KR102373727B1 - 냉매 통로의 턴 개구에 응력 저감용 구근식 돌출부를 갖춘 블레이드 - Google Patents

냉매 통로의 턴 개구에 응력 저감용 구근식 돌출부를 갖춘 블레이드 Download PDF

Info

Publication number
KR102373727B1
KR102373727B1 KR1020170058622A KR20170058622A KR102373727B1 KR 102373727 B1 KR102373727 B1 KR 102373727B1 KR 1020170058622 A KR1020170058622 A KR 1020170058622A KR 20170058622 A KR20170058622 A KR 20170058622A KR 102373727 B1 KR102373727 B1 KR 102373727B1
Authority
KR
South Korea
Prior art keywords
rib
chamber
blade
radially extending
passageway
Prior art date
Application number
KR1020170058622A
Other languages
English (en)
Other versions
KR20170128128A (ko
Inventor
브랜든 제임스 레어리
엘리자베스 크라우스 블랙
그레고리 토마스 포스터
미셸 제시카 이듀에이트
제이콥 찰스 2세 페리
Original Assignee
제네럴 일렉트릭 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제네럴 일렉트릭 컴퍼니 filed Critical 제네럴 일렉트릭 컴퍼니
Publication of KR20170128128A publication Critical patent/KR20170128128A/ko
Application granted granted Critical
Publication of KR102373727B1 publication Critical patent/KR102373727B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/75Shape given by its similarity to a letter, e.g. T-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

블레이드는, 선행 에지 및 후미 에지를 따라 연결되는 압력측 외벽 및 흡입측 외벽에 의해 형성되는 에어포일(25)로서, 반경방향으로 연장되어 냉매를 수용하는 챔버를 형성하는 것인 에어포일을 포함한다. 리브는, 반경방향으로 연장되는 챔버를, 리브의 제1 면 상의 제1 통로 그리고 리브의 대향하는 제2 면 상의 이웃한 제2 통로로 구획한다. 각각의 통로는, 반경방향으로 연장되는 챔버의 단부에서, 반경방향으로 연장되는 챔버의 단부 부재에 의해 둘러싸이게 된다. 턴 개구가 리브의 단부에 형성되며, 냉매는, 상기 턴 개구를 통해, 반경방향으로 연장되는 챔버의 단부 부재 내에서 제1 통로와 제2 통로 사이로 진행한다. 구근식 돌출부는 리브의 단부를 따라 그리고 턴 개구의 반경방향으로 연장되는 대향 면들 상에서 연장되어 리브 및/또는 연결용 필렛에서의 응력을 감소시킨다.

Description

냉매 통로의 턴 개구에 응력 저감용 구근식 돌출부를 갖춘 블레이드{BLADE WITH STRESS-REDUCING BULBOUS PROJECTION AT TURN OPENING OF COOLANT PASSAGES}
본 개시내용은 터빈 에어포일(turbine airfoil)에 관한 것이며, 보다 구체적으로 에어포일을 냉각시키기 위해 공기와 같은 유체가 지나가도록 하기 위한 내부 채널을 갖춘 중공형 터빈 에어포일, 예컨대 로터 블레이드(rotor blade) 또는 스테이터 블레이드(stator blade)에 관한 것이다.
연소 엔진 또는 가스 터빈 엔진(이하 “가스 터빈”)은 압축기, 연소기, 및 터빈을 포함한다. 당업계에 알려져 있는 바와 같이, 압축기에서 압축된 공기는 연료와 혼합되게 되고, 연소기에서 점화되며, 이후 터빈을 통해 팽창하게 되어 동력(power)을 생성한다. 터빈 내부의 구성요소, 구체적으로는 둘레방향으로 어레이(array)를 이루는 로터 블레이드 및 스테이터 블레이드는, 상기 구성요소를 통해 소비되는 연소 생성물의 극히 높은 온도 및 압력을 특징으로 하는 가혹한 환경에 놓이게 된다. 반복적인 열적 사이클뿐만 아니라 전술한 환경의 극단적인 온도 및 기계적 응력에 견디기 위해, 에어포일은 강건한 구조를 나타내어야만 하며, 능동적으로 냉각되어야만 한다.
이해할 수 있는 바와 같이, 터빈 로터 블레이드 및 터빈 스테이터 블레이드는 종종 내부 통로 또는 내부 회로를 포함하는데, 이러한 내부 통로 또는 내부 회로는 냉각 시스템을 형성하고, 이 냉각 시스템을 통해, 냉매, 보통 압축기로부터 나오는 공기가 순환하게 된다. 이러한 냉각 회로는 보통 에어포일에 대해 요구되는 구조적 지지를 제공하는 내부 리브(internal rib)에 의해 형성되며, 허용 가능한 온도 프로파일 내에서 에어포일을 유지하기 위해 다수의 유동 경로 구성을 포함한다. 이러한 냉각 회로를 통과하는 공기는 주로 에어포일의 선행 에지(leading edge), 후미 에지(trailing edge), 흡입측 및 압력측에 형성되는 박막 냉각 개구를 통해 통기된다.
연소 온도가 상승함에 따라 가스 터빈의 효율이 증가한다는 것을 이해할 것이다. 이 때문에, 터빈 블레이드가 훨씬 더 높은 온도에 견디는 것을 가능하게 하는, 기술적 진보에 대한 꾸준한 요구가 존재한다. 이러한 진보는 때때로 더 높은 온도에 견딜 수 있는 신규의 재료를 포함하지만, 종종 그러한 바와 같이 냉각 용량 및 블레이드 구조를 향상시키도록 에어포일의 내부 구성을 개선하는 것을 수반한다. 그러나, 냉매의 사용은 엔진의 효율을 감소시키기 때문에, 높은 수준의 냉매 사용에 과도하게 많이 의존하는 신규의 구성은 단지 한 가지 비효율성을 다른 비효율성으로 전환시킬 뿐이다. 그 결과로서, 냉매 효율을 개선시키는 냉매 순환 및 내부 에어포일 구성을 제공하는 신규의 에어포일 구성에 대한 요구가 지속적으로 존재한다.
내부적으로 냉각되는 에어포일의 구성을 더욱 복잡하게 하는 고려사항은, 에어포일 내부 구조와 에어포일 외부 구조 사이에서 작동 중에 나타나는 온도차이다. 즉, 에어포일의 외측 벽은, 고온 가스 경로에 노출되기 때문에, 작동 중에 보통 다수의 내부 리브보다 훨씬 높은 온도로 존재하는데, 상기 내부 리브는 예컨대 내부 리브의 각 면에 대해 형성되는 통로를 통해 냉매가 유동하도록 할 수 있다. 실제로, 공통의 에어포일 구성은 “4벽” 구성("four-wall" arrangement)을 포함하는데, 상기 4벽 구성에서는 긴 내부 리브가 압력측 외벽 및 흡입측 외벽에 대해 평행하게 연장된다. 4벽 구성에서 형성되는, 벽 부근의 유동 통로에 의해 높은 냉각 효율이 달성될 수 있다는 것이 알려져 있다. 벽 부근의 유동 통로와 관련된 과제는, 외측 벽이 내측 벽보다 현저하게 더 높은 레벨의 열 팽창을 겪게 된다는 것이다. 이러한 불균형적인 팽창은 내부 리브가 연결되는 지점에서 응력이 발달하게 되도록 하며, 이는 블레이드의 수명을 단축시킬 수 있는 저 사이클 피로(low cyclic fatique)를 유발할 수 있다.
미국 특허출원공개공보 US2015/0184519호(2015.07.02.)
본 개시내용의 제1 양태는 블레이드를 제공하는데, 상기 블레이드는, 선행 에지 및 후미 에지를 따라 연결되는 오목한 압력측 외벽 및 볼록한 흡입측 외벽에 의해 형성되고 상기 압력측 외벽과 흡입측 외벽 사이에서 냉매의 유동을 수용하기 위해 반경방향으로 연장되는 챔버를 형성하는 에어포일을 포함하며, 상기 블레이드는 또한 리브 구성(rib configuration) 및 구근식 돌출부를 더 포함하고, 상기 리브 구성은, 반경방향으로 연장되는 챔버를, 상기 리브의 제1 면 상의 제1 통로 및 상기 리브의 대향하는 제2 면 상의 이웃한 제2 통로로 구획하는 리브로서, 각각의 통로는 반경방향으로 연장되는 챔버의 단부 부재에 의해, 반경방향으로 연장되는 챔버의 단부에서 폐쇄되는 것인 리브; 리브의 단부에 형성되는 턴 개구(turn opening)로서, 반경방향으로 연장되는 챔버의 단부 부재 내에서 제1 통로와 제2 통로 사이로 냉매가 통과하는 것인 턴 개구를 포함하며, 구근식 돌출부는 리브의 단부를 따라 그리고 턴 개구의 대향하는 반경방향 연장 면을 따라 연장된다.
본 개시내용의 제2 양태는 터빈 로터 블레이드를 제공하는데, 상기 터빈 로터 블레이드는, 선행 에지 및 후미 에지를 따라 연결되는 오목한 압력측 외벽 및 볼록한 흡입측 외벽에 의해 형성되고 상기 압력측 외벽과 흡입측 외벽 사이에서 냉매의 유동을 수용하기 위해 반경방향으로 연장되는 챔버를 형성하는 에어포일을 포함하며, 상기 터빈 로터 블레이드는 또한 리브 구성 및 구근식 돌출부를 더 포함하고, 상기 리브 구성은, 반경방향으로 연장되는 챔버를, 상기 리브의 제1 면 상의 제1 통로 및 상기 리브의 대향하는 제2 면 상의 이웃한 제2 통로로 구획하는 리브로서, 각각의 통로는 반경방향으로 연장되는 챔버의 단부 부재에 의해, 반경방향으로 연장되는 챔버의 단부에서 폐쇄되는 것인 리브; 리브의 단부에 형성되는 턴 개구(turn opening)로서, 반경방향으로 연장되는 챔버의 단부 부재 내에서 제1 통로와 제2 통로 사이로 냉매가 통과하는 것인 턴 개구를 포함하며, 상기 구근식 돌출부는 리브의 단부를 따라 그리고 턴 개구의 대향하는 반경방향 연장 면을 따라 연장된다.
본 개시내용의 예시적인 양태는, 본원에서 설명되는 문제 및/또는 논의되지 않은 다른 문제를 해소하기 위한 구성이다.
본 개시내용의 이러한 특징 및 다른 특징은, 본 개시내용의 다양한 실시예를 도시하는 첨부 도면과 함께 취하는, 본 개시내용의 다양한 양태에 대한 이하의 상세한 설명으로부터 더욱 용이하게 이해될 것이다.
도 1은 본 출원의 특정 실시예가 사용될 수 있는 예시적인 터빈 엔진의 개략도이다.
도 2는 도 1의 연소 터빈 엔진의 압축기 섹션의 단면도이다.
도 3은 도 1의 연소 터빈 엔진의 터빈 섹션의 단면도이다.
도 4는 본 개시내용의 실시예가 채용될 수 있는 유형의 터빈 로터 블레이드의 사시도이다.
도 5는 통상적인 구성에 따른 내측 벽 또는 리브 구성을 갖는 터빈 로터 블레이드의 단면도이다.
도 6은 통상적인 구성에 따른 리브 구성을 갖는 터빈 로터 블레이드의 단면도이다.
도 7은 도 4에서의 라인 EE를 따라 취한, 통상적인 리브 구성의 확대 단면 사시도를 나타낸 것이다.
도 8은 도 4에서의 라인 DD를 따라 부분적으로 취한, 본 개시내용의 실시예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 9는 도 4에서의 라인 AA를 따라 부분적으로 취한, 본 개시내용의 실시예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 10은 도 4에서의 라인 EE를 따라 취한, 본 개시내용의 실시예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 11은 도 4에서의 라인 FF를 따라 부분적으로 취한, 본 개시내용의 실시예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 12는 도 4에서의 라인 FF를 따라 부분적으로 취한, 본 개시내용의 실시예에 따른 구근식 돌출부 및 리브 구성에 관한 다른 확대 단면 사시도를 나타낸 것이다.
도 13은 도 4에서의 라인 BB를 따라 부분적으로 취한, 본 개시내용의 변형예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 14는 본원에 설명된 임의의 실시예에서 채용될 수 있는 구근식 돌출부의 실시예에 관한 확대 단면도를 나타낸 것이다.
도 15는 도 4에서의 라인 BB를 따라 부분적으로 취한, 본 개시내용의 다른 변형예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 16은 도 4에서의 라인 DD를 따라 부분적으로 취한, 본 개시내용의 다른 변형예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 17은 도 4에서의 라인 EE를 따라 부분적으로 취한, 본 개시내용의 다른 변형예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
도 18은 도 4에서의 라인 DD를 따라 부분적으로 취한, 본 개시내용의 또 다른 변형예에 따른 구근식 돌출부 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
본 개시내용의 도면은 실척으로 되어 있는 것이 아니라는 점에 주의해야 한다. 도면은 단지 본 개시내용의 보편적인 양태를 도시하려는 의도일 뿐이며, 이에 따라 본 개시내용의 범위를 한정하는 것으로 간주되어서는 안 된다. 도면에서, 각 도면들 사이에 동일한 요소는 동일한 도면부호로 나타낸다.
본 개시내용을 명확하게 설명하기 위해, 서두 부분으로서, 가스 터빈 내의 관련 기계 구성요소를 설명 및 참고함에 있어서 특정 용어를 선택할 필요가 있을 수 있다. 이러한 경우, 가능하다면, 일반적인 산업적 용어가 그 인정받은 의미에 일치하는 방식으로 사용 및 채용될 것이다. 달리 언급되어 있지 않다면, 이러한 용어는 본 출원의 내용 및 첨부된 청구범위의 범위에 부합하는 넓은 해석을 제시하는 것이다. 당업자는, 종종 여러 가지 상이한 용어 또는 중복되는 용어를 이용하여 구체적인 구성요소를 지칭할 수 있다는 것을 이해할 것이다. 본원에서 단수인 것으로 설명되는 대상은, 다른 문맥에서는 다수의 구성요소를 포함할 수 있으며, 다른 문맥에서는 다수의 구성요소로 이루어지는 것을 참고할 수 있을 것이다. 대안으로, 본원에서 다수의 구성요소를 포함하는 것으로 설명될 수 있는 대상은, 다른 부분에서는 단수를 가리킬 수 있다.
추가적으로, 여러 가지 설명에 관한 용어는 본원에서 정식으로 사용될 수 있고, 해당 섹션의 서두에서 이러한 용어를 정의하는 것은 분명히 도움이 될 것이다. 이러한 용어 및 이 용어의 정의는, 달리 언급되지 않는다면, 다음과 같다. 본원에서 사용될 때, “하류” 및 “상류”는 유체, 예컨대 터빈 엔진을 통과하는 작동 유체 또는 예컨대 연소기를 통과하는 공기 또는 터빈의 구성요소 시스템들 중 하나를 통과하는 냉매의 유동에 대한 방향을 나타내는 용어이다. 용어 “하류”는 유체의 유동 방향에 대응하며, 용어 “상류”는 이러한 유동에 대해 반대 방향을 지칭한다. 용어 “전방” 및 “후방”은, 어떠한 추가적인 한정 없이, 엔진의 전방 단부 또는 압축기 단부를 가리키는 “전방” 및 엔진의 후방 단부 또는 터빈 단부를 가리키는 “후방”에 관한 방향을 지칭한다. 중심 축선과 관련하여 상이한 반경방향 위치에 있는 부분을 설명하는 것이 종종 요구된다. 용어 “반경방향”은 일 축선에 대해 수직한 위치 또는 운동을 지칭한다. 이와 같은 경우에 있어서, 제1 구성요소가 제2 구성요소보다 상기 일 축선에 대해 더 근접하게 위치한다면, 본원에서는 제1 구성요소가 제2 구성요소의 “반경방향 내측을 향해” 또는 “내측에” 존재하는 것으로 서술된다. 다른 한편으로, 제1 구성요소가 제2 구성요소보다 상기 일 축선으로부터 더 멀리 위치한다면, 본원에서는 제1 구성요소가 제2 구성요소의 “반경방향 외측을 향해” 또는 “외측에” 존재하는 것으로 서술될 수 있다. 용어 “축방향”은 일 축선에 대해 평행한 위치 또는 운동을 지칭한다. 마지막으로, 용어 “둘레방향”은 일 축선 주위에서의 위치 또는 운동을 지칭한다. 이러한 용어는 터빈의 중심 축선에 대해 적용될 수 있다는 것을 이해할 것이다.
기초 지식으로서, 이제 도면을 참고하는데, 도 1 내지 도 3은 본 출원의 실시예가 사용될 수 있는 예시적인 연소 터빈 엔진을 제시하고 있다. 당업자라면, 본 개시내용은 이러한 구체적인 유형의 용도로 한정되지 않는다는 것을 이해할 것이다. 본 개시내용은 연소 터빈 엔진, 예컨대 발전소, 항공기뿐만 아니라 다른 엔진 터보기계 유형에서 사용될 수 있는 바와 같은 연소 터빈 엔진에서 사용될 수 있다. 제시된 예는, 달리 언급되지 않는 한, 한정하려는 의도가 아니다.
도 1은 연소 터빈 엔진(10)의 개략도이다. 일반적으로, 연소 터빈 엔진은, 압축 공기의 스트림에서 연료를 연소시킴으로써 생성되는 고온 가스의 압축 유동으로부터 에너지를 추출하는 것에 의해 작동된다. 도 1에 제시된 바와 같이, 연소 터빈 엔진(10)은, 하류 터빈 섹션 또는 터빈(13)에 대한 공통 샤프트 또는 로터에 의해 그리고 압축기(11)와 터빈(13) 사이에 위치 설정되는 연소기(12)에 의해 기계적으로 결합되는 축류식 압축기(11)를 갖도록 구성될 수 있다.
도 2는 도 1의 연소 터빈 엔진에서 사용될 수 있는 예시적인 다단 축류식 압축기(11)의 도면을 제시한 것이다. 도시된 바와 같이, 압축기(11)는 복수 개의 스테이지(stage)를 포함할 수 있다. 각각의 스테이지는, 압축기 스테이터 블레이드(15)의 열(row)이 후속하는 압축기 로터 블레이드(14)의 열을 포함할 수 있다. 따라서, 제1 스테이지는 압축기 로터 블레이드(14)의 열을 포함할 수 있으며, 이 압축기 로터 블레이드는 중심 샤프트를 중심으로 회전하고, 작동 중에 고정 상태로 유지되는 압축기 스테이터 블레이드(15)의 열이 상기 압축기 로터 블레이드의 열에 후속한다.
도 3은 도 1의 연소 터빈 엔진에서 사용될 수 있는 예시적인 터빈 섹션 또는 터빈(13)의 부분도를 제시한 것이다. 터빈(13)은 복수 개의 스테이지를 포함할 수 있다. 3개의 예시적인 스테이지가 도시되어 있지만, 더 많은 또는 더 적은 스테이지가 터빈(13)에 존재할 수 있다. 제1 스테이지는, 작동 중에 샤프트를 중심으로 회전하는 복수 개의 터빈 버킷(turbine bucket) 또는 터빈 로터 블레이드(16), 그리고 작동 중에 고정 상태로 유지되는 복수 개의 노즐 또는 터빈 스테이터 블레이드(17)를 포함한다. 터빈 스테이터 블레이드(17)들은 일반적으로 둘레방향으로 서로 이격되어 있으며, 회전 축선 주위에 고정된다. 터빈 로터 블레이드(16)는 샤프트(도시되어 있지 않음)를 중심으로 한 회전을 위해 터빈 휠(turbine wheel)(도시되어 있지 않음) 상에 장착될 수 있다. 터빈(13)의 제2 스테이지가 또한 제시되어 있다. 마찬가지로, 제2 스테이지는 복수 개의 둘레방향으로 이격된 터빈 스테이터 블레이드(17)를 포함하며, 이 터빈 스테이터 블레이드에는, 회전을 위해 터빈 휠에 역시 장착되는 복수 개의 둘레방향으로 이격된 터빈 로터 블레이드(16)가 후속한다. 제3 스테이지가 또한 제시되어 있으며, 제3 스테이지는 마찬가지로 복수 개의 터빈 스테이터 블레이드(17) 및 터빈 로터 블레이드(16)를 포함한다. 터빈 스테이터 블레이드(17) 및 터빈 로터 블레이드(16)는 터빈(13)의 고온 가스 경로에 놓이게 된다는 것을 이해할 것이다. 상기 고온 가스 경로를 통한 고온 가스의 유동 방향은 화살표로 지시되어 있다. 당업자라면, 터빈(13)이 도 3에 도시된 것보다 더 많은 스테이지를 포함할 수 있거나 또는 일부 경우에는 더 적은 스테이지를 포함할 수 있다는 것을 이해할 것이다. 각각의 추가적인 스테이지는, 터빈 로터 블레이드(16)의 열(row)이 후속하는 터빈 스테이터 블레이드(17)의 열을 포함할 수 있다.
한 가지 작동예에 있어서, 축류식 압축기(11) 내에서의 압축기 로터 블레이드(14)의 회전에 의해 공기의 유동이 압축될 수 있다. 연소기(12) 내에서, 압축 공기가 연료와 혼합되고 점화될 때 에너지가 방출될 수 있다. 작동 유체라고도 부를 수 있는, 연소기(12)로부터의 고온 가스의 결과적인 유동은 이후 터빈 로터 블레이드(16) 위로 향하게 되는데, 작동 유체의 유동은 샤프트를 중심으로 한 터빈 로터 블레이드(16)의 회전을 유도한다. 이에 따라, 작동 유체의 유동 에너지는 회전하는 블레이드의 기계적 에너지로 변환되며, 로터 블레이드와 샤프트 사이의 연결 때문에, 회전 샤프트가 회전하게 된다. 샤프트의 기계적 에너지는 이제 압축기 로터 블레이드(14)의 회전을 구동시키는 데 사용될 수 있으며, 이에 따라 필요한 공급량의 압축 공기가 생성되고, 또한 예컨대 발전기가 전기를 생성하게 된다.
도 4는 본 개시내용의 실시예가 채용될 수 있는 유형의 터빈 로터 블레이드(16)의 측면 사시도이다. 터빈 로터 블레이드(16)는 루트(21; root)를 포함하며, 이 루트에 의해 로터 블레이드(16)가 로터 디스크(rotor disc)에 부착된다. 상기 루트(21)는 로터 디스크의 둘레에서의 대응하는 도브테일 슬롯(dovetail slot)에 장착하기 위해 구성된 도브테일(도시되어 있지 않음)을 포함할 수 있다. 상기 루트(21)는 도브테일과 플랫폼(24) 사이에서 연장되는 섕크(shank)를 더 포함할 수 있으며, 상기 섕크는 에어포일(25)과 루트(21)의 연결부에 배치되고 터빈(13)을 통한 유동 경로의 내측 경계의 일부를 한정한다. 에어포일(25)은, 작동 유체의 유동을 차단하여 로터 디스크의 회전을 유도하는, 로터 블레이드(16)의 능동적 구성요소라는 것을 이해할 것이다. 이러한 예에서의 블레이드는 터빈 로터 블레이드(16)이지만, 본 개시내용은 또한 터빈 스테이터 블레이드(17)(베인)를 비롯한, 터빈 엔진(10) 내의 다른 유형의 블레이드에 적용될 수 있다는 것을 이해할 것이다. 로터 블레이드(16)의 에어포일(25)은, 오목한 압력측(PS) 외벽(26) 및 둘레방향 또는 측방향으로 대향하는 볼록한 흡입측(SS) 외벽(27)을 포함하는데, 이들 외벽은 각각 대향하는 선행 에지(28)와 후미 에지(29) 사이에서 축방향으로 연장된다는 것을 알 수 있다. 측벽(26 및 27)은 또한 반경 방향으로 플랫폼(24)으로부터 외측 팁(31; outboard tip)으로 연장된다. [본 개시내용의 적용은 터빈 로터 블레이드로 한정되지 않을 수 있으며, 오히려 스테이터 블레이드(베인)에도 역시 적용 가능할 수 있다는 것을 이해할 것이다. 본원에서 설명되는 여러 가지 실시예에서의 로터 블레이드의 사용은 달리 언급되지 않는 한 단지 예시적일 뿐이다.] 도 4는 또한, 본 개시내용의 내부 리브 구성 및 교시를 설명하려는 목적으로 본원에서 참조하게 될 다수의 단면 지시선(AA, BB, DD, EE, 및 FF)을 포함한다.
도 5 및 도 6은, 예컨대 도 4에서의 라인 BB를 따라, 확인할 수 있는 바와 같은 통상적인 구성을 갖는 로터 블레이드 에어포일(25)에서 발견할 수 있는 2개의 예시적인 내벽 구성을 도시한 것이다. 지시된 바와 같이, 에어포일(25)의 외측 표면은 비교적 얇은 압력측(PS) 외벽(26) 및 흡입측(SS) 외벽(27)에 의해 형성될 수 있는데, 이들 외벽은, 반경방향으로 연장되고 상호 교차하는 복수 개의 리브(60; rib)를 통해 연결될 수 있다. 리브(60)는 에어포일(25)에 대한 구조적 지지를 제공하도록 구성되는 반면, 반경방향으로 연장되고 실질적으로 분리되는 복수 개의 유동 통로(40)를 역시 형성한다. 보통, 리브(60)는 에어포일(25)의 반경방향 높이의 대부분에 걸쳐 유동 통로(40)를 구획하도록 반경방향으로 연장되지만, 상기 유동 통로는 냉각 회로를 형성하도록 에어포일의 둘레를 따라 연결될 수도 있다. 다시 말해서, 유동 통로(40)는 에어포일(25)의 외측 에지 또는 내측 에지에서 유체 연통될 수 있을 뿐만 아니라, 이들 에지 사이에 위치 설정될 수 있는 다수의 소형 크로스오버 통로(44; crossover passage) 또는 충돌 개구(후자는 도시되어 있지 않음)를 통해 유체 연통될 수 있다. 이러한 방식으로, 특정한 유동 통로(40)들은 함께 권취형 냉각 회로 또는 사형 냉각 회로(serpentine cooling circuit)를 형성할 수 있다. 추가적으로, 출구를 제공하는 박막 냉각 포트(도시되어 있지 않음)가 포함될 수 있는데, 이 출구를 통해 냉매가 유동 통로(40)로부터 에어포일(25)의 외측 표면 상으로 방출된다.
리브(60)는 2가지 상이한 유형을 포함할 수 있으며, 이때 본원에 제시된 바와 같은 리브는 추가로 세분될 수 있다. 각각의 리브(60)는, 반경방향으로 연장되는 챔버를, 리브의 일 면 상의 적어도 제1 통로(40)로 그리고 리브의 다른 면 상의 제2 통로(40)로 구획한다. 일부 리브(60)는 2개보다 많은 통로(40)를 형성할 수 있다. 제1 유형인, 캠버 라인 리브(62)는 보통 에어포일의 캠버 라인에 대해 평행하게 또는 대략 평행하게 연장되는 긴 리브인데, 상기 캠버 라인은 압력측 외벽(26)과 흡입측 외벽(27) 사이의 중점들을 연결하면서 선행 에지(28)로부터 후미 에지(29)까지 연장되는 기준선이다. 이러한 경우에서 종종 그러한 바와 같이, 도 5 및 도 6의 예시적이고 통상적인 구성은 2개의 캠버 라인 리브(62), 즉 압력측 캠버 라인 리브(63) 및 흡입측 캠버 라인 리브(64)를 포함하는데, 상기 압력측 캠버 라인 리브는 또한 압력측 외벽(26)으로부터 오프셋되어 압력측 외벽에 근접하게 되는 방식으로 주어지며 압력측 외벽에 관한 것일 수 있고, 흡입측 캠버 라인 리브는 흡입측 외벽(27)으로부터 오프셋되어 흡입측 외벽에 근접하게 되는 방식으로 주어지며 흡입측 외벽에 관한 것일 수 있다. 언급된 바와 같이, 이러한 유형의 구성은, 2개의 외벽(26, 27) 및 2개의 캠버 라인 리브(63, 64)를 포함하는 유력한 4개의 주요 벽으로 인해 “4벽” 구성을 갖는 것을 종종 가리킨다. 외벽(26, 27) 및 캠버 라인 리브(62)는 임의의 현재 알려진 기법 또는 추후 개발되는 기법, 예컨대 일체형 구성요소로서의 주조 또는 적층 제조를 이용하여 형성될 수 있다는 것을 이해할 것이다.
제2 유형의 리브는 본원에서 횡단 리브(66)라 불린다. 횡단 리브(66)는, 상기 4벽 구성의 벽과 내부 리브를 연결하는 것으로 도시된 짧은 리브이다. 지시된 바와 같이, 4개의 벽은 다수의 횡단 리브(66)에 의해 연결될 수 있으며, 상기 횡단 리브는 어떠한 벽들이 각각 연결되는지에 따라 추가로 분류될 수 있다. 본원에서 사용될 때, 압력측 외벽(26)을 압력측 캠버 라인 리브(63)에 연결하는 횡단 리브(66)는 압력측 횡단 리브(67)라고 불린다. 흡입측 외벽(27)을 흡입측 캠버 라인 리브(64)에 연결하는 횡단 리브(66)는 흡입측 횡단 리브(68)라고 불린다. 압력측 캠버 라인 리브(63)를 흡입측 캠버 라인 리브(64)에 연결하는 횡방향 리브(66)는 중앙 횡단 리브(69)라고 불린다. 마지막으로, 선행 에지(28) 부근에서 압력측 외벽(26) 및 흡입측 외벽(27)을 연결하는 횡방향 리브(66)는 선행 에지 횡방향 리브(70)라고 불린다. 도 5 및 도 6에서의 선행 에지 횡방향 리브(70)는 또한 압력측 캠버 라인 리브(63)의 선행 에지 단부 및 흡입측 캠버 라인 리브(64)의 선행 에지 단부에 연결된다.
선행 에지 횡방향 리브(70)는 압력측 외벽(26) 및 흡입측 외벽(27)을 결합시키기 때문에, 상기 선행 에지 횡방향 리브는 또한 본원에서 선행 에지 통로(42)로 불리는 통로를 형성한다. 선행 에지 통로(42)는 본원에 설명된 다른 통로(40)와 유사한 기능성을 나타낼 수 있다. 제시된 바와 같이, 본원에서의 선택사항으로서 그리고 본원에서 주목되는 바와 같이, 크로스오버 통로(44)는 선행 에지 통로(42) 내외로 바로 후방의 중앙 통로(46)까지 냉매가 진행하도록 허용할 수 있다. 크로스오버 포트(44)는 통로(40, 42)들 사이에서 반경방향으로 이격된 관계로 위치 설정되는 임의의 개수의 포트를 포함할 수 있다.
일반적으로, 에어포일(25)에서의 임의의 내부 구성의 목적은 효율적인 벽 부근 냉각을 제공하는 것이며, 여기서 냉각 공기는 에어포일(25)의 외벽(26, 27)에 이웃한 채널 내에서 유동한다. 냉각 공기가 에어포일의 고온 외측 표면 부근에 근접하게 존재하기 때문에 벽 부근 냉각이 유리하며, 좁은 채널을 통과하는 유동을 제한함으로써 달성되는 빠른 유동 속도로 인해 결과적인 열 전달 계수가 크다는 것을 이해할 것이다. 그러나, 이러한 구성은 에어포일(25) 내에서 나타나는 상이한 수준의 열 팽창들로 인해 저 사이클 피로를 겪게 될 가능성이 있으며, 이러한 저 사이클 피로는 궁극적으로 로터 블레이드의 수명을 단축시킬 수 있다. 예를 들면, 작동 중에, 흡입측 외벽(27)은 흡입측 캠버 라인 리브(64)보다 열적으로 더 팽창한다. 이러한 팽창의 차이는 에어포일(25)의 캠버 라인의 길이를 증가시키는 경향이 있으며, 이에 따라 전술한 각각의 구조뿐만 아니라 이들 구조를 연결하는 구조들 사이에 응력을 유발시킨다. 추가적으로, 압력측 외벽(26)은 또한 이보다 저온인 압력측 캠버 라인 리브(63)에 비해 열적으로 더 팽창한다. 이러한 경우에 있어서, 전술한 차이는 에어포일(25)의 캠버 라인의 길이를 감소시키는 경향이 있으며, 이에 따라 전술한 각각의 구조뿐만 아니라 이들 구조를 연결하는 구조들 사이에 응력을 유발시킨다. 일 경우에는 에어포일 캠버 라인을 감소시키는 경향이 있으며 다른 경우에는 에어포일 캠버 라인을 증가시키는 경향이 있는, 에어포일에서의 반대되는 힘들은 응력 집중을 초래할 수 있다. 이러한 힘들이 에어포일의 구체적인 구조적 구성에 발현되어 주어지는 다양한 방식 그리고 이러한 힘들이 이후 밸런싱(balancing)되고 보상되는 방식은 로터 블레이드(16)의 부품 수명의 주요한 결정요인이 된다.
보다 구체적으로, 일반적인 시나리오에서, 흡입측 외벽(27)은, 고온 가스 경로의 높은 온도에 노출되어 열적으로 팽창될 때 그 곡률의 정점에서 외측을 향해 구부러지는 경향이 있다. 내측 벽이 되는 흡입측 캠버 라인 리브(64)는 동일한 수준의 열 팽창을 나타내지 않으며, 이에 따라 동일한 경향으로 외측을 향해 구부러지지 않는다는 것을 이해할 것이다. 다시 말해서, 캠버 라인 리브(64) 및 횡방향 리브(66) 그리고 이들 리브의 연결 지점은 외벽(27)의 열 팽창에 저항하게 된다.
도 5에 그 예가 도시되어 있는 통상적인 구성은, 컴플라이언스(compliance)를 전혀 제공하지 못하거나 약간의 컴플라이언스만을 제공하는 강성의 기하학적 구조로 형성되는 캠버 라인 리브(62)를 갖는다. 이로부터 유발되는 저항 및 응력 집중은 상당할 수 있다. 캠버 라인 리브(62)를 외벽(27)에 연결하는 데 사용되는 횡방향 리브(66)는, 선형 프로파일을 갖도록 형성될 수 있고 상기 캠버 라인 리브가 연결시키는 벽에 대해 대체로 직각으로 배향될 수 있어서, 전술한 문제를 악화시킨다. 이는, 가열되는 구조들이 현저하게 상이한 비율로 팽창할 때, 기본적으로 외벽(27)과 캠버 라인 리브(64) 사이의 “저온” 위치 관계를 신속하게 유지하도록 횡방향 리브(66)가 작동되는 경우이다. “탄력성”이 전혀 없는 상황 또는 탄력성이 약간 있는 상황은, 구조의 특정 영역에 집중되는 응력을 완화시키지 못하게 한다. 열 팽창의 이러한 차이는, 구성요소 수명을 단축시키는 저 사이클 피로로 귀결된다.
다수의 다양한 내부 에어포일 냉각 시스템 및 리브 구성이 과거에 평가된 바 있으며, 이러한 문제를 해결하기 위해 여러 가지 시도가 행해진 바 있다. 이러한 한 가지 접근법은, 외벽(26, 27)을 과냉각시켜 온도차 및 이에 따른 열 팽창의 차이가 감소되도록 하는 것을 제안한다. 그러나, 이를 수행하는 방식은 보통 에어포일을 통해 순환되는 냉매의 양을 증가시키는 것이라는 것을 이해할 것이다. 냉매는 보통 압축기로부터 공급되는 공기이기 때문에, 냉매의 사용 증가는 엔진의 효율에 부정적인 영향을 미치며, 이에 따라 바람직하게는 전술한 해법을 회피하게 한다. 다른 해법은, 동일한 양의 냉매를 사용하지만 이 냉매를 보다 효율적으로 사용하는 것인 개선된 제조 방법의 사용 및/또는 보다 복잡한 내부 냉각 구성을 제안하는 것이다. 이러한 해법은 어느 정도 효과적인 것으로 입증되었으나, 각각의 해법은 엔진의 작동 또는 부품의 제조에 있어서 추가적인 비용을 초래하며, 근본적인 문제, 즉 작동 중에 에어포일이 열적으로 어떻게 팽창하는가의 관점에서 통상적인 구성의 기하학적 결함을 직접적으로 전혀 해소하지 못한다. 도 6에서의 일례에 도시된 바와 같이, 다른 접근법은, 터빈 블레이드의 에어포일에서 종종 나타나는 불균형적인 열 응력을 완화시키는 특정한 곡선형 내부 리브 또는 버블형(bubbled) 내부 리브 또는 사인곡선형 내부 리브 혹은 파형 내부 리브(이하 “파형 리브”)를 채용하는 것이다. 이러한 구조는 에어포일(25)의 내부 구조의 경직도를 감소시켜 목표한 유연성을 제공하며, 이에 따라 응력 집중이 분산되고, 보다 양호하게 견딜 수 있는 다른 구조 영역으로 변형(strain)이 오프로드(off-load)되도록 한다. 이는, 예컨대 더 넓은 영역에 걸쳐 또는 아마도 압축 부하에 대한 인장 응력을 오프로드하는 구조(보통 더 바람직함)에 걸쳐 변형이 퍼지도록 하는 영역으로 응력을 오프로드하는 것을 포함할 수 있다. 이러한 방식으로, 수명을 단축시키는 응력 집중 및 변형이 방지될 수 있다.
그러나, 전술한 구성에도 불구하고, 특정 통로(40)들 사이에서의 턴(turn)에서 여전히 응력이 높은 영역이 유발될 수 있다. 구체적으로, 다중벽 터빈 블레이드 냉각 구성은 일반적으로 에어포일(26)의 외벽(26, 27) 부근에서 더 작은 통로(40)를 이용하여, 냉각 유동을 덜 이용하면서도 유효 냉각이 이루어지기에 충분한 속도를 여전히 유지한다. 블레이드 내부 통로(40)의 나머지는 보통 냉각 효과가 적은 영역이다. 냉각 효과가 적은 이러한 영역은, (적용되는 박막 때문에 또는 외부 유동의 특성에 따라) “벽 부근 냉각” 통로에 의해 열 부하가 높은 영역으로부터 차폐되거나, 또는 블레이드 상의 열 부하가 낮은 면을 대면하도록 배치된다. 도 7은 도 4에서의 라인 EE를 따라, 캠버 라인 리브(62)들 사이에서의 턴(turn; 78)(2개가 도시되어 있음)의 단면 확대 사시도를 도시한 것이다. 도 6 및 도 7에 도시된 바와 같이, 캠버 라인 리브(62)는, 에어포일(25) 내에서 반경방향으로 연장되는 챔버를, 외벽(26, 27)들(도 7에는 27이 도시되어 있음) 중 하나에 이웃하는 캠버 라인 리브의 일 면 상의 외측 통로(80) 그리고 캠버 라인 리브의 대향 면 상의 내측 통로(82)로 구획할 수 있다. 도 7에 도시된 바와 같이, 턴(78)은 각각, 캠버 라인 리브(62)에 의해 형성되는 각각의 리브(62)의 단부(86)에 있는 턴 개구(84)를 포함하며, 반경방향으로 연장되는 챔버의 단부 부재(88)에 도달하지 못하게 한다. 일례에 있어서, 냉매는 외부 통로(80)들로부터 각각의 캠버 라인 리브(62)의 단부(86)를 거쳐 내부 통로(82) 내로 진행할 수 있다. 단부(86)는 라운딩(rounding)될 수 있으며, 즉, 통로(80, 82)들 사이의 냉매 유동을 보조하도록 하는 단일 곡률 반경을 갖는다. 턴(78)은 상호 면하는 복잡한 기하학적 형상으로 인해 더 큰 응력 집중을 나타내는 경향이 있다. 구체적으로, 캠버 라인 리브(62)의 단부(86)가, 예컨대 외벽(26, 27) 중 하나 또는 다른 하나의 리브(60)에 의해 형성되는 턴 개구(84)의 반경방향으로 연장되는 면(90)을 이용하여 필렛(94)과 만나는 곳에서 큰 응력이 관찰된다.
도 8 내지 도 18은 본 개시내용의 실시예에 따른 내측 벽 또는 리브 구성을 갖는 터빈 로터 블레이드의 단면도를 제시한 것이다. 주목되는 바와 같이, 리브의 구성은 구조적 지지부로서 뿐만 아니라 중공 에어포일(25)을, 실질적으로 분리되어 반경방향으로 연장되는 유동 통로(40)들로 분할하는 구획부로서 사용되며, 상기 유동 통로들은 냉각 회로를 형성하도록 필요에 따라 상호 연결될 수 있다. 이러한 유동 통로(40) 및 이들 유동 통로에 의해 형성되는 회로는, 특히 그 용례가 목표를 달성하게 하고 보다 효율적이 되도록 하는 방식으로 에어포일(25)을 통해 냉매의 유동을 안내하는 데 사용된다. 본원에 제시된 예에서는 이들 유동 통로가 터빈 로터 블레이드(16)에서 사용될 수 있는 것으로 도시되어 있지만, 동일한 사상이 또한 터빈 스테이터 블레이드(17)에 채용될 수도 있다는 것을 이해할 것이다.
도 8 내지 도 10은 본 개시내용의 실시예에 따른 리브 구성의 일 실시예를 도시한 것이다. 도 8은 도 4에서의 라인 DD를 따라, 즉 단부 부재(88)를 향해 반경방향 외측으로 보면서 부분적으로 취한, 본 개시내용의 실시예에 따른 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다. 도 9는 도 4에서의 라인 AA를 따라, 즉 반경방향 내측으로 보면서 부분적으로 취한, 본 개시내용의 실시예에 따른 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다. 도 10은 도 4에서의 라인 EE를 따라, 즉 길이방향 부분 단면에서 후미를 바라보면서 취한, 본 개시내용의 실시예에 따른 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다.
제시된 바와 같이, 리브 구성은, 반경방향으로 연장되는 챔버를, 리브(160)의 제1 면(110) 상의 제1 통로(180) 및 리브(160)의 대향하는 제2 면(112) 상의 이웃하는 제2 통로(182)로 구획하는 리브(160)를 제공할 수 있다. 본 개시내용의 교시는 임의의 리브에 적용될 수 있지만, 본 개시내용의 교시는 대체로 캠버 라인 리브(162)에 대해 적용된 것으로 도시되어 있다. 보다 구체적으로, 리브(160)는, 필렛(192)(도 8 참고)에서 선택된 외측 벽(26, 27)(26이 도시되어 있음)의 각각의 만곡된 단부에 결합되는 만곡된 캠버 라인 리브(162)를 포함한다. 도 8에 도시된 바와 같이, 만곡된 캠버 라인 리브(162)는 또한 필렛(194)에서, 이웃한 리브(60), 예컨대 이웃한 캠버 라인 리브(62)에 결합될 수 있다. 제시된 바와 같이, 만곡된 캠버 라인 리브(162)가 외측 벽(26, 27)에 결합되는 경우, 리브(162)는 선택된 외측 벽(26)과 만곡된 캠버 라인 리브(162) 사이에서 외측 통로로서 제1 통로(180)를 형성하며, 이 외측 통로에 이웃한 내측 통로로서 제2 통로(182)를 형성한다. 이해할 수 있는 바와 같이, 각각의 통로(180, 182)는 반경방향으로 연장되는 챔버의 단부에서, 반경방향으로 연장되는 챔버의 단부 부재(188)에 의해 둘러싸이게 된다. 도 8 내지 도 10은 에어포일(25)의 반경방향 외향의 팁 단부(31)(도 4 참고)를 도시하고 있지만, 에어포일(25)의 반경방향 내향의 루트 단부(21)(도 4 참고)에 유사한 구조가 존재할 수 있다.
이러한 리브 구성은, 반경방향으로 연장되는 챔버의 단부 부재(188) 내에서 제1 통로(180)와 제2 통로(182) 사이로 진행하는 냉매가 통과하는, 리브(162)의 단부(186)에 형성된 턴(178)을 또한 포함한다. 턴(178)은 일반적으로 리브(162)의 단부(186)에 있는 보이드(void)를 포함하여, 통로(180, 182)와 단부 부재(188) 사이에 턴 개구(184)를 생성하는데(도 8 및 도 10 참고), 냉매는 이 턴 개구를 통해 통로(180, 182)들 사이로 진행할 수 있다. 턴 개구(184)는 반경방향으로 연장되는 면(190)을 포함하는데, 이 면은 이웃하는 리브(60, 62) 및/또는 해당 리브가 결합되는 외측 벽(26, 27)에 의해 생성된다. 본 개시내용의 교시는 파형 프로파일을 갖는 캠버 라인 리브(162)를 이용하여 본원에 설명되어 있지만, 본 개시내용은 실질적으로 임의의 리브, 즉 직선형 리브(도 5 참고) 또는 만곡된 리브 그리고 전술한 리브 구성을 갖춘 임의의 위치에 적용 가능하다.
도 8 내지 도 10에 도시된 바와 같이, 통상적인 턴 개구(78)(도 7 참고)와는 대조적으로, 전술한 리브 구성은, 턴 개구(178)의 대향하게 반경방향으로 연장되는 면(190) 상에서 리브(162)의 단부(186)를 따라 연장되는 구근식 돌출부(200)를 포함한다. 도 8에서 가장 잘 볼 수 있는 바와 같이, 구근식 돌출부(200)는 U자 형상으로 연장될 수 있는데, 여기서 U자 형상의 개방된 단부는 반경방향으로 연장되는 챔버의 단부 부재(188)를 향하여 면하고, 즉 반경방향 외측을 향한다. 즉, 구근식 돌출부(200)는 턴 개구(184)의 반경방향으로 연장되는 일 면(190)을 따라, 리브(162)의 단부(186)를 가로질러, 그리고 U자 형상에서 대향하게 반경방향으로 연장되는 면(190)을 따라 반경방향으로 연장된다. 이제, 도 8에 가장 잘 도시되어 있는 바와 같이, 구근식 돌출부(200)는 오직 U자 형상을 따라서 연장될 뿐이며, 반경방향으로 연장되는 챔버의 단부 부재(188) 내로 종결된다. 구근식 돌출부(200)는, 대체로 둥글고 리브(162)로부터 볼록하게 되어 있기 때문에 “구근식”이라고 불린다. 즉, 리브(162)는 그 길이를 따라 제1 두께(T1)를 가지며, 구근식 돌출부(200)는 제1 두께보다 큰 제2 두께(T2)를 갖는다. 구근식 돌출부(200)는 또한 리브(62)(도 7 참고)의 통상적인 단순 라운딩형 단부(86)(도 7 참고)보다 선택된 방향으로 더 멀리 리브(162)의 단부(186)로부터 돌출된다.
구근식 돌출부(200)는 보통 U자 형상(도 7 참고)의 하부 코너에서의 응력을 구근식 돌출부(200)로 그리고 내부 통로(182)를 향해 이동시키는 역할을 한다. 이러한 방식으로, 턴 개구(178)는 구근식 돌출부(200)만큼 필렛(194)으로부터 거리를 두고 있어서, 턴 개구에서의 응력을 감소시킨다.
도 11 내지 도 18은 본 개시내용의 다수의 대안 또는 변형예를 제시한 것이다.
도 11 및 도 12는 도 4에서의 라인 FF를 따라, 즉 에어포일(25)의 루트 단부(21)(도 4 참고)로부터 반경방향 외측으로 보면서 부분적으로 취한, 본 개시내용의 실시예에 따른 리브 구성에 관한 확대 단면도를 나타낸 것이다. 도 11은 보다 확대된 도면이며, 도 12는 더 멀리로부터의 도면이다. 도 11 및 도 12는 에어포일(25)의 내향 루트 단부(21)(도 4 참고)에서의, 예컨대 플랫폼(24)(도 4 참고) 부근의 또는 플랫폼 내에서의, 구근식 돌출부(204)의 적용을 예시한 것이다. 또한, 구근식 돌출부(204)는, 캠버 라인 리브(62)들 사이에 걸쳐있는, 횡방향 리브(166)인 리브(160) 내에 위치 설정된다. 결과적으로, 턴 개구(284)에 의해 결합되는 통로(280) 및 통로(282)는 양자 모두 내측 통로이다. 여기서, 반경방향으로 연장되는 측벽(190)은 캠버 라인 리브(62)의 일부이며, 구근식 돌출부(204)는 도 8 내지 도 10에서보다 외측 벽(26, 27)을 갖춘 캠버 라인 리브(62)의 필렛(192)으로부터 더 멀리에 거리를 두고 있을 수 있다. 구근식 돌출부(204)는, 횡방향 리브(166)와 캠버 라인 리브(62) 사이에서의 필렛(194)(도 11 참고)에 응력이 위치하도록 하기보다는 응력이 돌출부로 이동하도록 한다.
도 13은 본 개시내용의 변형예에 따른 구근식 돌출부(206)를 포함하는 리브 구성에 관한 확대 단면 사시도를 나타낸 것이며, 도 14는 본원에 설명되는 임의의 실시예에서 채용될 수 있는 바와 같은 구근식 돌출부(200)의 실시예에 대한 확대 단면도를 도시한 것이다. 도 13은 도 4의 라인 BB를 따라, 즉 반경방향 내향으로 보아 부분적으로 취한 단면이다. 도 10, 도 13 및 도 14는 본원에서 설명되는 구근식 돌출부에 대한 임의의 실시예에 적용 가능한 변형예를 제시한 것이다. 여기서, 구근식 돌출부[도 10, 도 13 및 도 14에서 “200”으로 라벨링(labeling)됨]는, 통상적으로 라운딩되는 단부(86)(도 7 참고)와는 대조적으로, 일 통로를 향해 연장되는 일 부분(202)을 포함한다. 도 14는, 구근식 돌출부가 하나가 넘는 곡률 반경(R1, R2)에 의해 형성되는 단면을 나타낼 수 있으며, 이에 따라 부분(202)이 제공되는 것을 제시하고 있다. 도 10 및 도 13에 도시된 예에 있어서, 연장되는 상기 부분(202)이 향하는 통로는 내측 통로(182)이며, 이는 돌출부(200, 206) 및 부분(202) 내로 내측을 향해 응력을 이동시킨다. 즉, 상기 부분(202)은, 응력을 분배함에 있어서 그리고 일 통로(180, 182)로부터 다른 하나의 통로로의 냉매 유동을 보조함에 있어서 도움이 된다.
도 15 및 도 16은 본 개시내용의 다른 변형예에 따른 구근식 돌출부(208) 및 리브 구성에 관한 확대 단면 사시도를 나타낸 것이다. 도 15는 도 4의 라인 BB를 따라, 즉 반경방향 내향으로 보아 부분적으로 취한 것이며, 도 16은 도 4의 라인 DD를 따라, 즉 반경방향 외측을 향해 보면서 부분적으로 취한 것이다. 이러한 실시예에 있어서, 구근식 돌출부(208)는 U자 형상이지만, U자 형상의 제1 단부(208A)로서, U자 형상의 제2 단부(208B)에 대해 경사진 제1 단부를 갖는다. 즉, 단부(208A) 및 단부(208B)는 이들의 길이의 일부 부분에서 평행하지 않다. 도시된 예에 있어서, 단부(208A)는 또한 반경방향으로 연장되는 챔버의 단부 부재(188)와 일반적으로 수직인 각도로 만나지 않게 되도록 경사지며, 이에 비해 단부(208B)는 수직인 각도로 단부 부분(88)과 일반적으로 만나게 된다(임의의 필렛 곡률은 예외로 함).
도 17 및 도 18은 본 개시내용의 다른 변형예에 따른 구근식 돌출부(210) 및 리브 구성에 관한 확대 단면 사시도를 도시한 것이다. 도 17은 도 4의 라인 EE를 따라, 즉 길이방향 부분 단면에서 후미를 보아 부분적으로 취한 것이며, 도 18은 도 4의 라인 DD를 따라, 즉 반경방향 외측을 향해 보면서 부분적으로 취한 것이다. 이러한 실시예에 있어서, 구근식 돌출부(210)는 턴 개구(284)의 반경방향으로 연장되는 대향 면(190)들 사이에서 반경방향으로 연장되는 챔버의 단부 부재(188)[연장부(210A)]를 따라 더 연장된다. 이러한 방식으로, [연장부(210A)를 갖춘] 구근식 돌출부(210)는 턴 개구(284) 주위에 인접하며, 단부 부재(188)로부터 돌출부로 응력을 추가적으로 이동시키는 역할을 한다. 도 18은, U자 형상이 다른 면(210C)에 대해 경사진 일 면(210B)을 갖는 경우의 다른 실시예를 도시한 것이다. 면(210B)은 단부 부재(188)와 수직하게 만나지 않는 반면, 면(210A)은 일반적으로 단부 부재(188)와 수직하게 만난다[연장부(210A)와 필렛 곡률의 상호 교차부는 제외함].
본원에서 설명된 바와 같은 구근식 돌출부는 내측 턴 개구에 대해 외측 턴 개구를 돌출시키고 외측 턴 개구에 대해 내측 턴 개구를 돌출시키며, 이에 따라 턴 부근에서의 응력 집중 효과가 작아지게 하는 결과를 초래하고, 이에 따라 더욱 복잡한 다중 벽 리브 구성이 허용된다. 예를 들면, 구근식 돌출부는, 이러한 큰 응력으로부터 상기 턴을 차폐시키기 위해 턴 개구의 외형을 형성함으로써 내측 통로 면을 따라 존재하는 높은 캠버 라인 리브 응력을 해소한다. 구체적인 실시예가 본원에 설명되어 있지만, 임의의 실시예는 개별적으로 또는 임의의 조합으로 함께 사용될 수 있으며, 에어포일의 어느 하나의 단부에 채용될 수 있다는 것을 강조한다.
본원에서 사용되는 용어는 단지 구체적인 실시예를 설명하려는 목적일 뿐이며, 본 개시내용을 한정하려는 의도가 아니다. 본원에서 사용될 때, 단수 표현 및 표현 “상기”는, 문맥상 명백하게 달리 지시되어 있지 않는 한, 복수 형태도 역시 포함하도록 의도된다. 용어 “포함한다” 및/또는 “포함하는”은, 본 명세서에서 사용될 때, 언급된 특징, 정수, 단계, 작업, 요소 및/또는 구성요소의 존재를 특정하지만, 하나 이상의 다른 특징, 정수, 단계, 작업, 요소, 구성요소 및/또는 이들로 이루어진 군의 존재 또는 부가를 배제하는 것은 아니라는 것을 또한 이해할 것이다. “대안적인” 또는 “대안으로”는, 이 표현에 후속하여 설명되는 이벤트(event) 또는 상황이 나타날 수도 있고 나타나지 않을 수도 있다는 것을 의미하며, 이러한 설명은 상기 이벤트가 나타나는 경우와 상기 이벤트가 나타나지 않는 경우를 포함한다는 것을 의미한다.
상세한 설명 및 청구범위 전반에 걸쳐 본원에서 사용될 때, 근사적인 표현은, 관련된 기본적인 기능의 변경을 초래하지 않으면서 허용 가능하게 변할 수 있는 임의의 양적 표현을 수식하기 위해 적용될 수 있다. 이에 따라, “약”, “대략”, 및 “실질적으로”와 같은 용어 또는 용어들에 의해 수식되는 값은 정확하게 특정된 값으로 한정되지 않는다. 적어도 일부 경우에 있어서, 이러한 근사적인 표현은 해당 값을 측정하기 위한 장비의 정밀도에 대응할 수 있다. 여기서 그리고 상세한 설명 및 청구범위 전반에 걸쳐, 범위에 관한 기재들은 조합될 수도 있고 및/또는 상호 교환될 수도 있으며, 이러한 범위는, 문맥상 또는 언어상 달리 지시되지 않는 한, 해당 범위에 포함되는 모든 하위 범위를 포함하는 것으로 간주된다. 표현 “대략”은, 일 범위의 특정 값에 대해 적용될 때, 2개의 값에 적용되며, 해당 값을 측정하는 장비의 정밀도에 따라 달리 좌우되지 않는다면, 언급된 값(들)의 +/- 10%를 나타낼 수 있다.
이하의 청구범위에서의 모든 기능적 요소 수단 또는 기능적 요소 단계에 대한 대응하는 구조, 재료, 작용 및 등가물은, 구체적으로 청구되는 바와 같은 다른 청구된 요소와 조합하여 기능을 수행하기 위한 임의의 구조, 재료 또는 작용을 포함하도록 의도된다. 본 개시내용에 대한 설명은 설명 및 예시의 목적으로 제시된 것이지만, 본 개시내용을 개시된 형태로 한정하거나 총망라하려는 의도는 아니다. 본 개시내용의 범위 및 사상으로부터 벗어나지 않는 다수의 변경 및 변형은 당업자에게 명확할 것이다. 전술한 실시예는, 본 개시내용 및 실제 용례의 원리를 최적으로 설명하기 위해, 그리고 당업자가 다양한 실시예에 관한 개시내용을 이해할 수 있도록 하기 위해 선택 및 설명되었으며, 다양한 변경은 고려되는 구체적인 용도에 적합하게 된다.
10 : 터빈 엔진 11 : 축류식 압축기
12 : 연소기 13 : 터빈
14 : 압축기 로터 블레이드 15 : 압축기 로터 블레이드
16 : 로터 블레이드 17 : 압축기 스테이터 블레이드
21 : 루트(root) 24 : 플랫폼
25 : 에어포일 26 : 외측 벽
27 : 외측 벽 28 : 에지
29 : 에지 31 : 외측 팁(outboard tip)
40 : 유동 통로 42 : 선행 에지 통로
44 : 교차 통로 46 : 후미 중앙 통로
60 : 리브(rib) 62 : 캠버 라인 리브
63 : 캠버 라인 리브 64 : 캠버 라인 리브
66 : 횡방향 리브 67 : 횡방향 리브
68 : 횡방향 리브 69 : 횡방향 리브
70 : 에지 횡방향 리브 78 : 턴(turn)
80 : 외측 통로 82 : 내측 통로
84 : 턴 개구(turn opening) 86 : 단부
88 : 단부 부재 90 : 반경방향 연장 면
94 : 필렛(fillet) 110 : 제1 면
112 : 제2 면 160 : 리브
162 : 라인 리브 166 : 횡방향 리브
178 : 턴 180 : 제1 통로
182 : 제2 통로 184 : 턴 개구
186 : 단부 188 : 단부 부재
190 : 반경방향 연장 측 192 : 필렛
194 : 필렛 200 : 구근식 돌출부
202 : 부분 204 : 구근식 돌출부
206 : 구근식 돌출부 208 : 구근식 돌출부
210 : 구근식 돌출부 280 : 통로
282 : 통로 284 : 턴 개구
208A : 제1 단부 208B : 제2 단부
210A : 범위 210A : 면
210B : 면 210C : 면

Claims (15)

  1. 선행 에지(28; leading edge) 및 후미 에지(29; trailing edge)를 따라 연결되는 오목한 압력측 외벽(26) 및 볼록한 흡입측 외벽(27)에 의해 형성되며, 상기 외벽들 사이에서 냉매의 유동을 받아들이기 위해 반경방향으로 연장되는 챔버를 형성하는 에어포일(25)
    을 포함하는 블레이드(blade)로서, 상기 블레이드는 리브(160; rib) 구성 및구근식 돌출부(bulbous projection)을 더 포함하며,
    상기 리브 구성은,
    상기 반경방향으로 연장되는 챔버를, 리브(60)의 제1 면(110) 측의 제1 통로(180) 및 리브(60)의 대향하는 제2 면(112) 측의 제2 통로(182)로 구획하는 리브(60)로서, 상기 제2 통로(182)는 상기 제1 통로(180) 에 이웃하고 각각의 통로(40, 180, 182)는 반경방향으로 연장되는 챔버의 단부(186) 부재에 의해, 반경방향으로 연장되는 챔버의 단부(186, 208A, 208B, 86)에서 둘러싸여 있는 것인 리브;
    리브(60)의 단부(186)에 형성된 턴(178; turn) 개구로서, 냉매는, 상기 턴 개구를 통해, 반경방향으로 연장되는 챔버의 단부(186) 부재 내에서 제1 통로(180)와 제2 통로(182) 사이로 진행하는 것인 턴 개구
    를 포함하고,
    상기 구근식 돌출부(200, 204, 206, 208, 210)는, 리브(60)의 단부(186)를 따라, 그리고 턴(178) 개구의 대향하게 반경방향으로 연장되는 면(190) 상에서 연장되는 것인 블레이드.
  2. 제1항에 있어서, 상기 구근식 돌출부(200, 204, 206, 208, 210)는 U자 형상으로 연장되며, U자 형상의 개방된 단부(186)는 상기 반경방향으로 연장되는 챔버의 단부(186) 부재를 향해 면하는 것인 블레이드.
  3. 제2항에 있어서, 상기 구근식 돌출부(200, 204, 206, 208, 210)는 단지 U자 형상을 따라서만 연장되며, 상기 반경방향으로 연장되는 챔버의 단부(186) 부재 내로 종결되는 것인 블레이드.
  4. 제2항에 있어서, 상기 U자 형상의 제1 단부(186)는 U자 형상의 제2 단부(186)에 대해 경사진 것인 블레이드.
  5. 제1항에 있어서, 상기 구근식 돌출부(200, 204, 206, 208, 210)는, 턴(184) 개구의 대향하게 반경방향으로 연장되는 면(190) 사이에서 반경방향으로 연장되는 챔버의 단부(186) 부재를 따라 더 연장되는 것인 블레이드.
  6. 제1항에 있어서, 상기 리브(60)는 그 길이를 따라 제1 두께를 나타내며, 구근식 돌출부(200, 204, 206, 208, 210)는 제1 두께보다 큰 제2 두께를 나타내는 것인 블레이드.
  7. 제1항에 있어서, 상기 리브(60)는, 필렛(94; fillet)에서 선택된 외벽(26, 27)에 대해 각각의 단부(186)에서 결합되는 만곡된 캠버 라인 리브(62, 63, 64)를 포함하며, 상기 만곡된 캠버 라인 리브(62, 63, 64)는 선택된 외벽(26, 27)과 만곡된 캠버 라인 리브(62, 63, 64) 사이에 외측 통로(80)로서 제1 통로(180)를 형성하고, 상기 외측 통로(80)에 인접한 내측 통로(82)로서 제2 통로(182)를 형성하며,
    턴 개구(84)는 구근식 돌출부(200, 204, 206, 208, 210)에 의해 필렛(94)으로부터 거리를 두고 있는 것인 블레이드.
  8. 제7항에 있어서, 상기 만곡된 캠버 라인 리브(62, 63, 64)는 파형 프로파일(wavy profile)을 나타내는 것인 블레이드.
  9. 제7항에 있어서, 상기 구근식 돌출부(200, 204, 206, 208, 210)는 내측 통로(82)를 향해 연장되는 부분(202)을 포함하는 것인 블레이드.
  10. 제1항에 있어서, 상기 구근식 돌출부(200, 204, 206, 208, 210)는 하나가 넘는 곡률 반경에 의해 형성되는 단면을 나타내는 것인 블레이드.
  11. 제1항에 있어서, 상기 블레이드는 터빈(13) 로터 블레이드(16) 및 터빈 스테이터 블레이드(15) 중 하나를 포함하는 것인 블레이드.
  12. 선행 에지(28) 및 후미 에지(29)를 따라 연결되는 오목한 압력측 외벽(26) 및 볼록한 흡입측 외벽(27)에 의해 형성되며, 상기 외벽들 사이에서 냉매의 유동을 받아들이기 위해 반경방향으로 연장되는 챔버를 형성하는 에어포일(25)
    을 포함하는 터빈 로터 블레이드(16)로서, 상기 터빈 로터 블레이드(16)는 리브(60; rib) 구성 및 구근식 돌출부를 더 포함하며,
    상기 리브 구성은,
    상기 반경방향으로 연장되는 챔버를, 리브(60)의 제1 면(110) 측의 제1 통로(180) 및 리브(60)의 대향하는 제2 면(112) 측의 제2 통로(182)로 구획하는 리브(60)로서, 상기 제2 통로(182)는 상기 제1 통로(180)에 이웃하고 각각의 통로(40, 180, 182)는 반경방향으로 연장되는 챔버의 단부 부재(88)에 의해, 반경방향으로 연장되는 챔버의 단부(186, 208A, 208B, 86)에서 둘러싸여 있는 것인 리브;
    리브(60)의 단부(186)에 형성된 턴(184) 개구로서, 냉매는, 상기 턴 개구를 통해, 반경방향으로 연장되는 챔버의 단부(186) 부재 내에서 제1 통로(180)와 제2 통로(182) 사이로 진행하는 것인 턴 개구
    를 포함하고,
    상기 구근식 돌출부(200, 204, 206, 208, 210)는, 리브(60)의 단부(186)를 따라, 그리고 턴(184) 개구의 대향하게 반경방향으로 연장되는 면(190) 상에서 연장되는 것인 터빈 로터 블레이드.
  13. 제12항에 있어서, 상기 구근식 돌출부(200, 204, 206, 208, 210)는 U자 형상으로 연장되며, U자 형상의 개방된 단부(186)는 상기 반경방향으로 연장되는 챔버의 단부(186) 부재를 향해 면하는 것인 터빈 로터 블레이드.
  14. 제13항에 있어서, 상기 구근식 돌출부(200, 204, 206, 208, 210)는 단지 U자 형상을 따라서만 연장되며, 상기 반경방향으로 연장되는 챔버의 단부(186) 부재 내로 종결되는 것인 터빈 로터 블레이드.
  15. 제13항에 있어서, 상기 U자 형상의 제1 단부(208A)는 U자 형상의 제2 단부(208B)에 대해 경사진 것인 터빈 로터 블레이드.
KR1020170058622A 2016-05-12 2017-05-11 냉매 통로의 턴 개구에 응력 저감용 구근식 돌출부를 갖춘 블레이드 KR102373727B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/152,698 2016-05-12
US15/152,698 US10119406B2 (en) 2016-05-12 2016-05-12 Blade with stress-reducing bulbous projection at turn opening of coolant passages

Publications (2)

Publication Number Publication Date
KR20170128128A KR20170128128A (ko) 2017-11-22
KR102373727B1 true KR102373727B1 (ko) 2022-03-15

Family

ID=60163635

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170058622A KR102373727B1 (ko) 2016-05-12 2017-05-11 냉매 통로의 턴 개구에 응력 저감용 구근식 돌출부를 갖춘 블레이드

Country Status (5)

Country Link
US (1) US10119406B2 (ko)
JP (1) JP7118596B2 (ko)
KR (1) KR102373727B1 (ko)
CN (1) CN107435562B (ko)
DE (1) DE102017110051A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8700239B2 (en) * 2007-01-16 2014-04-15 Charles Hampton Perry Machine for augmentation, storage, and conservation of vehicle motive energy
US10697301B2 (en) * 2017-04-07 2020-06-30 General Electric Company Turbine engine airfoil having a cooling circuit
DE102018119572A1 (de) 2018-08-13 2020-02-13 Man Energy Solutions Se Kühlsystem zum aktiven Kühlen einer Turbinenschaufel
FR3094037B1 (fr) * 2019-03-22 2023-01-06 Safran Aube de turbomachine equipee d’un circuit de refroidissement et procede de fabrication a cire perdue d’une telle aube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054776A (ja) 2003-08-01 2005-03-03 Snecma Moteurs ガスタービンブレードのための冷却回路
JP2008064087A (ja) 2006-07-27 2008-03-21 General Electric Co <Ge> ダスト孔ドーム式ブレード
JP2015127532A (ja) 2013-12-30 2015-07-09 ゼネラル・エレクトリック・カンパニイ タービンブレード内の構造構成および冷却回路

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9014762D0 (en) * 1990-07-03 1990-10-17 Rolls Royce Plc Cooled aerofoil vane
US5536143A (en) * 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket
DE50111949D1 (de) * 2000-12-16 2007-03-15 Alstom Technology Ltd Komponente einer Strömungsmaschine
US6652235B1 (en) * 2002-05-31 2003-11-25 General Electric Company Method and apparatus for reducing turbine blade tip region temperatures
JP4064778B2 (ja) * 2002-10-09 2008-03-19 三菱重工業株式会社 ガスタービン翼体およびガスタービン
US7052240B2 (en) * 2004-04-15 2006-05-30 General Electric Company Rotating seal arrangement for turbine bucket cooling circuits
US7137780B2 (en) * 2004-06-17 2006-11-21 Siemens Power Generation, Inc. Internal cooling system for a turbine blade
GB0418906D0 (en) * 2004-08-25 2004-09-29 Rolls Royce Plc Internally cooled aerofoils
US7413405B2 (en) * 2005-06-14 2008-08-19 General Electric Company Bipedal damper turbine blade
US8545169B2 (en) * 2005-07-27 2013-10-01 Siemens Aktiengesellschaft Cooled turbine blade for a gas turbine and use of such a turbine blade
US7744347B2 (en) * 2005-11-08 2010-06-29 United Technologies Corporation Peripheral microcircuit serpentine cooling for turbine airfoils
US7431562B2 (en) * 2005-12-21 2008-10-07 General Electric Company Method and apparatus for cooling gas turbine rotor blades
US7674093B2 (en) * 2006-12-19 2010-03-09 General Electric Company Cluster bridged casting core
US20080152475A1 (en) * 2006-12-21 2008-06-26 Jack Raul Zausner Method for preventing backflow and forming a cooling layer in an airfoil
US8047787B1 (en) * 2007-09-07 2011-11-01 Florida Turbine Technologies, Inc. Turbine blade with trailing edge root slot
JP5357601B2 (ja) * 2009-03-31 2013-12-04 三菱重工業株式会社 タービン用翼
US8562286B2 (en) * 2010-04-06 2013-10-22 United Technologies Corporation Dead ended bulbed rib geometry for a gas turbine engine
GB201102719D0 (en) * 2011-02-17 2011-03-30 Rolls Royce Plc Cooled component for the turbine of a gas turbine engine
US9797258B2 (en) * 2013-10-23 2017-10-24 General Electric Company Turbine bucket including cooling passage with turn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054776A (ja) 2003-08-01 2005-03-03 Snecma Moteurs ガスタービンブレードのための冷却回路
JP2008064087A (ja) 2006-07-27 2008-03-21 General Electric Co <Ge> ダスト孔ドーム式ブレード
JP2015127532A (ja) 2013-12-30 2015-07-09 ゼネラル・エレクトリック・カンパニイ タービンブレード内の構造構成および冷却回路

Also Published As

Publication number Publication date
US10119406B2 (en) 2018-11-06
CN107435562B (zh) 2022-04-12
JP2017203453A (ja) 2017-11-16
CN107435562A (zh) 2017-12-05
DE102017110051A1 (de) 2017-11-16
JP7118596B2 (ja) 2022-08-16
US20170328219A1 (en) 2017-11-16
KR20170128128A (ko) 2017-11-22

Similar Documents

Publication Publication Date Title
US9995149B2 (en) Structural configurations and cooling circuits in turbine blades
US11732593B2 (en) Flared central cavity aft of airfoil leading edge
KR102377650B1 (ko) 에어포일 선행 에지 통로의 후미에서 외벽에 걸쳐 있는 중간 중앙 통로
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
KR102373727B1 (ko) 냉매 통로의 턴 개구에 응력 저감용 구근식 돌출부를 갖춘 블레이드
JP6435188B2 (ja) タービン翼における構造的構成および冷却回路
US9759071B2 (en) Structural configurations and cooling circuits in turbine blades
EP3247883A1 (en) Turbine airfoil cooling system with chordwise extending squealer tip cooling channel
US9879547B2 (en) Interior cooling circuits in turbine blades
JP7118597B2 (ja) 内部リブを製造する方法
US9739155B2 (en) Structural configurations and cooling circuits in turbine blades
US11193378B2 (en) Turbine airfoil with trailing edge framing features
US20160186577A1 (en) Cooling configurations for turbine blades
JP2014047782A (ja) タービンロータブレードのプラットフォームの冷却

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant