark room without external light was stabilized with a rhodamine B solution for 30 minutes, and then stirred with sunlight to photolyse the rhodamine B. A UV-Vis spectrophotometer (S-3100, Scinco Co., Korea) was used to measure the photodegradation rate, and samples were collected at 15-minute intervals for 2 hours to confirm the decrease in concentration through absorbance.

측정예 3의 로다민 비(rhodamine B) 분해효율 결과는 하기 표 2에 도시하였The results of rhodamine B decomposition efficiency of Measurement Example 3 are shown in Table 2 below.

도 3을 참조하면, 175분 동안 광분해율을 측정 한 결과 로다민 비(rhodamine B)의 분해 효율은 85.12%로 가장 좋은 효율을 나타내는 것을 확인할 수 있었다.Referring to FIG. 3 , as a result of measuring the photodegradation rate for 175 minutes, it was confirmed that the decomposition efficiency of rhodamine B was 85.12%, indicating the best efficiency.

Figure 112020098718155-pat00002
Figure 112020098718155-pat00002

상기 [표 2]는 본 발명에 따른 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체의 rhodamine B 염료 분해효율을 나타낸 것이다.[Table 2] shows the rhodamine B dye decomposition efficiency of the nitrogen-doped titanium nanotube/carbon nitride composite according to the present invention.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다.Above, a specific part of the content of the present invention has been described in detail, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby It will be obvious. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (6)

1) 우레아, 암모니아 및 증류수를 혼합하여 A혼합용액을 준비하는 단계;
2) 전구체 티타늄 이소프록사이드 (Titanium Isopropoxside, TTIP), 에틸렌 글리콜 및 증류수를 혼합하여 B혼합용액을 준비하는 단계;
3) 상기 A혼합용액과 B혼합용액을 혼합한 후 황산을 첨가하여 pH 4.0 내지 4.6 으로 조정하고 여과 및 건조한 혼합물을 준비하는 단계;
4) 상기 혼합물을 소성하여 질소 도핑된 티타늄 나노파티클을 제조하는 단계;
5) 멜라민을 열처리하여 카본 나이트라이드를 제조하는 단계;
6) 상기 카본 나이트라이드와 상기 질소 도핑된 티타늄 나노파티클을 혼합 후 NaOH 수용액을 이용하여 수열합성하는 단계를 포함하고,
상기 우레아는 15 g이 첨가되고, 상기 티타늄 이소프록사이드 (Titanium Isopropoxside, TTIP)는 30 mL 첨가되고,
상기 멜라민을 550℃의 온도로 열처리하여 카본 나이트라이드를 제조하며,
상기 6)단계의 카본 나이트라이드 7 wt.%로 질소 도핑된 티타늄 나노 파티클과 혼합되는 것을 특징으로 하는 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체 제조 방법.
1) preparing a mixed solution A by mixing urea, ammonia and distilled water;
2) preparing a B mixture solution by mixing the precursor titanium isopropoxside (Titanium Isopropoxside, TTIP), ethylene glycol and distilled water;
3) mixing the A mixed solution and the B mixed solution, adding sulfuric acid to adjust the pH to 4.0 to 4.6, filtration and preparing a dry mixture;
4) preparing nitrogen-doped titanium nanoparticles by calcining the mixture;
5) heat-treating melamine to prepare carbon nitride;
6) mixing the carbon nitride and the nitrogen-doped titanium nanoparticles and then hydrothermal synthesis using an aqueous NaOH solution;
15 g of the urea is added, and 30 mL of the titanium isopropoxside (TTIP) is added,
The melamine is heat-treated at a temperature of 550° C. to prepare carbon nitride,
Nitrogen-doped titanium nanotube/carbon nitride composite manufacturing method, characterized in that it is mixed with nitrogen-doped titanium nanoparticles at 7 wt.% of carbon nitride in step 6).
삭제delete 제 1항에 있어서, 상기 소성은 200℃ 내지 600℃의 온도로 1시간 내지 6시간 동안 수행하는 것을 특징으로 하는 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체의 제조 방법.The method of claim 1, wherein the sintering is performed at a temperature of 200°C to 600°C for 1 hour to 6 hours. 삭제delete 삭제delete 제 1항에 있어서, 상기 NaOH 수용액은 4M 내지 12M 농도를 사용하고, 상기 수열 반응은 120℃ 내지 200℃의 온도에서 2시간 내지 24시간 동안 반응하는 것을 특징으로 하는 질소 도핑된 티타늄 나노튜브/카본 나이트라이드 복합체 제조 방법.The nitrogen-doped titanium nanotube/carbon according to claim 1, wherein the NaOH aqueous solution uses a concentration of 4M to 12M, and the hydrothermal reaction is performed at a temperature of 120°C to 200°C for 2 hours to 24 hours. A method for preparing a nitride complex.
KR1020200119670A 2020-09-17 2020-09-17 Manufacturing method of n-doped titanium dioxide nanotubes/graphitic carbon nitride composites for photocatalyst KR102393117B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200119670A KR102393117B1 (en) 2020-09-17 2020-09-17 Manufacturing method of n-doped titanium dioxide nanotubes/graphitic carbon nitride composites for photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200119670A KR102393117B1 (en) 2020-09-17 2020-09-17 Manufacturing method of n-doped titanium dioxide nanotubes/graphitic carbon nitride composites for photocatalyst

Publications (2)

Publication Number Publication Date
KR20220037109A KR20220037109A (en) 2022-03-24
KR102393117B1 true KR102393117B1 (en) 2022-05-02

Family

ID=80935693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200119670A KR102393117B1 (en) 2020-09-17 2020-09-17 Manufacturing method of n-doped titanium dioxide nanotubes/graphitic carbon nitride composites for photocatalyst

Country Status (1)

Country Link
KR (1) KR102393117B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260682B (en) * 2022-07-25 2024-02-06 山东农业大学 Preparation method of recyclable and renewable photocatalytic preservative film
CN116747897B (en) * 2023-08-16 2023-10-20 内蒙古工业大学 C, N, S co-doped TiO 2 Acid etching g-C 3 N 4 Heterojunction photocatalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200032537A (en) * 2018-09-18 2020-03-26 인하대학교 산학협력단 Manufacturing method of titanium dioxide sphere/graphitic carbon nitride composites for photocatalyst
KR102185381B1 (en) 2018-12-26 2020-12-01 인하대학교 산학협력단 Manfacturing method of n-doped titanium nanotube/reduced graphene oxide composites

Also Published As

Publication number Publication date
KR20220037109A (en) 2022-03-24

Similar Documents

Publication Publication Date Title
Liang et al. Preparation of the W 18 O 49/gC 3 N 4 heterojunction catalyst with full-spectrum-driven photocatalytic N 2 photofixation ability from the UV to near infrared region
Xiang et al. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air
Tan et al. Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: Importance of annealing temperature on the photoactivity toward reduction of carbon dioxide
Jia et al. Towards a highly efficient simulated sunlight driven photocatalyst: a case of heterostructured ZnO/ZnS hybrid structure
KR20200032537A (en) Manufacturing method of titanium dioxide sphere/graphitic carbon nitride composites for photocatalyst
KR101954792B1 (en) Method of manufacturing metal-loaded TiO2/graphene composites through one-pot hydrothermal synthesis and the TiO2/graphene composites manufactured by the same
KR101141725B1 (en) Manufacturing method of impurities doped titanium dioxide photocatalysts with excellent photo activity at visible light and ultraviolet light region
KR102393117B1 (en) Manufacturing method of n-doped titanium dioxide nanotubes/graphitic carbon nitride composites for photocatalyst
Zhang et al. Well-crystallized mesoporous TiO 2 shells for enhanced photocatalytic activity: prepared by carbon coating and silica-protected calcination
KR101065804B1 (en) Method for preparation of monodispersed anatase titanium dioxide nanoparticle
Liu et al. Synthesis of nanocrystalline Ga–TiO2 powders by mild hydrothermal method and their visible light photoactivity
Yu et al. Visible-light photocatalytic tetracycline degradation over nanodots-assembled N-ZrO2− x nanostructures: Performance, degradation pathways and mechanistic insight
Duan et al. Direct Z-scheme Bi2O2CO3/porous g-C3N4 heterojunction for improved photocatalytic degradation performance
CN112473712A (en) CeO treated with different atmospheres2/g-C3N4Heterojunction material, preparation method and application thereof
Nguyen-Le et al. Effective photodegradation of dyes using in-situ N-Ti3+ co-doped porous titanate-TiO2 rod-like heterojunctions
KR101749673B1 (en) Manufacturing method of mesoporous anatase titanium dioxide spheres photocatalyst
Albouyeh et al. The green synthesis of magnesium oxide nanoparticles in MFI type zeolite and its application as a photocatalyst
KR102185381B1 (en) Manfacturing method of n-doped titanium nanotube/reduced graphene oxide composites
CN111686783B (en) 2D/2D heterojunction BiO2-x/g-C3N4 nanosheet composite material for photocatalytic nitrogen reduction
Zhang et al. Constructing bifunctional TiO2 from NH2-MIL-125 (Ti) for excellent photocatalytic tetracycline degradation
Chimmikuttanda et al. Hydrothermal synthesis of TiO 2 hollow spheres adorned with SnO 2 quantum dots and their efficiency in the production of methanol via photocatalysis
KR101943921B1 (en) Manufacturing method of nitrogen doped-TiO2/graphene composite
Shapovalova et al. The influence of titanium dioxide modification by sulfur and carbon on physico-chemical and photocatalytic properties
CN109201026A (en) A kind of preparation method and application of visible light-responded auto-dope photochemical catalyst
CN114849692B (en) TiO (titanium dioxide) 2 -C-MoO 2 Preparation method and application of nanocomposite

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant