KR102172862B1 - Manufacturing method of high purity graphite formed article using anthracite coal - Google Patents

Manufacturing method of high purity graphite formed article using anthracite coal Download PDF

Info

Publication number
KR102172862B1
KR102172862B1 KR1020190125059A KR20190125059A KR102172862B1 KR 102172862 B1 KR102172862 B1 KR 102172862B1 KR 1020190125059 A KR1020190125059 A KR 1020190125059A KR 20190125059 A KR20190125059 A KR 20190125059A KR 102172862 B1 KR102172862 B1 KR 102172862B1
Authority
KR
South Korea
Prior art keywords
anthracite
powder
molded article
manufacturing
present
Prior art date
Application number
KR1020190125059A
Other languages
Korean (ko)
Inventor
신진영
Original Assignee
블랙머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 블랙머티리얼즈 주식회사 filed Critical 블랙머티리얼즈 주식회사
Priority to KR1020190125059A priority Critical patent/KR102172862B1/en
Application granted granted Critical
Publication of KR102172862B1 publication Critical patent/KR102172862B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures

Abstract

The present invention relates to a method for manufacturing a high-purity graphite molded product using anthracite as a main material. The method includes: (a) a step of pulverizing anthracite, which is a raw material, into powder; (b) a step of heating the anthracite powder to 2,000 to 2,500°C after the pulverization; (c) a step of making a mixture by mixing petroleum pitch with the heated anthracite powder; (d) a step of molding the mixture into a molded article having a predetermined shape; and (e) a step of graphitizing and sintering the molded article by heating the same to a temperature of 2,600°Cor higher.

Description

무연탄을 이용한 고순도 흑연 성형품의 제조방법 {MANUFACTURING METHOD OF HIGH PURITY GRAPHITE FORMED ARTICLE USING ANTHRACITE COAL}Manufacturing method of high-purity graphite molded product using anthracite coal {MANUFACTURING METHOD OF HIGH PURITY GRAPHITE FORMED ARTICLE USING ANTHRACITE COAL}

본 발명은 무연탄을 주요 재료로 사용하여, 고순도 흑연 성형품을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method capable of manufacturing a high-purity graphite molded article using anthracite as a main material.

석탄은 토탄, 갈탄, 아역청탄, 역청탄, 무연탄 등으로 분류된다. 이중 무연탄은 석탄화가 가장 진행된 것으로, 휘발분이 3 ~ 7%로 적고, 고정탄소의 함량이 85 ~ 95%로 매우 높은 재료인데, 이러한 무연탄은 국내에서 대부분 연료용으로 소비되고 있다.Coal is classified into peat, lignite, sub-bituminous coal, bituminous coal, and anthracite coal. Among them, anthracite is a material that has undergone the most coalification, has a low volatile content of 3 to 7%, and a content of fixed carbon of 85 to 95%, which is a very high material, and such anthracite is mostly consumed for fuel in Korea.

흑연은 탄소의 동소체 중 하나로 육방정계의 결정구조를 갖는 물질로, 전극, 탄소봉, 내화재, 주형재, 감마재, 탄소강원료, 원자로에서 중성자의 감속재, 방청용의 특수포장, 금속표면의 코팅, 고무공업원료 등에 많이 사용되는 재료이다.Graphite is one of the allotropes of carbon and has a hexagonal crystal structure. Electrodes, carbon rods, refractory materials, casting materials, antifriction materials, carbon steel raw materials, moderators of neutrons in nuclear reactors, special packaging for rust prevention, coating of metal surfaces, rubber It is a material that is widely used in industrial raw materials.

특히, 흑연 도가니의 경우, 인공적으로 제조된 흑연 블록(block)을 기계적으로 가공하여 도가니 형상으로 제조된 것이 주로 사용되고 있는데, 이 방법의 경우, 인공적으로 제조되는 흑연 블록의 제조비용이 높고, 기계 가공 과정에 흑연의 손실이 많아, 흑연 도가니와 같은 가공품의 가격이 상당히 높은 문제점이 있다.In particular, in the case of graphite crucibles, those manufactured in a crucible shape by mechanically processing an artificially manufactured graphite block are mainly used.In this method, the manufacturing cost of the artificially manufactured graphite block is high, and mechanical processing There is a problem that there is a lot of loss of graphite in the process, and the price of processed products such as graphite crucibles is quite high.

한편, 하기 특허문헌과 같이, 탄소의 함량이 높은 무연탄을 일부 사용하여 흑연 전극봉을 제조하고자 하는 방법이 알려져 있다. 그런데, 이 방법의 경우 사용되는 무연탄의 함량이 적어 비용 절감 효과가 높지 않고, 제조된 흑연의 순도를 고순도로 유지하기 어려운 문제점이 있다.On the other hand, as in the following patent document, a method for manufacturing a graphite electrode using some anthracite having a high carbon content is known. However, in the case of this method, there is a problem in that the content of anthracite used is small, so that the cost reduction effect is not high, and it is difficult to maintain the purity of the produced graphite at high purity.

미국 등록특허공보 제4,534,951호US Patent Publication No. 4,534,951

본 발명의 과제는, 무연탄을 주 재료로 사용하여 저비용으로 고순도 흑연 성형품을 제조하는 방법을 제공하는 것이다.An object of the present invention is to provide a method of manufacturing a high-purity graphite molded article at low cost by using anthracite as a main material.

상기 과제를 해결하기 위해 본 발명은, (a) 원료 무연탄을 분쇄하여 분말화하는 단계와, (b) 상기 분말화 단계를 통해 얻은 무연탄 분말을 2,000 ~ 2,500℃로 가열하는 단계와, (c) 상기 가열처리된 무연탄 분말에 석유 피치를 혼합하여 혼합물을 만드는 단계와, (d) 상기 혼합물을 소정 형상의 성형물로 성형하는 단계 및 (e) 상기 성형물을 2,600℃ 이상의 온도로 가열하여 흑연화 및 소결시키는 단계를 포함하는, 무연탄을 이용한 고순도 흑연 성형품의 제조방법을 제공한다.In order to solve the above problems, the present invention includes the steps of (a) pulverizing and pulverizing raw anthracite coal, (b) heating the anthracite powder obtained through the pulverization step to 2,000 to 2,500°C, and (c) Mixing the heat-treated anthracite powder with petroleum pitch to form a mixture, (d) molding the mixture into a molded product having a predetermined shape, and (e) heating the molded product to a temperature of 2,600°C or higher to graphitize and sinter It provides a method of manufacturing a high-purity graphite molded article using anthracite, comprising the step of:

본 발명에 따르면, 저가의 무연탄으로부터 고순도의 인조 흑연 성형품을 제조할 수 있게 된다.According to the present invention, it is possible to manufacture a high-purity artificial graphite molded article from inexpensive anthracite coal.

또한, 본 발명은 종래 블록 형태로 성형된 흑연을 기계가공을 통해 도가니와 같은 소정 형상의 물품을 제조하는 방법에 비해, 흑연화 전에 성형 과정을 통해 실 제품 형상 또는 실 제품에 근접한 형상으로 제조할 수 있게 되므로, 후 가공을 없애거나 마무리 가공 정도만 실시하여 흑연의 낭비를 크게 줄일 수 있다.In addition, the present invention is compared to the conventional method of manufacturing an article of a predetermined shape such as a crucible through machining of the graphite molded in a block shape, the shape of a real product or a shape close to the real product through the molding process before graphitization. Therefore, the waste of graphite can be greatly reduced by eliminating post-processing or performing only finishing processing.

도 1은 본 발명에 따른 제조방법의 흐름도이다.
도 2는 본 발명의 실시예서 사용한 무연탄 덩어리의 이미지이다.
도 3(a)는 본 발명의 실시예에서 사용한 분쇄된 무연탄 분말의 SEM 이미지이고, 도 3(b)는 본 발명의 실시예에서 사용한 분쇄된 무연탄 분말의 XRD 분석결과를 나타낸 것이다.
도 4는 본 발명의 실시예에 따라 진행한 부유선별에 대한 개념도를 나타낸 것이다.
도 5(a)는 본 발명의 실시예에 따라 고순화처리된 무연탄 분말의 SEM 이미지이고, 도 5(b)는 본 발명의 실시예에 따라 고순화처리된 무연탄 분말의 XRD 분석결과를 나타낸 것이다.
도 6(a)는 본 발명의 실시예에 따라 고순화처리된 무연탄 분말을 펠렛 형태로 성형한 후 흑연화처리한 펠렛의 SEM 이미지이고, 도 6(b)는 본 발명의 실시예에 따라 고순화처리된 무연탄 분말을 펠렛 형태로 성형한 후 흑연화처리한 펠렛의 XRD 분석결과를 나타낸 것이다.
도 7은 본 발명의 실시예에 따라 제조된 도가니 형상의 성형품을 마무리 기계가공을 통해 제조한 흑연 도가니의 이미지이다.
1 is a flowchart of a manufacturing method according to the present invention.
2 is an image of an anthracite lump used in an example of the present invention.
3(a) is an SEM image of the pulverized anthracite powder used in the example of the present invention, and FIG. 3(b) shows the XRD analysis result of the pulverized anthracite powder used in the example of the present invention.
4 is a conceptual diagram showing a floating screening performed according to an embodiment of the present invention.
5(a) is an SEM image of an anthracite powder subjected to highly purified treatment according to an embodiment of the present invention, and FIG. 5(b) is an XRD analysis result of an anthracite powder treated highly purified according to an embodiment of the present invention. .
6(a) is an SEM image of pellets subjected to graphitization after molding highly purified anthracite powder into a pellet shape according to an embodiment of the present invention, and FIG. 6(b) is a graph according to an embodiment of the present invention. It shows the XRD analysis results of the pellets subjected to graphitization after molding the purified anthracite powder into pellets.
7 is an image of a graphite crucible manufactured by finishing machining a crucible-shaped molded article manufactured according to an embodiment of the present invention.

이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.Hereinafter, with reference to the accompanying drawings with respect to an embodiment of the present invention will be described the configuration and operation.

본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.

본 발명에 따른 방법은, 도 1에 도시된 바와 같이, (a) 원료 무연탄을 분쇄하여 분말화하는 단계와, (b) 상기 분말화 단계를 통해 얻은 무연탄 분말을 2,000 ~ 2,500℃로 가열하는 단계와, (c) 상기 가열처리된 무연탄 분말에 석유 피치를 혼합하여 혼합물을 만드는 단계와, (d) 상기 혼합물을 소정 형상의 성형물로 성형하는 단계 및 (e) 상기 성형물을 2,600℃ 이상의 온도로 가열하여 흑연화 및 소결시키는 단계를 포함한다.The method according to the present invention, as shown in Figure 1, (a) pulverizing and pulverizing the raw material anthracite, and (b) heating the anthracite powder obtained through the pulverization step to 2,000 ~ 2,500 ℃ And, (c) making a mixture by mixing petroleum pitch with the heat-treated anthracite powder, (d) molding the mixture into a molded product having a predetermined shape, and (e) heating the molded product to a temperature of 2,600°C or higher. And graphitizing and sintering.

상기 원료 무연탄을 분쇄하여 분말화하는 단계는, 구체적으로 조분쇄 단계와 미분쇄 단계를 포함하여 이루어질 수 있다. The step of pulverizing and pulverizing the raw anthracite coal may specifically include a coarse pulverization step and a fine pulverization step.

이중, 조분쇄 단계는 무연탄 덩어리를 수 밀리미터 이하의 크기로 분쇄시키는 단계로, 예를 들어 밀링 공정을 통해 분쇄하고, 체를 사용하여 분급하는 단계를 통해 수 밀리미터 이하의 분말을 분리하는 방법으로 수행될 수 있으나, 반드시 이에 제한되는 것은 아니며, 다양한 수단을 통해 조분쇄될 수 있다. 또한, 미분쇄 단계는 조분쇄된 분말을 마이크로미터 크기로 줄이는 단계로, 예를 들어, 에어 젯과 같은 수단을 사용하여 수 밀리미터 크기의 분말을 수 마이크로미터 크기로 분쇄할 수 있으나, 반드시 이에 제한되는 것은 아니며, 다양한 수단을 통해 미분쇄될 수 있다. 본 발명에 있어서, 원료 무연탄의 분말의 평균입도를 수 마이크로미터 크기로 줄이는 것은, 흑연화를 촉진하고, 산처리 및 부유선별을 용이하게 하며, 성형된 물품의 치수와, 표면을 매끄럽게 하기 위해 바람직하다. 무연탄 분말의 평균 입도는 50㎛ 이하의 크기를 갖도록 하는 것이 바람직하다.Among them, the coarse pulverization step is a step of pulverizing an anthracite lump to a size of several millimeters or less.For example, it is pulverized through a milling process and classified using a sieve to separate powders of several millimeters or less. However, it is not necessarily limited thereto, and may be coarsely pulverized through various means. In addition, the pulverization step is a step of reducing the coarsely pulverized powder to a micrometer size.For example, the powder having a size of several millimeters may be pulverized to a size of several micrometers using a means such as an air jet. It is not, and can be pulverized through various means. In the present invention, reducing the average particle size of the raw anthracite powder to a size of several micrometers is preferable to promote graphitization, facilitate acid treatment and flotation, and to smooth the dimensions and surface of the molded article. Do. It is preferable that the anthracite powder has an average particle size of 50 μm or less.

상기 무연탄 분말을 2,000 ~ 2,500℃로 가열하는 단계는, 열탄소 환원 공정을 통해 무연탄에 포함되는 불순물을 저감시키는 단계이다.The step of heating the anthracite powder to 2,000 to 2,500° C. is a step of reducing impurities contained in the anthracite through a thermal carbon reduction process.

무연탄 내에는 SiO2, Al2O3, Fe2O3, TiO2, CaO, MgO, Na2O, K2O, MnO, P2O3, SrO 등의 다양한 불순물이 5 ~ 15중량% 포함되어 있다. 이러한 불순물을 제거하지 않은 상태에서 석유 피치와 혼합한 후 성형하여 흑연화를 진행하게 되면, 불순물로부터 발생하는 다량의 가스에 의하여 성형품의 내부에 기공이 발생하여 성형품의 기계적 강도를 저하시키거나, 외관을 나쁘게 하는 등의 문제를 발생시킬 수 있다.Anthracite contains 5 to 15% by weight of various impurities such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , CaO, MgO, Na 2 O, K 2 O, MnO, P 2 O 3 and SrO Has been. If these impurities are not removed and mixed with petroleum pitch and then formed to graphitize, pores are generated inside the molded product by a large amount of gas generated from the impurities, reducing the mechanical strength of the molded product, or It can cause problems, such as deteriorating.

이에 따라, 본 발명에서는, 무연탄에 포함된 불순물을 제거하기 위한 '고순화 처리'를 수행한다. 상기 열탄소 환원 공정은 무연탄 분말을 고온으로 가열하여 금속 화합물을 환원시켜 제거하는 공정이다. 이러한 열탄소 환원 공정은 2,000℃ 미만에서 수행할 경우에는 제거되는 불순물의 양이 충분하지 못하고, 2,500℃를 초과할 경우, 불순물의 제거 효과는 포화되는 반면, 에너지 비용이 과다하게 사용되고, 흑연화가 진행될 수 있으므로, 2,500

Figure 112019103014351-pat00001
이하에서 수행되는 것이 바람직하다.Accordingly, in the present invention, a "high purification treatment" is performed to remove impurities contained in anthracite coal. The thermal carbon reduction process is a process of reducing and removing metal compounds by heating the anthracite powder at high temperature. When the thermal carbon reduction process is performed at less than 2,000°C, the amount of impurities to be removed is not sufficient, and when it exceeds 2,500°C, the effect of removing impurities is saturated, while energy costs are excessively used, and graphitization may proceed. So, 2,500
Figure 112019103014351-pat00001
It is preferred to be carried out below.

상기 '고순화 처리'는 추가로, 열탄소 환원 처리된 무연탄 분말을 산 용액에 침지하여 불순물을 제거하는 단계를 더 포함할 수 있다. 이 공정은 무연탄에 다량으로 포함되어 열탄소 환원 처리 공정을 통해서도 완전히 제거되지 않은 잔존하는 환원된 금속(예를 들어, 실리콘(Si), 알루미늄(Al), 철(Fe) 등)과 같은 불순물을 산으로 용해하여 제거하는 단계이다. 상기 산 용액으로는 불순물을 제거할 수 있는 것이라면 특별히 제한되지 않으며, 잔존하는 물질의 종류에 따라, 예를 들어, 알루미늄(Al), 실리콘(Si) 등의 제거에는 불산(Hf)이 바람직하게 사용될 수 있고, 철(Fe)의 제거에는 질산(HNO3) 등이 1종 이상 포함된 산 용액이 바람직하게 사용될 수 있다.The'highly purified treatment' may further include removing impurities by immersing the anthracite powder subjected to thermal carbon reduction treatment in an acid solution. This process contains impurities such as reduced metals (e.g., silicon (Si), aluminum (Al), iron (Fe), etc.) that are contained in large amounts in anthracite and have not been completely removed even through the thermal carbon reduction process. It is a step of removing by dissolving with acid. The acid solution is not particularly limited as long as it can remove impurities, and hydrofluoric acid (Hf) is preferably used to remove aluminum (Al), silicon (Si), and the like, depending on the type of remaining material. In the removal of iron (Fe), an acid solution containing one or more types of nitric acid (HNO 3 ) and the like may be preferably used.

또한, 상기 '고순화 처리'는, 상기 산 용액으로 처리된 무연탄 분말을 부유 선별을 통해 잔존하는 금속 산화물과 분리하는 단계를 더 포함할 수 있다. 부유 선별은 무연탄 분말을 포수제, 억제제, 기포제 등의 첨가제를 혼합한 현탁액 속에 첨가하고, 내부에 다량의 공기를 불어넣게 되면, 특정 종류의 입자가 기포에 부착되어 표면에 떠오르도록 하는 방법을 통해, 금속 산화물 등을 분리하는 방법이다. 예를 들어, 금속 산화물은 황화제를 첨가제로 첨가하여 부유 선별될 수 있다. 이를 통해, 산 용액으로 처리된 무연탄 분말에 미량 환원이 진행되지 않은 Al2O3, SiO2, Fe2O3 및 잔존하는 MgO 및/또는 CaO 등을 분리하여 제거할 수 있다.In addition, the'high purification treatment' may further include separating the anthracite powder treated with the acid solution from the remaining metal oxide through flotation. Float sorting is performed by adding anthracite powder into a suspension in which additives such as a catcher, inhibitor, and foaming agent are mixed, and when a large amount of air is blown inside, certain kinds of particles adhere to the air bubbles and float on the surface. , Metal oxide, etc. For example, the metal oxide may be float screened by adding a sulfiding agent as an additive. Through this, it is possible to separate and remove Al 2 O 3 , SiO 2 , Fe 2 O 3, and remaining MgO and/or CaO in the anthracite powder treated with an acid solution that has not undergone trace reduction.

상기 가열처리된 무연탄 분말에 석유 피치를 혼합하여 혼합물을 만드는 단계는 무연탄 분말에 상호 결합력을 부여하여 성형을 가능하게 하기 위한 단계이다. 석유 피치는 원유를 분별 증류한 부산물인 콜타르를 증류한 찌꺼기로 탄소와 유기화합물을 포함하는 점성이 있는 물질로, 무연탄 분말에 결합력을 제공하는 바인더 역할을 한다. 석유 피치의 혼합량은 혼합물 전체 중량에 대해, 석유 피치의 중량이 5 ~ 10%가 되도록 포함되는 것이 바람직하다. 석유 피치의 함량이 5% 미만일 경우 성형에 충분한 결합력을 부여하기 어렵고, 석유 피치의 함량이 10%를 초과할 경우, 제조비용이 증가하는 문제점이 있다.The step of preparing a mixture by mixing petroleum pitch with the heat-treated anthracite powder is a step for making molding possible by imparting mutual bonding force to the anthracite powder. Petroleum pitch is a residue obtained by distilling coal tar, a by-product of fractional distillation of crude oil, and is a viscous material containing carbon and organic compounds, and serves as a binder that provides bonding strength to anthracite powder. The mixing amount of petroleum pitch is preferably included so that the weight of petroleum pitch is 5 to 10% based on the total weight of the mixture. When the content of petroleum pitch is less than 5%, it is difficult to impart sufficient bonding force for molding, and when the content of petroleum pitch exceeds 10%, there is a problem that the manufacturing cost increases.

상기 혼합물을 소정 형상의 성형물로 성형하는 단계는, 혼합물을 도가니와 같이 최종적으로 목적하는 형상을 갖도록 하는 단계이다. 이 단계에서 다양한 성형법이 사용될 수 있으며, 예를 들어, 혼합물을 소정 형상의 캐비티를 갖는 금형에 장입하고, 강한 압력을 가하는 냉간 가압 성형을 통해 제조할 수 있다.The step of molding the mixture into a molded article having a predetermined shape is a step of making the mixture finally have a desired shape like a crucible. In this step, various molding methods may be used, and for example, the mixture may be charged into a mold having a cavity having a predetermined shape, and may be produced through cold press molding in which a strong pressure is applied.

상기 성형물을 흑연화 및 소결시키는 단계는, 소정 형상으로 성형된 무연탄 분말과 피치 혼합물을 가열하여, 피치에 포함된 탄소를 제외한 유기 성분을 제거하고, 동시에 탄소를 흑연화시킴과 동시에 분말을 소결시키는 단계이다. 탄소의 흑연화는 2,600℃ 미만에서는 충분히 이루어지지 않으므로, 2,600℃ 이상에서 수행하며, 바람직하게는 2,700℃ 이상, 보다 바람직하게는 2,800℃ 이상에서 수행한다. 3,000℃ 초과하는 온도에서는 에너지 비용이 과다하게 소요되므로, 바람직하게는 2,600 ~ 3,000℃ 에서 수행한다.The step of graphitizing and sintering the molded product includes heating an anthracite powder and pitch mixture formed into a predetermined shape to remove organic components other than carbon contained in the pitch, and at the same time graphitizing carbon and sintering the powder. Step. Since the graphitization of carbon is not sufficiently performed at less than 2,600°C, it is performed at 2,600°C or higher, preferably at 2,700°C or higher, and more preferably at 2,800°C or higher. At temperatures exceeding 3,000° C., energy costs are excessive, so it is preferably performed at 2,600 to 3,000° C.

[실시예][Example]

도 2는 본 발명의 실시예서 사용한 무연탄 덩어리의 이미지이다. 도 2에 나타낸 무연탄 덩어리는 삼척 석탄 광산에서 구한 것이다.2 is an image of an anthracite lump used in an example of the present invention. The anthracite lumps shown in FIG. 2 were obtained from the Samcheok coal mine.

아래 표 1은 본 발명의 실시예에서 사용한 무연탄의 성분 분석 결과를 나타낸 것이다.Table 1 below shows the results of component analysis of the anthracite used in the examples of the present invention.

분석물Analyte 성분ingredient 함량 (중량%)Content (% by weight) 분석방법Analysis method 무연탄
분말
hard coal
powder
SiO2 SiO 2 5.875.87 습식분석 및
기기분석
Wet analysis and
Instrument analysis
Al2O3 Al 2 O 3 4.494.49 Fe2O3 Fe 2 O 3 1.001.00 TiO2 TiO 2 0.080.08 CaOCaO 0.620.62 MgOMgO 0.180.18 Na2ONa 2 O 0.070.07 K2OK 2 O 0.590.59 MnOMnO 0.010.01 P2O3 P 2 O 3 0.460.46 SrOSrO 0.050.05

표 1에 나타난 바와 같이, 무연탄 내의 불순물의 함량의 합계는 11.36중량%가 검출되었다.As shown in Table 1, 11.36% by weight of the total amount of impurities in the anthracite was detected.

이러한 무연탄 덩어리를 밀링 머신을 사용하여 조분쇄를 수행하였고, 체를 사용하여 2mm 이하의 크기를 갖는 분말을 분급하여 분리하였다. 2mm 이하의 크기의 분말을 다시 에어젯을 사용하여 분쇄하였고, 분쇄된 분말의 평균 입도는 35㎛ 이하의 크기로 만들었다.The anthracite lump was coarsely pulverized using a milling machine, and powder having a size of 2 mm or less was classified and separated using a sieve. Powder having a size of 2 mm or less was pulverized again using an air jet, and the average particle size of the pulverized powder was made to a size of 35 μm or less.

도 3(a)는 본 발명의 실시예에서 사용한 분쇄된 무연탄 분말의 SEM 이미지이고, 도 3(b)는 본 발명의 실시예에서 사용한 분쇄된 무연탄 분말의 XRD 분석결과를 나타낸 것이다. 도 3(b)에서 확인되는 바와 같이, 탄소 피크 외에 다양한 물질의 피크가 관찰되며, 이들 피크는 불순물에 의한 것이다.3(a) is an SEM image of the pulverized anthracite powder used in the example of the present invention, and FIG. 3(b) shows the XRD analysis result of the pulverized anthracite powder used in the example of the present invention. As shown in FIG. 3(b), peaks of various substances other than the carbon peak are observed, and these peaks are due to impurities.

아래 표 2는 본 발명의 실시예에 앞서, 열탄소 환원 처리 및 고순화 산처리 후 고온 처리를 통해 불순물이 제거되는 효과를 확인하기 위하여, 피치혼합과 성형과정 없이 2,100℃ 열탄소 환원 처리 및 고순화를 위하여 산처리와 부유선별을 진행하고 2,800℃ 열처리에 따른 무연탄 분말 내의 산소, 질소 및 수소의 함량을 측정한 결과를 나타낸 것이다.Table 2 below shows the effect of removing impurities through high-temperature treatment after thermal carbon reduction treatment and high-purification acid treatment prior to the embodiments of the present invention, and 2,100°C thermal carbon reduction treatment and high-temperature treatment without pitch mixing and molding process It shows the result of measuring the content of oxygen, nitrogen and hydrogen in the anthracite powder by acid treatment and flotation for purification and heat treatment at 2,800℃.

분석물Analyte 산소(중량%)Oxygen (% by weight) 질소(중량%)Nitrogen (% by weight) 수소(중량%)Hydrogen (% by weight) 무연탄 분말Anthracite powder 11.3011.30 1.841.84 0.6320.632 2,100℃환원처리 (Ar분위기) 후 분말Powder after 2,100℃ reduction treatment (Ar atmosphere) 0.070.07 1.301.30 0.4650.465 고순화 + 2,800℃열처리(Ar분위기) 후 분말Powder after high purification + 2,800℃ heat treatment (Ar atmosphere) 0.01820.0182 0.01210.0121 0.002190.00219

위 표에 나타난 바와 같이, 최종 고순화 처리 후 2,800℃로 가열할 경우, 초기 무연탄 분말에 포함된 대부분의 산소, 질소 및 수소가 대부분 제거됨을 알 수 있다.As shown in the table above, it can be seen that most of the oxygen, nitrogen, and hydrogen contained in the initial anthracite powder are removed when heated to 2,800°C after the final high-purification treatment.

이상과 같은 시험 결과에 기초하여, 본 발명의 실시예에서는, 상기 미분쇄된 무연탄 분말에 포함된 불순물을 제거하기 위하여 먼저, 2,100℃로 가열한 후, 2 시간 동안 유지하여 열탄소 환원 처리를 수행하였다.Based on the above test results, in the embodiment of the present invention, in order to remove impurities contained in the pulverized anthracite powder, first, heat to 2,100°C, and then hold for 2 hours to perform thermal carbon reduction treatment. I did.

아래 표 3은 본 발명의 실시예에 따른 열탄소 환원 처리를 수행한 후, 성분 분석한 결과를 나타낸 것이다.Table 3 below shows the results of component analysis after performing the thermal carbon reduction treatment according to an embodiment of the present invention.

분석물Analyte 성분ingredient 함량 (중량%)Content (% by weight) 분석방법Analysis method 2,100℃
열탄소
환원 후
2,100℃
Thermal carbon
After reduction
SiSi 0.910.91 습식분석 및
기기분석
Wet analysis and
Instrument analysis
AlAl 0.690.69 습식분석 및
기기분석
Wet analysis and
Instrument analysis
FeFe 0.130.13 습식분석 및기기분석Wet analysis and instrument analysis TiTi 0.040.04 습식분석 및기기분석Wet analysis and instrument analysis CaCa 0.010.01 습식분석 및
기기분석
Wet analysis and
Instrument analysis
MgMg 0.010.01 습식분석 및
기기분석
Wet analysis and
Instrument analysis
NaNa 0.010.01 습식분석 및기기분석Wet analysis and instrument analysis KK 0.140.14 습식분석 및
기기분석
Wet analysis and
Instrument analysis

이어서, 불순물에 가장 많이 포함된 실리콘 산화물, 알루미늄 산화물 및 철 산화물의 잔류물을 추가로 제거하기 위하여, 증류수 무게비 50%와 불산(Hf, 40%) 및 질산(HNO3)혼합액 무게비 50%를 포함하는 산 용액에 침지시키는 처리를 수행하였다. 이때 불산(Hf) 농도는 40% 를 사용하였고, 침지 시간은 30분으로 하였으며, 공기를 불어넣으며 교반을 진행하는 방법으로 2회 동안 진행한 후, 최종 수세처리를 5회 반복 진행한 후 80℃ 오븐에서 8시간 건조를 진행하였다.Subsequently, in order to further remove the residues of silicon oxide, aluminum oxide and iron oxide, which are most often contained in impurities, 50% of the weight ratio of distilled water and 50% of the weight ratio of the mixture of hydrofluoric acid (Hf, 40%) and nitric acid (HNO 3 ) are included. Treatment of immersion in an acid solution was performed. At this time, the concentration of hydrofluoric acid (Hf) was 40%, and the immersion time was 30 minutes, and after 2 times of stirring by blowing air, the final washing treatment was repeated 5 times and then 80℃ Drying was performed in an oven for 8 hours.

도 4는 본 발명의 실시예에 따라 부유선별에 대한 개념도를 나타낸 것이다.4 shows a conceptual diagram of floating screening according to an embodiment of the present invention.

산 침지를 마친 후에, 무연탄 분말 내에 CaO나 MgO와 같은 산화물의 잔존량이 많을 경우, 최종적으로 제조되는 흑연의 순도를 높이기 위해서, 부유 선별을 추가로 실시할 수 있다. 부유 선별은 1톤의 증류수에 포수제(DMU-101, 120㎖), 기포제(Aero forth#65, 5.5리터)와 억제제(Sodium metaphospate, 4kg) 를 첨가한 후, 2kg무연탄 분말을 넣고, 공기를 분당 1300㎖로 불어넣어 무연탄 분말에 잔존하는 금속 산화물이 첨가제에 의해 부유하도록 하여 제거할 수 있다.When the residual amount of oxides such as CaO or MgO is large in the anthracite powder after the acid immersion is finished, flotation may be additionally performed in order to increase the purity of the finally produced graphite. Float sorting is carried out by adding a water catching agent (DMU-101, 120 ml), a foaming agent (Aero forth#65, 5.5 liters) and an inhibitor (Sodium metaphospate, 4 kg) to 1 ton of distilled water, adding 2 kg anthracite powder, and air By blowing at 1300 ml per minute, metal oxides remaining in the anthracite powder can be removed by making them float by additives.

아래 표 4는 본 발명의 실시예에 따른 열탄소 환원 처리를 진행한 분말을 후속적으로 산처리와 부유선별을 진행한 분말의 성분 분석한 결과를 나타낸 것이다.Table 4 below shows the results of component analysis of powders subjected to thermal carbon reduction treatment according to an embodiment of the present invention and subsequently subjected to acid treatment and flotation.

이 결과에서 전체 불순물의 양은 0.09%로 미량 존재하는 것으로 확인할 수 있었다.From this result, it was confirmed that the total amount of impurities was 0.09%, which was present in trace amounts.

분석물Analyte 성분ingredient 함량 (중량%)Content (% by weight) 분석방법Analysis method 고순화 처리 후After high purification treatment SiSi 0.030.03 습식분석 및
기기분석
Wet analysis and
Instrument analysis
AlAl 0.020.02 습식분석 및
기기분석
Wet analysis and
Instrument analysis
TiTi 0.020.02 습식분석 및
기기분석
Wet analysis and
Instrument analysis
CaCa 0.010.01 습식분석 및
기기분석
Wet analysis and
Instrument analysis
MgMg 0.010.01 습식분석 및
기기분석
Wet analysis and
Instrument analysis

도 5(a)는 본 발명의 실시예에 따라 고순화 처리된 무연탄 분말의 SEM 이미지이고, 도 5(b)는 본 발명의 실시예에 따라 고순화 처리된 무연탄 분말의 XRD 분석결과를 나타낸 것이다. 도 5(b)에서 확인되는 바와 같이, 열처리와 산처리를 수행한 고순화 처리를 수행한 무연탄 분말의 경우, 결정화로 인해 강한 피크가 확인되고, 대부분의 불순물이 제거된 것으로 확인된다.5(a) is an SEM image of an anthracite powder subjected to high purification according to an embodiment of the present invention, and FIG. 5(b) is an XRD analysis result of an anthracite powder subjected to high purification according to an embodiment of the present invention. . As can be seen in FIG. 5(b), in the case of the anthracite powder subjected to high purification treatment by heat treatment and acid treatment, a strong peak was confirmed due to crystallization, and most of the impurities were removed.

이와 같이 고순화 처리된 무연탄 분말에 9% 의 중량비로 석유 피치를 함침시키고, 펠렛(pellet)으로 성형하였다. 성형된 펠렛(pellet)을 Ar 분위기에서 2,800℃에서 2 시간 동안 유지하여, 피치 내의 유기물을 제거하고, 소결 및 흑연화가 이루어지도록 하였다.The anthracite powder thus highly purified was impregnated with petroleum pitch at a weight ratio of 9%, and formed into pellets. The molded pellets were maintained at 2,800° C. for 2 hours in an Ar atmosphere to remove organic substances in the pitch, and sintering and graphitization were performed.

도 6(a)는 본 발명의 실시예에 따라 고순화처리된 무연탄 분말을 펠렛 형태로 성형한 후 흑연화처리한 펠렛의 SEM 이미지이고, 도 6(b)는 본 발명의 실시예에 따라 고순화처리된 무연탄 분말을 펠렛 형태로 성형한 후 흑연화처리한 펠렛의 XRD 분석결과를 나타낸 것이다. 도 6(b)에서 확인되는 바와 같이, 본 발명의 실시예에 따른 방법을 통해 무연탄 분말은 완전히 흑연화되었으며, 불순물이 대부분 제거된 고순도 상태임을 알 수 있다.6(a) is an SEM image of pellets subjected to graphitization after molding highly purified anthracite powder into a pellet shape according to an embodiment of the present invention, and FIG. 6(b) is a graph according to an embodiment of the present invention. It shows the XRD analysis results of the graphitized pellets after molding the purified anthracite powder into pellets. As shown in FIG. 6(b), it can be seen that the anthracite powder was completely graphitized through the method according to the embodiment of the present invention, and that the impurities were mostly removed from the high purity state.

도 7은 본 발명의 실시예에 따라 무연탄 분말의 고순화 처리를 수행하고, 석유 피치를 함침시킨 후에, 무연탄 분말과 석유 피치의 혼합물을 도가니 형상으로 성형한 후, 2,800℃에서 흑연화처리를 수행한 후, 도가니를 마무리 가공한 것의 이미지이다. 도 7에서 확인되는 바와 같이, 본 발명에 의하면, 고순도의 흑연으로 이루어진 성형품을 저비용으로 제조할 수 있게 된다.7 is a graphitization treatment at 2,800° C. after performing a high-purification treatment of anthracite powder according to an embodiment of the present invention, impregnating petroleum pitch, and molding a mixture of anthracite powder and petroleum pitch into a crucible shape. It is an image of the crucible after finishing. As can be seen from FIG. 7, according to the present invention, a molded article made of high-purity graphite can be manufactured at low cost.

Claims (8)

(a) 원료 무연탄을 분쇄하여 분말화하는 단계;
(b) 상기 분말화 단계를 통해 얻은 무연탄 분말을 2,000 ~ 2,500℃로 가열하는 열탄소 환원 단계;
(c) 상기 가열처리된 무연탄 분말에 석유 피치를 혼합하여 혼합물을 만드는 단계;
(d) 상기 혼합물을 소정 형상의 성형물로 성형하는 단계; 및
(e) 상기 성형물을 2,600℃ 이상의 온도로 가열하여 흑연화 및 소결시키는 단계;를 포함하고,
상기 (a) 단계에서 분말화된 무연탄 분말의 평균 입도는 50㎛ 이하이고,
상기 (b) 단계에서 가열처리된 무연탄 분말을 질산 또는 불산 중에서 선택된 1종 이상의 산을 포함하는 산 용액에 침지하여 금속을 포함하는 성분을 제거한 후, 부유 선별을 통해 산 용액으로 처리된 무연탄 분말에 잔존하는 MgO 및/또는 CaO를 분리하는 단계를 포함하는, 무연탄을 이용한 고순도 흑연 성형품의 제조 방법.
(a) pulverizing and pulverizing raw anthracite coal;
(b) a thermal carbon reduction step of heating the anthracite powder obtained through the pulverization step to 2,000 to 2,500°C;
(c) preparing a mixture by mixing petroleum pitch with the heat-treated anthracite powder;
(d) molding the mixture into a molded article having a predetermined shape; And
(e) graphitizing and sintering by heating the molded product to a temperature of 2,600° C. or higher; including,
The average particle size of the anthracite powder powdered in step (a) is 50 μm or less,
The anthracite powder heat-treated in step (b) is immersed in an acid solution containing at least one acid selected from nitric acid or hydrofluoric acid to remove a component containing metal, and then the anthracite powder treated with an acid solution through flotation A method of producing a high-purity graphite molded article using anthracite, comprising the step of separating the remaining MgO and/or CaO.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 (d) 단계에 있어서, 상기 성형은 냉간 가압 성형을 통해 수행되는, 무연탄을 이용한 고순도 흑연 성형품의 제조방법.
The method of claim 1,
In the step (d), the molding is performed through cold press molding, a method of manufacturing a high-purity graphite molded article using anthracite.
제1항에 있어서,
상기 (e) 단계에 있어서, 상기 흑연화는 2,600 ~ 3,000℃에서 수행되는, 무연탄을 이용한 고순도 흑연 성형품의 제조방법.
The method of claim 1,
In the step (e), the graphitization is carried out at 2,600 ~ 3,000 ℃, the method of manufacturing a high-purity graphite molded article using anthracite.
KR1020190125059A 2019-10-10 2019-10-10 Manufacturing method of high purity graphite formed article using anthracite coal KR102172862B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190125059A KR102172862B1 (en) 2019-10-10 2019-10-10 Manufacturing method of high purity graphite formed article using anthracite coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190125059A KR102172862B1 (en) 2019-10-10 2019-10-10 Manufacturing method of high purity graphite formed article using anthracite coal

Publications (1)

Publication Number Publication Date
KR102172862B1 true KR102172862B1 (en) 2020-11-02

Family

ID=73397697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190125059A KR102172862B1 (en) 2019-10-10 2019-10-10 Manufacturing method of high purity graphite formed article using anthracite coal

Country Status (1)

Country Link
KR (1) KR102172862B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299849A (en) * 2020-11-04 2021-02-02 汨罗市福缘新材料有限公司 Method for preparing battery carbon rod by using regenerated graphite
CN114292106A (en) * 2021-12-03 2022-04-08 曲阜师范大学 Preparation method for high-quality graphite by rapid coal conversion
KR102413138B1 (en) * 2021-12-23 2022-06-27 극동씰테크주식회사 Method of Manufacturing Graphite Granules for Mold Molding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534951A (en) 1981-11-17 1985-08-13 Union Carbide Corporation Manufacture of high quality graphite electrodes using calcined anthracite coal as raw material
JPH05254954A (en) * 1991-03-12 1993-10-05 Koa Oil Co Ltd Production of carbonaceous foamed body
KR20050100802A (en) * 2004-04-14 2005-10-20 한국지질자원연구원 Separation of unburned carbon from reclaimed coal ash by flotation
KR100983224B1 (en) * 2008-04-10 2010-09-20 김선휘 Manufaturing process of minute-particle and graphite-colloid
KR101400478B1 (en) * 2011-06-10 2014-05-28 이비덴 가부시키가이샤 Method of producing graphite material and graphite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534951A (en) 1981-11-17 1985-08-13 Union Carbide Corporation Manufacture of high quality graphite electrodes using calcined anthracite coal as raw material
JPH05254954A (en) * 1991-03-12 1993-10-05 Koa Oil Co Ltd Production of carbonaceous foamed body
KR20050100802A (en) * 2004-04-14 2005-10-20 한국지질자원연구원 Separation of unburned carbon from reclaimed coal ash by flotation
KR100983224B1 (en) * 2008-04-10 2010-09-20 김선휘 Manufaturing process of minute-particle and graphite-colloid
KR101400478B1 (en) * 2011-06-10 2014-05-28 이비덴 가부시키가이샤 Method of producing graphite material and graphite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299849A (en) * 2020-11-04 2021-02-02 汨罗市福缘新材料有限公司 Method for preparing battery carbon rod by using regenerated graphite
CN112299849B (en) * 2020-11-04 2022-09-23 汨罗市福缘新材料有限公司 Method for preparing battery carbon rod by using regenerated graphite
CN114292106A (en) * 2021-12-03 2022-04-08 曲阜师范大学 Preparation method for high-quality graphite by rapid coal conversion
KR102413138B1 (en) * 2021-12-23 2022-06-27 극동씰테크주식회사 Method of Manufacturing Graphite Granules for Mold Molding

Similar Documents

Publication Publication Date Title
KR102268996B1 (en) Manufacturing method of high purity graphite powder from anthracite coal
KR102172862B1 (en) Manufacturing method of high purity graphite formed article using anthracite coal
GB1591834A (en) Silicon carbide powder compositions
KR102305756B1 (en) Method of preparing artificial graphite negative electrode material from petcoke for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same and rechargeable lithium battery
JP7241247B2 (en) Method for producing hexagonal boron nitride powder and sintered boron nitride
KR20110060701A (en) Recycle of silicon sludge and manufacturing method of sintered sic body using the same
CN1709827A (en) Sintered magnesium sand preparing method
EP4097048A1 (en) Method for separating impurities from silicon carbide, and temperature-treated and purified silicon carbide powder
CN109311668B (en) Shaped hexagonal boron nitride bodies, hexagonal boron nitride particles for making the same, and methods of making the same
Özgül et al. Recycling of coal ash in production of low density masonry unit
US20170012294A1 (en) Doped electrode and uses thereof
CN102659100A (en) Preparation method of high-density fine-grain graphite material
Erkalfa et al. Effect of additives on the densification and microstructural development of low-grade alumina powders
JP6707407B6 (en) Method for producing silicon carbide powder
JP3278190B2 (en) Method for producing isotropic high-density graphite material
KR102413138B1 (en) Method of Manufacturing Graphite Granules for Mold Molding
KR101362733B1 (en) Synthesis of sic from microwave-dried silicon sludge and application of microwave-dried silicon sludge
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
KR100879332B1 (en) Method of preparing carbonaceous material by using cokes dust
KR101350634B1 (en) Method of preparing carbonaceous material by coke dust
KR100330946B1 (en) Method for preparing carbonaceous binder powders for fabrication of lead particles
KR20230157249A (en) artificial graphite negative electrode material and manufacturing method thereof
Sudi et al. ASSESSMENT OF THE IMPACT OF HYDROCHLORIC ACID ON METAL IMPURITIES AND SILICA CONTENT OF RICE HUSK ASH
KR100829230B1 (en) Preparing method of carbon particle
Jiangfeng et al. Synthesis of Mullite from High‐alumina Fly Ash: a Case from the Jungar Power Plant in Inner Mongolia, Northern China

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant