KR102283628B1 - Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection - Google Patents

Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection Download PDF

Info

Publication number
KR102283628B1
KR102283628B1 KR1020190138236A KR20190138236A KR102283628B1 KR 102283628 B1 KR102283628 B1 KR 102283628B1 KR 1020190138236 A KR1020190138236 A KR 1020190138236A KR 20190138236 A KR20190138236 A KR 20190138236A KR 102283628 B1 KR102283628 B1 KR 102283628B1
Authority
KR
South Korea
Prior art keywords
gene
dcrb
strain
amino acid
ints
Prior art date
Application number
KR1020190138236A
Other languages
Korean (ko)
Other versions
KR20210052112A (en
Inventor
신원주
조영일
이선희
김현영
김용수
양철민
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020190138236A priority Critical patent/KR102283628B1/en
Publication of KR20210052112A publication Critical patent/KR20210052112A/en
Application granted granted Critical
Publication of KR102283628B1 publication Critical patent/KR102283628B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/225Tyrosine; 3,4-Dihydroxyphenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

바이러스 감염 관련 유전자인 dcrB, intS, 및 yecE 중 적어도 하나의 유전자를 불활성화시킴으로써 방향족 아미노산 생산능이 향상된 변이 균주가 개시된다. A mutant strain having improved aromatic amino acid production capacity by inactivating at least one gene of dcrB, intS, and yecE, which is a virus infection-related gene, is disclosed.

Description

바이러스 감염 관련 유전자 불활성에 의해 방향족 아미노산 생산능력이 향상된 균주{Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection}Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection

본 발명은 바이러스 감염 관련 유전자 불활성에 의해 방향족 아미노산 생산능력이 향상된 균주에 관한 것이다.The present invention relates to a strain having improved aromatic amino acid production capacity by inactivation of genes related to viral infection.

방향족 아미노산, 특히 L-트립토판과 L-페닐알라닌은 사료용 아미노산의 핵심품목으로서 전 세계에서 연간 3000억 달러 규모의 시장을 형성하고 있는 고부가가치 산업이다. Aromatic amino acids, especially L-tryptophan and L-phenylalanine, are key products of amino acids for feed, and are high value-added industries that are forming a global market worth 300 billion dollars annually.

방향족 아미노산은 재조합 균주를 이용해 생산하고 있으며, 이의 생산량을 늘리기 위한 연구가 활발히 이루어지고 있다. 코리스미산(Chorismate)은 방향족 아미노산 생합성 경로에서 필요한 전구체로서, 이를 생산하기 위해서는 PEP(phosphoenolpyruvate), E4P(erythrose-4-phosphate), 부기질인 PRPP(phosphoribosyl pyrophosphate), 세린(Serine), 글루타민(Glutamine) 등이 필요하다. 따라서, 기존에는 L-트립토판 생산능력을 향상시키기 위해 E4P, PEP, 또는 PRPP의 생합성 경로를 강화하기 위한 연구가 진행되었다. Aromatic amino acids are produced using recombinant strains, and studies are being actively conducted to increase their production. Chorismic acid (Chorismate) is a necessary precursor in the biosynthesis pathway of aromatic amino acids. ), etc., are required. Therefore, in the past, studies to enhance the biosynthetic pathway of E4P, PEP, or PRPP in order to improve L-tryptophan production capacity have been conducted.

한편, 균주에 의한 아미노산 생산에서 바이러스의 오염으로 인해 아미노산 생산이 감소할 수 있다. 이러한 문제를 해결하기 위해 등록특허 10-1608734에는 NfrA, NfrB 파지 수용체의 발현을 억제함으로써 쓰레오닌 또는 트립토판의 생산성을 향상시키는 기술이 개시되어 있다. 그러나 바이러스 감염과 관련된 단백질의 활성을 억제하더라도 바이러스 감염과 무관하게 아미노산 생산성이 오히려 감소하거나, 아미노산 종류에 따라 생산량의 변화가 다르게 나타나는 등 예기치 않은 결과를 얻을 수 있으므로 보다 많은 연구가 필요한 실정이다.On the other hand, amino acid production may be reduced due to virus contamination in amino acid production by the strain. In order to solve this problem, Patent No. 10-1608734 discloses a technique for improving the productivity of threonine or tryptophan by inhibiting the expression of NfrA, NfrB phage receptors. However, even if the activity of a protein related to viral infection is suppressed, unexpected results such as a decrease in amino acid productivity regardless of viral infection or a change in production according to an amino acid type may be obtained, so more research is needed.

대한민국 등록공보 제10-1830002호(2018.02.09)Republic of Korea Registration Publication No. 10-1830002 (2018.02.09)

일 구체예에 따르면, 바이러스 감염 관련 유전자의 발현을 억제시킴으로써 방향족 아미노산의 생산능력이 향상된 균주를 제공한다.According to one embodiment, there is provided a strain having improved production capacity of aromatic amino acids by suppressing the expression of viral infection-related genes.

일 양상은 바이러스 감염 관련 유전자인 dcrB, intS, 및 yecE 중 적어도 하나의 유전자를 불활성화시킴으로써 방향족 아미노산 생산능이 향상된 변이 균주를 제공한다.One aspect provides a mutant strain with improved aromatic amino acid production ability by inactivating at least one gene of dcrB, intS, and yecE, which are viral infection-related genes.

상기 dcrB 유전자는 서열번호 1의 염기서열로 이루어진 것일 수 있다. 상기 intS 유전자는 서열번호 10의 염기서열로 이루어진 것일 수 있다. 상기 yecE 유전자는 서열번호 19의 염기서열로 이루어진 것일 수 있다. The dcrB gene may consist of the nucleotide sequence of SEQ ID NO: 1. The intS gene may be composed of the nucleotide sequence of SEQ ID NO: 10. The yecE gene may consist of the nucleotide sequence of SEQ ID NO: 19.

dcrB 유전자는 dcrA, btuB와 함께 파지 C1(pharge C1)의 부착에 관여하는 단백질을 발현한다. intS 유전자는 KpLE1 프로파지(KplE1 prophage, CPS-53)의 용균주기(lytic cycle) 및 용원주기(lysogenic cycle)에 관여하는 integrase 단백질을 발현한다. yecE 유전자는 프로파지 φ297(prophage φ297)의 용원주기시 삽입되는 위치이다. The dcrB gene expresses a protein involved in the attachment of phage C1 together with dcrA and btuB. The intS gene expresses an integrase protein involved in the lytic cycle and the lysogenic cycle of KpLE1 prophage (CPS-53). The yecE gene is a position inserted during the lysogen cycle of the prophage φ297 (prophage φ297).

본 발명자는 바이러스의 균주 감염과 관련된 여러 유전자들의 발현을 억제함으로써 아미노산 생산성을 향상시킬 수 있는지 연구하던 중, dcrB, intS, 및 yecE 유전자 중 어느 하나의 발현을 억제함으로서 특정 아미노산 생산성을 향상시킬 수 있음을 발견하였다. The present inventors are studying whether amino acid productivity can be improved by suppressing the expression of several genes related to viral strain infection, dcrB, intS, and yecE By suppressing the expression of any one of the genes, it is possible to improve the productivity of specific amino acids. found

dcrB 및 intS 유전자는 이로부터 생산되는 바이러스 감염 관련 단백질의 활성을 약화 또는 불활성화시킴으로서 방향족 아미노산 생산성이 향상될 수 있다. yecE 유전자는 바이러스 유전자의 삽입 위치로서, yecE 유전자 자리가 제거됨으로써 방향족 아미노산 생산능이 향상될 수 있다. 다만 본 명세서의 실시예에 따르면 이러한 방향족 아미노산 생산 증가는 단순히 바이러스 감염 억제에 의한 것일 뿐만 아니라, dcrB, intS, 또는 yecE의 발현 억제가 방향족 아미노산 생산을 촉진한 결과일 수 있다. The dcrB and intS genes can improve the productivity of aromatic amino acids by attenuating or inactivating the activity of viral infection-related proteins produced therefrom. The yecE gene is an insertion site of a viral gene, and by removing the yecE locus, the ability to produce aromatic amino acids can be improved. However, according to the examples of the present specification, this increase in production of aromatic amino acids is not only due to suppression of viral infection, but also may be a result of suppression of expression of dcrB, intS, or yecE promoting aromatic amino acid production.

본 명세서에서 사용되는 용어 "활성이 약화"는 객체인 유전자의 발현량이 본래의 발현량보다 감소되는 것을 의미한다. 이러한 활성의 약화는 유전자를 암호화하는 뉴클레오티드 치환, 삽입, 결실 또는 이들의 조합을 통하여 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 감소한 경우와, 이를 암호화하는 유전자의 발현 저해 또는 번역 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함한다.As used herein, the term “weakened activity” means that the expression level of a gene as an object is reduced compared to the original expression level. Weakening of this activity is when the activity of the enzyme itself is reduced compared to the activity of the enzyme possessed by the original microorganism through nucleotide substitution, insertion, deletion, or a combination thereof, and inhibition of the expression or translation of the encoding gene For example, when the overall degree of enzymatic activity in the cell is lower than that of the native strain or the strain before modification, a combination thereof is also included.

본 명세서에서 사용되는 용어 "불활성화"는 효소 등 단백질을 암호화하는 유전자의 발현이 천연형 균주 또는 변형전의 균주에 비하여 전혀 발현이 되지 않는 경우 및 발현이 되더라도 그 활성이 없는 경우를 의미하며, 또한 유전자 자체가 제거된 경우도 포함한다.As used herein, the term “inactivation” refers to a case in which the expression of a gene encoding a protein such as an enzyme is not expressed at all compared to a native strain or a strain before modification, and even if expressed, there is no activity. This includes cases in which the gene itself has been removed.

본 명세서에서 사용되는 용어 "발현이 증가"는 객체인 유전자의 발현량이 본래의 발현량보다 증가되는 것을 의미한다. 변이 전 균주에 발현을 증가시키고자 하는 유전자가 존재하지 않는 경우에는 하나 이상의 유전자를 상기 균주의 염색체에 도입하여 발현을 증가시킬 수 있고, 변이 전 균주에 발현을 증가시키고자 하는 유전자가 존재하는 경우에는 하나 이상의 유전자를 상기 균주에 추가로 도입하거나 기존 유전자의 발현량이 증가하도록 유전공학적으로 조작할 수 있다.As used herein, the term “increased expression” means that the expression level of a gene as an object is increased compared to the original expression level. If there is no gene whose expression is to be increased in the strain before mutation, one or more genes can be introduced into the chromosome of the strain to increase expression, and when there is a gene to increase expression in the strain before mutation One or more genes may be additionally introduced into the strain or genetically engineered to increase the expression level of an existing gene.

본 발명에서, 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 핵산 서열에 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 프로모터로 교체하는 등의 방법으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함한다.In the present invention, the method for modifying the expression control sequence is performed by inducing mutation in the expression control sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof in the nucleic acid sequence of the expression control sequence, or by using a weaker promoter. It can be carried out by a method such as replacement. The expression control sequence includes a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.

아울러, 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성이 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있다.In addition, the method of modifying the gene sequence on the chromosome is performed by inducing a mutation in the sequence by deletion, insertion, non-conservative or conservative substitution of the gene sequence, or a combination thereof so that the activity of the enzyme is further weakened, or a weaker activity is performed. It can be carried out by replacing it with a gene sequence improved to have or a gene sequence improved to have no activity.

일 구체예에 따르면, 상기 방향족 아미노산은 L-티로신(L-tyrosine), L-트립토판(L-tryptophan, 및 L-페닐알라닌(L-phenylalanine)일 수 있고, 바람직하게는 L-트립토판일 수 있다. According to one embodiment, the aromatic amino acid may be L-tyrosine, L-tryptophan, and L-phenylalanine, preferably L-tryptophan.

본 발명자는 바이러스 감염 관련 유전자들의 발현을 조절하고 아미노산 발현량의 변화를 관찰하던 중, dcrB, intS, 및 yecE 유전자 중에서 어느 하나의 발현을 억제하면 아미노산 중 일부 아미노산의 생산량은 감소하는 반면, 방향족 아미노산의 생산량이 특이적으로 증가할 수 있다는 점을 확인하였다. The present inventors control the expression of viral infection-related genes and observe the change in amino acid expression level, when the expression of any one of the dcrB, intS, and yecE genes is suppressed, the production of some of the amino acids is reduced, whereas the production of aromatic amino acids It was confirmed that the production of can be specifically increased.

일 구체예에 따르면, 상기 변이 균주는 dcrB, intS, 및 yecE 중 적어도 하나의 유전자 전부 또는 일부가 삽입, 치환, 또는 결실된 것일 수 있다. According to one embodiment, the mutant strain may be one in which all or part of at least one gene of dcrB, intS, and yecE is inserted, substituted, or deleted.

일 구체예에 따르면, 상기 변이 균주는 에스케리키아(Escherichia)속 균주일 수 있다. According to one embodiment, the mutant strain may be Escherichia sp. strain.

일 구체예에 따르면, 상기 에스케리키아 속 균주는 대장균(Escherichia coli)일 수 있고, 예를 들면 KFCC11660P 및 KCCM10016 기탁 균주일 수 있다. According to one embodiment, the Escherichia sp. strain may be Escherichia coli, for example, KFCC11660P and KCCM10016 deposited strain.

다른 양상에 따르면, 상기 변이 균주를 배지에서 배양하는 단계, 및 상기 배양된 균주 및 배양 배지에서 방향족 아미노산을 회수하는 단계를 포함하는 방향족 아미노산의 제조 방법을 제공한다. According to another aspect, there is provided a method for producing an aromatic amino acid comprising the steps of culturing the mutant strain in a medium, and recovering the aromatic amino acid from the cultured strain and the culture medium.

본 발명에 이용되는 균주는 당업계에 공지된 배양 방법을 통해 배양될 수 있다. 배지로는 천연배지 또는 합성배지를 사용할 수 있다. 배지의 탄소원으로는 예를 들어 글루코오스, 수크로오스, 덱스트린, 글리세롤, 녹말 등이 사용될 수 있고, 질소원으로는 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 대두 케이크, 우레아, 티오우레아, 암모늄염, 나이트레이트 및 기타 유기 또는 무기 질소-함유 화합물이 사용될 수 있으나, 이러한 성분에 한정되는 것은 아니다.The strain used in the present invention may be cultured through a culture method known in the art. As the medium, a natural medium or a synthetic medium may be used. As a carbon source of the medium, for example, glucose, sucrose, dextrin, glycerol, starch, etc. may be used, and as a nitrogen source, peptone, meat extract, yeast extract, dried yeast, soybean cake, urea, thiourea, ammonium salt, nitrate and other organic or inorganic nitrogen-containing compounds may be used, but are not limited to these components.

배지에 포함되는 무기염으로는 마그네슘, 망간, 포타슘, 칼슘, 철 등의 포스페이트, 나이트레이트, 카보네이트, 클로라이드 등이 사용될 수 있으나, 이들에 한정되는 것은 아니다. 상기 탄소원, 질소원 및 무기염의 성분 이외에 아미노산, 비타민, 핵산 및 그와 관련된 화합물들이 배지에 첨가 될 수 있다.Inorganic salts included in the medium include phosphates such as magnesium, manganese, potassium, calcium, and iron, nitrates, carbonates, chlorides, and the like, but are not limited thereto. In addition to the components of the carbon source, nitrogen source and inorganic salt, amino acids, vitamins, nucleic acids and related compounds may be added to the medium.

배양물의 온도는 27 내지 40℃, 바람직하게는 30 내지 37℃일 수 있으나, 이에 한정되는 것은 아니다. 배양 기간은 유용 물질의 원하는 생성량이 수득될 때까지 계속될 수 있으며, 바람직하게는 10 내지 100 시간일 수 있으나, 이에 한정되는 것은 아니다.The temperature of the culture may be 27 to 40 ℃, preferably 30 to 37 ℃, but is not limited thereto. The incubation period may be continued until a desired production amount of a useful substance is obtained, and may preferably be 10 to 100 hours, but is not limited thereto.

방향족 아미노산을 회수하는 단계는 본 발명의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 회수할 수 있으며, 상기 회수 단계는 정제 공정을 포함할 수 있다.In the step of recovering the aromatic amino acid, the desired amino acid can be recovered from the culture solution using a suitable method known in the art according to the culture method of the microorganism of the present invention, for example, a batch, continuous or fed-batch culture method. , the recovery step may include a purification process.

일 구체예에 따르면, 상기 방향족 아미노산은 L-트립토판, L-페닐알라닌, 및 L-트리신일 수 있고, 바람직하게는 L-트립토판일 수 있다.According to one embodiment, the aromatic amino acid may be L-tryptophan, L-phenylalanine, and L-tricine, preferably L-tryptophan.

일 구체예에 따르면, 균주의 바이러스 감염 관련 유전자인 dcrB, intS, 및 yecE 중 적어도 하나의 유전자를 불활성화시킴으로써 방향족 아미노산의 생산량을 증가시킬 수 있다.According to one embodiment, the production of aromatic amino acids may be increased by inactivating at least one gene of dcrB, intS, and yecE, which are genes related to viral infection of the strain.

이하 하나 이상의 구체예를 실시예를 통해 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, one or more specific embodiments will be described in more detail through examples. However, these examples are for illustrative purposes of one or more embodiments, and the scope of the present invention is not limited to these examples.

실시예 1-1: dcrB 유전자가 결실된 균주 제작Example 1-1: Construction of a strain in which the dcrB gene is deleted

모균주(수탁번호: KFCC11660P)에 원스텝 불활성화 방법(One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Datsenko KA, Wanner BL., Proc Natl Acad Sci USA. 2000 Jun 6;97(12):6640-5)을 이용하여 dcrB 유전자가 불활성화된 변이 균주를 제작하였다.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Datsenko KA, Wanner BL., Proc Natl Acad Sci USA. 2000 Jun 6;97 ( 12): 6640-5) was used to prepare a mutant strain in which the dcrB gene was inactivated.

KFCC11660P 균주 및 KCCM10016 균주는 대장균(Escherichia coli) 균주로서, 제 4 단편의 상동재조합을 위해 Red recombinase 플라스미드인 pKD46(GenBank 접근번호 AY048746)를 도입하고, pCP20 도입 전에는 pKD46을 제거한다. KFCC11660P strain and KCCM10016 strain are Escherichia coli strains. For homologous recombination of the fourth fragment, pKD46 (GenBank Accession No. AY048746), a Red recombinase plasmid, is introduced, and pKD46 is removed before introducing pCP20.

dcrB 유전자 및 항생제 유전자가 포함된 DNA 단편을 상동재조합시켜 dcrB 유전자를 결실시키고, 다시 재조합된 DNA 단편으로부터 항생제 내성 유전자를 제거하는 과정을 거침으로써 dcrB 유전자를 불활성화시켰다. 구체적인 과정은 다음과 같다. The dcrB gene was deleted by homologous recombination of the DNA fragment containing the dcrB gene and the antibiotic gene, and the dcrB gene was inactivated by removing the antibiotic resistance gene from the recombined DNA fragment. The specific process is as follows.

(1) 제 1 단편 제작(1) Production of the first fragment

하기 표 1에서의 dcrB 유전자 일부 서열과 pKD13 플라스미드 일부 서열을 가지는 dcrB_PF, dcrB_PR 프라이머 쌍과 pKD13 플라스미드(Genbank 접근번호 AY048744)를 이용하여 PCR 반응(총 부피 50 ㎕, 95℃ 5분 1사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 2분, 총 30 사이클 이후 72℃에서 5분 및 12℃에서 10분)을 수행하여 약 1.4kb 의 증폭된 제 1 단편을 얻었다. 제 1 단편은 pKD13 플라스미드에서 유래한 카나마이신 내성 유전자를 포함하고 있다.PCR reaction (total volume of 50 μl, 95° C. 5 minutes after 1 cycle, 95 ) using a dcrB_PF, dcrB_PR primer pair and pKD13 plasmid (Genbank Accession No. 30 sec at ℃, 30 sec at 58 ℃, 2 min at 72 ℃, 5 min at 72 ℃ and 10 min at 12 ℃ after a total of 30 cycles) to obtain an amplified first fragment of about 1.4 kb. The first fragment contains the kanamycin resistance gene derived from the pKD13 plasmid.

Figure 112019111942495-pat00001
Figure 112019111942495-pat00001

(2) 제 2 단편 제작(2) production of the second short

dcrB 유전자의 앞쪽 단편을 얻기 위해 대장균 MG1655의 지노믹(genomic) DNA를 주형으로 하고 표 1의 프라이머 dcrB_HF1 및 dcrB_HR1를 이용하여 PCR (총 부피 50 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 30초, 총 30사이클 이후 72℃에서 5분 및 12℃에서 10분)을 수행하여 약 0.3 kb 증폭된 제 2 단편을 얻었다.To obtain the front fragment of the dcrB gene, PCR (total volume of 50 μl, 95°C for 5 minutes 1 cycle, 95°C 30 minutes after using the genomic DNA of E. coli MG1655 as a template and primers dcrB_HF1 and dcrB_HR1 in Table 1) sec, 58° C. for 30 seconds, 72° C. for 30 seconds, after a total of 30 cycles (72° C. for 5 minutes and 12° C. for 10 minutes), an about 0.3 kb amplified second fragment was obtained.

(3) 제 3 단편 제작(3) production of the third short

또한 dcrB 유전자의 뒤쪽 단편을 얻기 위해 대장균 MG1655의 지노믹 DNA를 주형으로 하여 표 1의 프라이머 dcrB_HF2와 dcrB_HR2를 이용하여 PCR 반응(총부피 50 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃에서 30초, 총 30 사이클 이후 72℃분 및 12℃에서 10분)을 수행하여 약 0.3 kb 의 증폭된 제 3 단편을 얻었다.In addition, in order to obtain the rear fragment of the dcrB gene, PCR reaction (total volume 50 μl, 95°C 5 minutes 1 cycle, 95°C 30 seconds after using the genomic DNA of Escherichia coli MG1655 as a template and primers dcrB_HF2 and dcrB_HR2 in Table 1) , 58 °C for 30 seconds, 72 °C for 30 seconds, 72 °C min and 12 °C for 10 minutes after a total of 30 cycles) to obtain an amplified third fragment of about 0.3 kb.

(4) 제 4 단편 제작(4) 4th short film production

위 실험에서 증폭된 각각의 제 1 단편, 제 2 단편, 및 제 3 단편은 증폭시 프라이머의 상보적 서열로 인하여 하나의 단편으로 연결될 수 있다. 이 단편들을 프라이머를 제외하고 총 부피 50 ㎕, 95℃ 5분 1사이클 후, 95℃에서 30초, 58℃에서 30초, 72℃ 2분 30초, 총 30사이클 이후 72℃에서 5분 및 12℃ 에서 10분 조건으로 PCR을 수행하여 약 2 kb 크기를 가지는 하나의 증폭된 제 4 단편을 얻었다. 제 4 단편은 dcrB 유전자 일부와 kanamycin 항생제 저항 유전자를 포함하고 있으며, 구체적으로 dcrB 유전자의 5' 방향의 일부 단편, kanamycin 항생제 저항 유전자, 그리고 dcrB 유전자의 3' 방향의 일부 단편으로 구성되어 있다. Each of the first fragment, the second fragment, and the third fragment amplified in the above experiment may be linked into one fragment due to the complementary sequence of the primers during amplification. These fragments were subjected to a total volume of 50 μl excluding primers, after 1 cycle at 95° C. for 5 minutes, at 95° C. for 30 seconds, at 58° C. for 30 seconds, at 72° C. for 2 minutes and 30 seconds, after a total of 30 cycles at 72° C. for 5 minutes and 12 minutes. PCR was performed at ℃ for 10 minutes to obtain one amplified fourth fragment having a size of about 2 kb. The fourth fragment includes a part of a dcrB gene and a kanamycin antibiotic resistance gene, and specifically, a partial fragment in the 5' direction of the dcrB gene, a kanamycin antibiotic resistance gene, and a partial fragment in the 3' direction of the dcrB gene.

(5) 제 4 단편 주입 및 dcrB 결실(5) injection of the fourth fragment and dcrB deletion

Red recombinase 플라스미드인 pKD46(GenBank 접근번호 AY048746)을 포함하고 있는 에스케리치아 콜라이(Escherichia coli) 균주인 KFCC11660P 균주에 각각 획득한 제 4 단편을 전기천공법(electroporation)으로 주입하였다. 제 4 단편은 람다 레드 재조합 시스템(Lambda Red recombination)에 의해 dcrB와 상동재조합으로 교체됨으로써 dcrB가 결실된다.The fourth fragments each obtained were injected into the KFCC11660P strain, an Escherichia coli strain containing the red recombinase plasmid pKD46 (GenBank accession number AY048746), by electroporation. The fourth fragment was replaced with dcrB and homologous recombination by the Lambda Red recombination system, whereby dcrB was deleted.

이후 카나마이신(kanamycin) 내성을 보이는 세포주를 대상으로 PCR 반응을 수행하여 dcrB 유전자의 결실 여부를 확인하였다. 반응은 표 1의 dcrB_CF 및 dcrB_CR 프라이머를 이용하여 총 부피 20 ㎕, 95℃ 5분 1 사이클 후, 95℃에서 30초, 55℃에서 30초, 72℃에서 3분, 총 30 사이클 이후 72℃에서 5분 및 12℃에서 10분 조건으로 PCR을 수행하였다. 원래 dcrB 유전자가 있을 경우 생성되는 약 1.4 kb(결실 전)이 생성되는 것과 비교하여 염색체 내에 단편이 삽입된 경우 길이가 더 증가한 약 2.2 kb(항생제 유전자 포함)가 생성됨을 확인하였다. Thereafter, a PCR reaction was performed on a cell line showing kanamycin resistance to confirm whether the dcrB gene was deleted. The reaction was performed using the dcrB_CF and dcrB_CR primers in Table 1 in a total volume of 20 μl, 95°C after 5 minutes 1 cycle, at 95°C for 30 seconds, at 55°C for 30 seconds, at 72°C for 3 minutes, after a total of 30 cycles at 72°C. PCR was performed for 5 minutes and 10 minutes at 12°C. It was confirmed that about 2.2 kb (including antibiotic gene) with an increased length when the fragment was inserted into the chromosome was generated compared to about 1.4 kb (before deletion) generated when the original dcrB gene was present.

(6) 항생제 저항 유전자 제거 및 선별(6) Antibiotic resistance gene removal and selection

dcrB 유전자 결실이 확인된 균주로부터 항생제 내성 표식 유전자를 제거하기 위해 pCP20 플라스미드를 도입하여 FLP 재조합을 유도하였다. 이후 항생제 첨가 혹은 무첨가 LB 평판배지에서 dcrB 결실 균주를 배양하여 항생제 내성 표식 유전자가 제거된 것을 확인하였다.FLP recombination was induced by introducing the pCP20 plasmid to remove the antibiotic resistance marker gene from the strain in which the dcrB gene deletion was confirmed. Thereafter, it was confirmed that the antibiotic resistance marker gene was removed by culturing the dcrB-deleted strain in LB plate medium with or without antibiotics added.

실시예 1-2: dcrB 결실 균주의 배양 및 방향족 아미노산 생산량 평가 Example 1-2: Culture of dcrB deletion strain and evaluation of aromatic amino acid production

상기 실시예 1-1의 방법으로 제작된 대장균 KFCC11660PΔdcrB 및 KFCC11660P을 하기 표 2의 아미노산 생산용 배지에서 배양하였다. E. coli KFCC11660PΔdcrB and KFCC11660P prepared by the method of Example 1-1 were cultured in the amino acid production medium shown in Table 2 below.

배양은 하기 표 2와 같은 조성의 아미노산 생산용 배지가 10 mL이 담긴 플라스크에 상기 KFCC11660PΔdcrB, KFCC11660P 균주를 각각 부피를 기준으로 1%씩 접종하여 37℃에서 200 rpm으로 70시간 동안 진탕 배양하고, 그로부터 수득한 L-아미노산의 농도를 비교하였다.The culture is performed by inoculating 1% of each of the KFCC11660PΔdcrB and KFCC11660P strains based on the volume in a flask containing 10 mL of the amino acid production medium having the composition shown in Table 2 below, and incubating with shaking at 37 ° C. at 200 rpm for 70 hours, and from there The concentrations of the obtained L-amino acids were compared.

Figure 112019111942495-pat00002
Figure 112019111942495-pat00002

상기 실험 결과, 하기 표 3에 나타난 바와 같이 dcrB 유전자를 불활성화 시킨 경우 트립토판, 페닐알라닌, 티로신의 생산량이 증가하였고, 특히 트립토판의 생산량 증가가 월등함을 확인하였다. As a result of the above experiment, as shown in Table 3 below, when the dcrB gene was inactivated, the production of tryptophan, phenylalanine, and tyrosine increased, and it was confirmed that the increase in production of tryptophan was particularly superior.

Figure 112019111942495-pat00003
Figure 112019111942495-pat00003

실시예 2-1: intS 유전자가 결실된 균주 제작Example 2-1: Construction of a strain in which the intS gene is deleted

상기 실시예 1-1와 동일한 방법으로 intS 유전자가 결실된 균주를 제작하였다. intS 유전자 결실 균주 제작에 사용된 프라이머의 서열은 하기 표 4에 기재되어 있다. A strain in which the intS gene was deleted was prepared in the same manner as in Example 1-1. The sequences of the primers used to construct the intS gene deletion strain are shown in Table 4 below.

카나마이신(kanamycin) 내성을 보이는 세포주를 대상으로 PCR 반응을 수행하여 intS 유전자의 결실 여부를 확인한 결과, 원래 intS 유전자가 있을 경우 생성되는 약 1.9 kb(결실 전)이 생성되는 것과 비교하여 염색체 내에 단편이 삽입된 경우 길이가 더 증가한 약 2.1 kb(항생제 유전자 포함)가 생성됨을 확인하였다.As a result of confirming whether the intS gene was deleted by performing a PCR reaction on a kanamycin-resistant cell line, the fragment was found in the chromosome compared to about 1.9 kb (before deletion) generated when the original intS gene was present. When inserted, it was confirmed that about 2.1 kb (including antibiotic gene) with a further increased length was generated.

Figure 112019111942495-pat00004
Figure 112019111942495-pat00004

실시예 2-2: intS 결실 균주의 배양 및 방향족 아미노산 생산량 평가Example 2-2: Culture of intS deletion strain and evaluation of aromatic amino acid production

상기 실시예 2-1의 방법으로 제작된 대장균 KFCC11660PΔintS 및 KFCC11660P을 아미노산 생산용 배지에서 배양하였다. 배양방법 및 배지는 상기 실시예 1-2의 배양방법과 동일하였다. E. coli KFCC11660PΔintS and KFCC11660P prepared by the method of Example 2-1 were cultured in a medium for amino acid production. The culture method and medium were the same as the culture method of Example 1-2.

상기 실험 결과, 하기 표 5에 나타난 바와 같이 intS 유전자를 불활성화 시킨 경우 트립토판, 페닐알라닌, 티로신의 생산량이 증가하였고, 특히 트립토판의 생산량 증가가 월등함을 확인하였다. As a result of the above experiment, as shown in Table 5 below, when the intS gene was inactivated, the production of tryptophan, phenylalanine, and tyrosine increased, and it was confirmed that the increase in production of tryptophan was particularly superior.

Figure 112019111942495-pat00005
Figure 112019111942495-pat00005

실시예 3-1: yecE 유전자가 결실된 균주 제작Example 3-1: Construction of a strain in which the yecE gene is deleted

상기 실시예 1-1와 동일한 방법으로 yecE 유전자가 결실된 균주를 제작하였다. yecE 유전자 결실 균주 제작에 사용된 프라이머의 서열은 하기 표 6에 기재되어 있다. A strain in which the yecE gene was deleted was prepared in the same manner as in Example 1-1. The sequences of the primers used to construct the yecE gene deletion strain are shown in Table 6 below.

카나마이신(kanamycin) 내성을 보이는 세포주를 대상으로 PCR 반응을 수행하여 intS 유전자의 결실 여부를 확인한 결과, 원래 intS 유전자가 있을 경우 생성되는 약 1.6 kb(결실 전)이 생성되는 것과 비교하여 염색체 내에 단편이 삽입된 경우 길이가 더 증가한 약 2.1 kb(항생제 유전자 포함)가 생성됨을 확인하였다.As a result of confirming whether the intS gene was deleted by performing a PCR reaction on a kanamycin-resistant cell line, a fragment of about 1.6 kb (before deletion) generated when the original intS gene is present is generated. When inserted, it was confirmed that about 2.1 kb (including antibiotic gene) with a further increased length was generated.

Figure 112019111942495-pat00006
Figure 112019111942495-pat00006

실시예 3-2: yecE 결실 균주의 배양 및 방향족 아미노산 생산량 평가Example 3-2: Culture of yecE deletion strain and evaluation of aromatic amino acid production

상기 실시예 3-1의 방법으로 제작된 대장균 KFCC11660PΔyecE 및 KFCC11660P을 아미노산 생산용 배지에서 배양하였다. 배양방법 및 배지는 상기 실시예 1-2의 배양방법과 동일하였다. E. coli KFCC11660PΔyecE and KFCC11660P prepared by the method of Example 3-1 were cultured in a medium for amino acid production. The culture method and medium were the same as the culture method of Example 1-2.

상기 실험 결과, 하기 표 7에 나타난 바와 같이 yecE 유전자를 불활성화 시킨 경우 트립토판, 페닐알라닌, 티로신의 생산량이 증가하였고, 특히 트립토판의 생산량 증가가 월등함을 확인하였다.As a result of the above experiment, as shown in Table 7 below, when the yecE gene was inactivated, the production of tryptophan, phenylalanine, and tyrosine increased, and it was confirmed that the increase in production of tryptophan was particularly superior.

Figure 112019111942495-pat00007
Figure 112019111942495-pat00007

실시예 4: dcrB 결실 균주의 배양 및 히스티딘 생산량 평가Example 4: Cultivation of dcrB deletion strain and evaluation of histidine production

상기 실시예 1-1, 실시예 2-1, 실시예 3-1의 방법으로 제작된 대장균 KFCC11660PΔdcrB, KFCC11660PΔintS, KFCC11660PΔyecE 및 KFCC11660P을 상기 실시예 1-2의 방법으로 배양하고 히스티딘의 생산량을 측정하여 하기 표 8에 나타내었다.E. coli KFCC11660PΔdcrB, KFCC11660PΔintS, KFCC11660PΔyecE and KFCC11660P prepared by the method of Example 1-1, Example 2-1, and Example 3-1 were cultured by the method of Example 1-2, and the histidine production was measured as follows. Table 8 shows.

균주strain L-히스티딘 (상대량)L-histidine (relative) KFCC11660PKFCC11660P 1One KFCC11660PΔdcrB KFCC11660PΔdcrB 0.89210.8921 KFCC11660PΔintSKFCC11660PΔintS 0.95720.9572 KFCC11660PΔyecEKFCC11660PΔyecE 0.92430.9243

상기 표 3, 표 5, 및 표7과 상기 표 8을 비교하면, dcrB, intS, 또는 yecE를 결실시킨 균주는 방향족 아미노산인 트립토판, 페닐알라닌, 트리신의 생산량이 증가한 반면, 히스티딘의 생산량은 다소 감소하거나 큰 차이가 없는 것으로 나타났다. 따라서 상기 결과는 dcrB, intS, 또는 yecE 결실에 따른 아미노산 생산량 증가효과가 아미노산에 따라 달라질 수 있는 점, 그리고 단순히 바이러스 감염 억제에 의해 방향족 아미노산의 생산량이 상승한 것이 아니라는 점을 시사한다. Comparing Table 3, Table 5, and Table 7 and Table 8, the strain in which dcrB, intS, or yecE is deleted increased the production of aromatic amino acids tryptophan, phenylalanine, and trisine, whereas the production of histidine was slightly decreased or It appeared that there was no significant difference. Therefore, the above results suggest that the effect of increasing amino acid production according to the deletion of dcrB, intS, or yecE may vary depending on amino acids, and that the production of aromatic amino acids is not simply increased by suppression of virus infection.

<110> Daesang Corporation <120> Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection <130> PN190275 <160> 27 <170> KoPatentIn 3.0 <210> 1 <211> 558 <212> DNA <213> Artificial Sequence <220> <223> dcrB "G7767-MONOMER" 3609955..3610512 Escherichia coli K-12 substr. MG1655 <400> 1 atgcgcaatc tggttaaata tgtcggaatt ggcctgctgg ttatggggct tgcggcctgt 60 gatgataaag acactaacgc tacggcgcag ggttcggtcg cggaaagtaa cgctaccggg 120 aatcccgtca acctgcttga tggcaagtta agtttctcgc tgccagcgga tatgaccgac 180 cagagcggta agctgggaac gcaggccaat aacatgcatg tctggtccga cgccaccggg 240 cagaaagcag tcatcgtcat catgggcgat gatccgaaag aagatctggc ggtgctggcg 300 aagcgtctgg aagatcagca acgtagccgc gatccgcagc tgcaagtggt aaccaataaa 360 gccattgagc tgaaaggtca caaaatgcag cagttagaca gtattatctc cgcgaaaggc 420 cagacggcgt actcttccgt tattctgggt aacgtgggta atcaactgct gaccatgcaa 480 attacgctgc ccgctgacga tcagcaaaaa gcgcagacca ccgcagaaaa catcattaat 540 acgctggtta ttcagtaa 558 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HF1 <400> 2 tccacactgt tcggtaacgt 20 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HR1 <400> 3 tgacttcttc ctttcgataa acggcc 26 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> dcrB_PF <400> 4 ttatcgaaag gaagaagtca gtgtaggctg gagctgcttc 40 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> dcrB_PR <400> 5 ccgcctcatc atcttaaaac ctgtcaaaca tgagaattaa 40 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HF2 <400> 6 gttttaagat gatgaggcgg cc 22 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HR2 <400> 7 tggcgaaaat cggcgtctta 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_CF <400> 8 acttcaacct gtttgtcgcc 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_CR <400> 9 ttagctgtgc gtttgtcggt 20 <210> 10 <211> 1158 <212> DNA <213> Artificial Sequence <220> <223> intS "G7218-MONOMER" 2466545..2467702 Escherichia coli K-12 substr. MG1655 <400> 10 atgctcaccg ttaagcagat tgaagcagca aagccgaaag aaaaaccata ccgccttctc 60 gatggtaatg gcctgtacct ttatgtccct gtgtcaggga aaaaggtatg gcagcttcgc 120 tacaagattg acggtaagga gaaaatcctg accgtcggaa aatatccgct tatgactttg 180 caggaggcaa gggataaagc atggactgcg aggaaagaca tctcggttgg catcgatcct 240 gtaaaggcga aaaaggcttc gtctaacaac aattccttta gtgcgattta caaggaatgg 300 tacgagcaca agaagcaagt atggtcagta gggtatgcaa ctgaacttgc caaaatgttt 360 gacgacgaca ttttacctat cattggcggc cttgaaattc aggatattga gccgatgcaa 420 ctgctggaag taatccgcag gtttgaagat cgcggtgcaa tggaacgagc caacaaagca 480 cgcagaagat gcggcgaggt tttccgttac gctattgtca ccggaagggc taaatataac 540 ccggcacctg accttgctga cgccatgaag ggataccgca agaagaactt cccgtttctt 600 cctgcagacc agatcccggc attcaacaaa gcactggcaa cattttcagg aagtatcgta 660 tcgctcattg cgaccaaagt tttacgctac acagccctaa gaacgaaaga gcttcgttcc 720 atgctatgga agaacgtcga ttttgaaaat aggattatca ccatcgacgc cagtgtgatg 780 aaaggacgca aaattcatgt ggttcctatg tcagaccagg tagttgaact tctcactacg 840 ctaagctcca tcaccaaacc agtctcagag tttgtttttg ccgggcgcaa cgataagaag 900 aagccaatct gcgagaacgc ggtactgctt gtgatcaaac aaatcggcta tgagggtctg 960 gaaagcggtc acggattcag gcatgaattc agcacgatta tgaacgagca cgaatggcct 1020 gctgacgcta ttgaagtgca actggcacat gcaaacggcg gatctgtgcg tgggatttac 1080 aaccatgctc agtatctcga taaacgcaga gaaatgatgc aatggtgggc ggactggctt 1140 gatgagaagg tggagtga 1158 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HF1 <400> 11 gtttaagcaa tcgagcggca 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HR1 <400> 12 gggtaaaaat ccggtgggta 20 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> intS_PF <400> 13 tacccaccgg atttttaccc gtgtaggctg gagctgcttc 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> intS_PR <400> 14 tcgatagttg ttaaggtcgc ctgtcaaaca tgagaattaa 40 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HF2 <400> 15 gcgaccttaa caactatcga 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HR2 <400> 16 tcgcgaagaa gctaaagctc 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_CF <400> 17 cgtaaagcag aagcacgcca 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_CR <400> 18 tagcactcag tgtccccatg 20 <210> 19 <211> 819 <212> DNA <213> Artificial Sequence <220> <223> yecE "EG12379-MONOMER" 1951395..1952213 Escherichia coli K-12 substr. MG1655 <400> 19 atgatttaca tcggtctacc gcaatggtcg catcctaaat gggtgcggtt ggggatcacc 60 agccttgaag agtatgcccg ccactttaac tgcgtggagg gcaacaccac gctttacgcc 120 ctgccgaaac ccgaggttgt cctgcgctgg cgtgagcaga ccacagatga cttccgcttc 180 tgttttaagt ttccggcgac catttcgcat caggcagcat tacggcattg cgatgattta 240 gtgactgaat ttttgacccg catgtcaccg ttggctccgc gcattgggca atactggctg 300 caactgcctg ccacattcgg cccacgggag ctgcctgcgc tttggcattt tctcgattct 360 cttcctggcg aatttaatta tggcgtggaa gtccgccatc cacagttttt cgccaaagga 420 gaagaggaac aaacgcttaa tcgcggttta catcagcgcg gcgttaatcg ggtgatttta 480 gacagccgcc cggttcatgc agcacgtcca cacagtgaag ctattcgcga cgctcaacga 540 aaaaaaccta aagttccggt acatgctgta ctgacggcga caaatccgct gatccgtttt 600 atcggtagtg atgatatgac gcaaaaccgg gaattatttc aggtctggtt acaaaaatta 660 gcgcagtggc atcagaccac tacgccttat ctttttttac atacgccaga cattgcccag 720 gcaccggaac tggtacatac cctgtgggaa gacttacgta aaacgcttcc agagatcgga 780 gcagttccgg ctattccaca gcaatcttct cttttctga 819 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_HF1 <400> 20 atcctgctgc attaggtgca 20 <210> 21 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> yecE_HR1 <400> 21 tcataacgcg ttgaggatct cttc 24 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yecE_PF <400> 22 agatcctcaa cgcgttatga gtgtaggctg gagctgcttc 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yecE_PR <400> 23 gtctatgata ggtggcaaat ctgtcaaaca tgagaattaa 40 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> yecE_HF2 <400> 24 atttgccacc tatcatagac aggtgcc 27 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_HR2 <400> 25 gcggaacaga cggtgatgaa 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_CF <400> 26 tggtctgccg attacgctga 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_CR <400> 27 aagattcgcc agcaccatca 20 <110> Daesang Corporation <120> Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection <130> PN190275 <160> 27 <170> KoPatentIn 3.0 <210> 1 <211> 558 <212> DNA <213> Artificial Sequence <220> <223> dcrB "G7767-MONOMER" 3609955..3610512 Escherichia coli K-12 substr. MG1655 <400> 1 atgcgcaatc tggttaaata tgtcggaatt ggcctgctgg ttatggggct tgcggcctgt 60 gatgataaag acactaacgc tacggcgcag ggttcggtcg cggaaagtaa cgctaccggg 120 aatcccgtca acctgcttga tggcaagtta agtttctcgc tgccagcgga tatgaccgac 180 cagagcggta agctgggaac gcaggccaat aacatgcatg tctggtccga cgccaccggg 240 cagaaagcag tcatcgtcat catgggcgat gatccgaaag aagatctggc ggtgctggcg 300 aagcgtctgg aagatcagca acgtagccgc gatccgcagc tgcaagtggt aaccaataaa 360 gccattgagc tgaaaggtca caaaatgcag cagttagaca gtattatctc cgcgaaaggc 420 cagacggcgt actcttccgt tattctgggt aacgtgggta atcaactgct gaccatgcaa 480 attacgctgc ccgctgacga tcagcaaaaa gcgcagacca ccgcagaaaa catcattaat 540 acgctggtta ttcagtaa 558 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HF1 <400> 2 tccacactgt tcggtaacgt 20 <210> 3 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HR1 <400> 3 tgacttcttc ctttcgataa acggcc 26 <210> 4 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> dcrB_PF <400> 4 ttatcgaaag gaagaagtca gtgtaggctg gagctgcttc 40 <210> 5 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> dcrB_PR <400> 5 ccgcctcatc atcttaaaac ctgtcaaaca tgagaattaa 40 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HF2 <400> 6 gttttaagat gatgaggcgg cc 22 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_HR2 <400> 7 tggcgaaaat cggcgtctta 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_CF <400> 8 acttcaacct gtttgtcgcc 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dcrB_CR <400> 9 ttagctgtgc gtttgtcggt 20 <210> 10 <211> 1158 <212> DNA <213> Artificial Sequence <220> <223> intS "G7218-MONOMER" 2466545..2467702 Escherichia coli K-12 substr. MG1655 <400> 10 atgctcaccg ttaagcagat tgaagcagca aagccgaaag aaaaaccata ccgccttctc 60 gatggtaatg gcctgtacct ttatgtccct gtgtcaggga aaaaggtatg gcagcttcgc 120 tacaagattg acggtaagga gaaaatcctg accgtcggaa aatatccgct tatgactttg 180 caggaggcaa gggataaagc atggactgcg aggaaagaca tctcggttgg catcgatcct 240 gtaaaggcga aaaaggcttc gtctaacaac aattccttta gtgcgattta caaggaatgg 300 tacgagcaca agaagcaagt atggtcagta gggtatgcaa ctgaacttgc caaaatgttt 360 gacgacgaca ttttacctat cattggcggc cttgaaattc aggatattga gccgatgcaa 420 ctgctggaag taatccgcag gtttgaagat cgcggtgcaa tggaacgagc caacaaagca 480 cgcagaagat gcggcgaggt tttccgttac gctattgtca ccggaagggc taaatataac 540 ccggcacctg accttgctga cgccatgaag ggataccgca agaagaactt cccgtttctt 600 cctgcagacc agatcccggc attcaacaaa gcactggcaa cattttcagg aagtatcgta 660 tcgctcattg cgaccaaagt tttacgctac acagccctaa gaacgaaaga gcttcgttcc 720 atgctatgga agaacgtcga ttttgaaaat aggattatca ccatcgacgc cagtgtgatg 780 aaaggacgca aaattcatgt ggttcctatg tcagaccagg tagttgaact tctcactacg 840 ctaagctcca tcaccaaacc agtctcagag tttgtttttg ccgggcgcaa cgataagaag 900 aagccaatct gcgagaacgc ggtactgctt gtgatcaaac aaatcggcta tgagggtctg 960 gaaagcggtc acggattcag gcatgaattc agcacgatta tgaacgagca cgaatggcct 1020 gctgacgcta ttgaagtgca actggcacat gcaaacggcg gatctgtgcg tgggatttac 1080 aaccatgctc agtatctcga taaacgcaga gaaatgatgc aatggtgggc ggactggctt 1140 gatgagaagg tggagtga 1158 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HF1 <400> 11 gtttaagcaa tcgagcggca 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HR1 <400> 12 gggtaaaaat ccggtgggta 20 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> intS_PF <400> 13 tacccaccgg atttttaccc gtgtaggctg gagctgcttc 40 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> intS_PR <400> 14 tcgatagttg ttaaggtcgc ctgtcaaaca tgagaattaa 40 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HF2 <400> 15 gcgaccttaa caactatcga 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_HR2 <400> 16 tcgcgaagaa gctaaagctc 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_CF <400> 17 cgtaaagcag aagcacgcca 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> intS_CR <400> 18 tagcactcag tgtccccatg 20 <210> 19 <211> 819 <212> DNA <213> Artificial Sequence <220> <223> yecE "EG12379-MONOMER" 1951395..1952213 Escherichia coli K-12 substr. MG1655 <400> 19 atgatttaca tcggtctacc gcaatggtcg catcctaaat gggtgcggtt ggggatcacc 60 agccttgaag agtatgcccg ccactttaac tgcgtggagg gcaacaccac gctttacgcc 120 ctgccgaaac ccgaggttgt cctgcgctgg cgtgagcaga ccacagatga cttccgcttc 180 tgttttaagt ttccggcgac catttcgcat caggcagcat tacggcattg cgatgattta 240 gtgactgaat ttttgacccg catgtcaccg ttggctccgc gcattgggca atactggctg 300 caactgcctg ccacattcgg cccacgggag ctgcctgcgc tttggcattt tctcgattct 360 cttcctggcg aatttaatta tggcgtggaa gtccgccatc cacagttttt cgccaaagga 420 gaagaggaac aaacgcttaa tcgcggttta catcagcgcg gcgttaatcg ggtgatttta 480 gacagccgcc cggttcatgc agcacgtcca cacagtgaag ctattcgcga cgctcaacga 540 aaaaaaccta aagttccggt acatgctgta ctgacggcga caaatccgct gatccgtttt 600 atcggtagtg atgatatgac gcaaaaccgg gaattatttc aggtctggtt acaaaaatta 660 gcgcagtggc atcagaccac tacgccttat ctttttttac atacgccaga cattgcccag 720 gcaccggaac tggtacatac cctgtgggaa gacttacgta aaacgcttcc agagatcgga 780 gcagttccgg ctattccaca gcaatcttct cttttctga 819 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_HF1 <400> 20 atcctgctgc attaggtgca 20 <210> 21 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> yecE_HR1 <400> 21 tcataacgcg ttgaggatct cttc 24 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yecE_PF <400> 22 agatcctcaa cgcgttatga gtgtaggctg gagctgcttc 40 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> yecE_PR <400> 23 gtctatgata ggtggcaaat ctgtcaaaca tgagaattaa 40 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> yecE_HF2 <400> 24 atttgccacc tatcatagac aggtgcc 27 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_HR2 <400> 25 gcggaacaga cggtgatgaa 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_CF <400> 26 tggtctgccg attacgctga 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> yecE_CR <400> 27 aagattcgcc agcaccatca 20

Claims (8)

바이러스 감염 관련 유전자인 dcrB, intS, 및 yecE 중 적어도 하나의 유전자를 불활성화시킴으로써 L-트립토판, L-페닐알라닌, 및 L-티로신 중 적어도 하나의 생산능이 향상된 대장균 변이 균주.E. coli mutant strain having improved production ability of at least one of L-tryptophan, L-phenylalanine, and L-tyrosine by inactivating at least one gene of dcrB, intS, and yecE, which are viral infection-related genes. 제 1 항에 있어서,
상기 dcrB 유전자는 서열번호 1의 염기서열로 이루어진 것이고,
상기 intS 유전자는 서열번호 10의 염기서열로 이루어진 것이고,
상기 yecE 유전자는 서열번호 19의 염기서열로 이루어진 것인,
변이 균주.
The method of claim 1,
The dcrB gene consists of the nucleotide sequence of SEQ ID NO: 1,
The intS gene consists of the nucleotide sequence of SEQ ID NO: 10,
The yecE gene consists of the nucleotide sequence of SEQ ID NO: 19,
mutant strain.
삭제delete 제 1항에 있어서,
상기 변이 균주는 dcrB, intS, 및 yecE 중 적어도 하나의 유전자 전부 또는 일부가 삽입, 치환, 또는 결실된 것인,
변이 균주.
The method of claim 1,
The mutant strain is that all or part of at least one gene of dcrB, intS, and yecE is inserted, substituted, or deleted,
mutant strain.
제1항의 변이 균주를 포함하는 L-트립토판, L-페닐알라닌, 및 L-티로신 중 적어도 하나의 아미노산을 생산하기 위한 조성물. A composition for producing at least one amino acid of L-tryptophan, L-phenylalanine, and L-tyrosine comprising the mutant strain of claim 1. 삭제delete dcrB, intS, 및 yecE 중 적어도 하나의 유전자를 불활성화킨 대장균 변이 균주를 배지에서 배양하는 단계; 및
상기 배양된 변이 균주 및 배양 배지에서 L-트립토판, L-페닐알라닌, 및 L-티로신 중 적어도 하나를 회수하는 단계를 포함하는,
방향족 아미노산의 제조 방법.
culturing in a medium an E. coli mutant strain in which at least one gene of dcrB, intS, and yecE is inactivated; and
Comprising the step of recovering at least one of L- tryptophan, L- phenylalanine, and L- tyrosine from the cultured mutant strain and the culture medium,
A method for producing an aromatic amino acid.
삭제delete
KR1020190138236A 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection KR102283628B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190138236A KR102283628B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190138236A KR102283628B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection

Publications (2)

Publication Number Publication Date
KR20210052112A KR20210052112A (en) 2021-05-10
KR102283628B1 true KR102283628B1 (en) 2021-08-02

Family

ID=75917960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190138236A KR102283628B1 (en) 2019-10-31 2019-10-31 Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection

Country Status (1)

Country Link
KR (1) KR102283628B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101608734B1 (en) * 2014-03-21 2016-04-04 씨제이제일제당 주식회사 Microorganisms producing L-amino acids and process for producing L-amino acids using the same
KR101830002B1 (en) 2016-10-11 2018-02-19 대상 주식회사 Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same

Also Published As

Publication number Publication date
KR20210052112A (en) 2021-05-10

Similar Documents

Publication Publication Date Title
EP3508580A1 (en) Novel promoter and use thereof
KR20190003019A (en) Novel aspartokinase variant and method of producing L-amino acid using thereof
JP2018528771A (en) Corynebacterium microorganism having L-lysine producing ability and method for producing L-lysine using the same
KR102269634B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by ansB Gene Inactivation
JP2019047790A (en) Microorganisms producing l-amino acids and process for producing l-amino acids using the same
KR102283626B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by glsB Gene Inactivation
KR102269642B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by Pyridoxal Kinase Gene Inactivation
KR102251946B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by yeeO Gene Inactivation
KR102283628B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by Inactivation of Gene Related Virus Infection
KR101751967B1 (en) Mutant Strain with improved isoleucine production having reduced by-product
KR102251947B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by mdtK Gene Inactivation
KR102251948B1 (en) Strain with Improved Aromatic Amino Acid Production Capacity by mdfA Gene Inactivation and yicL Gene Introduction
CN115003806A (en) ATP phosphoribosyltransferase variants and method for producing L-valine using same
US20240043885A1 (en) Strain with improved aromatic amino acid production capacity by ansb gene inactivation
JP6464260B2 (en) Microorganism having improved L-lysine production ability and method for producing L-lysine using the same
CN113906044B (en) Transcription regulatory factor variant and method for producing L-valine using the same
WO2021133030A1 (en) Microorganism for producing l-amino acid having increased cytochrome c activity, and l-amino acid production method using same
CN116802283A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
CN116745412A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
CN116829705A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
CN116724113A (en) Histidine-induced reduced feedback inhibition ATP-PRT variants and histidine-producing strains expressing same
KR101233666B1 (en) Production of Isoleucine Using Mutant Bacteria
JP2024511393A (en) Corynebacterium glutamicum mutant strain with improved L-citrulline production ability and method for producing L-citrulline using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant