KR102142335B1 - Oxide based cathode active material for lithium ion battery, method for manufacturing oxide based cathode active material precursor for lithium ion battery, method for manufacturing oxide based cathode active material for lithium ion battery, and lithium ion battery - Google Patents

Oxide based cathode active material for lithium ion battery, method for manufacturing oxide based cathode active material precursor for lithium ion battery, method for manufacturing oxide based cathode active material for lithium ion battery, and lithium ion battery Download PDF

Info

Publication number
KR102142335B1
KR102142335B1 KR1020180142653A KR20180142653A KR102142335B1 KR 102142335 B1 KR102142335 B1 KR 102142335B1 KR 1020180142653 A KR1020180142653 A KR 1020180142653A KR 20180142653 A KR20180142653 A KR 20180142653A KR 102142335 B1 KR102142335 B1 KR 102142335B1
Authority
KR
South Korea
Prior art keywords
active material
lithium ion
positive electrode
ion battery
electrode active
Prior art date
Application number
KR1020180142653A
Other languages
Korean (ko)
Other versions
KR20190107555A (en
Inventor
야스히로 가와하시
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20190107555A publication Critical patent/KR20190107555A/en
Application granted granted Critical
Publication of KR102142335B1 publication Critical patent/KR102142335B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Li 비율이 높은 조성이라도 낮은 알칼리량과 높은 외관 체적 에너지 밀도를 양립할 수 있는 양극 활물질을 제공한다. 금속 조성이 LiaNibCocMn1 -b-c
(식 중, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17이다.)
로 나타나고, 함유되는 잔류 알칼리량이 0.7질량% 이하인 리튬 이온 전지용 산화물계 양극 활물질.
It provides a positive electrode active material capable of achieving both a low alkali content and a high external volumetric energy density even in a composition having a high Li ratio. The metal composition is Li a Ni b Co c Mn 1 -bc
(Wherein, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17.)
Oxide-based positive electrode active material for a lithium ion battery having a residual alkali content of 0.7 mass% or less.

Description

리튬 이온 전지용 산화물계 양극 활물질, 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법, 리튬 이온 전지용 산화물계 양극 활물질의 제조 방법, 리튬 이온 전지용 양극 및 리튬 이온 전지{OXIDE BASED CATHODE ACTIVE MATERIAL FOR LITHIUM ION BATTERY, METHOD FOR MANUFACTURING OXIDE BASED CATHODE ACTIVE MATERIAL PRECURSOR FOR LITHIUM ION BATTERY, METHOD FOR MANUFACTURING OXIDE BASED CATHODE ACTIVE MATERIAL FOR LITHIUM ION BATTERY, AND LITHIUM ION BATTERY}OXIDE BASED CATHODE ACTIVE MATERIAL FOR LITHIUM ION BATTERY, METHOD FOR MANUFACTURING OXIDE BASED CATHODE ACTIVE MATERIAL PRECURSOR FOR LITHIUM ION BATTERY, METHOD FOR MANUFACTURING OXIDE BASED CATHODE ACTIVE MATERIAL FOR LITHIUM ION BATTERY, AND LITHIUM ION BATTERY}

본 발명은 리튬 이온 전지용 산화물계 양극 활물질, 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법, 리튬 이온 전지용 산화물계 양극 활물질의 제조 방법, 리튬 이온 전지용 양극 및 리튬 이온 전지에 관한 것이다.The present invention relates to a method for producing an oxide-based positive electrode active material for a lithium ion battery, a method for producing an oxide-based positive electrode active material for a lithium ion battery, a method for producing an oxide-based positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.

리튬 이온 2차 전지의 양극 활물질에는, 일반적으로 리튬 함유 전이금속 산화물이 이용되고 있다. 구체적으로는, 층상 화합물 코발트산리튬(LiCoO2), 층상 화합물 니켈산리튬(LiNiO2), 스피넬 화합물 망간산리튬(LiMn2O4) 등이고, 특성 개선(고용량화, 사이클 특성, 보존 특성, 내부 저항 저감, 비율 특성)이나 안전성 향상을 위해서 이것들을 복합화하는 것(혼합, 조립 등)이 진행되고 있다. 차재용이나 로드 레벨링용과 같은 대형 용도에서의 리튬 이온 2차 전지에는 지금까지의 휴대전화용이나 PC용과는 다른 특성이 요구되고 있다.As a positive electrode active material of a lithium ion secondary battery, a lithium-containing transition metal oxide is generally used. Specifically, the layered compound lithium cobaltate (LiCoO 2 ), the layered compound lithium nickelate (LiNiO 2 ), the spinel compound lithium manganate (LiMn 2 O 4 ), etc., and improved properties (high capacity, cycle characteristics, storage characteristics, internal resistance Reduction, ratio characteristics) and compounding of these (mixing, assembly, etc.) to improve safety are in progress. BACKGROUND ART Lithium ion secondary batteries in large-scale applications such as in-vehicle use and road leveling use have been required to have characteristics different from those for mobile phones and PCs.

여기서, 특히 로드 레벨링용 등 장기간에 걸쳐서 평탄한 방전 곡선이 요구되는 용도에 있어서, Li 리치, Mn 리치, 혹은 고용체 양극 활물질 등으로 불리는 Li2MnO3-Li(Ni, Co, Mn)O2로 나타나는 조성식의 양극 활물질이 검토되기 시작했다. 이 Li2MnO3와 Li(Ni, Co, Mn)O2의 비율을 다양하게 변화시킴으로써, 200mAh/g 이상의 방전 용량을 가지는 양극 활물질을 제조할 수 있는 점이 알려져 있다(예를 들면, 특허문헌 1 등).Here, especially in applications requiring a flat discharge curve over a long period of time, such as for load leveling, Li 2 MnO 3 -Li(Ni, Co, Mn)O 2 called Li-rich, Mn-rich, or solid-solution positive electrode active material The positive electrode active material of the composition formula began to be examined. It is known that a positive electrode active material having a discharge capacity of 200 mAh/g or more can be produced by varying the ratio of Li 2 MnO 3 and Li(Ni, Co, Mn)O 2 (for example, Patent Document 1). Etc).

특허문헌 1: 일본 공개특허공보 2013-161621호Patent Document 1: Japanese Patent Application Publication No. 2013-161621

이 고용체 양극 활물질은 종래 양극 활물질 내에서의 Li 이온 전도가 포화 상태였다고 생각되는 층상 화합물에 Li2MnO3를 복합화함으로써, 양극 활물질 내의 Li 이온 전도를 촉진하고, 이는 종래의 층상 화합물에 없는 레벨로서 평탄한 방전 곡선이면서 고용량을 실현하고자 하는 것이다. 그러나 이 Li2MnO3 복합화에 의해서, 전이금속에 대한 Li의 몰비(이후, Li/Me비라고 적는다)가 아무래도 높아지기 때문에, 소성시에 탄산 리튬 등의 리튬원을 많이 넣을 필요가 있었다. 예를 들면, 특허문헌 1에서는, 1.2 정도의 높은 Li/Me비이다. 이러한 경우, 소성시에 모든 Li이 리튬 복합 산화물이 되면 좋지만 현실적으로는 그렇지 않고, 특히 Li 리치와 같은 물질은 반드시 소성 후에도 탄산 리튬이나 수산화 리튬의 형태로 리튬 복합 산화물에 포함되지 않은 리튬원(이후, 알칼리라고 한다)이 잔류되었다.This solid solution positive electrode active material promotes Li ion conduction in the positive electrode active material by complexing Li 2 MnO 3 with a layered compound that is believed to have saturated Li ion conduction in the conventional positive electrode active material, which is a level not found in conventional layered compounds. It is intended to realize a high capacity while being a flat discharge curve. However, since the Li 2 MnO 3 complexation increases the molar ratio of Li to the transition metal (hereinafter referred to as Li/Me ratio), it is necessary to add a lot of lithium sources such as lithium carbonate during firing. For example, in Patent Document 1, the Li/Me ratio is as high as 1.2. In this case, it is good if all Li becomes a lithium composite oxide at the time of firing, but in reality it is not so. In particular, a material such as Li rich is a lithium source not included in the lithium composite oxide in the form of lithium carbonate or lithium hydroxide even after firing (hereinafter, Alkali).

또, Li2MnO3 복합화로 인해서 아무래도 전자 전도성이 떨어지기 때문에, 특허문헌 1에서는 전이금속 전구체로서 탄산염을 선택하고 있다. 이에 따라, 소성 후에 1차 입자의 작은 양극재가 됨으로써, 전해액과의 계면이 많아져서 원활한 전극 반응을 실현하여 200mAh/g의 방전 용량을 확보할 수 있다. 이때 탭 밀도가 낮아지는 것을 피하지 못하고, 따라서 에너지 밀도: (전극 밀도)×(방전 용량)가 작아진다. 예를 들면, Li(Ni, Co, Mn)O2에서 Ni를 비교적 많이 포함하는 재료도 200mAh/g를 달성할 수 있지만, 통상의 차재·동력 용도로 수산화물의 전이금속 전구체를 사용했다고 해도 충분히 전자 전도성을 확보할 수 있기 때문에, 결과적으로 에너지 밀도: (전극 밀도)×(방전 용량)가 양호해진다. 이에 대해서, Li 리치에서는 상술한 바와 같이 탭 밀도가 낮아지는 점에서 에너지 밀도: (전극 밀도)×(방전 용량)도 낮아지고, 이를 향상시키기 위해서 새로운 방전 용량의 개선이 요구되고 있었다.In addition, since the electronic conductivity is inferior due to the Li 2 MnO 3 complexation, carbonate is selected as the transition metal precursor in Patent Document 1. Thereby, by becoming a small positive electrode material of the primary particles after firing, the interface with the electrolytic solution increases, thereby realizing a smooth electrode reaction and ensuring a discharge capacity of 200 mAh/g. At this time, the tap density cannot be avoided, and thus the energy density: (electrode density) x (discharge capacity) becomes small. For example, Li(Ni, Co, Mn)O 2 can also achieve 200 mAh/g even if it contains a relatively large amount of Ni, but even if a transition metal precursor of hydroxide is used for general vehicle and power applications, it is sufficiently electronic. Since conductivity can be ensured, as a result, energy density: (electrode density) x (discharge capacity) becomes good. On the other hand, in Li-rich, as described above, the energy density: (electrode density) × (discharge capacity) is also lowered because the tap density is lowered, and improvement of the new discharge capacity has been required to improve this.

이를 위한 수단으로써, Mn의 양을 늘리면 Li/Me비의 양도 증가시킬 수 있고, 방전 용량을 늘릴 수 있다고 예상되었지만, 그 만큼 알칼리가 증가되어, 이 점에서 방전 용량에는 상한이 있거나, 혹은 방전 용량을 높이려고 해도 전극 제작시에 겔화될 가능성이 높다고 전해졌다.As a means for this, increasing the amount of Mn can also increase the amount of Li/Me ratio and increase the discharge capacity, but it is expected that the alkali is increased by that amount, and thus there is an upper limit to the discharge capacity, or the discharge capacity It has been reported that even when trying to increase the probability of gelation during electrode production.

특허문헌 1에서는, 그 고용체 양극 활물질의 제조에 있어서, 전이금속 수용액에 암모니아수를 적하하여 pH를 7로 조절하고, 그 후, 탄산나트륨을 첨가하는 것과 같은 프로세스가 개시되어 있다. 이 방법은 간편하고 쉽게 소성 후에 미세 1차 입자를 만들 수 있지만, 예를 들면 250mAh/g의 방전 용량을 확보하려고 하면, Li/Me비를 1.5 정도로 넣어야 하며, 알칼리가 1질량%를 초과해서 전극 제작시에 겔화하기 때문에 방전 용량이 저하되어, 양호한 방전 용량을 얻기 어려웠다.In Patent Document 1, in the production of the solid solution positive electrode active material, a process such as adding ammonia water to a transition metal aqueous solution to adjust the pH to 7, and then adding sodium carbonate is disclosed. This method is simple and easy to make fine primary particles after firing, but if, for example, to secure a discharge capacity of 250 mAh/g, the Li/Me ratio should be about 1.5, and the alkali exceeds 1 mass% of the electrode. Since the gelation occurred during production, the discharge capacity was lowered, and it was difficult to obtain a good discharge capacity.

여기서, 본 발명은 Li 비율이 높은 조성이더라도 낮은 알칼리량과 높은 에너지 밀도를 양립시킬 수 있는 산화물계 양극 활물질을 제공하는 것을 과제로 한다.Here, an object of the present invention is to provide an oxide-based positive electrode active material capable of achieving both a low alkali content and a high energy density even if the composition has a high Li ratio.

본 발명은 일 실시형태에 있어서, 금속 조성이 LiaNibCocMn1 -b-c In one embodiment of the present invention, the metal composition is Li a Ni b Co c Mn 1 -bc

(식 중, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17이다.)(Wherein, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17.)

로 나타나고, 함유되는 잔류 알칼리량이 0.7질량% 이하인 리튬 이온 전지용 산화물계 양극 활물질이다.It is represented by, and is an oxide-based positive electrode active material for lithium ion batteries having a residual alkali content of 0.7 mass% or less.

본 발명의 리튬 이온 전지용 산화물계 양극 활물질은 다른 일 실시형태에 있어서, 평균 입경(D50)이 9.0∼14.0㎛이다.In another embodiment of the oxide-based positive electrode active material for lithium ion batteries of the present invention, the average particle diameter (D50) is 9.0 to 14.0 µm.

본 발명의 리튬 이온 전지용 산화물계 양극 활물질은 또 다른 일 실시형태에 있어서, 탭 밀도가 1.4g/cm3 이상이다.In another embodiment, the oxide-based positive electrode active material for lithium ion batteries of the present invention has a tap density of 1.4 g/cm 3 or more.

본 발명은, 또 다른 일 실시형태에 있어서, 니켈염, 코발트염, 망간염, 암모니아수 및 탄산염의 수용액을 함유하는 수용액을 반응액으로 하고, 상기 반응액 중의 pH를 9.6∼10.5, 암모늄 이온 농도를 2.5g/L 이하, 액온을 40∼60℃로 제어하면서 정석(晶析) 반응을 실시하는 공정을 포함하여,In another embodiment of the present invention, an aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, aqueous ammonia and carbonate is used as the reaction solution, and the pH in the reaction solution is 9.6 to 10.5, and the ammonium ion concentration is adjusted. 2.5g/L or less, including a step of carrying out a crystallization reaction while controlling the liquid temperature at 40 to 60°C,

조성식이 (NixCoyMn1-x-y)CO3 Composition Diet (Ni x Co y Mn 1-xy )CO 3

(식 중, 0.16≤x≤0.17, 0.16≤y≤0.17이다.)로 나타나는, 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법이다.(In the formula, 0.16≤x≤0.17 and 0.16≤y≤0.17.) It is a manufacturing method of the oxide-type positive electrode active material precursor for lithium ion batteries.

본 발명의 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법은, 다른 일 실시형태에서 상기 전구체의 평균 입경(D50)이 7.0∼17.0㎛이다.In the method for producing an oxide-based positive electrode active material precursor for a lithium ion battery of the present invention, in another embodiment, the average particle diameter (D50) of the precursor is 7.0 to 17.0 μm.

본 발명은 또 다른 일 실시형태에 있어서, 본 발명의 방법으로 제조된 상기 전구체를, Ni, Co 및 Mn로 이루어지는 금속의 원자수의 합(Me)과 리튬 원자수와의 비(Li/Me)가 1.40∼1.48이 되도록 혼합하여 리튬 혼합물을 형성하는 공정과,In another embodiment, the present invention prepared by the method of the present invention, the ratio of the number of atoms of metal (Me) and the number of lithium atoms (Li/Me) of the metal consisting of Ni, Co and Mn Is a process to form a lithium mixture by mixing so that it becomes 1.40 to 1.48,

상기 리튬 혼합물을 대기 분위기 중, 750∼950℃에서 소성하는 공정을 포함하는 리튬 이온 전지용 산화물계 양극 활물질의 제조 방법이다.It is a method for producing an oxide-based positive electrode active material for a lithium ion battery, comprising the step of firing the lithium mixture at 750 to 950°C in an atmospheric atmosphere.

본 발명은 또 다른 일 실시형태에 있어서, 본 발명의 리튬 이온 전지용 산화물계 양극 활물질을 갖춘 리튬 이온 전지용 양극이다.In another embodiment, the present invention is a positive electrode for a lithium ion battery having an oxide-based positive electrode active material for a lithium ion battery of the present invention.

본 발명은 또 다른 일 실시형태에 있어서, 본 발명의 리튬 이온 전지용 양극을 구비한 리튬 이온 전지이다.This invention is another one Embodiment. WHEREIN: It is a lithium ion battery provided with the positive electrode for lithium ion batteries of this invention.

본 발명에 의하면, Li 비율이 높은 조성이어도 낮은 알칼리량과 높은 에너지 밀도를 양립시킬 수 있는 산화물계 양극 활물질을 제공할 수 있다.ADVANTAGE OF THE INVENTION According to this invention, even if it is a composition with a high Li ratio, the oxide-type positive electrode active material which can make both a low alkali content and high energy density compatible can be provided.

(리튬 이온 전지용 산화물계 양극 활물질의 구성)(Composition of oxide-based positive electrode active material for lithium ion batteries)

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질은 금속 조성이 LiaNibCocMn1 -b-c The oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention has a metal composition of Li a Ni b Co c Mn 1 -bc

(식 중, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17이다.)(Wherein, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17.)

로 나타나고, 함유되는 잔류 알칼리량이 0.7질량% 이하이다.The residual alkali content contained is 0.7 mass% or less.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질은, 조성식에서 Li의 다른 금속(Ni, Co, Mn)의 합계에 대한 몰비가 1.40 이상 1.48 이하로 높은 것이지만, 함유되는 잔류 알칼리량을 0.7질량% 이하로 제어함으로써 낮은 알칼리량과 높은 에너지 밀도를 양립시킬 수 있다. 여기서 「에너지 밀도(mAh/cm3)」란, (전극 밀도)×(방전 용량)을 의미하고, 상기 에너지 밀도가 높으면 통상 전지의 축전량이 증가하는 효과 외에도, 소형 축전지에서도 큰 전력을 모아서 축적할 수 있는 효과가 있다. 또한, 여기서 말하는 방전 용량이란 상기 양극 활물질을 양극에 구비한 리튬 이온 전지가 가지는 방전 용량이다. 상기 에너지 밀도는 540mAh/cm3 이상인 것이 바람직하고, 580mAh/cm3 이상인 것이 보다 바람직하며, 600mAh/cm3 이상인 것이 더욱 바람직하다.The oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention has a high molar ratio of Li to the sum of other metals (Ni, Co, Mn) of 1.40 or more and 1.48 or less in the composition formula, but the amount of residual alkali contained is 0.7. By controlling to below mass%, both a low alkali content and a high energy density can be achieved. Here, "energy density (mAh/cm 3 )" means (electrode density) x (discharge capacity), and when the energy density is high, in addition to the effect of increasing the amount of storage of a normal battery, a large amount of electric power can be collected and accumulated even in a small storage battery. It has the effect. Note that the discharge capacity referred to herein is the discharge capacity of the lithium ion battery provided with the positive electrode active material on the positive electrode. The energy density is more preferably not less than desirable and, more preferably not less than 580mAh / cm 3, 600mAh / cm 3 less than 540mAh / cm 3.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질에 있어서, Li 조성이 1.40 미만에서는 리튬량이 부족해서 안정된 결정 구조를 유지하기 어렵고, 1.48을 넘으면 상기 양극 활물질을 이용해서 제작한 리튬 이온 전지의 방전 용량이 낮아질 우려가 있다.In the oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention, when the Li composition is less than 1.40, it is difficult to maintain a stable crystal structure due to insufficient amount of lithium, and when it exceeds 1.48, the lithium ion battery produced using the positive electrode active material There is a fear that the discharge capacity is lowered.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질의 평균 입경(D50)은 9.0∼14.0㎛인 것이 바람직하다. 이러한 구성에 의하면, 분체 밀도가 높다는 이점을 가지고, 또한 전극 도포 후에 프레스 할 때에 금속박의 파손이 억제된다. 상기 평균 입경(D50)은 9.5㎛ 이상이어도 좋고, 10.0㎛ 이상이어도 좋으며, 10.5㎛ 이상이어도 좋다. 또한, 상기 평균 입경(D50)은 13.5㎛ 이하여도 좋고, 13.0㎛ 이하여도 좋으며, 12.5㎛ 이하여도 좋고, 12.0㎛ 이하여도 좋다.It is preferable that the average particle diameter (D50) of the oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention is 9.0 to 14.0 µm. According to such a structure, it has the advantage of having a high powder density, and breakage of the metal foil is suppressed when pressing after electrode application. The average particle diameter (D50) may be 9.5 µm or more, 10.0 µm or more, or 10.5 µm or more. The average particle diameter (D50) may be 13.5 μm or less, 13.0 μm or less, 12.5 μm or less, or 12.0 μm or less.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질에 함유되는 잔류 알칼리량은 0.6질량% 이하인 것이 바람직하고, 0.4질량% 이하인 것이 보다 바람직하며, 0.2질량% 이하인 것이 보다 바람직하다.The amount of residual alkali contained in the oxide-based positive electrode active material for lithium ion batteries according to the embodiment of the present invention is preferably 0.6% by mass or less, more preferably 0.4% by mass or less, and more preferably 0.2% by mass or less.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질의 탭 밀도는 1.4g/cm3 이상인 것이 바람직하다. 이러한 구성에 의하면, 체적당 에너지 밀도가 높은 전지를 구성할 수 있다. 상기 탭 밀도는 1.5g/cm3 이상인 것이 보다 바람직하고, 1.6g/cm3 이상인 것이 더욱 바람직하다.It is preferable that the tap density of the oxide-based positive electrode active material for a lithium ion battery according to the embodiment of the present invention is 1.4 g/cm 3 or more. According to such a structure, a battery having a high energy density per volume can be constructed. The tap density is more preferably 1.5 g/cm 3 or more, and even more preferably 1.6 g/cm 3 or more.

(리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법)(Method for producing oxide-based positive electrode active material precursor for lithium ion battery)

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질 전구체는, 조성식이(NixCoyMn1-x-y)CO3 The oxide-based positive electrode active material precursor for a lithium ion battery according to an embodiment of the present invention has a compositional formula (Ni x Co y Mn 1-xy )CO 3

(식 중, 0.16≤x≤0.17, 0.16≤y≤0.17이다.)로 나타난다.(In the formula, 0.16≤x≤0.17 and 0.16≤y≤0.17.)

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법은 니켈염, 코발트염, 망간염, 암모니아수 및 탄산염의 수용액을 함유하는 수용액을 반응액으로 하고, 반응액 중의 pH를 9.6∼10.5, 암모늄 이온 농도를 2.5g/L 이하, 액온을 40∼60℃로 제어하면서 정석 반응을 실시하는 공정을 포함한다.In the method for producing an oxide-based positive electrode active material precursor for a lithium ion battery according to an embodiment of the present invention, an aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, aqueous ammonia and carbonate is used as the reaction solution, and the pH in the reaction solution is 9.6 to 10.5, ammonium ion concentration of 2.5 g/L or less, and a step of performing a crystallization reaction while controlling the liquid temperature to 40 to 60°C.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법은, 이와 같이 반응액 중의 pH, 암모늄 이온 농도, 액온을 일정한 범위 내로 제어하면서 정석 반응시키는 것을 특징으로 하고, 상기 방법에 따라서 낮은 알칼리량, 평균 입경(D50)이 7.0∼17.0㎛인 중질의 전구체를 제작할 수 있다. 상기 전구체를 사용함으로써, Li 비율이 높은 조성이어도 낮은 알칼리량과 높은 에너지 밀도를 양립시킬 수 있는 산화물계 양극 활물질을 제작할 수 있다.A method for producing an oxide-based positive electrode active material precursor for a lithium ion battery according to an embodiment of the present invention is characterized in that crystallization reaction is performed while controlling pH, ammonium ion concentration, and liquid temperature in the reaction solution within a certain range. A heavy precursor having a low alkali content and an average particle diameter (D50) of 7.0 to 17.0 µm can be produced. By using the precursor, an oxide-based positive electrode active material capable of achieving both a low alkali content and a high energy density can be produced even if the composition has a high Li ratio.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법에 있어서는, 상술한 바와 같이, 반응액 중의 pH, 암모늄 이온 농도, 액온을 일정한 범위 내로 제어하면서 정석 반응시키지만, 이를 위해서는 예를 들면, (1)니켈염, 코발트염, 망간염의 혼합 수용액, (2)암모니아수, (3)탄산염 수용액의 3개 원료를 반응조에 동시에 소량씩 연속 공급해서 반응시킨다. 일례를 구체적으로 들면, 10L의 반응조에 (1)니켈염, 코발트염, 망간염의 혼합 수용액을 0.60L/h, (2)암모니아수를 0.04L/h, (3)탄산염 수용액을 1.2L/h로 동시에 연속 공급해서 정석 반응시켜도 좋다. 이와 같이 3개의 원료를 반응조에 동시에 소량씩 연속 공급해서 반응시킴에 따라, 반응조 중의 반응액의 pH와 암모니아 농도의 변동이 양호하게 억제되어, 반응액 중의 pH를 9.6∼10.5, 암모늄 이온 농도를 2.5g/L 이하로 제어하기 쉬워진다.In the method for producing an oxide-based positive electrode active material precursor for a lithium ion battery according to an embodiment of the present invention, as described above, crystallization reaction is performed while controlling the pH, ammonium ion concentration, and liquid temperature in the reaction solution within a predetermined range. For example, three raw materials, (1) a mixed aqueous solution of nickel salt, cobalt salt, and manganese salt, (2) ammonia water, and (3) aqueous carbonate solution, are continuously fed to the reaction tank in small portions at a time to react. Specifically, in a 10 L reactor, (1) a mixed aqueous solution of nickel salt, cobalt salt, and manganese salt was 0.60 L/h, (2) ammonia water was 0.04 L/h, and (3) an aqueous carbonate solution was 1.2 L/h. The crystallization reaction may be performed by continuously supplying furnaces at the same time. As such, by continuously supplying the three raw materials to the reaction tank in small portions simultaneously and reacting, fluctuations in the pH and ammonia concentration of the reaction solution in the reaction tank are suppressed satisfactorily, and the pH in the reaction solution is 9.6 to 10.5 and the ammonium ion concentration to 2.5. It becomes easy to control below g/L.

상기 (3)의 탄산염 수용액은 예를 들면, 탄산나트륨 수용액, 탄산칼륨 수용액, 탄산수소나트륨 수용액, 탄산수소칼륨 수용액 등의 탄산기 염을 이용한 수용액을 들 수 있다.The carbonate aqueous solution of (3) includes, for example, an aqueous solution using a carbonate salt such as an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, an aqueous sodium hydrogen carbonate solution, and an aqueous potassium hydrogen carbonate solution.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법에 있어서, 반응액 중의 pH를 9.6∼10.5로 제어하면서 정석 반응을 실시하지만, pH가 9.6 미만이면 생성하는 전구체의 입경이 너무 커서, 양극 활물질 전극으로의 압연시에 집전박을 찢을 우려가 있다. 또 pH가 10.5를 넘으면, 생성하는 전구체의 입경이 너무 작아져서 양극 활물질의 탭 밀도가 저하할 우려가 있다. 반응액 중의 pH는 9.8 이상이어도 좋고, 10.0 이상이어도 좋으며, 10.3 이하여도 좋고, 10.1 이하여도 좋다.In the method for producing an oxide-based positive electrode active material precursor for a lithium ion battery according to an embodiment of the present invention, crystallization reaction is performed while controlling the pH in the reaction solution to 9.6 to 10.5, but if the pH is less than 9.6, the particle diameter of the resulting precursor is too high It is large, and there is a fear that the current collector foil is torn during rolling to the positive electrode active material electrode. Moreover, when the pH is over 10.5, the particle size of the precursor to be produced becomes too small, so that the tap density of the positive electrode active material may fall. The pH in the reaction solution may be 9.8 or more, 10.0 or more, or 10.3 or less, or 10.1 or less.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법에 있어서, 반응액 중의 암모늄 이온 농도를 2.5g/L 이하로 제어하면서 정석 반응을 실시하지만, 이러한 구성에 의하면, 생성하는 전구체를 사용해서 제작한 리튬 이온 전지용 산화물계 양극 활물질의 잔류 알칼리량을 0.7질량% 이하로 제어할 수 있다. 반응액 중의 암모늄 이온 농도는 2.0g/L 이하인 것이 바람직하고, 1.5g/L 이하인 것이 보다 바람직하며, 1.0g/L 이하인 것이 더욱 바람직하다.In the method for producing an oxide-based positive electrode active material precursor for a lithium ion battery according to an embodiment of the present invention, crystallization reaction is performed while controlling the ammonium ion concentration in the reaction solution to 2.5 g/L or less, but according to such a configuration, the produced precursor is produced. The residual alkali content of the oxide-based positive electrode active material for lithium ion batteries produced using can be controlled to 0.7 mass% or less. The ammonium ion concentration in the reaction solution is preferably 2.0 g/L or less, more preferably 1.5 g/L or less, and even more preferably 1.0 g/L or less.

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법에 있어서, 반응액의 액온을 40∼60℃로 제어하면서 정석 반응을 실시하지만, 액온이 40℃ 미만이면, 생성하는 전구체의 입경이 너무 작아져서 양극 활물질의 탭 밀도가 저하할 우려가 있고, 60℃을 넘으면 장치에 오류가 생길 우려, 에너지 비용 면에서 불리해질 우려가 있다. 반응액의 액온은 45℃ 이상이어도 좋고, 50℃ 이상이어도 좋다. 또, 반응액의 온도는 55℃ 이하여도 좋다.In the method for producing an oxide-based positive electrode active material precursor for a lithium ion battery according to an embodiment of the present invention, crystallization reaction is performed while controlling the liquid temperature of the reaction solution at 40 to 60°C, but when the liquid temperature is less than 40°C, There is a possibility that the tap density of the positive electrode active material decreases due to the particle size being too small, and if the temperature exceeds 60°C, there is a fear that an error occurs in the device and disadvantageous in terms of energy cost. The liquid temperature of the reaction solution may be 45°C or higher, or 50°C or higher. Moreover, the temperature of the reaction liquid may be 55°C or lower.

(리튬 이온 전지용 산화물계 양극 활물질의 제조 방법)(Method for producing oxide-based positive electrode active material for lithium ion batteries)

본 발명의 실시형태와 관련된 리튬 이온 전지용 산화물계 양극 활물질의 제조 방법은, 상술한 방법으로 제조된 전구체를 Ni, Co 및 Mn로 이루어지는 금속의 원자수의 합(Me)과 리튬의 원자수의 비(Li/Me)가 1.40∼1.48이 되도록 혼합해서, 리튬 혼합물을 형성하는 공정과, 리튬 혼합물을 대기 분위기 중, 750∼950℃에서 소성하는 공정을 포함한다. 상기 리튬 혼합물을 750℃ 미만에서 소성하면 전구체와 리튬 화합물이 충분히 반응하지 않는 문제가 생길 우려가 있고, 950℃ 초과로 소성하면 결정 구조로부터 산소가 이탈하는 문제가 생길 우려가 있다.In the method for producing an oxide-based positive electrode active material for a lithium ion battery according to an embodiment of the present invention, the ratio of the number of atoms of metal (Me) and the number of atoms of lithium of the precursor made of the above-described method is Ni, Co, and Mn. It includes the process of mixing (Li/Me) to become 1.40-1.48, and forming a lithium mixture, and the process of baking a lithium mixture at 750-950 degreeC in atmospheric atmosphere. When the lithium mixture is fired at less than 750°C, there is a fear that the precursor and the lithium compound do not react sufficiently, and when fired above 950°C, there is a risk that oxygen is released from the crystal structure.

특허문헌 1의 고용체 양극 활물질에서는, 우선 핵 생성을 전이금속 수용액과 암모니아수로 하고, 그 후, 탄산나트륨 수용액을 첨가한다. 이 경우, 생성하는 핵은 비교적 작은 것뿐이고, 또한, 많이 생성하는 점에서, 생성 후 즉시 불규칙하게 2차 입자로 응집되어 버리고, 그에 이어서 탄산나트륨 수용액을 첨가해 나감으로써 응집핵이 그 비뚤어진 형태인 채로 성장해 버린다. 이러한 경우, 생성한 2차 입자에 틈새가 많은 점에서 전극 반응 속도의 향상에 도움이 되지만, 소성시에 리튬원이 그 비뚤어진 전구체 모양에 맞추어 많이 필요하게 되어 버려서, 결과적으로 알칼리가 많아져 버리는 문제가 생기는 것은 피할 수 없었다. 이에 대해서, 본 발명의 실시형태와 관련되는 제조 방법에 의하면, 니켈염, 코발트염, 망간염, 암모니아수 및 탄산염의 수용액을 함유하는 수용액을 반응액으로 하고, 반응액 중의 pH를 9.6∼10.5, 암모늄 이온 농도를 2.5g/L 이하, 액온을 40∼60℃로 제어하면서 정석 반응을 실시하여 전구체를 제작하고 있기 때문에, 소성시에 양호하게 반응하는 전이금속의 전구체를 제작할 수 있고, 이를 리튬원과 Li/(Ni+Co+Mn)=1.40∼1.48의 몰비로 혼합하여 750∼950℃에서 2∼12시간 소성함으로써 잔류 알칼리량이 낮고, 또한 에너지 밀도가 높은 산화물계 양극 활물질을 제조할 수 있다.In the solid solution positive electrode active material of Patent Document 1, first, nucleation is made into an aqueous transition metal solution and aqueous ammonia, and then an aqueous sodium carbonate solution is added. In this case, the nuclei to be generated are relatively small, and in addition, from the point of production, the aggregates are irregularly aggregated into secondary particles immediately after generation, and then, by adding an aqueous sodium carbonate solution, the agglomeration nuclei remain in the crooked form. It grows. In this case, since the generated secondary particles have a large gap, it helps to improve the electrode reaction rate, but when firing, a lithium source is required in accordance with the shape of the crooked precursor, and as a result, the alkali increases. It could not be avoided. On the other hand, according to the production method according to the embodiment of the present invention, an aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, ammonia water and carbonate is used as the reaction solution, and the pH in the reaction solution is 9.6 to 10.5, ammonium. Since the precursor is produced by performing crystallization reaction while controlling the ion concentration to 2.5 g/L or less and the liquid temperature to 40 to 60° C., a precursor of a transition metal that reacts favorably upon firing can be prepared, and this is used with a lithium source. By mixing at a molar ratio of Li/(Ni+Co+Mn) = 1.40 to 1.48 and baking at 750 to 950°C for 2 to 12 hours, an oxide-based positive electrode active material having a low residual alkali content and a high energy density can be produced.

(리튬 이온 전지용 양극 및 이를 이용한 리튬 이온 전지의 구성)(Composition of positive electrode for lithium ion battery and lithium ion battery using the same)

본 발명의 실시형태와 관련된 리튬 이온 전지용 양극은, 예를 들면, 상술한 구성의 리튬 이온 전지용 산화물계 양극 활물질, 도전조제, 바인더를 혼합해서 조제한 양극 합제를 알루미늄박 등으로 이루어지는 집전체의 한 면 또는 양면에 마련한 구조를 가지고 있다. 또, 본 발명의 실시형태와 관련된 리튬 이온 전지는 이러한 구성의 리튬 이온 전지용 양극을 구비하고 있다. 또, 본 발명의 실시형태와 관련된 리튬 이온 전지는 액계 리튬 이온 전지여도 좋고, 전고체 리튬 이온 전지여도 좋다.The positive electrode for a lithium ion battery according to the embodiment of the present invention is, for example, one surface of a current collector made of an aluminum foil or the like as a positive electrode mixture prepared by mixing an oxide-based positive electrode active material for a lithium ion battery, a conductive aid, and a binder having the above-described configuration. Or it has a structure provided on both sides. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure. Further, the lithium ion battery according to the embodiment of the present invention may be a liquid-based lithium ion battery or an all-solid lithium ion battery.

[실시예][Example]

이하, 본 발명 및 그 이점을 보다 잘 이해하기 위한 실시예를 제공하지만, 본 발명은 이들 실시예에 한정되는 것은 아니다.Hereinafter, examples are provided to better understand the present invention and its advantages, but the present invention is not limited to these examples.

이하에 나타내는 바와 같이, 실시예 1∼11 및 비교예 1∼4에서 각각 산화물계 양극 활물질을 제작하여, 그 평균 입경(D50), 잔류 알칼리량, 탭 밀도(1500회 탭 후의 밀도)를 측정하고, 추가로 상기 양극 활물질을 이용한 리튬 이온 전지의 방전 용량 및 전극 밀도를 측정하여 (전극 밀도)×(방전 용량)으로 에너지 밀도를 산출했다. 또, 얻어진 산화물계 양극 활물질의 분말을 XRD 회절해서 층상 구조인 것을 확인하고, 유도 결합 플라스마 발광 분광 분석 장치(ICP-OES) 및 이온 크로마토 그래프법에 따라서 Li, Ni, Mn, Co의 함유량을 측정했다. 그 분석결과로부터, 상기 양극 활물질을 LiaNibCocMn1 -b-c의 금속 조성으로 나타낸 경우의 a, b, c를 구했다.As shown below, the oxide-based positive electrode active materials were prepared in Examples 1 to 11 and Comparative Examples 1 to 4, respectively, and the average particle diameter (D50), residual alkali content, and tap density (density after 1500 taps) were measured. , Further, by measuring the discharge capacity and the electrode density of the lithium ion battery using the positive electrode active material, the energy density was calculated by (electrode density) x (discharge capacity). In addition, XRD diffraction of the powder of the obtained oxide-based positive electrode active material was confirmed to have a layered structure, and the contents of Li, Ni, Mn, and Co were measured according to an inductively coupled plasma emission spectroscopic analyzer (ICP-OES) and ion chromatography. did. From the results of the analysis, a, b, and c in the case where the positive electrode active material was expressed by the metal composition of Li a Ni b Co c Mn 1 -bc were determined.

-잔류 알칼리량--Amount of residual alkali-

잔류 알칼리량은 각각 생성한 양극 활물질 분말 1g을 순수 50mL 중에 분산시켜서, 10분간 교반하여 여과한 후, 여과액 10mL와 순수 15mL의 혼합액을 0.1N의 HCl로 전위차 측정해서 구했다.The amount of residual alkali was determined by dispersing 1 g of the positive electrode active material powder produced in 50 mL of pure water, stirring and filtering for 10 minutes, and then measuring the potential difference between 10 mL of the filtrate and 15 mL of pure water with 0.1 N HCl.

-전지 특성--Battery characteristics-

얻어진 양극 활물질을 도전재(아세틸렌 블랙)와 바인더(폴리 불화 비닐리덴)를 80:10:10의 비율로 칭량하여, 바인더를 유기용매(N-메틸피롤리돈)에 용해한 것에 양극 활물질과 도전재를 혼합해서 슬러리화 하고, Al박상에 도포하여 건조한 후에 45kN로 프레스하여 양극으로 했다. 계속해서, 반대극을 Li로 한 평가용 2032형 코인 셀을 제작하고, 전해액에 1M-LiPF6를 EC-DMC(체적비 1:1)에 용해한 것을 이용하여, 25℃ 전지 초기 특성(충전 용량, 방전 용량, 충방전 특성)을 측정했다. 또한, 충방전 조건은 충전 조건: CC/CV 4.8V, 0.1C, 방전 조건: CC 0.05C, 3V까지이다.The positive electrode active material and the conductive material were obtained by weighing the obtained positive electrode active material with a conductive material (acetylene black) and a binder (polyvinylidene fluoride) in a ratio of 80:10 to 10, and dissolving the binder in an organic solvent (N-methylpyrrolidone). Was mixed to form a slurry, applied onto an Al foil, dried, and then pressed at 45 kN to form an anode. Subsequently, a 2032 type coin cell for evaluation using a counter electrode as Li was prepared, and 1M-LiPF 6 dissolved in EC-DMC (volume ratio 1:1) in an electrolytic solution was used, and the initial characteristics of 25°C battery (charge capacity, Discharge capacity and charge/discharge characteristics) were measured. In addition, charging and discharging conditions are charging conditions: CC/CV 4.8V, 0.1C, and discharging conditions: CC 0.05C, up to 3V.

-전극 밀도--Electrode density-

상기 제작한 Al박상에 도포해서 건조한 후에 45kN로 프레스하여 양극으로 한 중량에서 미리 측정한 Al박만의 중량을 뺀 중량을 전극 중량으로 하고, 마이크로미터로 측정한 양극의 두께에서 미리 측정한 Al박 만큼의 두께를 뺀 두께를 전극 두께로 하여, 구한 전극 두께와 전극 면적으로부터 전극 부피를 산출했다. 그리고 전극 밀도를 전극 중량÷전극 부피로 산출했다.After applying and drying on the produced Al foil, press it with 45 kN, and the weight obtained by subtracting the weight of only the pre-measured Al foil from the weight of the anode is used as the electrode weight, and as much as the Al foil measured in advance at the thickness of the anode measured with a micrometer. The electrode volume was calculated from the obtained electrode thickness and electrode area, using the thickness minus the thickness as the electrode thickness. And the electrode density was calculated by electrode weight ÷ electrode volume.

(실시예 1)(Example 1)

황산 니켈, 황산 코발트 및 황산 망간의 1.5moL/L 수용액을 각각 제작하고, 각 수용액을 소정의 양을 칭량하여, Ni:Co:Mn=0.167:0.167:0.666이 되도록 혼합 용액을 조정해서, 교반 날개를 용기 내부에 설치한 반응조에 송액하였다.A 1.5moL/L aqueous solution of nickel sulfate, cobalt sulfate, and manganese sulfate was prepared respectively, and each aqueous solution was weighed in a predetermined amount, and the mixed solution was adjusted so that Ni:Co:Mn=0.167:0.167:0.666. Was sent to the reaction tank installed inside the container.

그 다음, 교반 날개를 가동시키면서 반응조 내의 혼합액의 pH를 10.5, 암모늄 이온 농도 2.5g/L가 되도록, 암모니아수와 1.3mol/L의 탄산나트륨 수용액을 상기 혼합액 중에 첨가하여, 정석법에 따라서 Ni-Co-Mn 복합 탄산염을 함께 침전시켰다. 이 때 반응조 내의 혼합액 온도는 40℃가 되도록 워터 재킷으로 보온했다.Then, ammonia water and 1.3 mol/L aqueous sodium carbonate solution were added to the mixed solution so that the pH of the mixed solution in the reaction tank was 10.5 and the ammonium ion concentration was 2.5 g/L while the stirring blade was operated, and Ni-Co- was added according to the crystallization method. The Mn complex carbonate precipitated together. At this time, the temperature of the mixed solution in the reaction tank was kept warm with a water jacket so as to be 40°C.

또, 반응으로 생성하는 공침물의 산화를 방지하기 위해서 반응조에 질소 가스를 도입했다. 반응조에 도입하는 가스는 헬륨, 네온, 아르곤, 탄산 가스 등 산화를 촉진하지 않는 가스라면, 상기 질소 가스에 한정하지 않고 사용할 수 있다.In addition, nitrogen gas was introduced into the reaction tank to prevent oxidation of the coprecipitates produced by the reaction. The gas introduced into the reaction tank can be used without being limited to the nitrogen gas, as long as it is a gas that does not promote oxidation, such as helium, neon, argon, or carbon dioxide gas.

공침한 침전물을 흡인·여과한 후, 순수로 수세하고, 120℃, 12시간 건조했다. 이와 같이 하여 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 7.8㎛였다.The coprecipitated precipitate was suctioned and filtered, washed with pure water, and dried at 120°C for 12 hours. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 7.8 µm.

그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 했을 경우, 리튬(Li) 원자수와의 비(Li/Me)가 1.44가 되도록 수산화 리튬과 혼합해서, 자동 유발로 30분간 혼합하고, 혼합된 분체를 알루미나 용기에 충전하여, 머플 가마에서 900℃, 8시간, 대기중에서 소성하여, 산화물계 양극 활물질을 제작했다. 상기 양극 활물질의 평균 입경(D50)은 10.0㎛이고, 잔류 알칼리량은 0.29질량%로 낮으며, 탭 밀도는 1.5g/cc로 높은 수치였다.Then, when the sum of the number of atoms of the metal composed of the composite carbonate compound particles Ni, Co, and Mn is set to Me, lithium hydroxide is mixed with lithium hydroxide so that the ratio (Li/Me) with the number of atoms is 1.44. , The mixture was mixed for 30 minutes by automatic induction, and the mixed powder was filled in an alumina container, and calcined in a muffle furnace at 900° C. for 8 hours and in the air to prepare an oxide-based positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 10.0 µm, a residual alkali content of 0.29% by mass, and a tap density of 1.5 g/cc.

그 다음, 상기 양극 활물질과, 도전재인 아세틸렌 블랙과, 바인더인 폴리 불화 비닐리덴을 90:5:5의 비율로 칭량하여, 바인더인 폴리 불화 비닐리덴을 유기용매(N-메틸피롤리돈)에 용해시키고, 상기 양극 활물질과 도전재와 함께 혼합하여 슬러리화 하며, 알루미늄박상에 도포하여 건조시키고, 프레스 성형해서 양극을 형성하였다.Then, the positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride as a binder were weighed at a ratio of 90:5:5, and polyvinylidene fluoride as a binder was measured in an organic solvent (N-methylpyrrolidone). Dissolved, mixed with the positive electrode active material and the conductive material to form a slurry, coated on an aluminum foil, dried, and press-molded to form a positive electrode.

그 다음, 전지 구조체로서 음극을 Li 금속박으로 평가용 2032형 코인 셀을 제작하고, 전해액에 1M-LiPF6를 EC-DMC(체적비 1:1)에 용해한 것을 이용하여, 25℃에서 충전 용량의 전지 초기 특성을 측정했다. 그 결과, 전지 구조체의 방전 용량은 253mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.Next, as a battery structure, a 2032 type coin cell for evaluation with a negative electrode as a Li metal foil was produced, and a battery having a charging capacity of 25° C. was obtained by dissolving 1 M-LiPF 6 in EC-DMC (volume ratio 1: 1) in an electrolytic solution. Initial properties were measured. As a result, the discharge capacity of the battery structure was 253 mAh/g, and showed good energy density.

(실시예 2)(Example 2)

실시예 2는 실시예 1에서의 복합 탄산염 화합물 입자와 수산화 리튬을 혼합하고, 머플 가마에서 소성하는 온도를 850℃, 8시간, 대기중으로 한 것 외에, 실시예 1과 같은 조건으로 리튬 이온 전지용 산화물계 양극 활물질을 제작했다. 그 결과, Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 7.8㎛였다. 또, 양극 활물질의 평균 입경(D50)은 9.4㎛이고, 잔류 알칼리량은 0.40질량%로 낮으며, 탭 밀도는 1.4g/cc로 높은 수치였다.In Example 2, the composite carbonate compound particles in Example 1 were mixed with lithium hydroxide, and the temperature calcined in a muffle furnace was set to 850° C., 8 hours, in the atmosphere, and in the same conditions as in Example 1, the oxide for a lithium ion battery was used. Based positive electrode active material was produced. As a result, the average particle diameter (D50) of the Ni-Co-Mn composite carbonate compound particles was 7.8 µm. Moreover, the average particle diameter (D50) of the positive electrode active material was 9.4 µm, the residual alkali content was as low as 0.40% by mass, and the tap density was as high as 1.4 g/cc.

실시예 2에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 265mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 2 was 265 mAh/g, and also exhibited good energy density.

(실시예 3)(Example 3)

실시예 3은 실시예 1에서의 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)를 1.48로 한 것 외에, 실시예 1과 같은 조건으로 리튬 이온 전지용 산화물계 양극 활물질을 제작했다. 그 결과, Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 7.8㎛였다. 또, 양극 활물질의 평균 입경(D50)은 9.5㎛이고, 잔류 알칼리량은 0.50질량%로 낮고, 탭 밀도는 1.4g/cc로 높은 수치였다.In Example 3, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles of Example 1, Ni, Co, and Mn was set to Me, the ratio (Li/Me) with the number of lithium atoms was set to 1.48. , An oxide-based positive electrode active material for a lithium ion battery was prepared under the same conditions as in Example 1. As a result, the average particle diameter (D50) of the Ni-Co-Mn composite carbonate compound particles was 7.8 µm. Moreover, the average particle diameter (D50) of the positive electrode active material was 9.5 µm, the residual alkali content was low at 0.50% by mass, and the tap density was high at 1.4 g/cc.

실시예 3에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 250mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure by the oxide-based positive electrode active material for a lithium ion battery prepared in Example 3 was 250 mAh/g, and also exhibited good energy density.

(실시예 4)(Example 4)

실시예 4는 실시예 1에서의 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)를 1.48로 하고, 머플 가마에서의 소성하는 온도를 850℃로 한 것 외에, 실시예 1과 같은 조건으로 리튬 이온 전지용 산화물계 양극 활물질을 제작했다. 그 결과, Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 7.8㎛였다. 또, 양극 활물질의 평균 입경(D50)은 9.1㎛이고, 잔류 알칼리량은 0.62질량%로 낮으며, 탭 밀도는 1.4g/cc로 높은 수치였다.In Example 4, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn in Example 1 is Me, the ratio (Li/Me) with the number of lithium atoms is 1.48, and the muffle is An oxide-based positive electrode active material for a lithium ion battery was produced under the same conditions as in Example 1 except that the calcination temperature in the kiln was 850°C. As a result, the average particle diameter (D50) of the Ni-Co-Mn composite carbonate compound particles was 7.8 µm. Moreover, the average particle diameter (D50) of the positive electrode active material was 9.1 µm, the residual alkali content was as low as 0.62% by mass, and the tap density was as high as 1.4 g/cc.

실시예 4에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 257mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure by the oxide-based positive electrode active material for a lithium ion battery prepared in Example 4 was 257 mAh/g, and also exhibited good energy density.

(실시예 5)(Example 5)

실시예 5는 실시예 1에서의 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)를 1.44로 하고, 머플 가마에서의 소성하는 온도를 750℃로 한 것 외에, 실시예 1과 같은 조건으로 리튬 이온 전지용 산화물계 양극 활물질을 제작했다. 그 결과, Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 7.8㎛였다. 또, 양극 활물질의 평균 입경(D50)은 9.2㎛이고, 잔류 알칼리량은 0.55질량%로 낮으며, 탭 밀도는 1.4g/cc로 높은 수치였다.In Example 5, when the sum of the number of atoms of a metal composed of Ni, Co, and Mn as the composite carbonate compound particles in Example 1 was set to Me, the ratio (Li/Me) with the number of lithium atoms was set to 1.44, and the muffle An oxide-based positive electrode active material for a lithium ion battery was produced under the same conditions as in Example 1, except that the calcination temperature in the kiln was 750°C. As a result, the average particle diameter (D50) of the Ni-Co-Mn composite carbonate compound particles was 7.8 µm. Moreover, the average particle diameter (D50) of the positive electrode active material was 9.2 µm, the residual alkali content was as low as 0.55% by mass, and the tap density was as high as 1.4 g/cc.

실시예 5에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 251mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 5 was 251 mAh/g, and also exhibited good energy density.

(실시예 6)(Example 6)

실시예 6은 실시예 1에서의 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)를 1.44로 하고, 머플 가마에서의 소성하는 온도를 800℃로 한 것 외에, 실시예 1과 같은 조건으로 리튬 이온 전지용 산화물계 양극 활물질을 제작했다. 그 결과, Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 7.8㎛였다. 또, 양극 활물질의 평균 입경(D50)은 9.4㎛이고, 잔류 알칼리량은 0.49질량%로 낮으며, 탭 밀도는 1.4g/cc로 높은 수치였다.In Example 6, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn in Example 1 is Me, the ratio (Li/Me) with the number of lithium atoms is 1.44, and the muffle is An oxide-based positive electrode active material for a lithium ion battery was produced under the same conditions as in Example 1, except that the firing temperature in the kiln was 800°C. As a result, the average particle diameter (D50) of the Ni-Co-Mn composite carbonate compound particles was 7.8 µm. Moreover, the average particle diameter (D50) of the positive electrode active material was 9.4 µm, the residual alkali content was low at 0.49% by mass, and the tap density was high at 1.4 g/cc.

실시예 6에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 262mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 6 was 262 mAh/g, and exhibited good energy density.

(실시예 7)(Example 7)

실시예 7은 실시예 1에서의 공침 반응의 각 수용액의 혼합 비율을 Ni:Co:Mn=0.17:0.17:0.66이 되도록 조정하고, 혼합액의 pH를 9.6, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액 온도를 60℃로 변경해서 공침하였다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 16.1㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn으로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.40이 되도록 수산화 리튬과 혼합하고, 머플 가마에서 900℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 13.9㎛이고, 잔류 알칼리량은 0.32질량%로 낮으며, 탭 밀도는 1.5g/cc로 높은 수치였다.In Example 7, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni:Co:Mn=0.17:0.17:0.66, and the pH of the mixed solution was not added to 9.6 and ammonia, and the mixed solution in the coprecipitation reaction tank Co-precipitation was performed by changing the temperature to 60°C. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 16.1 µm. Then, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, the ratio of lithium atoms to lithium hydroxide is mixed with lithium hydroxide so that the ratio (Li/Me) is 1.40, and the muffle furnace is used. At 900 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 13.9 µm, a residual alkali content of 0.32% by mass, and a tap density of 1.5 g/cc.

실시예 7에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 271mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 7 was 271 mAh/g, and also exhibited good energy density.

(실시예 8)(Example 8)

실시예 8은 실시예 1에서의 공침 반응의 각 수용액의 혼합 비율을 Ni:Co:Mn=0.170:0.170:0.660이 되도록 조정하고, 혼합액의 pH를 9.6, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 60℃로 변경해서 공침하였다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 16.1㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.40이 되도록 수산화 리튬과 혼합하고, 머플 가마에서 850℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 12.8㎛이고, 잔류 알칼리량은 0.40질량%로 낮으며, 탭 밀도는 1.5g/cc로 높은 수치였다.In Example 8, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni:Co:Mn=0.170:0.170:0.660, and the pH of the mixed solution was not added to 9.6 and ammonia, and the mixed solution in the coprecipitation reaction tank The temperature was changed to 60°C to coprecipitate. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 16.1 µm. Then, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, the ratio with lithium number (Li/Me) is 1.40, mixed with lithium hydroxide, and muffle furnace At 850 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 12.8 μm, a residual alkali content of 0.40% by mass, and a tap density of 1.5 g/cc.

실시예 8에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 275mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 8 was 275 mAh/g, and also exhibited good energy density.

(실시예 9)(Example 9)

실시예 9는 실시예 1에서의 공침 반응의 각 수용액의 혼합 비율을 Ni:Co:Mn=0.160:0.160:0.680이 되도록 조정하고, 혼합액의 pH를 9.6, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 60℃로 변경해서 공침하였다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 16.1㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.44가 되도록 수산화 리튬과 혼합하고, 머플 가마에서 900℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 13.8㎛이고, 잔류 알칼리량은 0.47질량%로 낮으며, 탭 밀도는 1.5g/cc로 높은 수치였다.In Example 9, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni:Co:Mn=0.160:0.160:0.680, and the pH of the mixed solution was not added to 9.6 and ammonia, and the mixed solution in the coprecipitation reaction tank The temperature was changed to 60°C to coprecipitate. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 16.1 µm. Next, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, lithium hydroxide is mixed with the ratio of lithium atoms (Li/Me) to be 1.44, and the muffle furnace is used. At 900 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 13.8 µm, a residual alkali content of 0.47% by mass, and a tap density of 1.5 g/cc.

실시예 9에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 261mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 9 was 261 mAh/g, and exhibited good energy density.

(실시예 10)(Example 10)

실시예 10은 실시예 1에서의 공침 반응의 각 수용액의 혼합 비율을 Ni:Co:Mn=0.160:0.160:0.680이 되도록 조정하고, 혼합액의 pH를 9.6, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 60℃로 변경해서 공침하였다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 16.1㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.44가 되도록 수산화 리튬과 혼합하고, 머플 가마에서 850℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 12.6㎛이고, 잔류 알칼리량은 0.46질량%로 낮으며, 탭 밀도는 1.6g/cc로 높은 수치였다.In Example 10, the mixing ratio of each aqueous solution of the co-precipitation reaction in Example 1 was adjusted to be Ni:Co:Mn=0.160:0.160:0.680, and the pH of the mixed solution was 9.6 and no ammonia was added to the mixed solution in the coprecipitation reaction tank. The temperature was changed to 60°C to coprecipitate. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 16.1 µm. Next, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, lithium hydroxide is mixed with the ratio of lithium atoms (Li/Me) to be 1.44, and the muffle furnace is used. At 850 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 12.6 µm, a residual alkali content of 0.46% by mass, and a tap density of 1.6 g/cc.

실시예 10에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 273mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 10 was 273 mAh/g, and exhibited good energy density.

(실시예 11)(Example 11)

실시예 11은 실시예 1에서의 공침 반응의 각 수용액의 혼합 비율을 Ni:Co:Mn=0.160:0.160:0.680이 되도록 조정하고, 혼합액의 pH를 9.6, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 60℃로 변경해서 공침하였다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 16.1㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.40이 되도록 수산화 리튬과 혼합하고, 머플 가마에서 950℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 13.8㎛이고, 잔류 알칼리량은 0.25질량%로 낮으며, 탭 밀도는 1.6g/cc로 높은 수치였다.In Example 11, the mixing ratio of each aqueous solution of the coprecipitation reaction in Example 1 was adjusted to be Ni:Co:Mn=0.160:0.160:0.680, and the pH of the mixed solution was not added to 9.6 and ammonia, and the mixed solution in the coprecipitation reaction tank The temperature was changed to 60°C to coprecipitate. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 16.1 µm. Then, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, the ratio with lithium number (Li/Me) is 1.40, mixed with lithium hydroxide, and muffle furnace At 950 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 13.8 µm, a residual alkali content of as low as 0.25 mass%, and a tap density of as high as 1.6 g/cc.

실시예 11에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 255mAh/g이고, 또 양호한 에너지 밀도를 나타냈다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for a lithium ion battery prepared in Example 11 was 255 mAh/g, and also exhibited good energy density.

(비교예 1)(Comparative Example 1)

비교예 1은 실시예 1에서의 공침 반응에서 Ni:Co:Mn=0.160:0.160:0.680이 되도록 조정하여, 혼합액의 pH를 10.1, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 40℃로 하여 공침했다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 11.5㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.20이 되도록 수산화 리튬과 혼합하고, 머플 가마에서 850℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 9.8㎛이고, 또 수산화 리튬의 혼합 비율이 작은 만큼, 잔류 알칼리량은 0.09질량%로 낮아지며, 또 리튬비가 낮기 때문에 결정성의 품질도 저하되고, 탭 밀도는 1.2g/cc로 낮아져서, 실시예와 비교했을 때 작은 것이었다.In Comparative Example 1, in the coprecipitation reaction in Example 1, Ni:Co:Mn=0.160:0.160:0.680 was adjusted to adjust the pH of the mixed solution to 10.1, without adding ammonia, and to set the temperature of the mixed solution in the coprecipitation reactor to 40°C. It was made to coexist. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 11.5 µm. Then, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, the ratio (Li/Me) with the number of lithium atoms is mixed with lithium hydroxide so as to be 1.20, and the muffle furnace is used. At 850 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The average particle diameter (D50) of this positive electrode active material is 9.8 µm, and as the mixing ratio of lithium hydroxide is small, the residual alkali content is lowered to 0.09 mass%, and since the lithium ratio is low, the quality of crystallinity is lowered and the tap density is 1.2. It was lowered to g/cc, which was small compared to the examples.

비교예 1에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 135mAh/g이고, 또 양호한 에너지 밀도를 얻을 수 없었다.The discharge capacity of the battery structure using the oxide-based positive electrode active material for lithium ion batteries produced in Comparative Example 1 was 135 mAh/g, and a good energy density could not be obtained.

(비교예 2)(Comparative Example 2)

비교예 2는 실시예 1에서의 공침 반응에서 Ni:Co:Mn=0.160:0.160:0.680이 되도록 조정하여, 혼합액의 pH를 10.1, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 40℃으로 하여 공침했다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 11.5㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.52가 되도록 수산화 리튬과 혼합하고, 머플 가마에서 850℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 9.3㎛이고, 잔류 알칼리량은 0.77질량%로 높으며, 또 탭 밀도는 1.4였다.In Comparative Example 2, in the co-precipitation reaction in Example 1, Ni:Co:Mn=0.160:0.160:0.680 was adjusted to adjust the pH of the mixed solution to 10.1, without adding ammonia, and to set the temperature of the mixed solution in the co-precipitation reactor to 40°C. It was made to coexist. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 11.5 µm. Next, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, the ratio (Li/Me) with the number of lithium atoms is mixed with lithium hydroxide so as to be 1.52, and the muffle furnace is used. At 850 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 9.3 µm, a residual alkali content of 0.77% by mass, and a tap density of 1.4.

비교예 2에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 235mAh/g로 낮고, 잔류 알칼리량이 많기 때문에 전극 구조의 제작시에 리튬 이온 전지용 산화물계 양극 활물질의 겔화에 의한 방전 용량의 저하가 발생했다고 생각되며, 또 양호한 에너지 밀도를 얻을 수 없었다.The discharge capacity of the battery structure by the oxide-based positive electrode active material for lithium ion batteries produced in Comparative Example 2 is low at 235 mAh/g, and because of the large amount of residual alkali, discharge due to gelation of the oxide-based positive electrode active material for lithium ion batteries during the production of the electrode structure It is thought that a decrease in capacity occurred, and a good energy density could not be obtained.

(비교예 3)(Comparative Example 3)

비교예 3은 실시예 1에서의 공침 반응에서 Ni:Co:Mn=0.160:0.160:0.680이 되도록 조정하여, 혼합액의 pH를 10.1, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 40℃로 하여 공침했다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 11.5㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.56이 되도록 수산화 리튬과 혼합하고, 머플 가마에서 850℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 10.7㎛이고, 잔류 알칼리량은 0.86질량%로 높으며, 탭 밀도는 1.3g/cc였다.In Comparative Example 3, in the co-precipitation reaction in Example 1, Ni:Co:Mn=0.160:0.160:0.680 was adjusted to adjust the pH of the mixed solution to 10.1, without adding ammonia, and to set the temperature of the mixed solution in the co-precipitation reactor to 40°C. It was made to coexist. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 11.5 µm. Next, when the sum of the number of atoms of the metal consisting of the composite carbonate compound particles Ni, Co, and Mn is set to Me, it is mixed with lithium hydroxide so that the ratio (Li/Me) with the number of lithium atoms is 1.56, and the muffle furnace At 850 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 10.7 µm, a residual alkali content of 0.86% by mass, and a tap density of 1.3 g/cc.

비교예 3에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 215mAh/g이고, 또 양호한 에너지 밀도를 얻을 수 없었다.The discharge capacity of the battery structure by the oxide-based positive electrode active material for lithium ion batteries produced in Comparative Example 3 was 215 mAh/g, and a good energy density could not be obtained.

(비교예 4)(Comparative Example 4)

비교예 4는 실시예 1에서의 공침 반응에서 Ni:Co:Mn=0.160:0.160:0.680이 되도록 조정하여, 혼합액의 pH를 10.1, 암모니아를 첨가하지 않고, 공침 반응조 내의 혼합액의 온도를 40℃로 하여 공침했다. 이렇게 해서 제작된 Ni-Co-Mn 복합 탄산염 화합물 입자의 평균 입경(D50)은 11.5㎛였다. 그 다음, 복합 탄산염 화합물 입자인 Ni, Co, Mn로 이루어지는 금속의 원자수의 합을 Me로 한 경우, 리튬 원자수와의 비(Li/Me)가 1.70이 되도록 수산화 리튬과 혼합하고, 머플 가마에서 850℃, 8시간, 대기중에서 소성하여 양극 활물질을 제작했다. 이 양극 활물질의 평균 입경(D50)은 11.5㎛이고, 잔류 알칼리량은 1.38질량%로 높으며, 탭 밀도는 1.4g/cc였다.In Comparative Example 4, in the co-precipitation reaction in Example 1, Ni:Co:Mn=0.160:0.160:0.680 was adjusted to adjust the pH of the mixed solution to 10.1, without adding ammonia, and to set the temperature of the mixed solution in the co-precipitation reactor to 40°C. It was made to coexist. The Ni-Co-Mn composite carbonate compound particles thus produced had an average particle diameter (D50) of 11.5 µm. Next, when the sum of the number of atoms of the metal composed of the composite carbonate compound particles Ni, Co, and Mn is set to Me, it is mixed with lithium hydroxide so that the ratio (Li/Me) with the number of lithium atoms is 1.70, and the muffle furnace At 850 ℃, 8 hours, firing in the air to prepare a positive electrode active material. The positive electrode active material had an average particle diameter (D50) of 11.5 μm, a residual alkali content of 1.38% by mass, and a tap density of 1.4 g/cc.

비교예 4에서 제작된 리튬 이온 전지용 산화물계 양극 활물질에 의한 전지 구조체의 방전 용량은 189mAh/g이고, 또 양호한 에너지 밀도를 얻을 수 없었다.The discharge capacity of the battery structure by the oxide-based positive electrode active material for lithium ion batteries produced in Comparative Example 4 was 189 mAh/g, and a good energy density could not be obtained.

상기 실시예 1∼11 및 비교예 1∼4와 관련된 시험 조건 및 평가 결과를 표 1∼2에 나타낸다.The test conditions and evaluation results related to Examples 1 to 11 and Comparative Examples 1 to 4 are shown in Tables 1 to 2.

[표 1][Table 1]

Figure 112018114982312-pat00001
Figure 112018114982312-pat00001

[표 2][Table 2]

Figure 112018114982312-pat00002
Figure 112018114982312-pat00002

Claims (8)

금속 조성이 LiaNibCocMn1 -b-c
(식 중, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17이다.)
로 나타나고, 함유되는 잔류 알칼리량이 0.7질량% 이하인 리튬 이온 전지용 산화물계 양극 활물질.
The metal composition is Li a Ni b Co c Mn 1 -bc
(Wherein, 1.40≤a≤1.48, 0.16≤b≤0.17, 0.16≤c≤0.17.)
Oxide-based positive electrode active material for a lithium ion battery having a residual alkali content of 0.7 mass% or less.
제1항에 있어서,
평균 입경(D50)이 9.0∼14.0㎛인 리튬 이온 전지용 산화물계 양극 활물질.
According to claim 1,
An oxide-based positive electrode active material for a lithium ion battery having an average particle diameter (D50) of 9.0 to 14.0 µm.
제1항 또는 제2항에 있어서,
탭 밀도가 1.4g/cm3 이상인 리튬 이온 전지용 산화물계 양극 활물질.
The method according to claim 1 or 2,
An oxide-based positive electrode active material for a lithium ion battery having a tap density of 1.4 g/cm 3 or more.
니켈염, 코발트염, 망간염, 암모니아수 및 탄산염의 수용액을 함유하는 수용액을 반응액으로 하고, 상기 반응액 중의 pH를 9.6∼10.5, 암모늄 이온 농도를 2.5g/L 이하, 액온을 40∼60℃로 제어하면서 정석 반응을 실시하는 공정을 포함하며,
조성식이 (NixCoyMn1 -x-y)CO3
(식 중, 0.16≤x≤0.17, 0.16≤y≤0.17이다.)로 나타나는, 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법.
An aqueous solution containing an aqueous solution of nickel salt, cobalt salt, manganese salt, aqueous ammonia and carbonate is used as the reaction solution, the pH in the reaction solution is 9.6 to 10.5, the ammonium ion concentration is 2.5 g/L or less, and the liquid temperature is 40 to 60°C. It includes the process of performing crystallization reaction while controlling with,
Composition diet (Ni x Co y Mn 1 -xy )CO 3
(In the formula, 0.16≤x≤0.17 and 0.16≤y≤0.17.) A method for producing an oxide-based positive electrode active material precursor for a lithium ion battery.
제4항에 있어서,
상기 전구체의 평균 입경(D50)이 7.0∼17.0㎛인 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법.
According to claim 4,
A method for producing an oxide-based positive electrode active material precursor for a lithium ion battery having an average particle diameter (D50) of the precursor of 7.0 to 17.0 μm.
제4항 또는 제5항에 기재된 방법으로 제조된 상기 전구체를, Ni, Co 및 Mn로 이루어지는 금속의 원자수의 합(Me)과 리튬의 원자수와의 비(Li/Me)가 1.40∼1.48이 되도록 혼합하여 리튬 혼합물을 형성하는 공정과,
상기 리튬 혼합물을 대기 분위기 중, 750∼950℃에서 소성하는 공정을 포함하는 리튬 이온 전지용 산화물계 양극 활물질의 제조 방법.
The ratio (Li/Me) between the sum of the number of atoms of metal (Me) and the number of atoms of lithium (Li/Me) of the precursor prepared by the method according to claim 4 or 5 is 1.40 to 1.48. Mixing to form a lithium mixture, and
A method for producing an oxide-based positive electrode active material for a lithium ion battery, comprising the step of firing the lithium mixture in an atmospheric atmosphere at 750 to 950°C.
제1항 또는 제2항에 기재된 리튬 이온 전지용 산화물계 양극 활물질을 구비한 리튬 이온 전지용 양극.A positive electrode for a lithium ion battery comprising the oxide-based positive electrode active material for a lithium ion battery according to claim 1 or 2. 제7항에 기재된 리튬 이온 전지용 양극을 구비한 리튬 이온 전지.A lithium ion battery comprising the positive electrode for a lithium ion battery according to claim 7.
KR1020180142653A 2018-03-12 2018-11-19 Oxide based cathode active material for lithium ion battery, method for manufacturing oxide based cathode active material precursor for lithium ion battery, method for manufacturing oxide based cathode active material for lithium ion battery, and lithium ion battery KR102142335B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2018-044544 2018-03-12
JP2018044544A JP6619832B2 (en) 2018-03-12 2018-03-12 Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery

Publications (2)

Publication Number Publication Date
KR20190107555A KR20190107555A (en) 2019-09-20
KR102142335B1 true KR102142335B1 (en) 2020-08-07

Family

ID=67996411

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180142653A KR102142335B1 (en) 2018-03-12 2018-11-19 Oxide based cathode active material for lithium ion battery, method for manufacturing oxide based cathode active material precursor for lithium ion battery, method for manufacturing oxide based cathode active material for lithium ion battery, and lithium ion battery

Country Status (2)

Country Link
JP (1) JP6619832B2 (en)
KR (1) KR102142335B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430701B (en) * 2019-11-29 2022-10-25 蜂巢能源科技有限公司 Lithium-rich carbonate precursor and preparation method and application thereof
JP7365565B2 (en) * 2020-03-18 2023-10-20 トヨタ自動車株式会社 A positive electrode active material and a secondary battery including the positive electrode active material
CN111948335B (en) * 2020-06-29 2021-08-24 北京当升材料科技股份有限公司 Method for testing residual alkali content in coated modified cathode material and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748999B1 (en) * 2016-08-01 2017-06-20 (주)이엠티 Method for Preparing Cathode Active Material Precursor for Secondary Battery
WO2017119451A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032457B2 (en) 2012-02-03 2016-11-30 日産自動車株式会社 Solid solution lithium-containing transition metal oxide and lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119451A1 (en) * 2016-01-06 2017-07-13 住友金属鉱山株式会社 Positive-electrode active material precursor for nonaqueous electrolyte secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
KR101748999B1 (en) * 2016-08-01 2017-06-20 (주)이엠티 Method for Preparing Cathode Active Material Precursor for Secondary Battery

Also Published As

Publication number Publication date
KR20190107555A (en) 2019-09-20
JP2019160523A (en) 2019-09-19
JP6619832B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US9090481B2 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP5428251B2 (en) Lithium transition metal compound powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
US10056612B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
TWI549343B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP5843753B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI423507B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
WO2014034430A1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
KR20120017004A (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
JP2011003551A (en) Lithium transition metal based compound powder, its manufacturing method, spray drying object used as baking precursor of the powder, and positive electrode of lithium secondary battery and lithium secondary battery using the powder
KR20140138780A (en) Positive electrode active material particle powder and method for producing same, and non-aqueous electrolyte secondary battery
JP6063570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and positive electrode and secondary battery using the positive electrode active material
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP7245422B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
WO2023155930A1 (en) Positive electrode material of lithium-ion battery and preparation method therefor
KR102142335B1 (en) Oxide based cathode active material for lithium ion battery, method for manufacturing oxide based cathode active material precursor for lithium ion battery, method for manufacturing oxide based cathode active material for lithium ion battery, and lithium ion battery
WO2019163846A1 (en) Metal composite hydroxide and method for producing same, positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP5392035B2 (en) Nickel-manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP2011116582A5 (en)
TW201347278A (en) Positive electrode active material powder for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
WO2021006129A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
JP7238881B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery
CN113678289A (en) Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant