KR102165353B1 - 냉매 시스템 - Google Patents

냉매 시스템 Download PDF

Info

Publication number
KR102165353B1
KR102165353B1 KR1020140069385A KR20140069385A KR102165353B1 KR 102165353 B1 KR102165353 B1 KR 102165353B1 KR 1020140069385 A KR1020140069385 A KR 1020140069385A KR 20140069385 A KR20140069385 A KR 20140069385A KR 102165353 B1 KR102165353 B1 KR 102165353B1
Authority
KR
South Korea
Prior art keywords
refrigerant
heat exchanger
pipe
compressor
point
Prior art date
Application number
KR1020140069385A
Other languages
English (en)
Other versions
KR20150141006A (ko
Inventor
이상호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020140069385A priority Critical patent/KR102165353B1/ko
Publication of KR20150141006A publication Critical patent/KR20150141006A/ko
Application granted granted Critical
Publication of KR102165353B1 publication Critical patent/KR102165353B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명의 실시예에 따른 냉매 시스템은, 냉매를 압축하는 압축기; 상기 압축기의 출구측에 배치되어, 냉매의 흐름 방향을 제어하는 사방 밸브; 난방 운전 모드에서 냉매를 증발시키는 제 1 열교환기; 난방 운전 모드에서 상기 압축기를 통과한 냉매를 응축시키는 제 2 열교환기; 상기 제 1 열교환기와 상기 제 2 열교환기 사이에 배치되어 냉매를 저온 저압으로 팽창시키는 팽창변; 상기 압축기 입구측에 배치되어 액상 냉매와 기상 냉매를 분리하는 어큐뮬레이터; 상기 압축기와, 상기 사방 밸브와, 상기 제 1 및 제 2 열교환기와, 상기 팽창변과 상기 어큐뮬레이터를 연결하여 냉매가 순환하도록 하는 메인 배관; 상기 제 2 열교환기와 상기 팽창변을 연결하는 상기 메인 배관의 어느 지점에서 분지되는 제 1 바이패스 배관; 상기 제 1 바이패스 배관의 출구단에 연결되는 리시버; 상기 리시버의 출구단에서 연장되어, 상기 제 1 열교환기와 상기 팽창변을 연결하는 상기 메인 배관의 어느 지점에 연결되는 액냉매 배관; 상기 액냉매 배관의 출구단이 연결되는 지점과 상기 팽창변을 연결하는 메인 배관의 어느 지점에서 분지되어 상기 제 1 바이패스 배관의 어느 지점으로 연결되는 제 2 바이패스 배관; 및 상기 제 2 열교환기와 상기 사방 밸브를 연결하는 지점과, 상기 액냉매 배관의 어느 지점을 연결하는 제 3 바이패스 배관을 포함할 수 있다.

Description

냉매 시스템{Refrigerant system}
본 발명은 냉매 시스템에 관한 것이다.
냉매 시스템은 냉매가 압축,응축,팽창,증발 과정을 거치는 냉매 사이클을 수행하여, 실내를 냉난방하는 시스템이다.
상기 냉매 시스템은, 냉매를 고온 고압으로 압축하는 압축기와, 고온 고압의 기상 냉매를 응축하는 응축기와, 고온 고압의 액상 냉매를 팽창시키는 팽창변과, 저온 저압의 2상 냉매를 증발시키는 증발기로 이루어진다.
여기서, 증발기를 통과하는 냉매를 증발시키기 위한 열교환 매체로서 물이 사용되는 시스템을 특히 칠러(chiller)로 정의될 수 있다. 즉, 상기 증발기를 통과하는 물은 상온보다 낮은 온도로 냉각되고, 냉각된 물은 실내 쪽으로 연장된 배관을 따라 흘러 실내 공기를 냉각시키는데 사용될 수 있다. 그리고, 상기 칠러 중에서 응축기를 통과하는 냉매를 응축시키는 열교환 매체로서 물이 사용되는 시스템을 수냉식 칠러로 정의될 수 있고, 공기가 사용되는 시스템을 공냉식 칠러로 정의될 수 있다. 그리고, 상기 응축기는 실외에 배치되고 상기 증발기는 실내에 배치될 수 있고, 경우에 따라서는 상기 응축기와 증발기가 하나의 모듈로 이루어져 실외에 배치될 수도 있다.
한편, 공냉식 칠러의 경우, 난방 운전시 응축기가 증발기의 기능을 하게 되고 증발기가 응축기의 기능을 수행하게 된다. 그리고, 응축기의 기능을 수행하는 열교환기에서는 냉매와 열교환하는 매체로 물이 사용되고, 열교환을 통하여 온도가 높아진 물은 실내 난방 또는 온수로 사용된다.
반면, 상기 증발기의 기능을 수행하는 열교환기는 외기 온도가 낮은 실외에 배치되므로, 시간이 지남에 따라 열교환기 표면에 착상이 진행된다. 그리고, 착상 정도가 높아지면 공기와 냉매간 열교환이 제대로 이루어지지 않아 난방 성능이 떨어진다. 이러한 열교환 성능 저하를 막기 위하여 주기적으로 제상 운전을 수행하여 열교환기 표면에 착상된 얼음을 녹이는 작업을 한다.
이때, 제상 운전이 수행되는 동안 냉매 시스템은 다시 냉동 사이클을 수행하고, 그 결과 응축기의 기능을 수행하던 열교환기는 다시 증발기로 기능하게 되고, 냉매와 열교환하는 물의 온도가 떨어지게 된다. 즉, 난방 운전 과정에서 가열된 물이 제상 운전으로 인해 차가워지게 되고, 냉동 사이클을 구성하는 리시버(receiver)에 액냉매가 고이게 된다.
상세히, 난방 운전 중에는 상기 리시버로 고압의 액냉매가 흐르게 되는데, 제상 운전을 위하여 냉매의 흐름이 바뀌면 팽창 밸브를 통과한 저압의 냉매가 상기 리시버의 입구 쪽으로 흐르게 된다. 그러나, 냉매의 압력차에 의하여 상기 저압의 냉매가 리시버 쪽으로 흐르지 못하게 되고, 결국에는 상기 리시버에 있는 액냉매는 제상 운전 과정에서 순환하지 못하고 고여있는 상태로 유지된다. 그 결과, 압축기 쪽으로 유입되는 냉매 량이 감소하여 압축기 입구 압력이 떨어지고, 냉매량이 감소함에 따라 압축 성능이 떨어져서 응축 온도로 상승하는데 걸리는 시간이 길어지게 된다.
나아가, 응축 온도로 상승하는데 걸리는 시간이 길어짐에 따라 제상 운전 시간이 길어지고, 반대로 난방을 위한 물의 온도는 점점 더 감소하여 난방이 원활하게 이루어지지 못하는 문제점이 발생한다.
본 발명은 상기와 같은 문제점을 개선하기 위하여 제안되었다.
상기와 같은 구성을 이루는 본 발명의 실시예에 따른 냉매 시스템은, 냉매를 압축하는 압축기; 상기 압축기의 출구측에 배치되어, 냉매의 흐름 방향을 제어하는 사방 밸브; 난방 운전 모드에서 냉매를 증발시키는 제 1 열교환기; 난방 운전 모드에서 상기 압축기를 통과한 냉매를 응축시키는 제 2 열교환기; 상기 제 1 열교환기와 상기 제 2 열교환기 사이에 배치되어 냉매를 저온 저압으로 팽창시키는 팽창변; 상기 압축기 입구측에 배치되어 액상 냉매와 기상 냉매를 분리하는 어큐뮬레이터; 상기 압축기와, 상기 사방 밸브와, 상기 제 1 및 제 2 열교환기와, 상기 팽창변과 상기 어큐뮬레이터를 연결하여 냉매가 순환하도록 하는 메인 배관; 상기 제 2 열교환기와 상기 팽창변을 연결하는 상기 메인 배관의 어느 지점에서 분지되는 제 1 바이패스 배관; 상기 제 1 바이패스 배관의 출구단에 연결되는 리시버; 상기 리시버의 출구단에서 연장되어, 상기 제 1 열교환기와 상기 팽창변을 연결하는 상기 메인 배관의 어느 지점에 연결되는 액냉매 배관; 상기 액냉매 배관의 출구단이 연결되는 지점과 상기 팽창변을 연결하는 메인 배관의 어느 지점에서 분지되어 상기 제 1 바이패스 배관의 어느 지점으로 연결되는 제 2 바이패스 배관; 및 상기 제 2 열교환기와 상기 사방 밸브를 연결하는 지점과, 상기 액냉매 배관의 어느 지점을 연결하는 제 3 바이패스 배관을 포함할 수 있다.
상기 냉매 시스템은, 상기 제 2 바이패스 배관에 설치되는 제 1 개폐 밸브와, 상기 제 3 바이패스 배관에 설치되는 제 2 개폐 밸브를 더 포함할 수 있다.
상기 제 1 및 제 2 개폐 밸브는 개도 조절이 가능한 밸브인 것을 특징으로 한다.
상기 냉매 시스템은, 상기 액냉매 배관의 어느 지점에 설치되어, 냉매가 일방향으로만 흐르도록 제어하는 첵밸브를 더 포함할 수 있다.
상기 리시버는 상기 어큐뮬레이터에 접촉되게 설치되는 것을 특징으로 한다.
상기 제 2 열교환기는, 냉매와 물이 열교환하는 판형 열교환기를 포함할 수 있다.
상기 제 1 열교환기는, 핀-튜브 타입 열교환기를 포함할 수 있다.
상기와 같은 구성을 이루는 냉매 시스템에 의하면 다음과 같은 효과가 있다.
첫째, 냉방과 난방을 겸하는 공냉식 칠러에 있어서, 제상 운전 중에 리시버에 냉매가 고이는 현상을 방지함으로써, 응축 온도를 빨리 상승시켜 제상 시간을 단축하는 효과가 있다.
둘째, 제상 시간이 단축됨으로써, 제상 과정에서 저온의 냉매와 난방을 위한 물이 열교환하는 판형 열교환기 쪽으로 저온의 냉매가 흐르는 시간이 짧아진다. 뿐만 아니라, 상기 판형 열교환기 쪽으로 흐르는 저온의 냉매량이 감소되어, 물의 온도 감소 폭이 작아진다. 그 결과, 난방 성능 저하를 최소화할 수 있는 장점이 있다.
상세히, 본 발명의 실시예에 따른 냉매 시스템에 의하면, 제 2 및 제 3 바이패스 배관이 추가로 설치되어, 난방 모드에서 제상 모드로 사이클이 전환되더라도,리시버에 액냉매가 고여있지 않고 계속적으로 흐르도록 함으로써 압축 성능 저하를 최소화고, 제상 운전 중에, 냉난방을 위한 물과 열교환하는 제 2 열교환기로 흐르는 저온 저압의 2상 냉매 양을 조절할 수 있기 때문에 난방 성능 저하를 최소화할 수 있다.
도 1은 본 발명의 실시예에 따른 냉매 시스템.
도 2는 본 발명의 실시예에 따른 냉매 시스템이 난방 모드로 운전되는 상태를 보여주는 냉매 흐름도.
도 3은 본 발명의 실시예에 따른 냉매 시스템에서 제상 운전이 수행되는 상태를 보여주는 냉매 흐름도.
이하에서는 본 발명의 실시예에 따른 냉매 시스템에 대하여 도면을 참조하여 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 냉매 시스템을 보여준다.
도 1을 참조하면, 본 발명의 실시예에 따른 냉매 시스템(10)은, 공냉식 칠러를 예로 들어 설명한다. 즉, 냉방 과정에서 실내기에 해당하는 열교환기로서 물과 냉매가 열교환하는 수냉매 열교환기가 사용되고, 실외기에 해당하는 열교환기로서 공기와 냉매가 열교환하는 핀-튜브형 열교환기가 사용되는 것을 예로 들어 설명한다. 그리고, 상기 수냉매 열교환기로서 판형 열교환기가 적용될 수 있다.
상세히, 본 발명의 실시예에 따른 냉매 시스템(10)은, 압축기(11), 오일 분리기(12), 사방 밸브(four way valve)(13), 제 1 열교환기(14), 팽창변(15), 제 2 열교환기(16), 어큐뮬레이터(18), 리시버(19)를 포함할 수 있다. 그리고, 상기 구성들은 메인 배관(101)에 의하여 직렬 연결될 수 있다.
또한, 상기 압축기(11)는 단일의 정속 압축기일 수 있고, 다수의 압축기(111,112)가 병렬 연결될 수 있다. 상기 다수의 압축기(111,112)는 인버터 압축기와 정속 압축기로 이루어지거나, 다수의 인버터 압축기로 이루어질 수 있으며, 이들은 제 1 압축기(111)와 제 2 압축기(112)로 정의될 수 있다. 그리고, 다수의 압축기가 제공되는 경우에는 각각의 압축기 출구에 오일 분리기(121,122)가 각각 장착될 수 있으며, 이들은 제 1 오일 분리가(121)와 제 2 오일 분리기(122)로 정의될 수 있다.
또한, 상기 제 1 열교환기(14)는, 냉방 모드에서 냉매를 응축시키는 기능을 하기 때문에 냉방 모드에서는 응축기로 정의될 수 있으며, 난방 모드에서는 냉매를 증발시키는 기능을 하기 때문에 난방 모드에서는 증발기로 정의될 수 있다. 그리고, 상기 제 1 열교환기(14)는, 냉매가 공기와 열교환하도록 핀-튜브 타입의 공냉식 열교환기일 수 있다. 그리고, 상기 제 1 열교환기(14)는 실외에 배치되어 실외 공기와 열교환하며, 실외 공기와 열교환이 원활하게 이루어지도록 하기 위하여 상기 제 1 열교환기(14) 근처에는 열교환팬(141)이 구비될 수 있다.
또한, 상기 팽창변(15)은 상기 제 1 열교환기(14)와 상기 제 2 열교환기(16)를 연결하는 메인 배관(101)의 어느 지점에 배치되며, 고온 고압의 액상 냉매를 저온 저압의 2상 냉매로 팽창시킨다. 그리고, 상기 팽창변(15)은 모세관이거나 또는 개도 조절이 가능한 전자 팽창밸브일 수 있다.
또한, 상기 제 2 열교환기(16)는, 냉방 모드에서 냉매를 증발시키는 기능을 하기 때문에 냉방 모드에서는 증발기로 정의될 수 있으며, 난방 모드에서는 냉매를 응축시키는 기능을 하기 때문에 응축기로 정의될 수 있다. 그리고, 상기 제 2 열교환기(16)는, 냉매와 물이 열교환하는 수냉식 열교환기일 수 있다. 본 실시예에서는 상기 제 2 열교환기(16)가 상기 팽창변(15) 또는 상기 압축기(11)를 통과한 냉매와, 외부로부터 유입되는 물이 섞이지 않고 열교환하는 판형 열교환기일 수 있다.
상세히, 냉매와 물이 상기 제 2 열교환기(16)에서 열교환하기 위해서는, 입수관(31)과 출수관(32)이 상기 제 2 열교환기(16)에 연결된다. 즉, 외부 급수원으로부터 상기 입수관(31)을 따라 흐르는 물은 상기 제 2 열교환기(16)를 통과하면서 냉매 쪽으로 열을 빼앗겨 저온의 냉수가 되거나, 상기 냉매로부터 열을 흡수하여 고온의 온수가 된다. 그리고, 상기 출수관(32)을 따라 배출되는 냉수 또는 온수는 실내로 흘러가서 실내 바닥면을 차갑게 하여 냉방이 이루어지도록 하거나, 따뜻하게 하여 난방이 이루어지도록 할 수 있다. 그리고, 상기 출수관(32)을 따라 배출되는 냉수 또는 온수는 라디에이터와 같은 열교환기로 흘러서 실내 공기를 차갑게 또는 따뜻하게 할 수도 있다. 또는, 샤워를 위한 온수 또는 음용을 위한 냉수로 사용될 수도 있다.
또한, 상기 팽창변(15)을 통과한 냉매는 상기 어큐뮬레이터(17)로 유입되어 액상 냉매와 기상 냉매가 분리된다. 그리고, 분리된 기상 냉매만이 메인 배관(101)을 따라 상기 압축기(11) 입구로 유입된다.
또한, 냉방 모드에서 상기 팽창변(15)을 통과한 액상 냉매 일부 또는 난방 모드에서 상기 제 2 열교환기를 통과한 액상 냉매 일부는 상기 리시버(18)로 유입된다. 상기 리시버(18)는, 상기 열교환기들(14,16)의 요구 냉력에 따라서 남아도는 잉여 액냉매를 저장하는 장치이다.
예컨대, 냉방 모드에서 실내 온도를 높이고자 하는 경우 또는 난방 모드에서 실내 온도를 낮추고자 할 경우, 냉매 사이클을 수행하는데 필요한 냉매의 양이 감소된다. 그러면, 상기 리시버(18)에서 전체 냉매 중 남게 되는 액냉매를 잠시 저장하여 보관하게 된다. 그리고, 상기 리시버(18)에 저장된 액냉매는 설정 수위를 넘어서는 액냉매만이 상기 리시버(18)로부터 배출되어 냉동 사이클에 참여하게 된다.
또한, 상기 리시버(18)는 상기 어큐뮬레이터(17)와 분리되어 독립적으로 배치될 수도 있고, 도시된 바와 같이 상기 어큐뮬레이터(17)의 외주면, 구체적으로는 저면에 부착되어 상기 어큐뮬레이터(17)와 하나의 모듈 형태로 설치될 수도 있다. 상기 리시버(18)가 상기 어큐뮬레이터(17)와 접촉하는 상태로 배치되면, 상기 리시버(18)로부터 상기 어큐뮬레이터(17)로 전달되어, 상기 어큐뮬레이터(17) 내의 액냉매를 기상 냉매로 증발시킬 수 있는 장점이 있다. 그러면, 상기 압축기(11)로 유입되는 기상 냉매의 양이 증가하여 압축 능력이 좋아지는 장점이 있다.
또한, 본 발명의 실시예에 따른 냉매 시스템(10)에서는, 난방 모드와 냉방 모드에 관계없이 항상 상기 리시버(18)에서 상기 어큐뮬레이터(17)로 열이 전달되므로, 종래의 냉매 사이클에 비하여 압축 성능이 좋아지는 장점이 있다.
한편, 본 발명의 실시예에 따른 냉매 시스템(10)을 구성하는 냉매 배관은, 압축기(11), 오일 분리기(12), 사방 밸브(13), 제 1 열교환기(14), 팽창변(15), 제 2 열교환기(16), 사방 밸브(13), 아큐뮬레이터(17)를 직렬 연결하는 메인 배관(101)을 포함한다.
그리고, 상기 냉매 배관은, 상기 팽창변(15)과 상기 제 2 열교환기(16)를 연결하는 메인 배관(101)의 어느 지점과 상기 리시버(18)입구단을 연결하는 제 1 바이패스 배관(102)을 더 포함할 수 있다.
그리고, 상기 냉매 배관은, 상기 제 1 열교환기(14)와 상기 팽창변(15)을 연결하는 메인 배관(101)의 어느 지점과 상기 제 1 바이패스 배관(102)의 어느 지점을 연결하는 제 2 바이패스 배관(103)을 더 포함할 수 있다. 그리고, 상기 제 2 바이패스 배관(103)에는 개폐 밸브(19)가 설치된다.
그리고, 상기 냉매 배관은, 상기 제 1 열교환기(14)의 출구단과 상기 제 2 바이패스 배관(103)이 분지되는 지점 사이에 해당하는 상기 메인 배관(101)의 어느 지점과, 상기 리시버(18)의 출구단을 연결하는 액냉매 배관(105)을 더 포함할 수 있다. 그리고, 상기 액냉매 배관(105)의 어느 지점에는 냉매가 일방향으로만 흐르도록 하는 첵밸브(19)가 설치되어, 상기 리시버(18)의 출구 쪽으로 냉매가 역유입되는 것을 차단한다.
그리고, 상기 냉매 관은, 상기 사방 밸브(13)와 상기 제 2 열교환기(16)를 연결하는 메인 배관(101)의 어느 지점과 상기 액냉매 배관(105)의 어느 지점을 연결하는 제 3 바이패스 배관(104)을 더 포함할 수 있다. 그리고, 상기 제 3 바이패스 배관(104)에도 개폐 밸브(20)가 설치된다. 상기 개폐 밸브들(10,20)은 개도 조절이 가능한 밸브로서, 팽창 밸브의 기능을 어느 정도는 수행하는 밸브일 수 있다.
본 발명의 실시예에 따른 냉매 시스템(10)은, 상기 제 2 및 제 3 바이패스 배관(103,104)이 설치되어, 난방 모드에서 제상 모드로 사이클이 전환될 때 상기 리시버(18)에 액냉매가 고여있지 않고 계속적으로 흐르도록 하여 압축 성능 저하를 최소화고, 제상 모드에서 상기 제 2 열교환기(16)로 흘러들어가는 저온 저압의 2상 냉매 양을 조절하여 난방 성능 저하를 최소화하는 것을 특징으로 한다.
도 2는 본 발명의 실시예에 따른 냉매 시스템이 난방 모드로 운전되는 상태를 보여주는 냉매 흐름도이다.
도 2를 참조하면, 본 발명의 실시예에 따른 냉매 시스템(10)이 난방 모드로 운전될 때는, 상기 개폐 밸브들(19,20)이 폐쇄되어 상기 제 2 바이패스 배관(103)과 상기 제 3 바이패스 배관(104)으로는 냉매가 흐르지 않는다.
상세히, 상기 압축기(11)에서 저온 저압의 기상 냉매를 고온 고압의 기상 냉매로 압축한다. 그리고, 상기 압축기(11)를 통과하는 냉매는 상기 오일 분리기(12)를 통과하면서 오일과 냉매가 분리되고, 분리된 오일은 상기 압축기(11)로 회수된다.
상기 오일 분리기(12)를 통과한 냉매는 상기 사방 밸브(13)에 의하여 흐름 방향이 결정되며, 난방 모드에서는 상기 제 2 열교환기(16) 쪽으로 냉매가 흐르도록 밸브의 개폐가 제어된다.
상기 제 2 열교환기(16)로 유입된 냉매는, 상기 입수관(31)을 통하여 상기 제 2 열교환기로 유입된 물과 열교환하고, 상기 열교환된 물은 상기 출수관(32)을 통하여 배출되어 실내 난방 또는 온수로 사용된다.
그리고, 상기 제 2 열교환기(16)를 통과하면서 액상 냉매로 응축된 냉매의 일부는 상기 팽창변(15)을 통과하면서 저온 저압의 2상 냉매로 팽창하고, 나머지 일부는 어느 지점(b)에서 상기 제 1 바이패스 배관(102)으로 분지되어 상기 리시버(18)로 유입된다.
그리고, 상기 팽창변(15)을 통과한 냉매는 상기 메인 배관(101)을 따라 상기 제 1 열교환기(14)로 유입된다. 여기서, 상기 리시버(18)로 유입되는 고온 고압의 액냉매는 상기 리시버(18)에 채워지고, 설정 수위를 넘어서는 액냉매는 상기 액냉매 배관(105)으로 토출된다. 그리고, 상기 액냉매 배관(105)을 따라 흐르는 냉매는 상기 메인 배관(101)의 어느 지점(a)에서 상기 팽창변(15)을 통과한 저온 저압의 2상 냉매와 합쳐진다. 냉매가 합쳐지는 지점은, 상기 액냉매 배관(105)의 출구단이 연결되는 지점(a)으로서, 상기 제 1 열교환기(14)와 상기 팽창변(15)을 연결하는 메인 배관(101)의 어느 지점에 해당한다. 그리고, 상기 냉매가 합쳐지면서 온도와 압력이 떨어지고, 냉매가 합쳐졌을 때의 압력이 압축기(11)로 유입되는 증발 압력이 된다.
그리고, 상기 액냉매 배관(105)을 따라 흐르는 액냉매와 상기 팽창변(15)을 통과한 2상 냉매가 합쳐진 후에 상기 제 1 열교환기(14)로 유입된다. 그리고, 상기 제 1 열교환기(14)로 유입된 냉매는 공기와 열교환하여 기상 냉매로 증발하는 과정을 거친다.
그리고, 상기 제 1 열교환기(14)를 통과한 냉매는 상기 사방 밸브(13)의 제어에 의하여 상기 어큐뮬레이터(17)로 유입된다. 상기 어큐뮬레이터(17)로 유입된 냉매는 액상 냉매와 기상 냉매로 분류되고, 기상 냉매 만이 상기 압축기(11)로 재유입된다. 그리고, 상기 어큐뮬레이터(17) 내부에서 분리된 액상 냉매의 일부는, 상기 리시버(18)로부터 전달되는 열에 의하여 증발하여 상기 압축기(11)로 유입된다.
본 발명의 냉매 시스템(10)에 의하면, 난방 모드에서 상기 리시버(18)로 유입되는 냉매는 상기 어큐뮬레이터(17)로 유입되는 냉매보다 온도가 높다. 따라서, 상기 리시버(18)로부터 상기 어큐뮬레이터(17)로 열이 전달되고, 전달되는 열에 의하여 상기 어큐뮬레이터(17) 내부의 액상 냉매 일부가 증발하게 된다. 그 결과, 상기 압축기(11)로 유입되는 기상 냉매의 양이 증가하게 되고, 기상 냉매의 양이 증가함에 따라 응축압력으로 압축하는데 걸리는 시간이 짧아지는 장점이 있다.
한편, 상기 난방 운전이 진행되는 동안 실외에 설치된 상기 제 1 열교환기(14)의 표면에는 결빙이 생기게 된다. 그리고, 결빙이 누적되면 공기와의 접촉 면적이 줄어들어 열교환 성능이 떨어지게 된다. 이를 방지하기 위해서, 주기적으로 제상 운전을 수행하여야 한다.
도 3은 본 발명의 실시예에 따른 냉매 시스템에서 제상 운전이 수행되는 상태를 보여주는 냉매 흐름도이다.
도 3을 참조하면, 제상 운전이 시작되면, 상기 사방 밸브(13)에서는 냉매 흐름 방향을 전환한다. 즉, 상기 압축기(11)에서 토출되는 냉매가 상기 제 1 열교환기(14) 쪽으로 흐르도록 밸브의 개도가 조절된다.
또한, 제상 운전이 시작되면 상기 개폐 밸브(19,20)가 개방된다.
상세히, 상기 압축기(11)에서 토출되는 고온 고압의 기상 냉매가 상기 제 1 열교환기(14)로 흐르면, 상기 제 1 열교환기(14)의 표면에 붙어 있는 얼음이 녹아 내리게 된다. 그리고, 상기 제 1 열교환기(14)를 통과하는 냉매의 일부는 상기 팽창변(15)으로 유입되고, 나머지 일부는 상기 제 2 바이패스 배관(103)으로 유입된다. 이때, 상기 팽창변(15)을 통과하는 냉매의 양은 상기 제 2 바이패스 배관(103)에 장착된 상기 개폐 밸브(19)의 개도 조절을 통하여 조절된다.
그리고, 상기 팽창변(15)을 통과하면서 저온 저압의 2상 냉매로 팽창된 냉매는 상기 제 2 열교환기(16)로 유입된다. 제상 운전 중에는 상기 입수관(31)으로 유입되는 물은 상기 제 2 열교환기(16)로 유입되는 냉매로 열을 빼앗겨 온도가 떨어지게 된다.
한편, 상기 제 2 바이패스 배관(103)으로 유입된 냉매는 상기 제 1 바이패스 배관(102)을 따라 상기 리시버(18)로 유입된다. 그리고, 리시버(18)로 유입되는 냉매 중 설정 수위를 넘어서는 냉매는 상기 액냉매 배관(105)으로 토출된다. 상기 액냉매 배관(105)으로 토출되는 냉매는 상기 제 3 바이패스 배관(104)으로 흘러, 상기 제 2 열교환기(16)에서 토출되는 냉매와 합쳐진다.
여기서, 상기 제 3 바이패스 배관(104)이 분지되는 지점(c)에서 액냉매의 일부는 상기 액냉매 배관(105)을 따라 상기 지점 a까지 흐를 수 있으나, 그 양은 매우 적고 대부분의 액냉매는 상기 제 3 바이패스 배관(104)으로 흐른다. 이는, 상기 지점 a에서, 상기 제 1 열교환기(14)를 통과한 냉매의 압력이 상기 액냉매 배관(105)을 따라 흐르는 냉매의 압력보다 상대적으로 높다. 이는, 상기 제 2 바이패스 배관(103)으로 분지되는 냉매가 상기 개폐 밸브(19)를 통과하면서 압력이 떨어지기 때문이다. 따라서, 상기 액냉매 배관(105)을 따라 흘러 상기 제 1 열교환기(14)를 통과한 냉매와 합쳐진 후 상기 팽창변(15) 쪽으로 흐르는 액냉매의 양은 매우 적다고 하겠다.
한편, 상기 제 2 열교환기(16)를 통과한 저온의 냉매와 상기 제 3 바이패스 배관(104)으로 흐르는 액냉매가 만나서 증발 압력으로 조절된다. 그리고, 냉매의 온도도 상기 리시버(18) 내부 온도보다 낮아진다. 그리고, 상기 합쳐진 냉매는 상기 사방 밸브(13)에 의하여 상기 어큐뮬레이터(17)로 유입된다.
여기서, 상기 리시버(18)로 유입되는 냉매는 상기 제 1 열교환기(14)를 통과한 냉매의 일부이기 때문에, 상기 어큐뮬레이터(17)로 유입되는 냉매보다 상대적으로 온도가 높은 상태이다. 따라서, 상기 리시버(18)로부터 상기 어큐뮬레이터(17)로 열이 전달되고, 전달되는 열에 의하여 상기 어큐뮬레이터(17)로 유입되는 액상 냉매의 일부가 증발하게 된다.
그리고, 상기 어큐뮬레이터(17)로 유입되는 기상 냉매와 상기 리시버(18)로부터 전달되는 열에 의하여 증발하는 기상 냉매는 상기 압축기(11)로 유입된다. 여기서, 상기 리시버(18)가 상기 어큐뮬레이터(17)와 접하여 열교환 가능하게 설치됨으로써, 상기 압축기(11)로 유입되는 기상 냉매의 양이 증가하게 된다. 그리고, 상기 압축기(11)로 유입되는 기상 냉매의 양이 증가함에 따라, 응축 압력으로 압축하는데 걸리는 시간이 단축된다. 그리고, 응축 압력으로 압축하는데 걸리는 시간이 단축됨으로써, 제상 시간이 짧아지고, 제상 시간이 짧아짐에 따라 난방을 위한 물의 온도가 감소하는 것을 최소화할 수 있다.
상기 제 2 및 제 3 바이패스 배관(103,104)이 구비되지 않는 종래의 냉매 시스템(10)의 경우, 난방 운전 모드에서 제상 운전 모드로 바뀌면, 난방 운전 동안 상기 리시버(18)에 모여 있던 액냉매가 제상 운전 동안 메인 배관(101)으로 흐르지 못하고 고인 상태로 유지된다.
상세히, 난방 운전 동안에는 상기 제 1 바이패스 배관(103)으로 고압의 액냉매가 흐른다. 이 상태에서 제상 운전으로 전환되면, 상기 팽창변(15)을 통과한 저압의 냉매가 상기 제 1 바이패스 배관(103)과 상기 제 2 열교환기(16) 쪽으로 흐르게 된다. 그러나, 상기 제 1 바이패스 배관(103)의 압력은 상기 팽창변(15)의 출구에서 분지되는 냉매의 압력보다 높기 때문에, 상기 리시버(18) 쪽으로 냉매가 흐르지 못한다. 반면, 제상 운전이 수행되면 상기 제 1 바이패스 배관(103)에 남아 있던 액냉매가 압력 차에 의하여 상기 제 2 열교환기(16) 쪽으로 유입된다.
또한, 상기 액냉매 배관(105)에도 고압의 액냉매가 남아 있는 상태이고, 제상 운전 과정에서 상기 메인 배관(101)을 따라 상기 지점 a로 흐르는 냉매는 상기 액냉매 배관(105)의 압력보다 높기 때문에 상기 액냉매 배관(105)에 있는 냉매는 메인 배관(101)으로 흐르지 못하고 고여있게 된다.
이러한 이유로 인하여, 제상 운전 과정에서 메인 배관(101)을 따라 흐르는 냉매의 양이 감소되어 응축 압력까지 냉매를 압축시키는데 걸리는 시간이 길어질 뿐만 아니라, 냉매가 설정 압력으로 압축되지 못하게 된다. 그 결과, 제 1 열교환기(14)의 결빙 상태를 해제하는데 걸리는 시간이 길어지고, 난방수의 온도는 더 감소하여 전체적으로 난방 효율이 떨어지는 단점이 있다.
반면, 본 발명에서와 같이 제 2 및 제 3 바이패스 배관(103,104)이 구비되어, 제상 운전 과정에서도 제 1 열교환기(14)를 통과한 냉매가 리시버(18)를 지나서 어큐뮬레이터(17)로 유입되는 냉매 순환 유로(점선)를 형성하므로, 종래의 냉매 시스템이 가지는 문제점이 해소될 수 있다.
또한, 제상 운전 중에, 개폐 밸브(19)의 개도 조절을 통하여 상기 팽창변(15)으로 유입되는 냉매의 양을 조절할 수 있어, 상기 입수관(31)을 통하여 입수되는 난방수의 온도 저하를 최소화할 수 있다.

Claims (7)

  1. 냉매를 압축하는 압축기;
    상기 압축기의 출구측에 배치되어, 냉매의 흐름 방향을 제어하는 사방 밸브;
    난방 운전 모드에서 냉매를 증발시키는 제 1 열교환기;
    난방 운전 모드에서 상기 압축기를 통과한 냉매를 응축시키는 제 2 열교환기;
    상기 제 1 열교환기와 상기 제 2 열교환기 사이에 배치되어 냉매를 저온 저압으로 팽창시키는 팽창변;
    상기 압축기 입구측에 배치되어 액상 냉매와 기상 냉매를 분리하는 어큐뮬레이터;
    상기 압축기와, 상기 사방 밸브와, 상기 제 1 및 제 2 열교환기와, 상기 팽창변과 상기 어큐뮬레이터를 연결하여 냉매가 순환하도록 하는 메인 배관;
    상기 제 2 열교환기와 상기 팽창변을 연결하는 상기 메인 배관의 어느 지점에서 분지되는 제 1 바이패스 배관;
    상기 제 1 바이패스 배관의 출구단에 연결되는 리시버;
    상기 리시버의 출구단에서 연장되어, 상기 제 1 열교환기와 상기 팽창변을 연결하는 상기 메인 배관의 어느 지점에 연결되는 액냉매 배관;
    상기 액냉매 배관의 출구단이 연결되는 지점과 상기 메인 배관 중 상기 제 1 열교환기 및 상기 팽창변의 사이의 어느 지점에서 분지되어 상기 제 1 바이패스 배관의 어느 지점으로 연결되는 제 2 바이패스 배관;
    상기 제 2 열교환기와 상기 사방 밸브를 연결하는 지점과, 상기 액냉매 배관의 어느 지점을 연결하는 제 3 바이패스 배관;
    상기 제 2 바이패스 배관에 설치되는 제 1 개폐 밸브; 및
    상기 제 3 바이패스 배관에 설치되는 제 2 개폐 밸브를 포함하고,
    난방 모드에서, 상기 압축기에서 압축된 냉매는 상기 제 2 열교환기로 유입되도록 상기 사방 밸브가 조절되고, 상기 제 2 열교환기를 통과한 냉매 중 일부는 상기 팽창변을 통과하고 나머지 일부는 상기 제 1 바이패스 배관을 통과하여 상기 리시버로 유입되도록 상기 제 1,2 개폐 벨브가 폐쇄되고,
    제상 모드에서, 상기 압축기에서 압축된 냉매는 상기 제 1 열교환기로 유입되도록 상기 사방 밸브가 조절되고, 상기 제 1 열교환기를 통과한 냉매 중 일부는 상기 팽창변을 통과하고 나머지 일부는 상기 제 2 바이패스 배관 통과 후 상기 제 1 바이패스 배관을 통과하여 상기 리시버로 유입 되도록 상기 제 1,2 개폐 벨브가 개방되고,
    상기 리시버는 상기 어큐뮬레이터에 접촉되게 설치되는 냉매 시스템.
  2. 삭제
  3. 제 2 항에 있어서,
    상기 제 1 및 제 2 개폐 밸브는 개도 조절이 가능한 밸브인 것을 특징으로 하는 냉매 시스템.
  4. 제 1 항에 있어서,
    상기 액냉매 배관의 어느 지점에 설치되어, 냉매가 일방향으로만 흐르도록 제어하는 첵밸브를 더 포함하는 냉매 시스템.
  5. 삭제
  6. 제 1 항에 있어서,
    상기 제 2 열교환기는, 냉매와 물이 열교환하는 판형 열교환기를 포함하는 냉매 시스템.
  7. 제 1 항에 있어서,
    상기 제 1 열교환기는, 핀-튜브 타입 열교환기를 포함하는 냉매 시스템.
KR1020140069385A 2014-06-09 2014-06-09 냉매 시스템 KR102165353B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140069385A KR102165353B1 (ko) 2014-06-09 2014-06-09 냉매 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140069385A KR102165353B1 (ko) 2014-06-09 2014-06-09 냉매 시스템

Publications (2)

Publication Number Publication Date
KR20150141006A KR20150141006A (ko) 2015-12-17
KR102165353B1 true KR102165353B1 (ko) 2020-10-13

Family

ID=55080948

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140069385A KR102165353B1 (ko) 2014-06-09 2014-06-09 냉매 시스템

Country Status (1)

Country Link
KR (1) KR102165353B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236447A (ja) * 2008-03-28 2009-10-15 Daikin Ind Ltd 冷凍装置
JP2010156523A (ja) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp ヒートポンプ式給湯器
JP2011247476A (ja) * 2010-05-26 2011-12-08 Science Kk デフロスト運転用の冷媒管を備えた冷凍サイクル
KR101255766B1 (ko) * 2012-11-23 2013-04-17 이달주 공기열 히트펌프를 이용한 온수공급장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236447A (ja) * 2008-03-28 2009-10-15 Daikin Ind Ltd 冷凍装置
JP2010156523A (ja) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp ヒートポンプ式給湯器
JP2011247476A (ja) * 2010-05-26 2011-12-08 Science Kk デフロスト運転用の冷媒管を備えた冷凍サイクル
KR101255766B1 (ko) * 2012-11-23 2013-04-17 이달주 공기열 히트펌프를 이용한 온수공급장치

Also Published As

Publication number Publication date
KR20150141006A (ko) 2015-12-17

Similar Documents

Publication Publication Date Title
KR101192346B1 (ko) 히트 펌프식 급탕장치
JP5357418B2 (ja) ヒートポンプ式空気調和機
KR101639814B1 (ko) 냉장 및 냉동 복합 공조시스템
KR101638675B1 (ko) 복합 이원 냉동 사이클 장치
KR101155497B1 (ko) 히트펌프식 급탕장치
JP2012093054A (ja) 冷凍装置
KR101619016B1 (ko) 핫가스 제상 사이클을 갖는 냉동 장치
US10578344B2 (en) Reversible liquid suction gas heat exchanger
JP5677472B2 (ja) 冷凍装置
JP2009156496A (ja) 空気調和装置
KR20120053381A (ko) 냉동 사이클 장치
JP5430598B2 (ja) 冷凍サイクル装置
US20230056774A1 (en) Sub-cooling a refrigerant in an air conditioning system
JP2017161159A (ja) 空気調和機の室外ユニット
JP2011122801A (ja) 空気熱源ヒートポンプシステムおよびその運転方法
KR102165353B1 (ko) 냉매 시스템
KR200426794Y1 (ko) 열매체 방식의 히트펌프
JP2018173195A (ja) 冷凍装置
KR102185416B1 (ko) 냉방 시스템
JP6042037B2 (ja) 冷凍サイクル装置
KR101854335B1 (ko) 공기조화기
KR20150078933A (ko) 공기조화기
KR102181204B1 (ko) 냉매 시스템
KR102080053B1 (ko) 제상기능을 갖는 히트펌프 공기조화기
KR101212686B1 (ko) 히트 펌프식 급탕장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant