KR102307205B1 - Magnetic increase type disk for Semiconductor driving equipment - Google Patents

Magnetic increase type disk for Semiconductor driving equipment Download PDF

Info

Publication number
KR102307205B1
KR102307205B1 KR1020210063782A KR20210063782A KR102307205B1 KR 102307205 B1 KR102307205 B1 KR 102307205B1 KR 1020210063782 A KR1020210063782 A KR 1020210063782A KR 20210063782 A KR20210063782 A KR 20210063782A KR 102307205 B1 KR102307205 B1 KR 102307205B1
Authority
KR
South Korea
Prior art keywords
wheel
wheel body
contact
driving
rail
Prior art date
Application number
KR1020210063782A
Other languages
Korean (ko)
Inventor
김진성
Original Assignee
주식회사 에이치씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치씨씨 filed Critical 주식회사 에이치씨씨
Priority to KR1020210063782A priority Critical patent/KR102307205B1/en
Application granted granted Critical
Publication of KR102307205B1 publication Critical patent/KR102307205B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67709Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using magnetic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67733Overhead conveying
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0214Articles of special size, shape or weigh
    • B65G2201/022Flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0297Wafer cassette

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

The present invention relates to a magnetism-increasing disk for a semiconductor driving device, including: a non-contact traveling wheel in which first and second permanent magnets are arranged in a Halbach arrangement on first and second wheel bodies, and configured to move along a movement path of the semiconductor driving device; a driving motor mounted in the non-contact traveling wheel to transmit a rotational power to the non-contact traveling wheel; and a magnetic propulsion unit arranged along the movement path of the semiconductor driving device, having an upper portion on which non-contact traveling wheels are spaced apart from each other by a predetermined distance, and including a rail permanent magnet arranged along the movement path of the semiconductor driving device to propel the non-contact traveling wheel, wherein the first and second permanent magnets are coupled to first and second coupling grooves to face each other, the driving motor is modularized with the non-contact traveling wheel to move together with the non-contact traveling wheel while transmitting the rotational power to the non-contact traveling wheel, and the magnetic propulsion part is arranged in a line between lower portions of the first and second wheel bodies of the non-contact traveling wheel. Therefore, an operation of attaching the first and second permanent magnets to the first and second wheel bodies is facilitated, a manufacturing cost is significantly reduced because the magnetic propulsion unit is provided in a line, and a size of a product is reduced because the driving motor is mounted in the non-contact traveling wheel so as to be modularized, so that thinning and miniaturization of the product are achieved.

Description

반도체 구동장비용 자기 증가형 디스크{Magnetic increase type disk for Semiconductor driving equipment}Magnetic increase type disk for Semiconductor driving equipment

본 발명은 반도체 구동장비용 자기 증가형 디스크에 관한 것으로, 더 상세하게는 휠바디의 일면에만 영구자석이 배열되고, 일렬의 자기추진부에 의해 비접촉주행휠이 추진되며, 구동모터가 비접촉주행휠에 내장되는 반도체 구동장비용 자기 증가형 디스크에 관한 것이다.The present invention relates to a magnetic-increasing disk for semiconductor driving equipment, and more particularly, a permanent magnet is arranged on only one surface of a wheel body, a non-contact driving wheel is propelled by a row of magnetic propulsion units, and a driving motor is a non-contact driving wheel It relates to a self-increasing disk for semiconductor driving equipment embedded in the

일반적으로 반도체 제조 공정에서 기판으로서 사용되는 실리콘 웨이퍼는 FOUP(Front Opening Unified Pod), FOSB(Front Opening Shipping Box) 등과 같은 수납 용기에 수납된 상태에서 공정 설비들 사이에서 이송된다. 이 수납 용기는 OHT(Overhead Hoist Transport), RGV(Rail Guided Vehicle) 등과 같은 이송 장치에 의해 이송된다.In general, a silicon wafer used as a substrate in a semiconductor manufacturing process is transferred between process equipment while being accommodated in a storage container such as a Front Opening Unified Pod (FOUP) or a Front Opening Shipping Box (FOSB). This storage container is transported by a transport device such as an Overhead Hoist Transport (OHT), a Rail Guided Vehicle (RGV), or the like.

이러한 이송 장치는 클린룸의 천장 또는 바닥에 설치된 주행 레일들을 따라 이동되며, 복수의 주행 휠들과 주행 휠들을 회전시키기 위한 구동부를 포함한다.Such a transport device is moved along the driving rails installed on the ceiling or floor of the clean room, and includes a plurality of driving wheels and a driving unit for rotating the driving wheels.

그런데, 최근 반도체 소자들의 집적도가 증가됨에 따라 클린룸 내부의 청정도를 보다 높게 유지할 필요가 있으며, 이에 따라 주행 레일들과 주행휠들 사이의 마찰에 의해 발생되는 파티클이 청정도 유지를 위한 주요 관리 대상으로 주목되고 있다.However, as the degree of integration of semiconductor devices increases in recent years, it is necessary to maintain a higher degree of cleanliness inside the clean room. Accordingly, particles generated by friction between the traveling rails and the traveling wheels are a major management target for maintaining cleanliness. is being noticed as

따라서, 최근에는 반도체 또는 디스플레이 장치의 제조를 위한 클린룸 내에서 기판 등의 자재 이송을 위해 자기 부상 이송 장치(대한민국 특허공개 제10-2018-0059081호)를 개발하기도 하였는 바, 이러한 경우, 파티클 등의 오염 물질 발생을 크게 감소시킬 수 있으며, 이에 따라 반도체 또는 디스플레이 제품의 품질이 향상될 수 있다.Therefore, recently, a magnetic levitation transfer device (Korean Patent Publication No. 10-2018-0059081) has been developed for transferring materials such as a substrate in a clean room for manufacturing a semiconductor or display device. In this case, particles, etc. It is possible to significantly reduce the generation of contaminants, and accordingly, the quality of semiconductor or display products can be improved.

그런데 이러한 종래의 자기 부상 이송 장치는 몇가지 문제점이 있다.However, such a conventional magnetic levitation transfer device has several problems.

첫째, 종래 자기 부상 이송 장치의 구동휠은 휠바디와, 휠바디의 양면에 배열되어 있는 영구자석들로 이루어지는데, 영구자석들을 휠바디의 양면에 배열시키는 작업이 매우 어렵다. First, the driving wheel of the conventional magnetic levitation transport device consists of a wheel body and permanent magnets arranged on both sides of the wheel body, and it is very difficult to arrange the permanent magnets on both sides of the wheel body.

즉, 매우 강한 자력을 갖는 영구자석들을 휠바디의 일면에 배열시키는 작업은 비교적 쉬우나, 휠바디의 일면에 영구자석들을 배열시킨 상태에서 휠바디의 다른면에 영구자석들을 배열시키려다 보면 이미 배열된 일면의 영구자석들과 반대면에 배열되는 영구자석들 사이에 자력이 충돌되면서 휠바디의 다른면에 영구자석들을 배열시키는 작업을 방해하게 된다. That is, it is relatively easy to arrange permanent magnets with very strong magnetic force on one side of the wheel body. As the magnetic force collides between the permanent magnets on one side and the permanent magnets on the opposite side, the work of arranging the permanent magnets on the other side of the wheel body is disturbed.

따라서, 영구자석들을 휠바디의 양면에 각각 배열시키는 작업은 쉽지 않으며, 전문화된 장비와 숙련된 기술자를 보유한 구동휠 제조업체에서만 가능한게 현실이며, 이에 따라 양산화에 문제가 있었다.Therefore, it is not easy to arrange permanent magnets on both sides of the wheel body, and it is only possible for a drive wheel manufacturer with specialized equipment and skilled technicians, and thus there is a problem in mass production.

둘째, 종래의 자기 부상 이송 장치는 양측면에 영구자석이 배열된 구동휠이 구비되고, 구동휠의 양측면에는 영구자석들이 배열된 자기레일들이 각각 구비된다. 이와 같이 종래의 자기 부상 이송 장치는 구동휠을 추진시키기 위해 다수의 영구자석들이 배열된 자기레일이 한쌍 구비되어야 한다.Second, the conventional magnetic levitation transport device is provided with a driving wheel arranged with permanent magnets on both sides, and magnetic rails with permanent magnets arranged on both sides of the driving wheel are provided, respectively. In this way, the conventional magnetic levitation transport device should be provided with a pair of magnetic rails in which a plurality of permanent magnets are arranged in order to propel the driving wheel.

따라서, 구동휠을 추진시키기 위해 영구자석들이 배열된 자기레일을 한쌍 구비해야 하므로, 2개의 자기레일을 설치됨에 따라 시공성 및 생산성이 저하되고, 2개의 자기레일마다 고가의 영구자석들이 사용되므로 제조 단가도 크게 상승되는 문제점이 있다.Therefore, since a pair of magnetic rails on which permanent magnets are arranged must be provided to propel the driving wheel, workability and productivity are reduced as the two magnetic rails are installed, and expensive permanent magnets are used for each of the two magnetic rails. There is also a problem of greatly increasing.

셋째, 종래의 자기 부상 이송 장치는 구동휠에 감속기와 구동모터가 연결되며, 감속기와 구동모터는 구동휠과 별개로 구비되어서 별도로 자기 부상 이송 장치의 프레임에 설치된다.Third, the conventional magnetic levitation transfer device is connected to the reducer and the driving motor to the driving wheel, the reducer and the driving motor are provided separately from the driving wheel and separately installed in the frame of the magnetic levitation transfer device.

따라서, 감속기와 구동모터가 구동휠과 별개로 구비되므로 제품이 차지하는 공간이 그만큼 커지게 되며, 이에 따라 제품의 박형화, 소형화를 꾀할 수 없다.Therefore, since the speed reducer and the driving motor are provided separately from the driving wheel, the space occupied by the product is increased as much as possible, and accordingly, it is impossible to reduce the thickness and size of the product.

상술한 문제점을 해결하기 위한 본 발명의 목적은, 휠바디의 일면에만 영구자석이 배열되도록 한 반도체 구동장비용 자기 증가형 디스크를 제공하는데 있다.An object of the present invention for solving the above problems is to provide a magnetic increasing type disk for semiconductor driving equipment in which permanent magnets are arranged only on one surface of a wheel body.

본 발명의 다른 목적은, 일렬의 자기추진부에 의해 비접촉주행휠이 추진되도록 한 반도체 구동장비용 자기 증가형 디스크를 제공하는데 있다.Another object of the present invention is to provide a self-increasing disk for semiconductor driving equipment in which a non-contact traveling wheel is propelled by a series of magnetic propulsion units.

본 발명의 또 다른 목적은, 구동모터가 비접촉주행휠에 내장되도록 한 반도체 구동장비용 자기 증가형 디스크를 제공하는데 있다.Another object of the present invention is to provide a self-increasing disk for semiconductor driving equipment in which a driving motor is built into a non-contact driving wheel.

이와 같은 목적을 달성하기 위한 본 발명의 반도체 구동장비용 자기 증가형 디스크는, 제1휠바디 및 제2휠바디에 제1영구자석 및 제2영구자석들이 배치되되, 제1영구자석 및 제2영구자석들은 제1휠바디 및 제2휠바디에 방사상으로 다수 배치되고, 반도체 구동장비의 이동경로를 따라 이동되는 비접촉주행휠; 비접촉주행휠에 내장되어서 비접촉주행휠에 회전동력을 전달하는 구동모터; 반도체 구동장비의 이동경로를 따라 배열되고, 상부에 비접촉주행휠이 소정 간격 이격되어 배치되며, 반도체 구동장비의 이동경로를 따라 배열되는 레일영구자석이 구비되어서 비접촉주행휠을 추진시키는 자기추진부를 포함하여서 이루어지고; 비접촉주행휠의 제1휠바디에는, 비접촉주행휠의 내측방향만으로 개방된 형태의 제1결합홈이 내측면 둘레에 형성되어 있고, 비접촉주행휠의 제2휠바디에는, 비접촉주행휠의 내측방향으로만 개방된 형태의 제2결합홈이 내측면 둘레에 형성되어 있으며, 제1영구자석 및 제2영구자석은 제1결합홈 및 제2결합홈에 결합되어서 서로 마주보도록 배열되고; 구동모터는 비접촉주행휠과 모듈화되어서 비접촉주행휠에 회전동력을 전달하면서 비접촉주행휠과 함께 이동되도록 구비되며; 자기추진부는, 비접촉주행휠의 제1휠바디 및 제2휠바디 하부 사이에 일렬로 배열되어 있는 것을 특징으로 한다.The magnetic increasing type disk for semiconductor driving equipment of the present invention for achieving the above object, the first permanent magnet and the second permanent magnets are disposed on the first wheel body and the second wheel body, the first permanent magnet and the second A plurality of permanent magnets are radially disposed on the first wheel body and the second wheel body, and the non-contact driving wheel is moved along the movement path of the semiconductor driving equipment; a driving motor embedded in the non-contact traveling wheel to transmit rotational power to the non-contact traveling wheel; It is arranged along the moving path of the semiconductor driving equipment, the non-contact driving wheels are arranged at a predetermined distance on the upper part, and a rail permanent magnet arranged along the moving path of the semiconductor driving equipment is provided, including a magnetic propulsion unit for propelling the non-contact driving wheel This is done by; In the first wheel body of the non-contact traveling wheel, a first coupling groove, which is opened only in the inner direction of the non-contact traveling wheel, is formed around the inner surface, and in the second wheel body of the non-contact traveling wheel, in the inner direction of the non-contact traveling wheel. a second coupling groove of an open shape is formed around the inner surface, and the first permanent magnet and the second permanent magnet are coupled to the first coupling groove and the second coupling groove and arranged to face each other; The driving motor is modularized with the non-contact traveling wheel and provided to move together with the non-contact traveling wheel while transmitting rotational power to the non-contact traveling wheel; The magnetic propulsion part is characterized in that it is arranged in a line between the lower part of the first wheel body and the second wheel body of the non-contact traveling wheel.

본 발명의 반도체 구동장비용 자기 증가형 디스크의 또 다른 특징은, 구동모터는, 제1휠바디 및 제2휠바디의 대응 내측 중앙부에 구비되고, 제1휠바디 및 제2휠바디에 하나로 모듈화되어 있으며, 구동모터의 고정자 및 모터축은 반도체 구동장비에 결합되어 있고, 구동모터의 회전자는 제1휠바디 및 제2휠바디에 결합되어서 제1휠바디 및 제2휠바디에 회전동력을 전달하도록 구비되며, 구동모터의 회전자 일측, 제1휠바디에는 제1마감캡이 제1체결볼트들로 결합되어 있고, 구동모터의 회전자 타측, 제2휠바디에는 제2마감캡이 제2체결볼트들로 결합되어 있다.Another feature of the self-increasing disk for semiconductor driving equipment of the present invention is that the driving motor is provided in the corresponding inner central portion of the first wheel body and the second wheel body, and the first wheel body and the second wheel body are modularized into one. The stator and the motor shaft of the driving motor are coupled to the semiconductor driving equipment, and the rotor of the driving motor is coupled to the first wheel body and the second wheel body to transmit rotational power to the first wheel body and the second wheel body. A first closing cap is coupled to one side of the rotor and the first wheel body of the drive motor by first fastening bolts, and a second closing cap is second fastened to the other side of the rotor and the second wheel body of the drive motor. connected by bolts.

본 발명의 반도체 구동장비용 자기 증가형 디스크의 또 다른 특징은, 자기추진부는, 반도체 구동장비의 이동경로를 따라 길게 형성되고, 길이 방향을 따라 자석삽입구멍이 형성된 레일바디와, 레일바디의 하측에 연장되어서 레일바디를 지지하는 레일고정플랜지로 이루어지며, 비접촉주행휠의 제1휠바디 및 제2휠바디 사이에 한줄로 배열되어 있는 레일과; 레일바디의 자석삽입구멍에 삽입되어 있는 레일영구자석들로 이루어진다.Another feature of the magnetic increasing type disk for semiconductor driving equipment of the present invention is that the magnetic propulsion unit is elongated along the movement path of the semiconductor driving equipment and includes a rail body having magnet insertion holes formed along the longitudinal direction, and the lower side of the rail body. a rail comprising a rail fixing flange extending from and supporting the rail body and arranged in a line between the first wheel body and the second wheel body of the non-contact traveling wheel; It consists of rail permanent magnets inserted into the magnet insertion hole of the rail body.

이상에서와 같은 본 발명은, 비접촉주행휠의 휠바디들에는 일면에만 영구자석들이 배열되어 있다. 즉 제1휠바디의 내측면에만 제1영구자석들이 배열되어 있고, 제2휠바디의 내측면에만 제2영구자석들이 배열되어 있다. 따라서, 제1영구자석들 및 제2영구자석들이 제1휠바디 및 제2휠바디의 양면에 배열되는 것이 아니라, 제1휠바디 및 제2휠바디의의 대응 일면에만 배열되는 구조이므로, 제1영구자석들 및 제2영구자석들을 제1휠바디 및 제2휠바디에 부착시키는 작업이 용이하다. 그러므로 전문화된 장비와 숙련된 기술자를 보유하지 못한 보편적인 비접촉주행휠 제조 업체에서도 비접촉주행휠의 제작이 가능하므로 양산화가 가능하다.According to the present invention as described above, permanent magnets are arranged on only one surface of the wheel bodies of the non-contact traveling wheel. That is, the first permanent magnets are arranged only on the inner surface of the first wheel body, and the second permanent magnets are arranged only on the inner surface of the second wheel body. Therefore, since the first permanent magnets and the second permanent magnets are not arranged on both surfaces of the first wheel body and the second wheel body, but are arranged only on the corresponding one surface of the first wheel body and the second wheel body, the first It is easy to attach the first permanent magnets and the second permanent magnets to the first wheel body and the second wheel body. Therefore, it is possible to mass-produce the non-contact driving wheel even in a general non-contact driving wheel manufacturer that does not have specialized equipment and skilled technicians.

또한, 본 발명은 비접촉주행휠의 하부에 자기추진부가 일렬로 구비된다. 따라서, 자기추진부가 2열로 구비되는 것이 아니라 1열로 구비되므로 자기추진부에 배열되는 레일영구자석들의 수가 종래에 비해 절반으로 감소된다. 그러므로 레일바디가 1열만 구비되고, 이에 배열되는 레일영구자석의 수가 종래에 비해 절반으로 감소되므로 시공성 및 생산성이 향상되며, 고가의 레일영구자석들이 절반으로 감소되므로 제조 단가도 크게 감소된다.In addition, in the present invention, the magnetic propulsion unit is provided in a line at the lower portion of the non-contact traveling wheel. Accordingly, since the magnetic propulsion unit is provided in one row rather than two rows, the number of rail permanent magnets arranged in the magnetic propulsion unit is reduced by half compared to the prior art. Therefore, the rail body is provided with only one row, and since the number of permanent rail magnets arranged therein is reduced by half compared to the prior art, the workability and productivity are improved, and the manufacturing cost is greatly reduced because the expensive rail permanent magnets are reduced by half.

그리고, 본 발명의 비접촉주행휠은 한쌍의 제1휠바디 및 제2휠바디와, 제1휠바디 및 제2휠바디의 대향면에 배열되는 제1영구자석들 및 제2영구자석들과, 제1휠바디 및 제2휠바디들 사이에 구비되어서 제1휠바디 및 제2휠바디들을 연결하는 구동모터로 이루어지며, 구동모터의 회전자와 제1휠바디들 및 제2휠바디들은 서로 체결되어서 회전되도록 구비된다. 따라서, 본 발명의 비접촉주행휠은 구동모터가 제1휠바디들 및 제2휠바디들 사이에 내장된 형태로 모듈화되어서 구비되므로 제품의 크기가 그만큼 감소되며, 이에 따라 제품의 박형화, 소형화를 꾀할 수 있다.In addition, the non-contact running wheel of the present invention includes a pair of first and second wheel bodies, and first and second permanent magnets arranged on opposite surfaces of the first and second wheel bodies; It is provided between the first wheel body and the second wheel body and consists of a drive motor connecting the first wheel body and the second wheel body, and the rotor of the drive motor and the first wheel body and the second wheel body are connected to each other. It is fastened and provided to rotate. Therefore, in the non-contact driving wheel of the present invention, the size of the product is reduced as much as the driving motor is modularized and provided between the first wheel bodies and the second wheel bodies. can

도 1 내지 도 3은 본 발명의 반도체 구동장비용 자기 증가형 디스크를 보인 개략적 정면도, 측면도, 평면도
도 4 내지 도 7은 본 발명의 반도체 구동장비용 자기 증가형 디스크의 일실시예를 보인 개략적 사시도, 정면도, 측면도, 단면 사시도
도 8은 풀림제지링을 보인 개략적 부분 단면도
1 to 3 are schematic front view, side view, and plan view showing a self-increasing disk for semiconductor driving equipment of the present invention;
4 to 7 are a schematic perspective view, a front view, a side view, and a cross-sectional perspective view showing an embodiment of a self-increasing disk for semiconductor driving equipment of the present invention;
8 is a schematic partial cross-sectional view showing a release restraint ring;

본 발명의 구체적인 특징 및 이점은 첨부된 도면을 참조한 이하의 설명으로 더욱 명확해 질 것이다.Specific features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings.

도 1 내지 도 3은 본 발명의 반도체 구동장비용 자기 증가형 디스크를 보인 개략적 정면도, 측면도, 평면도이고, 도 4 내지 도 7은 본 발명의 반도체 구동장비용 자기 증가형 디스크의 일실시예를 보인 개략적 사시도, 정면도, 측면도, 단면 사시도이다.1 to 3 are schematic front, side, and plan views showing a self-increasing disk for a semiconductor driving equipment of the present invention, and FIGS. 4 to 7 are an embodiment of a self-increasing disk for a semiconductor driving equipment of the present invention. It is a schematic perspective view, a front view, a side view, and a cross-sectional perspective view.

본 발명의 반도체 구동장비용 자기 증가형 디스크는, 비접촉주행휠(20), 구동모터(40), 자기추진부(10)를 포함하여서 이루어진다.The self-increasing disk for semiconductor driving equipment of the present invention includes a non-contact traveling wheel 20 , a driving motor 40 , and a magnetic propulsion unit 10 .

비접촉주행휠(20)은, 한쌍의 제1휠바디(21) 및 제2휠바디(26)가 서로 마주보도록 구비되고, 제1휠바디(21) 및 제2휠바디(26)에 제1영구자석(23) 및 제2영구자석(28)들이 배치된다. 제1영구자석(23) 및 제2영구자석(28)들은 제1휠바디(21) 및 제2휠바디(26)에 할바흐 배열로 배치되고, 반도체 구동장비의 이동경로를 따라 이동된다.The non-contact traveling wheel 20 is provided such that a pair of first and second wheel bodies 21 and 26 face each other, and the first wheel body 21 and the second wheel body 26 have first The permanent magnets 23 and the second permanent magnets 28 are disposed. The first permanent magnets 23 and the second permanent magnets 28 are arranged in a Halbach arrangement on the first wheel body 21 and the second wheel body 26, and are moved along the movement path of the semiconductor driving equipment.

구동모터(40)는, 비접촉주행휠(20)에 내장되어서 비접촉주행휠(20)에 회전동력을 전달한다.The driving motor 40 is embedded in the non-contact traveling wheel 20 to transmit rotational power to the non-contact traveling wheel 20 .

자기추진부(10)는, 반도체 구동장비의 이동경로를 따라 배열되고, 상부에 비접촉주행휠(20)이 소정 간격 이격되어 배치되며, 반도체 구동장비의 이동경로를 따라 배열되는 레일영구자석(15)이 구비되어서 비접촉주행휠(20)을 추진시킨다.The magnetic propulsion unit 10 is arranged along the movement path of the semiconductor driving equipment, the non-contact driving wheel 20 is disposed at a predetermined interval on the upper portion, and the rail permanent magnets 15 are arranged along the movement path of the semiconductor driving equipment. ) is provided to propel the non-contact driving wheel 20 .

비접촉주행휠(20)의 제1휠바디(21)에는, 비접촉주행휠(20)의 내측방향만으로 개방된 형태의 제1결합홈(22)이 내측면 둘레에 형성되어 있고, 비접촉주행휠(20)의 제2휠바디(26)에는, 비접촉주행휠(20)의 내측방향으로만 개방된 형태의 제2결합홈(27)이 내측면 둘레에 형성되어 있으며, 제1영구자석(23) 및 제2영구자석(28)은 제1결합홈(22) 및 제2결합홈(27)에 결합되어서 서로 마주보도록 배열되어 있다.In the first wheel body 21 of the non-contact traveling wheel 20, a first coupling groove 22, which is opened only in the inner direction of the non-contact traveling wheel 20, is formed around the inner surface, and the non-contact traveling wheel ( In the second wheel body 26 of 20), a second coupling groove 27, which is opened only in the inner direction of the non-contact traveling wheel 20, is formed around the inner surface, and the first permanent magnet 23 And the second permanent magnet 28 is coupled to the first coupling groove 22 and the second coupling groove 27 are arranged to face each other.

구동모터(40)는 비접촉주행휠(20)과 모듈화되어서 비접촉주행휠(20)에 회전동력을 전달하면서 비접촉주행휠(20)과 함께 이동되도록 구비된다.The driving motor 40 is modularized with the non-contact driving wheel 20 and is provided to move together with the non-contact driving wheel 20 while transmitting rotational power to the non-contact driving wheel 20 .

이러한 구동모터(40)는, 제1휠바디(21) 및 제2휠바디(26)의 대응 내측 중앙부에 구비되고, 제1휠바디(21) 및 제2휠바디(26)에 하나로 모듈화되어 있으며, 구동모터(40)의 고정자 및 모터축은 반도체 구동장비에 결합되어 있다. 구동모터(40)의 회전자(41)는 제1휠바디(21) 및 제2휠바디(26)에 결합되어서 제1휠바디(21) 및 제2휠바디(26)에 회전동력을 전달하도록 구비되며, 구동모터(40)의 회전자(41) 일측, 제1휠바디(21)에는 제1마감캡(24)이 제1체결볼트(25)들로 결합되어 있고, 구동모터(40)의 회전자(41) 타측, 제2휠바디(26)에는 제2마감캡(29)이 제2체결볼트(30)들로 결합되어 있다.This driving motor 40 is provided in the corresponding inner central portion of the first wheel body 21 and the second wheel body 26, and is modularized into one of the first wheel body 21 and the second wheel body 26. The stator and the motor shaft of the driving motor 40 are coupled to the semiconductor driving equipment. The rotor 41 of the driving motor 40 is coupled to the first wheel body 21 and the second wheel body 26 to transmit rotational power to the first wheel body 21 and the second wheel body 26 . A first closing cap 24 is coupled to one side of the rotor 41 of the driving motor 40 and the first wheel body 21 by first fastening bolts 25, and the driving motor 40 ) of the other side of the rotor 41, the second wheel body 26, the second closing cap 29 is coupled with the second fastening bolts (30).

자기추진부(10)는, 비접촉주행휠(20)의 제1휠바디(21) 및 제2휠바디(26) 하부 사이에 일렬로 배열되어 있다.The magnetic propulsion unit 10 is arranged in a line between the lower portions of the first wheel body 21 and the second wheel body 26 of the non-contact traveling wheel 20 .

이러한 자기추진부(10)는, 레일(11)과 레일영구자석(15)들로 이루어진다.This magnetic propulsion unit 10 is made of a rail 11 and a rail permanent magnet (15).

레일(11)은, 반도체 구동장비의 이동경로를 따라 길게 형성되고, 길이 방향을 따라 자석삽입구멍(13)이 형성된 레일바디(12)와, 레일바디(12)의 하측에 연장되어서 레일바디(12)를 지지하는 레일고정플랜지(14)로 이루어지며, 비접촉주행휠(20)의 제1휠바디(21) 및 제2휠바디(26) 사이에 한줄로 배열되어 있다. 레일영구자석(15)들은, 레일바디(12)의 자석삽입구멍(13)에 삽입되어 있다.The rail 11 is formed long along the movement path of the semiconductor driving equipment, the rail body 12 is formed with a magnet insertion hole 13 along the longitudinal direction, and the rail body 12 is extended below the rail body ( 12) is made of a fixing flange 14 for supporting the rail, and is arranged in a line between the first wheel body 21 and the second wheel body 26 of the non-contact traveling wheel 20 . The rail permanent magnets 15 are inserted into the magnet insertion hole 13 of the rail body 12 .

본 발명의 일 실시예에 따른 비접촉주행휠(20) 및 자기추진부(10)는 마찰력을 이용하여 추진력을 발생시키는 종래의 주행 모듈과 비교하여 비접촉 방식으로 추진력을 발생시킴으로써 파티클 발생을 방지하기 위해 사용될 수 있다. 특히, 본 발명의 일 실시예에 따른 비접촉주행휠(20) 및 자기추진부(10)는 반도체 제조 공정이 수행되는 클린룸 내부에서 기판 등의 물품 이송을 위해 사용될 수 있다.The non-contact driving wheel 20 and the magnetic propulsion unit 10 according to an embodiment of the present invention generate propulsion force in a non-contact manner as compared to a conventional driving module that generates propulsion force using frictional force to prevent particle generation. can be used In particular, the non-contact driving wheel 20 and the magnetic propulsion unit 10 according to an embodiment of the present invention may be used to transport articles such as substrates in a clean room in which a semiconductor manufacturing process is performed.

본 발명의 일 실시예에 따르면, 한줄로 구비된 자기추진부(10)와, 자기추진부(10) 상에 소정 간격 이격되어 위치되고 구동모터가 내장된 비접촉주행휠(20)로 이루어진다.According to an embodiment of the present invention, the magnetic propulsion unit 10 provided in one row, and the non-contact driving wheel 20 positioned at a predetermined interval on the magnetic propulsion unit 10 and having a built-in driving motor.

자기추진부(10)의 레일바디(12)에는 레일영구자석이 내장되어 있고, 비접촉주행휠의 제1휠바디(21), 제2휠바디(26)에는 각각 제1영구자석(23) 및 제2영구자석(28)이 내장되어 있으며, 제1휠바디(21) 및 제2휠바디(26) 사이에는 구동모터(40)가 내장되어 있다.The rail body 12 of the magnetic propulsion unit 10 has a built-in rail permanent magnet, and the first wheel body 21 and the second wheel body 26 of the non-contact driving wheel have first permanent magnets 23 and A second permanent magnet 28 is built-in, and a driving motor 40 is built-in between the first wheel body 21 and the second wheel body 26 .

즉, 레일바디(12)에는 자석들 사이에서 발생되는 자기력을 이용하기 위하여 길이 방향을 따라 다수의 레일영구자석(15)이 배치되며, 비접촉주행휠(20)의 제1휠바디(21), 제2휠바디(26)에는 제1영구자석(23) 및 제2영구자석(28)이 할바흐 배열로 배치된다.That is, in the rail body 12, a plurality of rail permanent magnets 15 are disposed along the longitudinal direction in order to use the magnetic force generated between the magnets, the first wheel body 21 of the non-contact traveling wheel 20, A first permanent magnet 23 and a second permanent magnet 28 are arranged in a Halbach arrangement on the second wheel body 26 .

구동모터(40)는 비접촉주행휠(20)에 내장되어서 비접촉주행휠(20)이 자기추진부(10)를 따라 이동할 수 있도록 비접촉주행휠(20)을 회전시킨다. 일 예로서, 제1영구자석(23), 제2영구자석(28), 레일영구자석(15) 사이의 자기력과 구동모터(40)에 의해 인가되는 회전력에 의해 추진력이 발생된다.The driving motor 40 is built into the non-contact traveling wheel 20 to rotate the non-contact traveling wheel 20 so that the non-contact traveling wheel 20 can move along the magnetic propulsion unit 10 . As an example, the driving force is generated by the magnetic force between the first permanent magnet 23 , the second permanent magnet 28 , and the rail permanent magnet 15 and the rotational force applied by the driving motor 40 .

비접촉주행휠(20)의 제1휠바디(21)와 제2휠바디(26)는 자기추진부(10)의 레일바디(12)로부터 소정 간격 이격되도록 배치될 수 있다. 특히, 비접촉주행휠(20)이 자기추진부(10)를 따라 이동되도록 제1휠바디(21), 제2휠바디(26)의 대향면에 배치된 제1영구자석(23), 제2영구자석(28)들 중 일부가 자기추진부(10)의 레일영구자석(15)들 사이에 배치될 수 있다. 결과적으로, 비접촉주행휠(20)과 자기추진부(10) 사이의 접촉없이 비접촉주행휠(20)의 주행이 이루어진다.The first wheel body 21 and the second wheel body 26 of the non-contact traveling wheel 20 may be disposed to be spaced apart from the rail body 12 of the magnetic propulsion unit 10 by a predetermined distance. In particular, the first permanent magnets 23 and second disposed on opposite surfaces of the first wheel body 21 and the second wheel body 26 so that the non-contact traveling wheel 20 moves along the magnetic propulsion unit 10 . Some of the permanent magnets 28 may be disposed between the rail permanent magnets 15 of the magnetic propulsion unit 10 . As a result, the non-contact traveling wheel 20 travels without contact between the non-contact traveling wheel 20 and the magnetic propulsion unit 10 .

레일영구자석(15)들은 자기추진부의 길이방향을 따라 N극과 S극이 배치될 수 있으며, 특히 도시된 바와 같이 동일한 극성들이 연장 방향으로 서로 마주하도록 배치되며, 제1영구자석(23), 제2영구자석(28)들은 할바흐 배열로 배치된다.Rail permanent magnets 15 may have N poles and S poles disposed along the longitudinal direction of the magnetic propulsion part, and in particular, as shown, the same polarities are disposed to face each other in the extension direction, the first permanent magnet 23, The second permanent magnets 28 are arranged in a Halbach arrangement.

레일영구자석(15)들과 제1영구자석(23), 제2영구자석(28)들 사이의 자기력을 증가시키기 위해 레일영구자석(15)들의 연장 방향으로의 피치와 제1영구자석(23), 제2영구자석(28)들의 원주 방향으로의 피치는 동일하게 구성되는 것이 바람직하며, 또한 제1영구자석(23)들의 N극과 S극은 제2영구자석(28)들의 S극과 N극에 각각 마주하도록 배치되는 것이 바람직하다.In order to increase the magnetic force between the rail permanent magnets 15 and the first permanent magnets 23 and the second permanent magnets 28, the pitch in the extension direction of the rail permanent magnets 15 and the first permanent magnets 23 ), the pitch in the circumferential direction of the second permanent magnets 28 is preferably configured to be the same, and the N pole and the S pole of the first permanent magnets 23 are the S pole and the S pole of the second permanent magnets 28 Preferably, they are arranged to face each of the N poles.

이러한 구성의 본 발명의 반도체 구동장비용 자기 증가형 디스크는 다음과 같이 조립 및 구동된다.The self-increasing disk for semiconductor driving equipment of the present invention having such a configuration is assembled and driven as follows.

먼저, 레일바디(12)의 자석삽입구멍(13)에 레일영구자석(15)을 N-S와 S-N 주기를 갖도록 삽입시킨다. 그리고 레일고정플랜지(14)를 레일(11)이 설치될 경로를 따라 배치시키고, 안착된 부분과 레일고정플랜지(14)를 볼트 등으로 고정시킨다. 레일(11)의 레일영구자석(15)들은 주행 방향을 따라 배치되되, 동일한 극성들이 서로 마주하도록 배치된다.First, the rail permanent magnet 15 is inserted into the magnet insertion hole 13 of the rail body 12 to have N-S and S-N cycles. And the rail fixing flange 14 is arranged along the path where the rail 11 is to be installed, and the seated portion and the rail fixing flange 14 are fixed with bolts or the like. The rail permanent magnets 15 of the rail 11 are arranged along the traveling direction, and the same polarities are arranged to face each other.

비접촉주행휠(20)은 제1영구자석(23)을 제1휠바디(21)의 제1결합홈(22)에 할바흐 배열을 갖도록 배열시키고, 제2영구자석(28)을 제2휠바디(26)의 제2결합홈(27)에 할바흐 배열을 갖도록 배열시킨다.The non-contact traveling wheel 20 arranges the first permanent magnet 23 in the first coupling groove 22 of the first wheel body 21 to have a Halbach arrangement, and the second permanent magnet 28 is attached to the second wheel. Arranged to have a Halbach arrangement in the second coupling groove 27 of the body 26 .

이와 같이 제1휠바디(21)의 제1영구자석(23)들과 제2휠바디(26)의 제2영구자석(28)들이 서로 마주하도록 배치되고, 할바흐 배열 형태로 배치되며, 레일(11)의 레일영구자석(15)들은 주행 방향을 따라 배치되되, 동일한 극성들이 서로 마주하도록 배치된다.In this way, the first permanent magnets 23 of the first wheel body 21 and the second permanent magnets 28 of the second wheel body 26 are arranged to face each other, are arranged in a Halbach arrangement, and the rail The rail permanent magnets 15 of (11) are arranged along the traveling direction, and the same polarities are arranged to face each other.

따라서, 레일영구자석(15)에 의해 발생되는 자기력과 비접촉주행휠(20)의 제1영구자석(23)들과 제2영구자석(28)들에 의해 발생되는 자기력에 의해 반도체 구동장비가 비접촉 방식의 이동이 이루어진다. 이와 같이 반도체 구동장비를 이동시킬 시 파티클 등의 오염 물질 발생을 방지할 수 있으며, 이에 따라 반도체 또는 디스플레이 제품의 품질이 크게 향상된다.Accordingly, the semiconductor driving equipment is non-contact by the magnetic force generated by the rail permanent magnet 15 and the magnetic force generated by the first permanent magnets 23 and the second permanent magnets 28 of the non-contact traveling wheel 20 . way of moving. In this way, when the semiconductor driving equipment is moved, it is possible to prevent the generation of contaminants such as particles, and accordingly, the quality of semiconductor or display products is greatly improved.

한편, 제1영구자석(23) 및 제2영구자석(28)이 결합된 제1휠바디(21) 및 제2휠바디(26)는, 제1영구자석(23) 및 제2영구자석(28)이 서로 마주보도록 배치시키고, 제1휠바디(21) 및 제2휠바디(26) 사이에 구동모터(40)를 위치시킨다.On the other hand, the first wheel body 21 and the second wheel body 26 to which the first permanent magnet 23 and the second permanent magnet 28 are coupled, the first permanent magnet 23 and the second permanent magnet ( 28) to face each other, and the driving motor 40 is positioned between the first wheel body 21 and the second wheel body 26 .

그리고, 제1휠바디(21) 및 제2휠바디(26)의 외면에 제1마감캡(24) 및 제2마감캡(29)을 배치시키고, 제1체결볼트(25) 및 제2체결볼트(30)로 체결시킨다.Then, the first closing cap 24 and the second closing cap 29 are disposed on the outer surfaces of the first wheel body 21 and the second wheel body 26, and the first fastening bolt 25 and the second fastening bolt 25 and the second fastening cap are disposed. Fasten with bolts (30).

제1체결볼트(25)는 제1마감캡(24), 제1휠바디(21), 구동모터(40)의 회전자(41) 일측에 체결되고, 제2체결볼트(30)는, 제2마감캡(29), 제2휠바디(26), 구동모터(40)의 회전자(41) 타측에 체결되어서, 구동모터(40)의 회전자(41)가 회전되면 제1마감캡(24), 제2마감캡(29), 제1휠바디(21), 제2휠바디(26)가 함께 회전된다. 구동모터(40)의 모터축 부분은 반도체 구동장비에 결합된다. The first fastening bolt 25 is fastened to one side of the rotor 41 of the first closing cap 24, the first wheel body 21, and the driving motor 40, and the second fastening bolt 30 is 2 The closing cap 29, the second wheel body 26, and the other side of the rotor 41 of the driving motor 40 are fastened to the other side, and when the rotor 41 of the driving motor 40 is rotated, the first closing cap ( 24), the second closing cap 29, the first wheel body 21, and the second wheel body 26 are rotated together. A motor shaft portion of the driving motor 40 is coupled to the semiconductor driving equipment.

이러한 비접촉주행휠(20)은 레일의 상부에 소정 간격 이격되어 안착된다.These non-contact traveling wheels 20 are spaced apart from each other by a predetermined interval on the upper portion of the rail.

이와 같은 본 발명의 반도체 구동장비용 자기 증가형 디스크는 다음과 같은 장점이 있다.The self-increasing disk for semiconductor driving equipment according to the present invention has the following advantages.

첫째, 본 발명은, 비접촉주행휠(20)의 휠바디들에는 일면에만 영구자석들이 배열되어 있다. 즉 제1휠바디(21)의 내측면에만 제1영구자석(23)들이 배열되어 있고, 제2휠바디(26)의 내측면에만 제2영구자석(28)들이 배열되어 있다.First, in the present invention, permanent magnets are arranged on only one surface of the wheel bodies of the non-contact traveling wheel 20 . That is, the first permanent magnets 23 are arranged only on the inner surface of the first wheel body 21 , and the second permanent magnets 28 are arranged only on the inner surface of the second wheel body 26 .

따라서, 제1영구자석(23)들 및 제2영구자석(28)들이 제1휠바디(21) 및 제2휠바디(26)의 양면에 배열되는 것이 아니라, 제1휠바디(21) 및 제2휠바디(26)의의 대응 일면에만 배열되는 구조이므로, 제1영구자석(23)들 및 제2영구자석(28)들을 제1휠바디(21) 및 제2휠바디(26)에 부착시키는 작업이 용이하다. Accordingly, the first permanent magnets 23 and the second permanent magnets 28 are not arranged on both sides of the first wheel body 21 and the second wheel body 26, but the first wheel body 21 and Since the structure is arranged only on one surface corresponding to the second wheel body 26 , the first permanent magnets 23 and the second permanent magnets 28 are attached to the first wheel body 21 and the second wheel body 26 . easy to do

그러므로 전문화된 장비와 숙련된 기술자를 보유하지 못한 보편적인 비접촉주행휠(20) 제조 업체에서도 비접촉주행휠(20)의 제작이 가능하므로 양산화가 가능하다.Therefore, it is possible to mass-produce the non-contact driving wheel 20 even in a general non-contact driving wheel 20 manufacturer that does not have specialized equipment and skilled technicians.

둘째, 본 발명은 비접촉주행휠(20)의 하부에 자기추진부(10)가 일렬로 구비된다. Second, in the present invention, the magnetic propulsion unit 10 is provided in a line at the lower portion of the non-contact traveling wheel 20 .

따라서, 자기추진부가 2열로 구비되는 것이 아니라 1열로 구비되므로 자기추진부에 배열되는 레일영구자석(15)들의 수가 종래에 비해 절반으로 감소된다. Accordingly, since the magnetic propulsion unit is provided in one row rather than two rows, the number of rail permanent magnets 15 arranged in the magnetic propulsion unit is reduced by half compared to the prior art.

그러므로 레일바디(12)가 1열만 구비되고, 이에 배열되는 레일영구자석(15)의 수가 종래에 비해 절반으로 감소되므로 시공성 및 생산성이 향상되며, 고가의 레일영구자석(15)들이 절반으로 감소되므로 제조 단가도 크게 감소된다.Therefore, since the rail body 12 is provided with only one row, and the number of rail permanent magnets 15 arranged therein is reduced by half compared to the prior art, workability and productivity are improved, and the expensive rail permanent magnets 15 are reduced by half. The manufacturing cost is also greatly reduced.

셋째, 본 발명의 비접촉주행휠(20)은 한쌍의 제1휠바디(21) 및 제2휠바디(26)와, 제1휠바디(21) 및 제2휠바디(26)의 대향면에 배열되는 제1영구자석(23)들 및 제2영구자석(28)들과, 제1휠바디(21) 및 제2휠바디(26)들 사이에 구비되어서 제1휠바디(21) 및 제2휠바디(26)들을 연결하는 구동모터(40)로 이루어지며, 구동모터(40)의 회전자(41)와 제1휠바디(21)들 및 제2휠바디(26)들은 서로 체결되어서 회전되도록 구비된다. Third, the non-contact traveling wheel 20 of the present invention is formed on the opposite surfaces of the pair of first and second wheel bodies 21 and 26, and the first and second wheel bodies 21 and 26. The first permanent magnets 23 and the second permanent magnets 28 are arranged, and the first wheel body 21 and the second wheel body 26 are provided between the first wheel body 21 and the second permanent magnets. It consists of a drive motor 40 connecting the two wheel bodies 26, and the rotor 41 of the drive motor 40, the first wheel bodies 21, and the second wheel bodies 26 are fastened to each other. provided to rotate.

따라서, 본 발명의 비접촉주행휠(20)은 구동모터(40)가 제1휠바디(21)들 및 제2휠바디(26)들 사이에 내장된 형태로 모듈화되어서 구비되므로 제품의 크기가 그만큼 감소되며, 이에 따라 제품의 박형화, 소형화를 꾀할 수 있다.Therefore, in the non-contact driving wheel 20 of the present invention, the driving motor 40 is modularized in a form embedded between the first wheel bodies 21 and the second wheel bodies 26, so the size of the product is that much. reduced, and accordingly, thinner and smaller products can be achieved.

한편, 제1휠바디(21) 및 제2휠바디(26)의 외면에는 금속표면의 부식현상을 방지하기 위하여 부식 방지 도포층이 도포될 수 있다. Meanwhile, an anti-corrosion coating layer may be applied to the outer surfaces of the first wheel body 21 and the second wheel body 26 to prevent corrosion of the metal surface.

이 부식방지도포층의 도포 재료는 메타아크릴아미드 10중량%, 하이드로시벤조트리아졸 20중량%, 하프늄 25중량%, 유화몰리브덴(MoS2) 15중량%, 산화티타늄(TiO2) 15중량%, 에틸렌디아민 15중량%로 구성되며, 코팅두께는 9㎛로 형성할 수 있다.The coating material of this anti-corrosion coating layer is 10% by weight of methacrylamide, 20% by weight of hydroxybenzotriazole, 25% by weight of hafnium , 15% by weight of molybdenum emulsified (MoS 2 ), 15% by weight of titanium oxide (TiO 2 ), It is composed of ethylenediamine 15% by weight, and the coating thickness can be formed to 9㎛.

메타아크릴아미드, 하이드로시벤조트리아졸, 에틸렌디아민은 부식 방지 및 변색 방지 등의 역할을 한다. 하프늄은 내부식성이 있는 전이 금속원소로서 뛰어난 방수성, 내식성 등을 갖도록 역할을 한다. 유화몰리브덴은 코팅피막의 표면에 습동성과 윤활성 등을 부여하는 역할을 한다.Methacrylamide, hydroxybenzotriazole, and ethylenediamine serve to prevent corrosion and discoloration. Hafnium is a transition metal element with corrosion resistance, and serves to have excellent waterproof and corrosion resistance. Molybdenum emulsified plays a role in imparting lubricity and lubricity to the surface of the coating film.

산화티타늄은 내화도 및 화학적 안정성 등을 목적으로 첨가된다.Titanium oxide is added for the purpose of fire resistance and chemical stability.

상기 구성 성분의 비율 및 코팅 두께를 상기와 같이 수치 한정한 이유는, 본 발명자가 수차례 실패를 거듭하면서 시험결과를 통해 분석한 결과, 상기 비율에서 최적의 부식방지 효과를 나타내었다.The reason why the ratio of the components and the coating thickness are numerically limited as described above is that the present inventors repeatedly failed several times and analyzed through the test results. As a result, the optimal anti-corrosion effect was exhibited at the ratio.

또한, 제1마감캡(24) 및 제1휠바디(21) 사이와 제2마감캡(29) 및 제2휠바디(26) 사이에는 기밀을 유지하도록 패킹이 구비될 수 있다.In addition, a packing may be provided to maintain airtightness between the first closing cap 24 and the first wheel body 21 and between the second closing cap 29 and the second wheel body 26 .

이 패킹의 원료 함량비는 고무 55중량%, 2-머캅토벤조치아졸 7중량%, 헥사메틸렌테트라민 6중량%, 카아본블랙 21중량%, 3C(N-PHENYL-N'-ISOPROPYL- P-PHENYLENEDIAMINE) 5중량%, 침강황 6중량%를 혼합한다.The raw material content ratio of this packing is rubber 55% by weight, 2-mercaptobenzothiazole 7% by weight, hexamethylenetetramine 6% by weight, carbon black 21% by weight, 3C (N-PHENYL-N'-ISOPROPYL-P -PHENYLENEDIAMINE) 5% by weight and 6% by weight of precipitated sulfur are mixed.

카아본블랙은 내마모성, 열전도성 등을 증대하거나, 향상시키기 위해 첨가되며, 2-머캅토벤조치아졸과 헥사메틸렌테트라민은 촉진 향상 등을 위해 첨가된다.Carbon black is added to increase or improve abrasion resistance, thermal conductivity, etc., 2-mercaptobenzothiazole and hexamethylenetetramine are added to improve acceleration.

3C (N-PHENYL-N'-ISOPROPYL- P-PHENYLENEDIAMINE) 는 산화방지제로 첨가되며, 침강황은 촉진제 등의 역할을 위해 첨가된다. 3C (N-PHENYL-N'-ISOPROPYL-P-PHENYLENEDIAMINE) is added as an antioxidant, and precipitated sulfur is added to act as an accelerator.

따라서 본 발명은 패킹의 탄성, 인성 및 강성이 증대되므로 내구성이 향상되며, 이에 따라 패킹의 수명이 증대된다.Therefore, in the present invention, the elasticity, toughness and rigidity of the packing are increased, so that durability is improved, and thus the life of the packing is increased.

고무재질의 인장강도는 150Kg/㎠ 으로 형성된다. The tensile strength of the rubber material is 150Kg/cm2.

고무재질 구성 물질 및 구성 성분을 한정하고 혼합 비율의 수치 등을 한정한 이유는, 본 발명자가 수차례 실패를 거듭하면서 시험 결과를 통해 분석한 결과, 상기 구성 성분 및 수치 한정 비율에서 최적의 효과를 나타내었다.The reason for limiting the rubber material constituents and constituents and limiting the numerical value of the mixing ratio is that the present inventor repeatedly failed several times and analyzed the test results to find the optimal effect in the composition and numerical limit ratio. indicated.

그리고, 레일영구자석(15), 제1영구자석(23), 제2영구자석(28)에는 오염물질의 부착방지 및 제거를 효과적으로 달성할 수 있도록 오염 방지 도포용 조성물로 이루어진 오염방지도포층이 도포될 수 있다.And, on the rail permanent magnet 15 , the first permanent magnet 23 , and the second permanent magnet 28 , an anti-contamination coating layer made of an anti-contamination coating composition to effectively achieve the prevention and removal of contaminants. can be applied.

상기 오염 방지 도포용 조성물은 시트레이트 및 디에틸렌 글리콜 모노부틸에테르가 1:0.01 ~ 1:2 몰비로 포함되어 있고, 시트레이트와 디에틸렌 글리콜 모노부틸에테르의 총함량은 전체 수용액에 대해 1 ~10 중량%이다.The antifouling coating composition contains citrate and diethylene glycol monobutyl ether in a molar ratio of 1:0.01 to 1:2, and the total content of citrate and diethylene glycol monobutyl ether is 1 to 10 based on the total aqueous solution. % by weight.

상기 시트레이트 및 디에틸렌 글리콜 모노부틸에테르는 몰비로서 1:0.01 ~ 1:2가 바람직한 바, 몰비가 상기 범위를 벗어나는 경우에는 레일영구자석(15), 제1영구자석(23), 제2영구자석(28)의 도포성이 저하되거나 도포 후에 표면의 수분흡착이 증가하여 도포막이 제거되는 문제점이 있다.The citrate and diethylene glycol monobutyl ether are preferably in a molar ratio of 1:0.01 to 1:2, and when the molar ratio is out of the above range, the rail permanent magnet 15, the first permanent magnet 23, and the second permanent magnet There is a problem in that the applicability of the magnet 28 is lowered or the moisture adsorption on the surface increases after application, so that the coating film is removed.

상기 시트레이트 및 디에틸렌 글리콜 모노부틸에테르는 전체 조성물 수용액중 1 ~ 10 중량%가 바람직한 바, 1 중량% 미만이면 레일영구자석(15), 제1영구자석(23), 제2영구자석(28)의 도포성이 저하되는 문제점이 있고, 10 중량%를 초과하면 도포막 두께의 증가로 인한 결정석출이 발생하기 쉽다.The citrate and diethylene glycol monobutyl ether are preferably 1 to 10% by weight of the total aqueous solution of the composition, and when less than 1% by weight, the rail permanent magnet 15, the first permanent magnet 23, and the second permanent magnet 28 ) has a problem in that the applicability is lowered, and when it exceeds 10 wt%, crystal precipitation is likely to occur due to an increase in the thickness of the coating film.

한편, 본 오염 방지 도포용 조성물을 레일영구자석(15), 제1영구자석(23), 제2영구자석(28)에 도포하는 방법으로는 스프레이법에 의해 도포하는 것이 바람직하다. 또한, 레일영구자석(15), 제1영구자석(23), 제2영구자석(28)의 최종 도포막 두께는 700 ~ 2500Å이 바람직하며, 보다 바람직하게는 900 ~ 2000Å이다. 상기 도포막의 두께가 700 Å미만이면 고온 열처리의 경우에 열화되는 문제점이 있고, 2500 Å을 초과하면 도포 표면의 결정석출이 발생하기 쉬운 단점이 있다.On the other hand, as a method of applying the present antifouling coating composition to the rail permanent magnet 15 , the first permanent magnet 23 , and the second permanent magnet 28 , it is preferable to apply the composition by a spray method. In addition, the final coating film thickness of the rail permanent magnet 15 , the first permanent magnet 23 , and the second permanent magnet 28 is preferably 700 to 2500 Å, more preferably 900 to 2000 Å. If the thickness of the coating film is less than 700 Å, there is a problem in that it is deteriorated in the case of high-temperature heat treatment, and if it exceeds 2500 Å, there is a disadvantage that crystal precipitation on the coated surface is easy to occur.

또한, 본 오염 방지 도포용 조성물은 시트레이트 0.1 몰 및 디에틸렌 글리콜 모노부틸에테르 0.05몰을 증류수 1000 ㎖에 첨가한 다음 교반하여 제조될 수 있다.In addition, the present antifouling coating composition can be prepared by adding 0.1 mol of citrate and 0.05 mol of diethylene glycol monobutyl ether to 1000 ml of distilled water and then stirring.

상기 구성 성분의 비율 및 도포막 두께를 상기와 같이 수치 한정한 이유는, 본 발명자가 수차례 실패를 거듭하면서 시험결과를 통해 분석한 결과, 상기 비율에서 최적의 오염방지 도포 효과를 나타내었다.The reason why the ratio of the components and the thickness of the coating film were numerically limited as described above was that the present inventor repeated several failures and analyzed through the test results. As a result, the optimal antifouling coating effect was exhibited at the ratio.

또한, 본 발명은 제1영구자석(23) 및 제2영구자석(28)을 제1휠바디(21)의 제1결합홈(22) 및 제2휠바디(26)의 제2결합홈(27)에 삽입시킬 때에 접착제를 도포하고, 레일영구자석(15)을 자석삽입구멍(13)에 삽입시킬 때에 접착제를 도포한다. 이때에 접착력을 향상시키기 위해 제1결합홈(22), 제2결합홈(27) 및 자석삽입구멍(13)에는 부착력증강제가 더 도포될 수 있다. In addition, the present invention is a first permanent magnet 23 and the second permanent magnet 28, the first coupling groove 22 of the first wheel body 21 and the second coupling groove of the second wheel body 26 ( 27) is applied when inserting the adhesive, and when the rail permanent magnet 15 is inserted into the magnet insertion hole 13, the adhesive is applied. At this time, an adhesion enhancer may be further applied to the first coupling groove 22 , the second coupling groove 27 , and the magnet insertion hole 13 in order to improve the adhesive force.

부착력증강제는 물 63중량부, N-히드록시메틸아크릴아미드 16중량부, 도데실설폰산 소듐 15중량부, 과황산암모늄 4중량부, 완충제 2중량부를 포함하여 이루어질 수 있다. The adhesion enhancer may include 63 parts by weight of water, 16 parts by weight of N-hydroxymethylacrylamide, 15 parts by weight of sodium dodecylsulfonate, 4 parts by weight of ammonium persulfate, and 2 parts by weight of a buffer.

N-히드록시메틸아크릴아미드는 접착성, 유연성, 내수성 등을 향상하기 위해 첨가되며, 도데실설폰산 소듐는 계면활성제의 역할을 하고, 과황산암모늄은 촉매제 역할을 한다.N-hydroxymethylacrylamide is added to improve adhesion, flexibility, water resistance, etc., sodium dodecylsulfonate acts as a surfactant, and ammonium persulfate acts as a catalyst.

상기와 같이 구성 물질 및 구성 성분을 한정하고 혼합 비율의 수치를 한정한 이유는, 본 발명자가 수차례 실패를 거듭하면서 시험 결과를 통해 분석한 결과, 상기 구성 성분 및 수치 한정 비율에서 최적의 효과를 나타내었다.The reason for limiting the constituent materials and constituents as described above and limiting the numerical value of the mixing ratio is that the present inventors repeatedly failed several times and analyzed the test results to obtain the optimal effect from the constituents and numerical limiting ratios. indicated.

도 8은 풀림제지링(50)을 보인 개략적 부분 단면도이다.8 is a schematic partial cross-sectional view showing the release stop ring 50 .

풀림제지링(50)은 제1체결볼트(25)의 볼트머리 및 제1휠바디(21) 사이와, 제2체결볼트(30)의 볼트머리 및 제2휠바디(26) 사이에 구비되어서 제1체결볼트(25) 및 제2체결볼트(30)의 풀림을 방지하는 역할을 수행한다.The loosening stop ring 50 is provided between the bolt head and the first wheel body 21 of the first fastening bolt 25 and between the bolt head and the second wheel body 26 of the second fastening bolt 30 . It serves to prevent loosening of the first fastening bolt 25 and the second fastening bolt 30 .

이러한 풀림제지링(50)은 볼트머리 측면에 결합되어서 제1체결볼트(25) 및 제2체결볼트(30)의 풀림을 방지시키며, 제1풀림제지링(51)과 제2풀림제지링(54)으로 구성된다.This loosening stop ring 50 is coupled to the side of the bolt head to prevent loosening of the first fastening bolt 25 and the second fastening bolt 30, and the first loosening stop ring 51 and the second loosening stop ring ( 54) is composed.

제1풀림제지링(51)은, 일면에 제1체결볼트(25)의 볼트머리 및 제2체결볼트(30)의 볼트머리 일면에 접촉되는 제1톱니(52)가 형성되고, 타면에 제1체결볼트(25) 및 제2체결볼트(30)의 나사산 경사각보다 큰 각도의 제1캠면(53)이 형성된 구조로 구비된다.The first locking ring 51 has a first tooth 52 that is in contact with one surface of the bolt head of the first fastening bolt 25 and the bolt head of the second fastening bolt 30 on one surface, and is formed on the other surface. It is provided in a structure in which the first cam surface 53 of an angle greater than the inclination angle of the thread of the first fastening bolt 25 and the second fastening bolt 30 is formed.

제2풀림제지링(54)은 일면에 제2톱니(55)가 형성되고, 타면에는 제1풀림제지링(51)의 제1캠면(53)과 맞물리도록 제1체결볼트(25) 및 제2체결볼트(30)의 나사산 경사각보다 큰 각도의 제2캠면(56)이 형성된 구조로 구비된다.The second locking ring 54 has a second tooth 55 formed on one surface, and a first fastening bolt 25 and a first fastening bolt 25 to engage the first cam surface 53 of the first locking ring 51 on the other surface. It is provided in a structure in which the second cam surface 56 of an angle greater than the inclination angle of the screw thread of the two fastening bolts 30 is formed.

따라서, 제2풀림제지링(54)의 제2톱니(55)가 제1휠바디(21) 및 제2휠바디(26)에 밀착되도록 하고, 연이어 제2풀림제지링(54)에 제1풀림제지링(51)을 밀착시키되, 제2풀림제지링(54)의 제2캠면(56)과 제1풀림제지링(51)의 제1캠면(53)이 서로 치합되게 밀착시키고, 제1체결볼트(25) 및 제2체결볼트(30)를 제1풀림제지링(51) 및 제2풀림제지링(54)을 통과한 후 제1휠바디(21) 및 제2휠바디(26)에 체결시킨다.Accordingly, the second teeth 55 of the second release ring 54 are brought into close contact with the first wheel body 21 and the second wheel body 26, and the first The release stop ring 51 is brought into close contact, and the second cam face 56 of the second release stop ring 54 and the first cam face 53 of the first release stop ring 51 are in close contact with each other, and the first After passing the fastening bolt 25 and the second fastening bolt 30 through the first release stop ring 51 and the second release stop ring 54 , the first wheel body 21 and the second wheel body 26 . fasten to

이에 따라, 제1체결볼트(25)의 볼트머리 및 제2체결볼트(30)의 볼트머리에 제1풀림제지링(51)의 제1톱니(52)가 밀착됨으로써, 제1체결볼트(25) 및 제2체결볼트(30)가 느슨해지는 것이 방지되고, 결국 제1마감캡(24) 및 제2마감캡(29)이 제1휠바디(21), 제2휠바디(26) 및 구동모터(40)에 견고히 장착된다.Accordingly, as the first tooth 52 of the first locking ring 51 is in close contact with the bolt head of the first fastening bolt 25 and the bolt head of the second fastening bolt 30, the first fastening bolt 25 ) and the second fastening bolt 30 are prevented from loosening, and eventually the first closing cap 24 and the second closing cap 29 are connected to the first wheel body 21, the second wheel body 26 and the drive. It is firmly mounted on the motor 40 .

10 : 자기추진부 11 : 레일
12 : 레일바디 13 : 자석삽입구멍
14 : 레일고정플랜지 20 : 비접촉주행휠
21 : 제1휠바디 22 : 제1결합홈
23 : 제1영구자석 24 : 제1마감캡
25 : 제1체결볼트 26 : 제2휠바디
27 : 제2결합홈 28 : 제2영구자석
29 : 제2마감캡 30 : 제2체결볼트
40 : 구동모터 41 : 회전자
10: magnetic propulsion unit 11: rail
12: rail body 13: magnet insertion hole
14: rail fixing flange 20: non-contact running wheel
21: first wheel body 22: first coupling groove
23: first permanent magnet 24: first closing cap
25: first fastening bolt 26: second wheel body
27: second coupling groove 28: second permanent magnet
29: second closing cap 30: second fastening bolt
40: drive motor 41: rotor

Claims (3)

한쌍의 제1휠바디(21) 및 제2휠바디(26)가 서로 마주보도록 구비되고, 제1휠바디(21) 및 제2휠바디(26)에 제1영구자석(23) 및 제2영구자석(28)들이 배치되되, 제1영구자석(23) 및 제2영구자석(28)들은 제1휠바디(21) 및 제2휠바디(26)에 할바흐 배열로 배치되고, 반도체 구동장비의 이동경로를 따라 이동되는 비접촉주행휠(20);
비접촉주행휠(20)에 내장되어서 비접촉주행휠(20)에 회전동력을 전달하는 구동모터(40);
반도체 구동장비의 이동경로를 따라 배열되고, 상부에 비접촉주행휠(20)이 소정 간격 이격되어 배치되며, 반도체 구동장비의 이동경로를 따라 배열되는 레일영구자석(15)이 구비되어서 비접촉주행휠(20)을 추진시키는 자기추진부(10)를 포함하여서 이루어지고;
비접촉주행휠(20)의 제1휠바디(21)에는, 비접촉주행휠(20)의 내측방향만으로 개방된 형태의 제1결합홈(22)이 내측면 둘레에 형성되어 있고, 비접촉주행휠(20)의 제2휠바디(26)에는, 비접촉주행휠(20)의 내측방향으로만 개방된 형태의 제2결합홈(27)이 내측면 둘레에 형성되어 있으며, 제1영구자석(23) 및 제2영구자석(28)은 제1결합홈(22) 및 제2결합홈(27)에 결합되어서 서로 마주보도록 배열되고;
구동모터(40)는, 비접촉주행휠(20)과 모듈화되어서 비접촉주행휠(20)에 회전동력을 전달하면서 비접촉주행휠(20)과 함께 이동되도록 구비되되, 제1휠바디(21) 및 제2휠바디(26)의 대응 내측 중앙부에 구비되고, 제1휠바디(21) 및 제2휠바디(26)에 하나로 모듈화되어 있으며, 구동모터(40)의 고정자 및 모터축은 반도체 구동장비에 결합되어 있고, 구동모터(40)의 회전자(41)는 제1휠바디(21) 및 제2휠바디(26)에 결합되어서 제1휠바디(21) 및 제2휠바디(26)에 회전동력을 전달하도록 구비되며;
자기추진부(10)는, 비접촉주행휠(20)의 제1휠바디(21) 및 제2휠바디(26) 하부 사이에 일렬로 배열되어 있는 것을 특징으로 하는 반도체 구동장비용 자기 증가형 디스크.
A pair of first and second wheel bodies 21 and 26 are provided to face each other, and the first permanent magnets 23 and second are provided on the first and second wheel bodies 21 and 26. The permanent magnets 28 are disposed, and the first permanent magnets 23 and the second permanent magnets 28 are disposed on the first wheel body 21 and the second wheel body 26 in a Halbach arrangement, and the semiconductor driving Non-contact driving wheel 20 that moves along the movement path of the equipment;
a driving motor 40 embedded in the non-contact driving wheel 20 to transmit rotational power to the non-contact driving wheel 20 ;
It is arranged along the moving path of the semiconductor driving equipment, the non-contact driving wheel 20 is disposed at a predetermined interval on the upper part, and a rail permanent magnet 15 arranged along the moving path of the semiconductor driving equipment is provided, so that the non-contact driving wheel ( 20) is made by including a magnetic propulsion unit 10 for propelling;
In the first wheel body 21 of the non-contact traveling wheel 20, a first coupling groove 22, which is opened only in the inner direction of the non-contact traveling wheel 20, is formed around the inner surface, and the non-contact traveling wheel ( In the second wheel body 26 of 20), a second coupling groove 27, which is opened only in the inner direction of the non-contact traveling wheel 20, is formed around the inner surface, and the first permanent magnet 23 and the second permanent magnet 28 is coupled to the first coupling groove 22 and the second coupling groove 27 and arranged to face each other;
The driving motor 40 is modularized with the non-contact driving wheel 20 and is provided to move together with the non-contact driving wheel 20 while transmitting rotational power to the non-contact driving wheel 20, the first wheel body 21 and the second It is provided in the corresponding inner central part of the two wheel body 26, and is modularized into one in the first wheel body 21 and the second wheel body 26, and the stator and motor shaft of the driving motor 40 are coupled to the semiconductor driving equipment. and the rotor 41 of the driving motor 40 is coupled to the first wheel body 21 and the second wheel body 26 to rotate on the first wheel body 21 and the second wheel body 26 . provided to transmit power;
The magnetic propulsion unit 10 is a self-increasing disk for semiconductor driving equipment, characterized in that it is arranged in a line between the lower portions of the first wheel body 21 and the second wheel body 26 of the non-contact traveling wheel 20 . .
청구항 1에 있어서, 구동모터(40)는,
구동모터(40)의 회전자(41) 일측, 제1휠바디(21)에는 제1마감캡(24)이 제1체결볼트(25)들로 결합되어 있고, 구동모터(40)의 회전자(41) 타측, 제2휠바디(26)에는 제2마감캡(29)이 제2체결볼트(30)들로 결합되어 있는 것을 특징으로 하는 반도체 구동장비용 자기 증가형 디스크.
The method according to claim 1, The drive motor 40,
A first closing cap 24 is coupled to one side of the rotor 41 of the drive motor 40 and the first wheel body 21 by first fastening bolts 25 , and the rotor of the drive motor 40 . (41) The self-increasing type disk for semiconductor driving equipment, characterized in that the second end cap 29 is coupled to the second wheel body 26 by the second fastening bolts 30 on the other side and the second wheel body 26 .
청구항 1에 있어서, 자기추진부(10)는,
반도체 구동장비의 이동경로를 따라 길게 형성되고, 길이 방향을 따라 자석삽입구멍(13)이 형성된 레일바디(12)와, 레일바디(12)의 하측에 연장되어서 레일바디(12)를 지지하는 레일고정플랜지(14)로 이루어지며, 비접촉주행휠(20)의 제1휠바디(21) 및 제2휠바디(26) 사이에 한줄로 배열되어 있는 레일(11)과;
레일바디(12)의 자석삽입구멍(13)에 삽입되어 있는 레일영구자석(15)들로 이루어진 것을 특징으로 하는 반도체 구동장비용 자기 증가형 디스크.
The method according to claim 1, The magnetic propulsion unit (10),
The rail body 12 formed long along the movement path of the semiconductor driving equipment and having the magnet insertion hole 13 formed along the longitudinal direction, and the rail extending below the rail body 12 to support the rail body 12 . a rail 11 composed of a fixed flange 14 and arranged in a line between the first wheel body 21 and the second wheel body 26 of the non-contact traveling wheel 20;
Magnetic increasing type disk for semiconductor driving equipment, characterized in that it consists of rail permanent magnets (15) inserted into the magnet insertion hole (13) of the rail body (12).
KR1020210063782A 2021-05-18 2021-05-18 Magnetic increase type disk for Semiconductor driving equipment KR102307205B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210063782A KR102307205B1 (en) 2021-05-18 2021-05-18 Magnetic increase type disk for Semiconductor driving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210063782A KR102307205B1 (en) 2021-05-18 2021-05-18 Magnetic increase type disk for Semiconductor driving equipment

Publications (1)

Publication Number Publication Date
KR102307205B1 true KR102307205B1 (en) 2021-09-30

Family

ID=77920445

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210063782A KR102307205B1 (en) 2021-05-18 2021-05-18 Magnetic increase type disk for Semiconductor driving equipment

Country Status (1)

Country Link
KR (1) KR102307205B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102569490B1 (en) 2022-03-14 2023-08-25 주식회사 에이치씨씨 Non-contact power transfer apparatus for increasing magnetic force and transferring equipment including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780775A (en) * 2009-01-21 2010-07-21 袁哲 Novel magnetically levitated train
KR101227458B1 (en) * 2012-08-13 2013-01-29 최이화 Magnetic gear for cogging decrease and transfer equipment using the same
KR20180024445A (en) * 2016-08-30 2018-03-08 세메스 주식회사 Contactless driving module and transfer apparatus having the same
KR20180059081A (en) * 2016-11-25 2018-06-04 세메스 주식회사 Magnetic levitation transfer apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780775A (en) * 2009-01-21 2010-07-21 袁哲 Novel magnetically levitated train
KR101227458B1 (en) * 2012-08-13 2013-01-29 최이화 Magnetic gear for cogging decrease and transfer equipment using the same
KR20180024445A (en) * 2016-08-30 2018-03-08 세메스 주식회사 Contactless driving module and transfer apparatus having the same
KR20180059081A (en) * 2016-11-25 2018-06-04 세메스 주식회사 Magnetic levitation transfer apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102569490B1 (en) 2022-03-14 2023-08-25 주식회사 에이치씨씨 Non-contact power transfer apparatus for increasing magnetic force and transferring equipment including the same

Similar Documents

Publication Publication Date Title
US11413967B2 (en) Contactless driving module and transfer apparatus having the same
KR102307205B1 (en) Magnetic increase type disk for Semiconductor driving equipment
US20100278623A1 (en) Magnetic rotational hardstop for robot
Sun et al. Enhancement of hole mobility of poly (3-hexylthiophene) induced by titania nanorods in composite films
CN106803538B (en) The two-dimentional hybrid inorganic-organic perovskite thin film material of vertically oriented structure
TW201208169A (en) Film
US20190067067A1 (en) Tower lift
SG159384A1 (en) Electropolishing and/or electroplating apparatus and methods
CN104271474A (en) Transport apparatus
CN102827386A (en) Preparation method of polyether-ether-ketone/graphene oxide nano-composite film
US20230129289A1 (en) Transport apparatus with linear bearing and method therefor
KR20110052462A (en) Linear vacuum robot with z motion and articulated arm
KR920007793A (en) Manufacturing method of metal and polyolefin resin laminate
KR102512158B1 (en) Magnetic propulsion and levitation all-in-one driving system with drop prevention
JP2005342898A (en) High barrier sheet
TW201233511A (en) Coaxial harmonic drive vacuum robot
US20220280985A1 (en) Cleaning device and method of substrate transfer device
JPS63114887A (en) Work carrying robot
CN1253328C (en) Window glass for automobile and method for production thereof
KR101992235B1 (en) Device for generating electricity using the driving frictional force of road vehicle
JP4819190B2 (en) Method for producing gas barrier film having hot water resistance and gas barrier film having hot water resistance
KR102569490B1 (en) Non-contact power transfer apparatus for increasing magnetic force and transferring equipment including the same
JP2013144781A (en) Polyester film and solar cell back sheet and solar cell using the film, and production method thereof
CN215010013U (en) Magnetic transmission wheel set and magnetic transmission wheel set
US20230085667A1 (en) Substrate transfer systems and methods of use thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant