KR102382529B1 - Solar Pannel system using Avalanching Nano Particle and the method using it - Google Patents

Solar Pannel system using Avalanching Nano Particle and the method using it Download PDF

Info

Publication number
KR102382529B1
KR102382529B1 KR1020210085697A KR20210085697A KR102382529B1 KR 102382529 B1 KR102382529 B1 KR 102382529B1 KR 1020210085697 A KR1020210085697 A KR 1020210085697A KR 20210085697 A KR20210085697 A KR 20210085697A KR 102382529 B1 KR102382529 B1 KR 102382529B1
Authority
KR
South Korea
Prior art keywords
solar array
solar
power generation
average
silicon substrate
Prior art date
Application number
KR1020210085697A
Other languages
Korean (ko)
Inventor
김종찬
정진수
김현태
Original Assignee
벽산파워 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 벽산파워 주식회사 filed Critical 벽산파워 주식회사
Priority to KR1020210085697A priority Critical patent/KR102382529B1/en
Priority to KR1020210165035A priority patent/KR102481077B1/en
Application granted granted Critical
Publication of KR102382529B1 publication Critical patent/KR102382529B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a solar power generation system using a light avalanche phenomenon and, more specifically, to a solar power generation system using a light avalanche phenomenon using a non-linear optical effect that emits avalanche photons. The solar power generation system has higher efficiency by using a large number of photons that are disproportionately generated when a material emits light above a critical intensity.

Description

광사태 현상을 활용한 태양발전 시스템 및 이를 이용한 방법{Solar Pannel system using Avalanching Nano Particle and the method using it}Solar panel system using Avalanching Nano Particle and the method using it}

본 발명은 광사태 현상을 활용한 태양발전 시스템에 관한 것으로서, 보다 상세하게는 애벌런치(Avalanche) 광자를 방출하는 비선형적 광학 효과를 이용한 광사태 현상을 활용한 태양발전 시스템에 관한 것이다.The present invention relates to a solar power generation system utilizing the avalanche phenomenon, and more particularly, to a solar power generation system utilizing the avalanche phenomenon using a non-linear optical effect emitting avalanche photons.

도 1에 도시된 바와 같이 양자역학의 출현 이래로 나노에 관한 연구가 활발히 진행되어오고 있다. As shown in Fig. 1, since the advent of quantum mechanics, research on nano has been actively conducted.

특히 반도체에서 입자 크기가 나노 단위가 되면 bulk 상태일 때와는 다른 물리적 특성을 보이므로 태양광 어레이에 활용되는 등 앞으로 다양한 분야에서 사용될 것으로 기대되고 있다.In particular, when the particle size in semiconductors becomes nano-unit, physical properties are different from those in the bulk state, so it is expected to be used in various fields in the future, such as being used in solar arrays.

나노 입자(nanoparticle)는 적어도 한 차원이 100nm, 즉 천만분의 1미터이하인 입자이다.A nanoparticle is a particle with at least one dimension of 100 nm, that is, less than ten millionths of a meter.

분자나 원자를 조작해 새로운 구조, 소재, 기계, 기구, 소자를 제작하고 그 구조를 연구하는 나노기술의 영역에 속하는 입자이다. Particles belonging to the field of nanotechnology, which manufacture new structures, materials, machines, instruments, and devices by manipulating molecules or atoms, and study their structures.

미국 국립 과학재단의 나노기술에 대한 정의에 의하면 나노 기술이 다루는 대상의 크기는 최소한 1~100nm 가 되어야 한다. 또 나노 크기의 물리, 화학적 성질을 근본적으로 제어할 수 있는 과정을 통해 만들 수 있어야 하고 더 큰 구조물로 합쳐야만 한다. According to the US National Science Foundation's definition of nanotechnology, the size of an object covered by nanotechnology must be at least 1-100 nm. In addition, nanoscale physical and chemical properties must be made through a process that can be fundamentally controlled, and must be combined into a larger structure.

이 정의에 따르면 크기만 생각했을 때 원자의 개수가 수 개 또는 수 백 개의 복합체, DNA, 단백질 등도 나노에 속한다.According to this definition, if only the size is considered, complexes with several or hundreds of atoms, DNA, and proteins, etc., also belong to nano.

나노 입자의 응용 예를 보면, 종래 나노입자를 기존의 제품에 첨가하면 얇은 층을 형성하면서 여러가지 특성을 나타내는데, 이 특성을 이용해 기존 제품에 응용할 수 있다. Looking at the application examples of nanoparticles, when conventional nanoparticles are added to existing products, they show various characteristics while forming a thin layer, and these characteristics can be used to apply to existing products.

이렇듯 나노미터 크기 단위의 미립자가 가지는 특이한 물리적, 화학적 성질을 이해하면 아주 다양한 분야에 적용 가능하다.Understanding the specific physical and chemical properties of nanometer-sized particles can be applied to a wide variety of fields.

그러나 아직 태양광 어레이에 활용되는 등 앞으로 다양한 분야에서 사용될 것으로 기대가 될 뿐 실제적으로 발명이 완성된 적은 없었다. However, it is expected that it will be used in various fields in the future, such as being used in solar arrays, but the invention has never been actually completed.

본 발명은 상기와 같은 문제점을 해결하기 위해 이루어진 것으로서, 물질이 임계 강도 이상으로 빛을 방출할 때 불균형적으로 많은 수가 일시적으로 발생하는 광사태 효과를 이용한 광사태 현상을 활용한 태양발전 시스템을 제공하는 데 목적이 있다.The present invention has been made to solve the above problems, and provides a solar power generation system utilizing the avalanche effect using the avalanche effect, which occurs temporarily in a disproportionately large number when a material emits light above a critical intensity. purpose is to

또한 본 발명은 태양광 어레이 뿐만 아니라 이를 응용한 다양한 분야에 적용 가능한 광사태 현상을 활용한 태양발전 시스템을 제공하는 데 목적이 있다. In addition, an object of the present invention is to provide a solar power generation system utilizing the avalanche phenomenon applicable to various fields to which the solar array is applied.

상기 과제를 해결하기 위하여 본 발명은 툴륨 이온이 도핑된 나노입자를 에미터층, 전극, 전계층 중 하나 이상에 포함시킨다.In order to solve the above problems, the present invention includes nanoparticles doped with thulium ions in one or more of an emitter layer, an electrode, and an electric field layer.

상기 툴륨 이온을 이용한 이온도핑 공정을 이용하여 에미터층, 전극, 전계층을 구현한다.An emitter layer, an electrode, and an electric field layer are implemented using the ion doping process using the thulium ions.

상기 태양광 어레이가 생산하는 계절별 평균, 또는 년별 태양광 생산 에너지 평균 값으로 모니터링한다.It is monitored by the average value of the solar energy produced by the solar array for each season or the average annual solar energy produced by the solar array.

본 발명은 태양광 어레이 중에서 툴륨 이온이 도핑된 나노입자 및 p형 불순물 이온을 주입하여 구성된 실리콘 기판을 준비하는 단계; 툴륨 이온이 도핑된 나노입자 및 n형 불순물 이온을 주입하여 에미터층(n+)을 형성하는 단계; 실리콘 기판 전면의 그리드 전극, 버스 전극이 형성될 영역과 기판 후면의 n 전극이 형성될 영역을 선택적으로 노출시키는 새도우 마스크를 구비시킨 상태에서, 툴륨 이온이 도핑된 나노입자 및 고농도의 n형 불순물 이온을 주입하여 고농도 에미터층(n++)을 형성하는 단계; 및 상기 실리콘 기판 후면의 고농도 에미터층을 노출시키지 않는 새도우 마스크를 통해 실리콘 기판 후면 상에 툴륨 이온이 도핑된 나노입자 및 고농도의 p형 불순물 이온을 주입하여 후면전계층(p++)을 형성하는 단계;를 포함하여 이루어지되, 상기 태양광 어레이로서 MWT형 태양광 어레이(2)을 덮는 폴리카보네이트와 에틸렌-테트라플루오로에틸렌에 벌집 구조 세공을 적용하여 구조상의 빈 공간을 줄이고, 상기 벌집 구조에 따라 일정치의 내구도 및 강도를 유지하며, 상기 태양광 어레이에 결합되는 알루미늄 포일의 재귀반사되는 태양광을 용이하게 이용하기 위해 MWT형 태양광 어레이(2) 셀의 전면에 벌집 구조를 포함하는 다각형 구조의 패턴을 형성하여, 패턴의 밀집화를 통해 전자의 수집 거리를 일정치로 할 수 있고, 상기 태양광 어레이의 출력에 각기 연결되어, 각 태양광 어레이의 출력에 대한 모니터링 정보를 모니터링 시스템으로 송신하여 상기 연결된 복수의 태양광 어레이(111)의 각 출력 전압과 전류를 측정하여 모니터링부(112)와 통신하여 디스플레이부(113)에 데이터를 표시할 수 있으며, 상기 모니터링부(112)는 태양광 어레이 채널별 발전량 및 평균 발전량으로 수학식 1을 이용하여, 태양광 어레이 채널별 '발전량 변동 계수'를 표시하며, 상기 발전량 변동 계수에서, 상기 실리콘 기판 100 중량부에서 툴륨 이온이 도핑된 나노물질이 일정 중량부인 경우의 상기 태양광 어레이모듈(111)들 내의 온도센서부가 일정 시간 동안 각각의 태양광 어레이모듈(111)의 생산량을 측정하여 실시간으로 또는 저장 후 기 설정된 시간에 관리서버(150)로 전송하며, 상기 관리서버(150)는 정상 상태의 태양광 어레이모듈(111)들로부터 수신된 태양광 어레이모듈(111)들의 일정 시간 동안의 에너지 생산량을 저장하고, 상기 태양광 어레이모듈(111)들의 365일별로 측정된 일별 평균 값, 또는 월 단위로 측정되어 평균된 월별 평균값, 계절 단위로 측정된 계절별 평균값을 산출한 후, 매일, 매월 또는 매 계절별로 산출된 값을 변경 저장하며, 상기 툴륨 이온이 도핑된 나노물질이 일정 중량부인 경우 각각 일별 평균, 월별 평균, 계절별 평균, 또는 년별 태양광 생산 에너지 평균 값으로 모니터링하는 모니터링부(112)에서 모니터링되고, 상기 모니터링부(112)에서 모니터링된 수치에 있어서, 태양광 어레이모듈(111)의 에너지 생산량이 일정치에서 일정 범위의 변화를 가지는 경우 태양광 어레이모듈(111)이 정상 동작하는 것으로 판단하고, 해당 범위를 벗어나는 경우 오작동하는 것으로 판단하며, 상기 고장범위 설정과정의 수행을 위해 전송되는 상기 오동작 태양광 어레이모듈(111)의 오동작 온도변화 정보 또한 수회 관리서버(150)로 전송된 후 평균의 방법에 의해 보정되고, 상기 오동작은 상기 태양광 어레이모듈(111)의 개방 또는 단락 상태를 포함하여, 상기 오동작 온도변화 또한 상기 태양광 어레이모듈(111)의 개방 상태에서의 오동작 온도변화와 단락 상태에서의 오동작 온도변화를 포함한다.The present invention comprises the steps of: preparing a silicon substrate formed by implanting thulium ion-doped nanoparticles and p-type impurity ions in a solar array; forming an emitter layer (n+) by implanting thulium ion-doped nanoparticles and n-type impurity ions; Thulium ion-doped nanoparticles and high-concentration n-type impurity ions are provided with a shadow mask selectively exposing the region where the grid electrode and bus electrode will be formed on the front surface of the silicon substrate and the region where the n-electrode will be formed on the rear surface of the substrate forming a high-concentration emitter layer (n++) by injecting and implanting thulium ion-doped nanoparticles and high-concentration p-type impurity ions on the rear surface of the silicon substrate through a shadow mask that does not expose the high-concentration emitter layer on the rear surface of the silicon substrate to form a rear electric field layer (p++); Doedoe including, as the solar array, apply honeycomb structure pores to polycarbonate and ethylene-tetrafluoroethylene covering the MWT type solar array 2 as the solar array to reduce structural void space, and work according to the honeycomb structure Polygonal structure including a honeycomb structure on the front surface of the MWT type photovoltaic array (2) cell in order to maintain the durability and strength of the stationary and to easily use the retroreflected sunlight of the aluminum foil coupled to the photovoltaic array. By forming a pattern, the electron collection distance can be set to a constant value through the densification of the pattern, and each is connected to the output of the solar array, and monitoring information on the output of each solar array is transmitted to the monitoring system. Each of the output voltages and currents of the plurality of connected solar arrays 111 may be measured to communicate with the monitoring unit 112 to display data on the display unit 113 , and the monitoring unit 112 may include the solar array Using Equation 1 as the amount of power generation per channel and the average power generation amount, the 'coefficient of generation variation' for each solar array channel is displayed, and in the power generation variation coefficient, the nanomaterial doped with thulium ions in 100 parts by weight of the silicon substrate is constant. In the case of a weight part, the temperature sensor unit in the solar array modules 111 measures the production amount of each solar array module 111 for a certain period of time and transmits it to the management server 150 in real time or at a preset time after storage and the management server 150 stores the energy production for a certain time of the solar array modules 111 received from the solar array modules 111 in a normal state, and After calculating the daily average value measured by 365 days, or the average monthly value measured in monthly units, and seasonal average values measured in seasonal units, daily, monthly or changes and stores the calculated value for each season, and when the thulium ion-doped nanomaterial is a certain weight part, the monitoring unit 112 for monitoring as a daily average, monthly average, seasonal average, or annual solar energy production average value, respectively ), and in the value monitored by the monitoring unit 112, when the energy production of the solar array module 111 has a change in a certain range from a certain value, the solar array module 111 operates normally. and it is determined that it is malfunctioning if it is out of the range, and the malfunction temperature change information of the malfunctioning solar array module 111 transmitted to perform the failure range setting process is also transmitted to the management server 150 several times. Corrected by the post-averaging method, the malfunction includes an open or short-circuit state of the solar array module 111, and the malfunction temperature change and malfunction temperature change in the open state of the solar array module 111 and malfunction temperature change in short circuit condition.

상기 툴륨 이온은 상기 실리콘 기판 100 중량부에서 1 중량부 내지 8 중량부 함유된다.The thulium ion is contained in an amount of 1 to 8 parts by weight based on 100 parts by weight of the silicon substrate.

상기 툴륨 이온을 이용한 이온도핑 공정 단계;를 더 포함한다.It further includes; an ion doping process step using the thulium ion.

삭제delete

상기와 같이 이루어지는 본 발명은 물질이 임계 강도 이상으로 빛을 방출할 때 불균형적으로 발생되는 많은 수의 광자를 이용하여 보다 효율이 좋은 태양 발전 시스템을 제공할 수 있다.The present invention made as described above can provide a more efficient solar power generation system by using a large number of photons that are disproportionately generated when a material emits light with a critical intensity or more.

또한 본 발명은 '광사태 나노입자(Avalanching Nano Particle: ANP)' 또는 "광사태 나노입자로부터의 거대 비선형 광학 반응(Giant Nonlinear Optical Responses from Photon-Avalanching Nanoparticles)" 법칙을 이용하여 복수개의 태양 발전 과정에 응용할 수 있다.In addition, the present invention provides a plurality of solar power generation processes using the law of 'Avalanching Nano Particles (ANP)' or "Giant Nonlinear Optical Responses from Photon-Avalanching Nanoparticles" can be applied to

또한 본 발명은 약한 광세기의 LED로도 광사태 현상을 유발시킬 수 있어, 실내에서도 태양광 발전을 유용하게 사용할 수 있다.In addition, the present invention can cause an avalanche phenomenon even with an LED of weak light intensity, so that solar power generation can be usefully used indoors.

또한 본 발명은 불확실한 기상 상황에 의한 광산란을 통해 외부로의 빛 반사가 증가하더라도 불균형적으로 발생되는 많은 수의 광자를 이용하여 태양광 모듈에 의한 광 흡수율을 거의 일정하게 유지할 수 있다.In addition, the present invention can maintain the light absorption rate by the solar module almost constant by using a large number of disproportionately generated photons even when light reflection to the outside increases through light scattering due to an uncertain weather condition.

도 1은 종래 발명에 따른 백금 나노입자의 3차원 사진을 보여주는 도면이다.
도 2는 본 발명의 일실시예에 따른 광사태 나노입자 기반 단일광선(Single-beam) 초고해상도 이미지이다.
도 3은 본 발명의 일실시예에 따른 광사태 현상이 일어나기 전과 도중과 후의 3단계 과정을 보여주는 도면이다.
도 4는 본 발명의 다른 실시예에 따른 툴륨 이온의 4f12 오비탈 에너지 준위 도면이다.
도 5는 본 발명의 다른 실시예에 따른 도핑된 nanocrystals 광사태 데모를 보여주는 도면이다.
도 6은 본 발명의 다른 실시예에 따른 8%, 20%, 100% Tm3+ 가 도핑된 nanocrystals의 실험 그래프이다.
도 7은 본 발명의 또 다른 실시예에 따른 광사태 나노입자 기반 단일광선(Single-beam) 초고해상도 이미지 도면이다.
도 8은 본 발명의 또 다른 실시예에 따른 이미지 a와 b 상의 청파란색 선에 해당하는 라인컷 그래프 도면이다.
도 9는 본 발명의 또 다른 실시예에 따른 이론적인 이미징 시뮬레이션 결과 도면이다.
도 10은 본 발명의 또 다른 실시예에 따른 여기광의 세기에 따른 단일 광사태 나노입자에 대한 실제 측정된(검은색) 이미징 해상도 선폭과 시뮬레이션 그래프이다.
도 11은 본 발명의 또 다른 실시예에 따른 도핑된 광사태 나노입자 두 개가 300 nm의 간격으로 놓여진 시료에 대해 얻어진 이미지 도면이다.
도 12는 본 발명의 또 다른 실시예에 따른 실험적으로 얻어진 g의 이미지들에 대한 시뮬레이션 결과 도면이다.
1 is a view showing a three-dimensional photograph of platinum nanoparticles according to the prior art.
2 is a single-beam ultra-high-resolution image based on avalanche nanoparticles according to an embodiment of the present invention.
3 is a view showing a three-step process before, during, and after the avalanche phenomenon occurs according to an embodiment of the present invention.
4 is a 4f 12 orbital of thulium ions according to another embodiment of the present invention. energy level diagram.
5 is a diagram showing an avalanche demonstration of doped nanocrystals according to another embodiment of the present invention.
6 is an experimental graph of 8%, 20%, 100% Tm3+ doped nanocrystals according to another embodiment of the present invention.
7 is a view of a single-beam ultra-high-resolution image based on avalanche nanoparticles according to another embodiment of the present invention.
8 is a line-cut graph diagram corresponding to the blue-blue lines on the images a and b according to another embodiment of the present invention.
9 is a diagram of theoretical imaging simulation results according to another embodiment of the present invention.
10 is an actual measured (black) imaging resolution linewidth and simulation graph for a single avalanche nanoparticle according to the intensity of excitation light according to another embodiment of the present invention.
11 is an image diagram obtained for a sample in which two doped avalanche nanoparticles are placed at an interval of 300 nm according to another embodiment of the present invention.
12 is a view showing simulation results for images of g experimentally obtained according to another embodiment of the present invention.

본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.In order to fully understand the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. This example is provided to more completely explain the present invention to those of ordinary skill in the art. Accordingly, the shapes of elements in the drawings may be exaggerated to emphasize a clearer description. It should be noted that the same members in each drawing are sometimes shown with the same reference numerals. In addition, detailed descriptions of well-known functions and configurations determined to unnecessarily obscure the gist of the present invention will be omitted.

본 발명에서 이용되는 광자 애벌런치(Photon avalanching) 현상은 물질이 임계 강도 이상으로 빛을 방출할 때 불균형적으로 많은 수의 ('애벌런치(Avalanche)') 광자를 방출하는 비선형적 광학 현상이다.The photon avalanching phenomenon used in the present invention is a nonlinear optical phenomenon in which a disproportionately large number ('Avalanche') photons are emitted when a material emits light above a critical intensity.

본 발명은 툴륨(Thulium) 이온으로 도핑 된 나노결정(Nanocrystal)이 개별적으로 광자 애벌런치를 일으킬 수 있음을 이용하여, 기존의 상향변환 나노입자의 매우 낮은 광변환 효율을 증가시켰다.The present invention increases the very low photoconversion efficiency of conventional upconversion nanoparticles by using that nanocrystals doped with Thulium ions can individually cause photon avalanche.

예를 들어, 종래에는 작은 에너지의 빛을 다중으로 흡수하여 큰 에너지의 빛으로 다시 방출하기 위해서는 매우 강한 광세기의 고출력 레이저가 사용되어야만 하고, 이에 따른 가격 상승, 열 발생, 사용자의 실명 방지를 위한 레이저 안전성(Safety) 확보 등이 상용화의 걸림돌이 되어 왔다.For example, in the prior art, a high-power laser with a very strong light intensity must be used in order to absorb multiple light of small energy and re-emit it as light of high energy, and thus a price increase, heat generation, and prevention of user's blindness Securing laser safety has been an obstacle to commercialization.

그러나 본 발명에 따른 광사태 현상을 활용한 태양발전 시스템의 태양광 어레이모듈(111)에서 다중흡수-다중방출 형태의 광학적 연쇄증폭반응을 통한 상향변환 나노입자 광변환 효율을 증가시킨다.However, in the photovoltaic array module 111 of the solar power generation system utilizing the avalanche phenomenon according to the present invention, the upconversion nanoparticle light conversion efficiency is increased through the optical chain amplification reaction of the multiple absorption-multiple emission type.

즉 기존 상향변환 나노입자의 광변환 효율을 극대화 시킬 수 있는 빛의 연쇄증폭반응인 광사태 현상(Photon Avalanche)이 태양광 어레이모듈(111) 내의 단일 나노입자에서 일어나는 것이다. That is, a photon avalanche, a chain amplification reaction of light that can maximize the light conversion efficiency of the existing upconversion nanoparticles, occurs in a single nanoparticle in the solar array module 111 .

상기 태양광 어레이모듈(111) 내의 상향변환 나노입자(Upconverting Nanoparticle=UCNP)는 큰 에너지를 갖는 빛이 물질에 흡수된 뒤 열에너지로 그 일부를 소모하고 나머지 작은 에너지가 다시 빛으로 변환되어 방출되는 보통의 하향변환과는 달리, 상향변환 나노입자에서는 작은 에너지의 빛이 다중으로 흡수된 뒤 큰 에너지의 빛으로 결합 되어 변환된다. The upconverting nanoparticles in the solar array module 111 (Upconverting Nanoparticle = UCNP) consume a portion of the light with large energy as thermal energy after being absorbed by the material, and the remaining small energy is converted back into light and emitted. Unlike downconversion, in upconversion nanoparticles, light of small energy is absorbed multiple times and then combined into light of high energy and converted.

또한 상기 태양광 어레이모듈(111) 내의 상향변환 나노입자(UCNP)는 눈에 보이지 않는 작은 에너지(장파장)의 적외선을 흡수하여 눈에 보이는 가시광선 등 큰 에너지(단파장)의 빛으로 변환시켜 주는 물성을 가지고 있다. In addition, the up-conversion nanoparticles (UCNP) in the solar array module 111 absorb infrared light of small energy (long wavelength) that is invisible to the eye and convert it into light of large energy (short wavelength) such as visible visible light. has a

상기 태양광 어레이모듈(111) 내의 빛의 연쇄증폭반응에 의한 광사태 현상은 일단 빛이 나노입자에 다중흡수된 뒤, 나노입자를 구성하는 원자 격자 구조 속에서 마치 눈사태나 산사태처럼 연쇄적인 광학 증폭반응을 일으켜서 빛의 세기가 강하게 증폭되어 나노입자로부터 다중방출되는 다중흡수-다중방출 형태의 거대 비선형 광학 현상이다.The light avalanche phenomenon due to the chain amplification reaction of light in the solar array module 111 is once multi-absorbed by the nanoparticles, and then sequentially optically amplified like an avalanche or a landslide in the atomic lattice structure constituting the nanoparticles. It is a large nonlinear optical phenomenon in the form of multiple absorption and multiple emission in which the intensity of light is strongly amplified by causing a reaction and multiple emission from nanoparticles.

이를 통하여 일상생활에서도 많이 사용되고 있는 레이저 포인터 수준의 약한 광세기로도 매우 높은 상향변환 발광효율(광변환 효율)을 유발시킬 수 있다.Through this, it is possible to induce very high up-conversion luminous efficiency (light conversion efficiency) even with a weak light intensity comparable to that of a laser pointer, which is often used in daily life.

따라서 아래에서 설명하는 다양한 태양광 어레이모듈(111)의 종류에 적극적으로 이용될 수 있을 것이다.Therefore, it will be able to be actively used for the types of various solar array modules 111 to be described below.

도 2 툴륨 이온(Tm3+)이 도핑된 나노입자 내부에서의 빛의 광사태(PA: Photon Avalanche) 연쇄증폭반응의 메커니즘을 보여주는 도면이다.2 is a view showing the mechanism of the photon avalanche (PA) chain amplification reaction inside the nanoparticles doped with thulium ions (Tm 3+ ).

또한 툴륨 이온의 농도가 8% 이상일 때 광사태 현상을 일으키는 코어-쉘 광사태 나노입자 모양을 보여준다.It also shows the shape of core-shell avalanche nanoparticles that cause an avalanche when the concentration of thulium ions is more than 8%.

또한 이터븀 이온 (Yb3+)의 바닥상태흡수(ground-state absorption)로부터 유발되는 기존의 에너지 전달 상향변환 (ETU: energy transfer upconversion) 과정과 비교하고 있다.It is also compared with the conventional energy transfer upconversion (ETU) process resulting from ground-state absorption of ytterbium ions (Yb 3+ ).

여기에서 각각 Core(알맹이), Inert Shell(비활성 껍질). Tm3+ concentration ≥ 8%(툴륨 이온 도핑 농도 8 퍼센트 이상), GSA(Ground State Absorption: 바닥 상태 광 흡수), ESA(Excited State Absorption: 들뜬 상태 광 흡수), Tm3+-Tm3+ cross-relaxation(툴륨이온-툴륨이온 사이의 교차 안정화 과정 (안정화는 들뜸/여기(excitation)의 상대어))을 보여준다.Here, the Core and Inert Shell respectively. Tm 3+ concentration ≥ 8% (thulium ion doping concentration greater than 8 percent), Ground State Absorption (GSA), Excited State Absorption (ESA), Tm 3+ -Tm 3+ cross- It shows relaxation (the cross-stabilization process between thulium ions and thulium ions (stabilization is the opposite of excitation/excitation)).

도 3은 광사태 현상이 일어나기 전과 도중과 후의 3단계 과정을 보여주는 도면이다.3 is a view showing a three-step process before, during, and after the avalanche phenomenon occurs.

도 3의 그래프의 가로축은 Excitation intensity(여기광 세기)이고, 그래프의 세로축은 Emission intensity(방출광 세기)이다.The horizontal axis of the graph of FIG. 3 is the excitation intensity (excitation light intensity), and the vertical axis of the graph is the emission intensity (the emitted light intensity).

즉, 여기광세기(Excitation intensity) 대비 발광세기(Emission intensity)로서, 거대 비선형 광학 반응 모형 곡선(Model plot of Photon Avalanching Giant Nonlinear Optical Response Curve)을 보여주는 도면이다.That is, it is a diagram showing a model plot of Photon Avalanching Giant Nonlinear Optical Response Curve as emission intensity versus excitation intensity.

도 3의 용어를 정리하면, 각 Before threshold(광사태 연쇄증폭반응 현상의 문턱치 직전), PA(광사태 현상 구간), Saturation(광사태 현상의 포화상태로서 과도한 여기(excitation) 광세기 구간을 나타낸다. Summarizing the terms in FIG. 3, each Before threshold (just before the threshold of the avalanche chain amplification reaction phenomenon), PA (light avalanche phenomenon section), and Saturation (excited light intensity section as the saturation state of the light avalanche phenomenon are shown) .

도 4는 툴륨 이온의 4f12 오비탈 에너지 준위 도면이다.4 is a 4f 12 orbital of thulium ion. energy level diagram.

R1, R2는 각각 바닥상태 광흡수율(ground state excitation rate)과 여기상태 광흡수율(excited state excitation rate)을 나타내고, W2와 W3는 각각 3F4 에너지 준위와 3H4 에너지 준위로부터의 안정화 과정 후의 축적율(aggregation rate after relaxation)을 나타낸다. R 1 and R 2 represent the ground state excitation rate and the excited state excitation rate, respectively, and W 2 and W 3 are from the 3 F 4 energy level and the 3 H 4 energy level, respectively. It represents the rate of accumulation after the stabilization process (aggregation rate after relaxation).

이러한 광흡수율들과 축적율들은 방사형 및 비방사형 안정화 과정들 (radiative and non-radiative pathways)을 설명하면서 동시에 교차안정화(cross-relaxation)나 다른 형태의 에너지 전달과정(other energy transfer processes)을 제외한다.These light absorption rates and accumulation rates account for both radial and non-radiative pathways while excluding cross-relaxation and other energy transfer processes. .

도 4의 용어를 정리하면 GSA(Ground State Absorption: 바닥 상태 광 흡수), ESA(Excited State Absorption: 들뜬 상태 광 흡수), cross-relaxation(툴륨이온-툴륨이온 사이의 교차 안정화 과정), Emission(상향변환 된 빛의 방출) 등이다.To summarize the terms in Figure 4, GSA (Ground State Absorption), ESA (Excited State Absorption: Excited State Light Absorption), cross-relaxation (cross-stabilization process between thulium ion-thulium ion), Emission (upward phase) converted light emission), etc.

이 때 그래프의 세로축은 103 cm-1 (1,000 웨이브넘버(빛의 에너지 단위 중의 한 가지) 단위의 에너지) 이다.At this time, the vertical axis of the graph is 10 3 cm -1 (energy in units of 1,000 wave numbers (one of the energy units of light)).

도 5는 1%, 4%, and 8% Tm3+ 가 도핑된 nanocrystals 광사태 데모이다(Demonstration of nanoparticle photon avalanching. a, 800 nm emission intensity vs. excitation intensity for 1%, 4%, and 8% Tm3+ -doped nanocrystals).5 is a demonstration of nanoparticle photon avalanching. a, 800 nm emission intensity vs. excitation intensity for 1%, 4%, and 8% of 1%, 4%, and 8% Tm 3+ doped nanocrystals. Tm3+ -doped nanocrystals).

도 6은 Modifying PA kinetics via ANP shell thickness 도면이다(Modifying PA kinetics via ANP shell thickness, surface-to-volume ratio, and Tm3+ content).6 is a diagram of Modifying PA kinetics via ANP shell thickness (Modifying PA kinetics via ANP shell thickness, surface-to-volume ratio, and Tm3+ content).

도 7은 광사태 나노입자 기반 단일광선(Single-beam) 초고해상도 이미지이다. 7 is a single-beam super-resolution image based on avalanche nanoparticles.

초해상도 나노스코피(Super-resolution Nanoscopy)는 200 nm(청색광)~500nm(근적외선)정도인 빛의 회절한계(Diffraction Limit)를 뛰어넘는 초고해상도의 나노분광(Nano Spectroscopic) 이미징 장치이다.Super-resolution nanoscopy is a super-resolution nano-spectroscopic imaging device that exceeds the diffraction limit of 200 nm (blue light) to 500 nm (near-infrared) light.

이를 위해 STED(STimulated Emission Depletion)과 PALM(Photo-Activated Localization Microscopy)은 각각 도넛 모양의 STED 스팟을 여기(Excitation) 광의 공초점 스팟과 중첩한 상태로 스캔해야만 하거나, 모든 이미징 픽셀들의 중심에 컴퓨터로 인위적인 작은 점들을 하나 하나 찍어서 마치 회화 기법의 한 종류인 점묘법처럼 이미지를 재구성해야만 한다.To this end, STimulated Emission Depletion (STED) and Photo-Activated Localization Microscopy (PALM) have to scan a donut-shaped STED spot superimposed with a confocal spot of excitation light, respectively, or use a computer at the center of all imaging pixels. You have to reconstruct the image like pointillism, a kind of painting technique, by taking artificial small dots one by one.

본 발명은 ~25 nm 내외의 매우 작은 각각의 광사태 나노입자들의 중심 부분으로부터 상향변환되면서 연쇄 증폭된 빛이 매우 국소적으로 집중되어 폭발적으로 방출되기 때문에 스팟 한 개만을 사용한 간단한 공초점 이미징 스캔으로도 70 nm의 초고해상도 나노스코피를 통하여 더욱 해상도를 높일 수 있었다. The present invention is a simple confocal imaging scan using only one spot because the chain-amplified light is very locally concentrated and explosively emitted while up-converted from the central part of each very small avalanche nanoparticles of ~25 nm. Through ultra-high-resolution nanoscopy of FIG. 70 nm, the resolution could be further increased.

도 7은 포화 광세기 구간(saturation regime: 9.9 kWcm-2)으로 여기시켰을 때(a)와 광사태 구간(PA regime: 7.1 kWcm-2)으로 여기시켰을 때(b)의 8% 툴륨 이온으로 도핑된 광사태 나노입자(ANP: Avalanching Nano Particle) 이미지를 보여준다.7 shows doping with 8% thulium ions when excited by (a) and excited by a saturation light intensity range (saturation regime: 9.9 kWcm -2 ) and (b) when excited by a light avalanche zone (PA regime: 7.1 kWcm -2 ) It shows an image of an avalanche nano particle (ANP).

도 8은 이미지 a와 b 상의 청색 선에 해당하는 라인컷: 초고해상도를 나타내는 비교를 위해 1,064 nm의 여기광을 N.A.=1.49의 대물렌즈로 집속했을때의 이론적인 회절한계가 검은색 점선으로 표시되어 있다. 8 is a line cut corresponding to the blue line on images a and b: the theoretical diffraction limit when excitation light of 1,064 nm is focused with an objective lens of N.A.=1.49 for comparison showing ultra-high resolution is indicated by a black dotted line has been

도 9는 이미지 a와 b에 대한 각각의 이론적인 이미징 시뮬레이션 결과이다.9 is a theoretical imaging simulation result for images a and b, respectively.

도 10은 여기광의 세기에 따른 단일 광사태 나노입자에 대한 실제 측정된(검은색) 이미징 해상도 선폭과 시뮬레이션을 통한 이미징 해상도 선폭(FWHM: Full Width at the Half Maximum)을 보여준다.10 shows the actual measured (black) imaging resolution linewidth for a single avalanche nanoparticle according to the intensity of the excitation light and the imaging resolution linewidth (FWHM: Full Width at the Half Maximum) through simulation.

도 11은 포화광세기 근처로부터 광사태 문턱치 직전까지 차츰 여기광세기를 줄여가면서 8% 툴륨이온으로 도핑된 광사태 나노입자 두 개가 300 nm의 간격으로 놓여진 시료에 대해 얻어진 이미지이다.11 is an image obtained for a sample in which two avalanche nanoparticles doped with 8% thulium ions are placed at an interval of 300 nm while gradually decreasing the excitation light intensity from near the saturation light intensity to just before the avalanche threshold.

도 12는 실험적으로 얻어진 이미지들에 대한 시뮬레이션 결과이다.12 is a simulation result for experimentally obtained images.

도 13a에 도시된 바와 같이 일반적인 태양광 패널의 전극과 반사 방지막 사이에 광사태 나노 입자가 도포되어 있다. 이외에도 아래와 같이 다양한 응용이 가능하다.As shown in FIG. 13A , avalanche nanoparticles are applied between the electrode of a general solar panel and the anti-reflection film. In addition, various applications are possible as follows.

도 13b와 도 14에 도시된 바와 같이 본 발명에 따라 제조되는 태양광 어레이의 구조를 살펴보면 전면과 후면에 각각 전면전극과 후면전극이 구비되는 구조를 갖는 데, 수광면인 전면에 전면전극이 구비됨에 따라, 전면전극의 면적만큼 수광면적이 줄어들게 된다. As shown in FIGS. 13B and 14 , looking at the structure of the solar array manufactured according to the present invention, it has a structure in which a front electrode and a rear electrode are provided on the front and rear surfaces, respectively, and the front electrode is provided on the front surface, which is the light receiving surface. Accordingly, the light receiving area is reduced as much as the area of the front electrode.

이와 같이 수광 면적이 축소되는 문제를 해결하기 위해 후면전극형 태양광 어레이가 제안되었다. 후면전극형 태양광 어레이는 태양광 어레이의 후면 상에 (+)전극과 (-)전극을 구비시켜 태양광 어레이 전면의 수광면적을 극대화하는 것을 특징으로 한다. In order to solve the problem of reducing the light receiving area as described above, a back electrode type solar array has been proposed. The back electrode type solar array is characterized in that the (+) electrode and the (-) electrode are provided on the rear surface of the solar array to maximize the light receiving area of the front surface of the solar array.

이와 같은 후면전극형 태양광 어레이는 유형에 따라 IBC(interdigitated back contact), 포인트 콘택형, EWT(emitter wrap through), MWT(metal wrap through) 등으로 구분된다. Such a back electrode type solar array is classified into an interdigitated back contact (IBC), a point contact type, an emitter wrap through (EWT), and a metal wrap through (MWT) according to the type.

이 중 MWT형 태양광 어레이는 전면의 그리드 핑거(grid finger)와 버스바(bus bar) 중 그리드 핑거는 전면에 그대로 두고 버스바를 후면에 옮긴 구조이며, 전면의 그리드 핑거와 후면의 버스바는 기판을 관통하는 비아홀(via hole)에 의해 연결된다.Among them, the MWT type solar array has a structure in which the front grid finger and bus bar are moved to the rear while the grid finger is left on the front, and the front grid finger and the rear bus bar are the substrates. It is connected by a via hole passing through it.

도 13b의 MWT형 태양광 어레이의 구조를 살펴보면, 기판(101) 전체면에 에미터층(102)이 구비되며, 상기 기판(101) 전면 상에는 반사방지막(103) 및 전면 그리드 전극(104)이 구비된다. Looking at the structure of the MWT type solar array in FIG. 13B , the emitter layer 102 is provided on the entire surface of the substrate 101 , and the anti-reflection film 103 and the front grid electrode 104 are provided on the entire surface of the substrate 101 . do.

또한, 기판(101)의 후면에는 n 전극(105)과 p 전극(106)이 구비되며, 기판(101)을 관통하는 비아홀(108)을 매개로 상기 n 전극(105)과 전 면 그리드 전극(104)이 전기적으로 연결된다.In addition, an n-electrode 105 and a p-electrode 106 are provided on the rear surface of the substrate 101, and the n-electrode 105 and the front grid electrode ( 104) is electrically connected.

이 때 p 전극(106)과 기판(101) 사이에 광사태 나노 입자를 도포한 도포층(110)을 형성한다. 그러나 도포층(110)의 위치가 여기에만 한정되는 것은 아니다.At this time, a coating layer 110 coated with avalanche nanoparticles is formed between the p-electrode 106 and the substrate 101 . However, the position of the application layer 110 is not limited thereto.

한편, 상기 p 전극(106)의 하부 즉, 기판 후면의 내부에는 전하 수집효율을 향상시키는 역할을 하는 후면전계층 (back surface field)(p+)(109)이 구비되며, 후면전계층(109)과 p 전극(106)은 전면에 걸쳐 서로 접촉하는 구조를 갖는다. On the other hand, a back surface field (p+) 109 serving to improve charge collection efficiency is provided under the p-electrode 106, that is, inside the back surface of the substrate, and the back surface field 109 is provided. and the p-electrode 106 have a structure in contact with each other over the entire surface.

이와 같은 MWT형 태양광 어레이에 있어서, 상술한 바와 같이 후면전계층(109)과 p 전극(106)이 전면에 걸쳐 서로 접 촉하는 구조를 이룸에 따라, 후면전계층과 p 전극 사이의 계면에서 재결합률(recombination rate)이 증가되어 궁극적으로 광전변환효율이 저하되는 문제점이 야기된다.In such an MWT-type solar array, as described above, the rear electric field layer 109 and the p-electrode 106 form a structure in contact with each other over the entire surface, so that at the interface between the rear electric field layer and the p-electrode The recombination rate is increased, resulting in a problem that the photoelectric conversion efficiency is ultimately lowered.

따라서 빛의 연쇄증폭반응에 의한 광사태 현상에 의해 가속된 전자-정공 쌍은 전지의 반도체 물질 내에서 재결합할 가능성이 더 낮다. 전자-정공 재결합률의 이러한 감소로 인하여, 태양 전지의 효율이 전체적으로 증가하고, 전력 출력이 더 커진다.Therefore, electron-hole pairs accelerated by the avalanche of light chain amplification are less likely to recombine within the cell's semiconductor material. Due to this reduction in the electron-hole recombination rate, the overall efficiency of the solar cell increases, and the power output becomes larger.

본 발명에 따른 광사태 현상을 활용한 태양발전 시스템에 사용되는 MWT형 태양광 어레이의 제조방법은 비아홀이 구비된 실리콘 기판을 준비하는 단계와, 기판 전면 상에 저농도의 n형 불순물 이온을 주입하여 저농도 에미터층(n+)을 형성하는 단계와, 기판 전면의 그리드 전극, 버스 전극이 형성될 영역과 기판 후면의 n 전극이 형성될 영역을 선택적으로 노출시키는 새도우 마스크를 구비시킨 상태에서, 고농도의 n형 불순물 이온을 주입하여 고농도 에미터층(n++)을 형성하는 단계와, 상기 기판 후면의 고농도 에미터층을 노출시키지 않는 새도우 마스크를 통해 기판 후면 상에 고농도의 p형 불순물 이온을 주입하여 후면전계층(p++)을 형성하는 단계와, 상기 기판 전면 상에 반사방지막을 형성하는 단계 및 상기 기판 전면에 그리드 전극, 버스 전극을 형성하고, 상기 기판 후면에 n 전극 및 p 전극을 형성하는 단계를 포함하여 이루어진다.The manufacturing method of the MWT-type solar array used in the solar power generation system utilizing the avalanche phenomenon according to the present invention comprises the steps of preparing a silicon substrate with via holes, and implanting low-concentration n-type impurity ions on the entire surface of the substrate. Forming a low-concentration emitter layer (n+), in a state in which a shadow mask selectively exposing the region where the grid electrode and bus electrode will be formed on the front side of the substrate and the region where the n-electrode will be formed on the back side of the substrate is provided, Forming a high-concentration emitter layer (n++) by implanting type impurity ions; p++), forming an anti-reflection film on the front surface of the substrate, forming grid electrodes and bus electrodes on the front surface of the substrate, and forming n-electrodes and p-electrodes on the rear surface of the substrate .

이 때 플라즈마 가스를 생성시키는 플라즈마 생성 챔버와, 상기 플라 즈마 생성 챔버의 하부측과 연통되도록 연결되어 밀폐공간을 형성시키는 툴륨 이온주입 챔버로 구성되며, 상기 툴륨 이온주입 챔버 내부 바닥에는 툴륨 이온이 주입될 태양광 어레이가 놓여지는 기판홀더가 구비되되, 상기 플라즈마 생성 챔버는 절연체인 석영으로 형성되고, 상 기 방전 전극은 두 개의 RF 파워 전극으로 상기 플라즈마 생성 챔버의 외측벽에 분리되어 형성되며, 상기 툴륨 이온 주입 챔버는 표면이 산화된 금속으로 형성되어 접지되는 툴륨 이온 도핑 장치를 이용한다.At this time, it consists of a plasma generating chamber for generating plasma gas, and a thulium ion implantation chamber connected to communicate with a lower side of the plasma generating chamber to form a closed space, and thulium ions are implanted into the bottom of the thulium ion implantation chamber. There is provided a substrate holder on which a solar array to be placed is placed, the plasma generating chamber is formed of quartz as an insulator, the discharge electrode is formed by being separated from the outer wall of the plasma generating chamber by two RF power electrodes, and the thulium The ion implantation chamber uses a thulium ion doping device whose surface is formed of oxidized metal and grounded.

요약하면, 본 발명은 툴륨 이온(Tm3+)이 도핑된 나노입자 및 p형 불순물 이온을 주입하여 구성된 실리콘 기판을 준비하는 단계; 툴륨 이온(Tm3+)이 도핑된 나노입자 및 n형 불순물 이온을 주입하여 에미터층(n+)을 형성하는 단계; 기판 전면의 그리드 전극, 버스 전극이 형성될 영역과 기판 후면의 n 전극이 형성될 영역을 선택적으로 노출시키는 새도우 마스크를 구비시킨 상태에서, 툴륨 이온(Tm3+)이 도핑된 나노입자 및 고농도의 n형 불순물 이온을 주입하여 고농도 에미터층(n++)을 형성하는 단계; 및 상기 기판 후면의 고농도 에미터층을 노출시키지 않는 새도우 마스크를 통해 기판 후면 상에 툴륨 이온(Tm3+)이 도핑된 나노입자 및 고농도의 p형 불순물 이온을 주입하여 후면전계층(p++)을 형성하는 단계;를 포함하여 이루어진다.In summary, the present invention comprises the steps of: preparing a silicon substrate composed of thulium ions (Tm 3+ ) doped nanoparticles and p-type impurity ions implanted; forming an emitter layer (n+) by implanting thulium ions (Tm 3+ ) doped nanoparticles and n-type impurity ions; Thulium ions (Tm 3+ )-doped nanoparticles and high concentration forming a high-concentration emitter layer (n++) by implanting n-type impurity ions; and thulium ions (Tm 3+ )-doped nanoparticles and high-concentration p-type impurity ions are implanted on the backside of the substrate through a shadow mask that does not expose the high-concentration emitter layer on the backside of the substrate to form a backside electric field layer (p++) It is made, including;

도 15와 도 16에 도시된 바와 같이 폴리카보네이트를 포함하는 제1층보호부(1); 상기 폴리카보네이트에 적층되는 툴륨 이온(Tm3+)을 이용한 이온도핑 공정을 이용하여 선택적 에미터 및 아이솔레이션을 용이하게 구현할 수 있는 광사태 나노 입자를 도포한 MWT형 태양광 어레이(2); 상기 광사태 나노 입자를 도포한 MWT형 태양광 어레이(2)에 적층되는 에틸렌 비닐 아세테이트를 포함하는 제3-1층보호부(3-1); 상기 제3-1층보호부(3-1) 상층부에 적층되는 에틸렌 비닐 아세테이트를 포함하는 제3-2층보호부(3-2); 상기 제3-2층보호부(3-2)에 적층되는 알루미늄 포일, 폴리올레핀(polyolefin), 에틸렌 비닐 아세테이트(EVA), 폴리 비닐 부티랄(PVB), 실리콘 수지(silicone resin) 중 하나의 층보호부을 포함하는 제4층보호부(4);를 포함한다.As shown in FIGS. 15 and 16, the first layer protection part 1 including polycarbonate; MWT-type solar array (2) coated with avalanche nanoparticles that can easily implement selective emitter and isolation using an ion doping process using thulium ions (Tm 3+ ) stacked on the polycarbonate; a 3-1 layer protection part (3-1) including ethylene vinyl acetate laminated on the MWT type solar array (2) coated with the avalanche nanoparticles; a 3-2 layer protection part (3-2) including ethylene vinyl acetate laminated on the upper part of the 3-1 layer protection part (3-1); Protection of one of aluminum foil, polyolefin, ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), and silicone resin laminated on the 3-2 layer protection part 3-2 The fourth layer protection part (4) including a part; includes.

또한 상기 MWT형 태양광 어레이(2)을 덮는 폴리카보네이트와 에틸렌-테트라플루오로에틸렌에 벌집 구조 세공을 적용하여 구조상의 빈 공간을 줄이고, 상기 벌집 구조에 따라 일정치의 내구도 및 강도를 유지하며, 상기 알루미늄 포일의 재귀반사되는 태양광을 용이하게 이용하기 위해 MWT형 태양광 어레이(2) 셀의 전면에 벌집 구조를 포함하는 다각형 구조의 패턴을 형성하여, 패턴의 밀집화를 통해 전자의 수집 거리를 일정치로 할 수 있다.In addition, honeycomb structure pores are applied to polycarbonate and ethylene-tetrafluoroethylene covering the MWT type solar array 2 to reduce structural void space, and maintain a certain level of durability and strength according to the honeycomb structure, In order to easily use the retroreflected sunlight of the aluminum foil, a polygonal structure pattern including a honeycomb structure is formed on the front surface of the MWT-type solar array 2 cell, and the electron collection distance through the densification of the pattern can be set to a constant value.

또한 상기 에틸렌-테트라플루오로에틸렌은 사용자가 특정 에틸렌-테트라플루오로에틸렌 필름(ETFE Film)을 선택 및 프린트 기능을 활용하여 특정 장소에 따라 광투과량을 조절하고 유연성이 있어 복수개의 디자인 연출이 가능하다.In addition, the ethylene-tetrafluoroethylene allows the user to select a specific ethylene-tetrafluoroethylene film (ETFE Film) and utilize the print function to adjust the light transmittance according to a specific location and has flexibility to create multiple designs. .

상기 MWT형 태양광 어레이(2)의 산화아연에 도핑된 알루미늄(Al) 또는 갈륨(Ga)의 농도가 일정치 이하로 하여 장파장 대역의 빛을 투과하거나, 알루미늄(Al) 또는 갈륨(Ga)의 농도를 일정치로 하여 단파장 대역의 빛을 투과하도록 하며, 상기 폴리카보네이트는 내충격성으로 82-92%의 빛을 투과시키기 위해 안료 첨가의 방법으로 복수개 색상을 구현하거나, 투과 조절이 가능하다.When the concentration of aluminum (Al) or gallium (Ga) doped in zinc oxide of the MWT type solar array 2 is below a certain value, light of a long wavelength band is transmitted, or aluminum (Al) or gallium (Ga) By setting the concentration to a constant value, light of a short wavelength band is transmitted, and the polycarbonate can implement a plurality of colors by adding a pigment or control transmission in order to transmit 82-92% of light with impact resistance.

또한 상기 에틸렌-테트라플루오로에틸렌 필름과 폴리카보네이트 필름의 특성을 이용하여 유연성, 내구성, 내후성에 적합하여 곡면시공이 용이하다.In addition, by using the characteristics of the ethylene-tetrafluoroethylene film and the polycarbonate film, it is suitable for flexibility, durability, and weather resistance, so that it is easy to construct a curved surface.

상기 에틸렌-테트라플루오로에틸렌은 화학적 손상 및 일정치의 풍량을 갖는 바람에 대한 내구성이 있고, 2~3중 구조로 단열재 역할을 한다.The ethylene-tetrafluoroethylene has durability against chemical damage and wind having a certain value of air volume, and serves as a heat insulator in a two to three layer structure.

상기 에틸렌 비닐 아세테이트은 전체 100중량부에서 VA의 함량이 28~33중량부이며, -(CH2-CH2)6.14-(CH2-CHAc)- 구조로 구성된다.The ethylene vinyl acetate has a VA content of 28 to 33 parts by weight based on 100 parts by weight of the total, and has a -(CH2-CH2)6.14-(CH2-CHAc)- structure.

상기 제4층보호부은 폴리카보네이트 일면과 MWT형 태양광 어레이(2) 사이와, 상기 MWT형 태양광 어레이(2)와 에틸렌-테트라플루오로에틸렌 사이에 삽입된다.The fourth layer protection part is inserted between one surface of polycarbonate and the MWT-type solar array 2 and between the MWT-type solar array 2 and ethylene-tetrafluoroethylene.

상기 제1층보호부 또는 제2층보호부은 티피티(TPT; Tedlar/PET/Tedlar), 티피이(TPE; Tedlar/PET/EVA), 티에이티(TAT; Tedlar/Al foil/Tedlar), 티피에이티(TPAT; Tedlar/PET/Al foil/Tedalr), 티피오티(TPOT; Tedlar/PET/Oxide/Tedlar), 페이에피(PAP; PEN/Al foil/PET) 또는 피이티(Polyester) 중 하나의 층보호부으로 이루어진다.The first layer protection part or the second layer protection part is a TPT (Tedlar/PET/Tedlar), a TPE (Tedlar/PET/EVA), a TAT (Tedlar/Al foil/Tedlar), One layer of TPAT (Tedlar/PET/Al foil/Tedalr), TPOT (Tedlar/PET/Oxide/Tedlar), PAP (PEN/Al foil/PET) or Polyester made up of protection

상기 제3층보호부은 티피티(TPT; Tedlar/PET/Tedlar), 티피이(TPE; Tedlar/PET/EVA), 티에이티(TAT; Tedlar/Al foil/Tedlar), 티피에이티(TPAT; Tedlar/PET/Al foil/Tedalr), 티피오티(TPOT; Tedlar/PET/Oxide/Tedlar), 페이에피(PAP; PEN/Al foil/PET) 또는 피이티(Polyester) 중 하나의 층보호부으로 이루어진다.The third layer protection part includes TPT (Tedlar/PET/Tedlar), TPE (Tedlar/PET/EVA), TAT (Tedlar/Al foil/Tedlar), and TPAT (Tedlar/Tedlar/ PET/Al foil/Tedalr), TPOT (Tedlar/PET/Oxide/Tedlar), PAP (PEN/Al foil/PET), or Polyester.

상기 제4층보호부은 폴리 비닐 부티랄(PVB), 실리콘 수지(silicone resin), 티피티(TPT; Tedlar/PET/Tedlar), 티피이(TPE; Tedlar/PET/EVA), 티에이티(TAT; Tedlar/Al foil/Tedlar), 티피에이티(TPAT; Tedlar/PET/Al foil/Tedalr), 티피오티(TPOT; Tedlar/PET/Oxide/Tedlar), 페이에피(PAP; PEN/Al foil/PET) 또는 피이티(Polyester) 중 하나의 층보호부로 이루어진다.The fourth layer protection part is polyvinyl butyral (PVB), silicone resin, TPT (Tedlar/PET/Tedlar), TPE (Tedlar/PET/EVA), TAT; Tedlar /Al foil/Tedlar), TPAT (Tedlar/PET/Al foil/Tedalr), TPOT (Tedlar/PET/Oxide/Tedlar), PAP (PEN/Al foil/PET) or It consists of a layer protection part of one of Polyester.

도 17에 도시된 바와 같이 본 발명은 태양광 어레이 채널별 발전량, 일사량, 태양광 모듈 온도 등의 데이터로 태양광 모듈의 동작 상태 및 열화 상태를 판단하는 간단하고 효율적인 태양광 모듈의 고장 및 열화 상태 진단 기능을 갖는 태양광 발전 방법을 제공할 수 있다.As shown in FIG. 17, the present invention is a simple and efficient solar module failure and deterioration state that determines the operation state and deterioration state of the solar module with data such as the amount of power generation by solar array channel, the amount of solar radiation, and the temperature of the solar module. It is possible to provide a photovoltaic power generation method having a diagnostic function.

복수의 태양광 어레이의 출력에 각기 연결되어, 각 태양광 어레이의 출력에 대한 모니터링 정보를 모니터링 시스템으로 송신하여 상기 연결된 복수의 태양광 어레이(111)의 각 출력 전압과 전류를 측정하여 모니터링부(112)와 통신하여 디스플레이부(113)에 데이터를 표시할 수 있다.A monitoring unit ( The data may be displayed on the display unit 113 by communicating with the 112 .

이 때 모니터링부(112)는 태양광 어레이 채널별 발전량 및 평균 발전량으로 수학식1을 이용하여, 태양광 어레이 채널별 '발전량 변동 계수'를 구한다.At this time, the monitoring unit 112 obtains the 'power generation amount variation coefficient' for each solar array channel by using Equation 1 as the amount of generation and the average generation amount for each solar array channel.

Figure 112021075623998-pat00001
Figure 112021075623998-pat00001

(여기서 CVn는 태양광 어레이 제 n 채널의 '발전량 변동 계수', Pn는 태양광 어레이 제 n 채널의 발전량, Pavr는 평균 발전량이다)(Where CV n is the 'generation variation coefficient' of the nth channel of the solar array, P n is the amount of power generation of the nth channel of the solar array, and P avr is the average power generation)

상기 태양광 어레이 채널별 발전량 데이터와 태양광 발전 상태 데이터로부터 온도 보정율을 고려한 수학식 2로부터 구해지는 '보정 성능 계수' CP(Compensated Performance Ratio)를 계산한다.A 'corrected performance coefficient' CP (Compensated Performance Ratio) obtained from Equation 2 considering a temperature correction rate is calculated from the solar array channel-specific power generation data and solar power generation state data.

Figure 112021075623998-pat00002
Figure 112021075623998-pat00002

(여기서 CPn은 태양광 어레이 제 n 채널의 '보정 성능 계수', Pn는 태양광 어레이 제 n 채널 의 발전량, Pnom은 태양광 어레이 정격 출력, Tm은 모듈 온도, IRstc는 표준 시험 조건에서의 일사량으로 1,000W/㎡, α는 온도변동율로 0.005/℃를 적용한다)(Where CP n is the 'correction performance coefficient' of the nth channel of the solar array, P n is the amount of power generation of the nth channel of the solar array, P nom is the rated output of the solar array, T m is the module temperature, and IR stc is the standard test 1,000W/m2 as the amount of insolation under the condition, 0.005/℃ is applied as the rate of temperature change for α)

도 18에 도시된 바와 같이 상기 발전량 변동 계수에서, 실리콘 기판 100 중량부에서 툴륨 이온이 도핑된 나노물질이 1중량부 , 2중량부 , 4중량부 , 8중량부인 경우의 상기 태양광 어레이모듈(111)들 내의 온도센서부가 일정 시간 동안 각각의 태양광 어레이모듈(111)의 생산량을 측정하여 실시간으로 또는 저장 후 기 설정된 시간에 관리서버(150)로 전송한다. As shown in FIG. 18, in the power generation variation coefficient, the solar array module in the case of 1 part by weight, 2 parts by weight, 4 parts by weight, and 8 parts by weight of the nanomaterial doped with thulium ions in 100 parts by weight of the silicon substrate ( 111), the temperature sensor unit measures the production amount of each solar array module 111 for a certain period of time and transmits it to the management server 150 in real time or at a preset time after storage.

상기 관리서버(150)는 정상 상태의 태양광 어레이모듈(111)들로부터 수신된 태양광 어레이모듈(111)들의 일정 시간 동안의 에너지 생산량을 저장한다. The management server 150 stores the energy production for a predetermined time of the photovoltaic array modules 111 received from the photovoltaic array modules 111 in a normal state.

그리고 상기 태양광 어레이모듈(111)들의 일정 시간 동안의 온도 변화 정보를 수회 수집하여 평균의 보정을 수행하는 기준 온도변화 정보를 저장하는 것에 의해 정확도를 높일 수 있다.In addition, it is possible to increase the accuracy by collecting the temperature change information for a certain time of the solar array modules 111 several times and storing the reference temperature change information for performing the average correction.

일예로, 상기 실리콘 기판 100 중량부에서 툴륨 이온이 도핑된 나노물질이 1중량부 , 2중량부 , 4중량부, 8중량부인 경우 각각 일별 평균, 월별 평균, 봄(3~5월), 여름(6~8월), 가을(9~11월), 겨울(12~2월)의 계절별 평균, 또는 년별 태양광 생산 에너지 평균 값 등으로 모니터링하는 모니터링부(112)에서 모니터링될 수 있다.For example, when the amount of nanomaterial doped with thulium ions in 100 parts by weight of the silicon substrate is 1 part by weight, 2 parts by weight, 4 parts by weight, or 8 parts by weight, respectively, daily average, monthly average, spring (March to May), summer (June to August), autumn (September to November), winter (December to February) may be monitored by the monitoring unit 112 that monitors the average value, or the average value of solar energy production by year.

또한, 기준 온도변화 값은, 365일별로 측정된 일별 평균 값, 또는 월 단위로 측정되어 평균된 월별 평균값, 계절 단위로 측정된 계절별 평균값을 산출한 후, 매일, 매월 또는 매 계절별로 산출된 값을 변경하여 적용하여 측정된 온도 변화의 정확성이 향상된다.In addition, the reference temperature change value is a daily, monthly, or every season after calculating the daily average value measured for 365 days, or an average monthly average value measured on a monthly basis, and a seasonal average value measured on a seasonal basis is applied to improve the accuracy of the measured temperature change.

만일 모니터링부(112)에서 모니터링된 수치에 있어서, 태양광 어레이모듈(111)의 에너지 생산량이 일정치에서 일정 범위의 변화를 가지는 경우 태양광 어레이모듈(111)이 정상 동작하는 것으로 판단하고, 해당 범위를 벗어나는 경우 오작동하는 것으로 판단한다. If, in the value monitored by the monitoring unit 112, if the energy production of the solar array module 111 has a change from a certain value to a certain range, it is determined that the solar array module 111 operates normally, and the corresponding If it is out of range, it is judged to be malfunctioning.

상기 고장범위 설정과정의 수행을 위해 전송되는 상기 오동작 태양광 어레이모듈(111)의 오동작 온도변화 정보 또한 수회 관리서버(150)로 전송된 후 평균 등의 방법에 의해 보정되어 정확도를 높일 수 있다.The malfunction temperature change information of the malfunctioning solar array module 111 transmitted to perform the fault range setting process is also transmitted to the management server 150 several times, and then corrected by an average method or the like to increase accuracy.

그리고 상술한 오동작은 상기 태양광 어레이모듈(111)의 개방 또는 단락 상태를 포함한다. 이에 따라 상기 오동작 온도변화 또한 상기 태양광 어레이모듈(111)의 개방 상태에서의 오동작 온도변화와 단락 상태에서의 오동작 온도변화를 포함한다.And the above-described malfunction includes an open or short-circuited state of the solar array module 111 . Accordingly, the malfunction temperature change also includes a malfunction temperature change in an open state of the solar array module 111 and a malfunction temperature change in a short circuit state.

이 외에도 본 발명은 나노입자가 도포된 태양광 어레이의 n 전극(105)과 p 전극(106) 등으로서, 하기 화학식 1 로 표시되는 카르복실 에스테르계 분산제를 포함하고, 상기 나노입자가 10 내지 40중량부가 사용된다.In addition, the present invention is an n-electrode 105 and p-electrode 106 of a solar array coated with nanoparticles, including a carboxyl ester-based dispersant represented by the following Chemical Formula 1, wherein the nanoparticles are 10 to 40 parts by weight are used.

Figure 112021075623998-pat00003
Figure 112021075623998-pat00003

상기 나노 입자는 Tm3+, ZnO, CuO, BaCO3, Bi2O3, B2O3, CaCO3, CeO2, Cr2O3, Fe2O3, Ga2O3, In2O3, Li2CO3, LiCoO2, MgO, MnCO3, MnO2, Mn3O4, Nb2O5, PbO, Sb2O3, SnO2, SrCO3, Ta2O5, TiO2, BaTiO3, V2O5, WO3 및 ZrO2 중 어느 하나일 수 있다.The nanoparticles are Tm 3+ , ZnO, CuO, BaCO 3 , Bi 2 O 3 , B 2 O 3 , CaCO 3 , CeO 2 , Cr 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , In 2 O 3 , Li 2 CO 3 , LiCoO 2 , MgO, MnCO 3 , MnO 2 , Mn 3 O4, Nb 2 O 5 , PbO, Sb 2 O 3 , SnO 2 , SrCO 3 , Ta 2 O 5 , TiO 2 , BaTiO 3 , V 2 O 5 , WO 3 and It may be any one of ZrO 2 .

111 : 태양광 어레이
112 : 모니터링부
113 : 디스플레이부
111: solar array
112: monitoring unit
113: display unit

Claims (8)

태양광 어레이 중에서 툴륨 이온이 도핑된 나노입자 및 p형 불순물 이온을 주입하여 구성된 실리콘 기판을 준비하는 단계; 툴륨 이온이 도핑된 나노입자 및 n형 불순물 이온을 주입하여 에미터층(n+)을 형성하는 단계; 실리콘 기판 전면의 그리드 전극, 버스 전극이 형성될 영역과 기판 후면의 n 전극이 형성될 영역을 선택적으로 노출시키는 새도우 마스크를 구비시킨 상태에서, 툴륨 이온이 도핑된 나노입자 및 고농도의 n형 불순물 이온을 주입하여 고농도 에미터층(n++)을 형성하는 단계; 및 상기 실리콘 기판 후면의 고농도 에미터층을 노출시키지 않는 새도우 마스크를 통해 실리콘 기판 후면 상에 툴륨 이온이 도핑된 나노입자 및 고농도의 p형 불순물 이온을 주입하여 후면전계층(p++)을 형성하는 단계;를 포함하여 이루어지되,
상기 태양광 어레이로서 MWT형 태양광 어레이(2)을 덮는 폴리카보네이트와 에틸렌-테트라플루오로에틸렌에 벌집 구조 세공을 적용하여 구조상의 빈 공간을 줄이고, 상기 벌집 구조에 따라 일정치의 내구도 및 강도를 유지하며, 상기 태양광 어레이에 결합되는 알루미늄 포일의 재귀반사되는 태양광을 용이하게 이용하기 위해 MWT형 태양광 어레이(2) 셀의 전면에 벌집 구조를 포함하는 다각형 구조의 패턴을 형성하여, 패턴의 밀집화를 통해 전자의 수집 거리를 일정치로 할 수 있고,
상기 태양광 어레이의 출력에 각기 연결되어, 각 태양광 어레이의 출력에 대한 모니터링 정보를 모니터링 시스템으로 송신하여 상기 연결된 복수의 태양광 어레이의 각 출력 전압과 전류를 측정하여 모니터링부(112)와 통신하여 디스플레이부(113)에 데이터를 표시할 수 있으며,
상기 모니터링부(112)는 태양광 어레이 채널별 발전량 및 평균 발전량으로 수학식 1을 이용하여, 태양광 어레이 채널별 '발전량 변동 계수'를 표시하며,
상기 발전량 변동 계수에서, 상기 실리콘 기판 100 중량부에서 툴륨 이온이 도핑된 나노물질이 일정 중량부인 경우의 태양광 어레이모듈(111)들 내의 온도센서부가 일정 시간 동안 각각의 태양광 어레이모듈(111)의 생산량을 측정하여 실시간으로 또는 저장 후 기 설정된 시간에 관리서버(150)로 전송하며,
상기 관리서버(150)는 정상 상태의 태양광 어레이모듈(111)들로부터 수신된 태양광 어레이모듈(111)들의 일정 시간 동안의 에너지 생산량을 저장하고,
상기 태양광 어레이모듈(111)들의 365일별로 측정된 일별 평균 값, 또는 월 단위로 측정되어 평균된 월별 평균값, 계절 단위로 측정된 계절별 평균값을 산출한 후, 매일, 매월 또는 매 계절별로 산출된 값을 변경 저장하며,
상기 툴륨 이온이 도핑된 나노물질이 일정 중량부인 경우 각각 일별 평균, 월별 평균, 계절별 평균, 또는 년별 태양광 생산 에너지 평균 값으로 모니터링하는 모니터링부(112)에서 모니터링되고,
상기 모니터링부(112)에서 모니터링된 수치에 있어서, 태양광 어레이모듈(111)의 에너지 생산량이 일정치에서 일정 범위의 변화를 가지는 경우 태양광 어레이모듈(111)이 정상 동작하는 것으로 판단하고, 해당 범위를 벗어나는 경우 오작동하는 것으로 판단하며,
상기 고장범위 설정과정의 수행을 위해 전송되는 상기 오동작 태양광 어레이모듈(111)의 오동작 온도변화 정보 또한 수회 관리서버(150)로 전송된 후 평균의 방법에 의해 보정되고,
상기 오동작은 상기 태양광 어레이모듈(111)의 개방 또는 단락 상태를 포함하여, 상기 오동작 온도변화 또한 상기 태양광 어레이모듈(111)의 개방 상태에서의 오동작 온도변화와 단락 상태에서의 오동작 온도변화를 포함하는 것을 특징으로 하는 광사태 현상을 활용한 태양발전 시스템을 이용한 방법.
[수학식 1]
Figure 112022500733624-pat00023

(여기서 CVn는 태양광 어레이 제 n 채널의 '발전량 변동 계수', Pn는 태양광 어레이 제 n 채널의 발전량, Pavr는 평균 발전량이다)
preparing a silicon substrate formed by implanting thulium ion-doped nanoparticles and p-type impurity ions in a solar array; forming an emitter layer (n+) by implanting thulium ion-doped nanoparticles and n-type impurity ions; Thulium ion-doped nanoparticles and high-concentration n-type impurity ions are provided with a shadow mask selectively exposing the region where the grid electrode and bus electrode will be formed on the front surface of the silicon substrate and the region where the n-electrode will be formed on the rear surface of the substrate forming a high-concentration emitter layer (n++) by injecting and implanting thulium ion-doped nanoparticles and high-concentration p-type impurity ions onto the rear surface of the silicon substrate through a shadow mask that does not expose the high-concentration emitter layer on the rear surface of the silicon substrate to form a rear electric field layer (p++); is made, including
As the solar array, honeycomb structure pores are applied to polycarbonate and ethylene-tetrafluoroethylene covering the MWT-type solar array 2 as the solar array to reduce the structural void space, and according to the honeycomb structure, a certain level of durability and strength In order to easily use the retroreflected sunlight of the aluminum foil coupled to the solar array, a polygonal structure pattern including a honeycomb structure is formed on the front surface of the MWT type solar array (2) cell, the pattern The electron collection distance can be set to a constant value through the densification of
It is respectively connected to the output of the solar array, and transmits monitoring information on the output of each solar array to the monitoring system to measure each output voltage and current of the connected plurality of solar arrays to communicate with the monitoring unit 112 to display data on the display unit 113,
The monitoring unit 112 displays the 'power generation amount variation coefficient' for each solar array channel by using Equation 1 as the amount of power generation and the average generation amount for each solar array channel,
In the power generation variation coefficient, when the silicon substrate 100 parts by weight of the silicon substrate contains a certain part by weight of the nanomaterial doped with thulium ions, the temperature sensor unit in the solar array modules 111 is each solar array module 111 for a certain time. is measured and transmitted to the management server 150 in real time or at a preset time after storage,
The management server 150 stores the energy production for a certain time of the solar array modules 111 received from the solar array modules 111 in a normal state,
After calculating the daily average value measured for 365 days of the solar array modules 111, or the average monthly average value measured on a monthly basis, and a seasonal average value measured on a seasonal basis, the calculated daily, monthly or each season Change the value and save
When the thulium ion-doped nanomaterial is a certain weight part, it is monitored by the monitoring unit 112 for monitoring as a daily average, monthly average, seasonal average, or annual average solar energy production energy value,
In the value monitored by the monitoring unit 112, when the energy production of the solar array module 111 has a change from a certain value to a certain range, it is determined that the solar array module 111 operates normally, and the corresponding If it is out of range, it is judged to be malfunctioning,
The malfunction temperature change information of the malfunctioning solar array module 111 transmitted to perform the fault range setting process is also transmitted to the management server 150 several times and then corrected by the average method,
The malfunction includes the open or short-circuit state of the solar array module 111, the malfunction temperature change, and the malfunction temperature change in the open state and the malfunction temperature change in the short-circuit state of the solar array module 111. A method using a solar power system utilizing a light avalanche phenomenon, characterized in that it includes.
[Equation 1]
Figure 112022500733624-pat00023

(Where CV n is the 'power generation variation coefficient' of the nth channel of the solar array, P n is the amount of power generation of the nth channel of the solar array, and P avr is the average power generation)
청구항 1에 있어서,
상기 툴륨 이온은 상기 실리콘 기판 100 중량부에서 1 중량부 내지 8 중량부 함유된 것을 특징으로 하는 광사태 현상을 활용한 태양발전 시스템을 이용한 방법.
The method according to claim 1,
The method using a solar power system utilizing the avalanche phenomenon, characterized in that the thulium ion is contained in an amount of 1 to 8 parts by weight based on 100 parts by weight of the silicon substrate.
청구항 1에 있어서,
상기 태양광 어레이 채널별 발전량 데이터와 태양광 발전 상태 데이터로부터 온도 보정율을 고려한 수학식 2로부터 구해지는 '보정 성능 계수' CP(Compensated Performance Ratio)를 계산하는 단계;를 더 포함하는 것을 특징으로 하는 광사태 현상을 활용한 태양발전 시스템을 이용한 방법.
[수학식 2]
Figure 112022000900535-pat00024

(여기서 CPn은 태양광 어레이 제 n 채널의 '보정 성능 계수', Pn는 태양광 어레이 제 n 채널 의 발전량, Pnom은 태양광 어레이 정격 출력, Tm은 모듈 온도, IRstc는 표준 시험 조건에서의 일사량으로 1,000W/㎡, α는 온도변동율로 0.005/℃를 적용한다)
The method according to claim 1,
Calculating a 'corrected performance coefficient' CP (Compensated Performance Ratio) obtained from Equation 2 in consideration of the temperature correction rate from the solar array channel-specific power generation data and solar power generation state data; characterized by further comprising: A method using a solar power system utilizing the light avalanche phenomenon.
[Equation 2]
Figure 112022000900535-pat00024

(Where CP n is the 'correction performance coefficient' of the nth channel of the solar array, P n is the amount of power generation of the nth channel of the solar array, P nom is the rated output of the solar array, T m is the module temperature, and IR stc is the standard test 1,000W/m2 as the amount of insolation under the condition, 0.005/℃ is applied as the rate of temperature change for α)
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020210085697A 2021-06-30 2021-06-30 Solar Pannel system using Avalanching Nano Particle and the method using it KR102382529B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210085697A KR102382529B1 (en) 2021-06-30 2021-06-30 Solar Pannel system using Avalanching Nano Particle and the method using it
KR1020210165035A KR102481077B1 (en) 2021-06-30 2021-11-26 Solar Pannel system using Avalanching Nano Particle and the method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210085697A KR102382529B1 (en) 2021-06-30 2021-06-30 Solar Pannel system using Avalanching Nano Particle and the method using it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210165035A Division KR102481077B1 (en) 2021-06-30 2021-11-26 Solar Pannel system using Avalanching Nano Particle and the method using it

Publications (1)

Publication Number Publication Date
KR102382529B1 true KR102382529B1 (en) 2022-04-08

Family

ID=81183006

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210085697A KR102382529B1 (en) 2021-06-30 2021-06-30 Solar Pannel system using Avalanching Nano Particle and the method using it
KR1020210165035A KR102481077B1 (en) 2021-06-30 2021-11-26 Solar Pannel system using Avalanching Nano Particle and the method using it

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210165035A KR102481077B1 (en) 2021-06-30 2021-11-26 Solar Pannel system using Avalanching Nano Particle and the method using it

Country Status (1)

Country Link
KR (2) KR102382529B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126889A1 (en) * 2009-09-25 2011-06-02 Immunolight, Llc Up and down conversion systems for improved solar cell performance or other energy conversion
US20130042914A1 (en) * 2011-08-19 2013-02-21 Du Pont Apollo Limited Novel design of upconverting luminescent layers for photovoltaic cells
KR101892637B1 (en) * 2017-08-30 2018-08-28 한국과학기술연구원 Solar cell panel and the window comprising the same
KR20190069213A (en) * 2017-12-11 2019-06-19 한국전자통신연구원 Apparatus and method for operation and management of distributed photovoltaic energy generator based on remote monitoring

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150007396A (en) * 2013-07-10 2015-01-21 현대중공업 주식회사 Method for fabricating bi-facial solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126889A1 (en) * 2009-09-25 2011-06-02 Immunolight, Llc Up and down conversion systems for improved solar cell performance or other energy conversion
US20130042914A1 (en) * 2011-08-19 2013-02-21 Du Pont Apollo Limited Novel design of upconverting luminescent layers for photovoltaic cells
KR101892637B1 (en) * 2017-08-30 2018-08-28 한국과학기술연구원 Solar cell panel and the window comprising the same
KR20190069213A (en) * 2017-12-11 2019-06-19 한국전자통신연구원 Apparatus and method for operation and management of distributed photovoltaic energy generator based on remote monitoring

Also Published As

Publication number Publication date
KR102481077B1 (en) 2022-12-26

Similar Documents

Publication Publication Date Title
US11495703B2 (en) Optical downshifting layer
EP2377160B1 (en) A luminescent photovoltaic generator and a waveguide for use in a photovoltaic generator
US20090308441A1 (en) Silicon Nanoparticle Photovoltaic Devices
US9306090B2 (en) Composite particle, composite particle dispersion, and photovoltaic device,
KR101575733B1 (en) wavelength converting structure for near-infrared rays and solar cell comprising the same
US9472694B2 (en) Composition and method for upconversion of light and devices incorporating same
EP2396818A2 (en) An optical device
KR20120002222A (en) Up conversion oxide fluorescent composition for solar cell and method of fabrication of high efficiency solar cell using thereof
JPWO2020003613A1 (en) Electromagnetic wave detector and electromagnetic wave detector array
Wang et al. Inverted pyramid Er3+ and Yb3+ Co-doped TiO2 nanorod arrays based perovskite solar cell: infrared response and improved current density
CN111095574A (en) Luminescent solar concentrator using perovskite structure
CN103378182A (en) Light wave conversion layer and solar cell with same
CN102544153A (en) Photovoltaic device and method for making
KR20150063449A (en) Excitonic energy transfer to increase inorganic solar cell efficiency
Liu et al. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode
US20130019924A1 (en) Nanoscopically Thin Photovoltaic Junction Solar Cells
KR102382529B1 (en) Solar Pannel system using Avalanching Nano Particle and the method using it
Baeva et al. ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection
US20070204899A1 (en) Photovoltaic cell a solar amplification device
US20110253204A1 (en) Solar Cell
JP2004031050A (en) Dye-sensitized solar cell
JP2007273491A (en) Photoelectric conversion element, fibrous structure, textile, fabric, and wallpaper material
CN104009111B (en) Nucleus-shell nanometer crystal for solar cell and solar cell structure of solar cell
US20180212084A1 (en) Porous silicon nanowire photovoltaic cell
US10510915B2 (en) Porous silicon nanowire photovoltaic cell

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant