KR102138240B1 - Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor - Google Patents

Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor Download PDF

Info

Publication number
KR102138240B1
KR102138240B1 KR1020180162854A KR20180162854A KR102138240B1 KR 102138240 B1 KR102138240 B1 KR 102138240B1 KR 1020180162854 A KR1020180162854 A KR 1020180162854A KR 20180162854 A KR20180162854 A KR 20180162854A KR 102138240 B1 KR102138240 B1 KR 102138240B1
Authority
KR
South Korea
Prior art keywords
graphite
lithium ion
anionic surfactant
potential difference
surface potential
Prior art date
Application number
KR1020180162854A
Other languages
Korean (ko)
Other versions
KR20200074453A (en
Inventor
노광철
이서환
홍선기
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180162854A priority Critical patent/KR102138240B1/en
Publication of KR20200074453A publication Critical patent/KR20200074453A/en
Application granted granted Critical
Publication of KR102138240B1 publication Critical patent/KR102138240B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은, 음이온 계면활성제를 이용하여 음극인 흑연의 표면 전하를 음이온을 띠는 미셀(micelle) 형태로 코팅하여 용매 내에서 균일하게 분산된 상태에서 양이온의 리튬이온(Li+) 콜로이드 용액을 첨가해주어 표면전위차에 의해 흑연의 표면에 리튬이온이 균일하게 프리도핑된 리튬이온 커패시터용 음극활물질 제조방법에 관한 것이다.
본 발명은, 증류수에 흑연과 음이온 계면활성제를 함께 혼합하고 초음파 분산을 통해 균일하게 분산시키고 흑연 표면에 음이온 계면활성제를 코팅하는 단계와, 증류수에 LiOH를 용해시켜 양이온의 리튬이온(Li+) 콜로이드 용액을 제조하는 단계와, 상기 음이온 계면활성제가 코팅된 흑연과 양이온의 리튬이온(Li+) 콜로이드 용액을 혼합하고 교반하여 표면전위차에 의해 리튬이온이 흡착된 흑연을 제조하는 단계로 이루어진다.
In the present invention, a surface charge of graphite, which is an anode, is coated with an anionic surfactant in a form of a micelle having an anion, and a lithium ion (Li+) colloidal solution of a cation is added while being uniformly dispersed in a solvent. The present invention relates to a method for manufacturing a negative electrode active material for a lithium ion capacitor in which lithium ions are pre-doped uniformly on a surface of graphite due to a surface potential difference.
In the present invention, the graphite and anionic surfactant are mixed together in distilled water, uniformly dispersed through ultrasonic dispersion and coated with anionic surfactant on the graphite surface, and lithium ions (Li+) colloidal solution of cations by dissolving LiOH in distilled water It comprises a step of manufacturing, and mixing the anionic surfactant-coated graphite and a cation of a lithium ion (Li+) colloidal solution and agitating to prepare a graphite with lithium ions adsorbed by a surface potential difference.

Description

리튬이온 커패시터용 음극활물질 제조방법 {Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor}Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor}

본 발명은 표면전위차를 통해 프리도핑된 리튬이온 커패시터용 음극활물질 제조방법에 관한 것으로서, 보다 상세하게는 음이온 계면활성제를 이용하여 음극인 흑연의 표면 전하를 음이온을 띠는 미셀(micelle) 형태로 코팅하여 용매 내에서 균일하게 분산된 상태에서 양이온의 리튬이온(Li+) 콜로이드 용액을 첨가해주어 표면전위차에 의해 흑연의 표면에 리튬이온이 균일하게 프리도핑된 리튬이온 커패시터용 음극활물질 제조방법에 관한 것이다.The present invention relates to a method for preparing a negative electrode active material for a lithium ion capacitor pre-doped through a surface potential difference, and more specifically, using an anionic surfactant to coat the surface charge of graphite as a negative electrode in a form of micelles having negative ions. The present invention relates to a method for preparing a negative electrode active material for a lithium ion capacitor in which lithium ions are pre-doped uniformly on a surface of graphite by a surface potential difference by adding a cation lithium ion (Li+) colloidal solution in a uniformly dispersed state in a solvent.

일반적으로, 전기이중층 커패시터(EDLC, Electric Double Layer Capacitor)는 출력이 매우 우수하며 연속적인 충·방전에도 특성의 열화가 적은 우수한 에너지 저장소자로서, 수송 및 ESS(Energy Storage System) 분야의 고출력 에너지 저장장치로 그 용도가 확대되어 가고 있으나 제품의 에너지밀도가 기존의 리튬이차전지에 비해 낮아 여러 장점에도 불구하고 그 용도에 있어 사용에 제한적인 요소로 지적되고 있다.In general, Electric Double Layer Capacitors (EDLCs) are excellent energy reservoirs with very good output and low deterioration in properties even during continuous charging and discharging. Although the use of the device is expanding, the energy density of the product is lower than that of the existing lithium secondary battery, and it is pointed out as a limiting factor in its use despite its many advantages.

그에 반해 리튬이온전지(LIB, Lithium Ion Battery)는 전기이중층 커패시터에 비해 높은 에너지 밀도를 가지고 있지만, 상대적으로 낮은 출력 밀도를 가지고 있다.On the other hand, Lithium Ion Battery (LIB) has a higher energy density than an electric double layer capacitor, but has a relatively low power density.

이러한 전기이중층 커패시터의 물리적 흡착반응과 리튬이온전지의 이온의 삽입/탈리의 원리를 병행하여 전기이중층 커패시터와 리튬이온전지의 각각의 단점을 보완하여 에너지 밀도를 기존의 전기이중층 커패시터보다 크게 개선시킨 리튬이온 커패시터 제품이 연구개발 되었다.Lithium, which improves energy density significantly compared to the existing electric double layer capacitor by compensating for each of the disadvantages of the electric double layer capacitor and lithium ion battery by combining the physical adsorption reaction of the electric double layer capacitor and the insertion/desorption of ions of the lithium ion battery. Ion capacitor products have been researched and developed.

리튬이온 커패시터의 핵심 공정인 흑연 음극에 리튬을 삽입하는 프리도핑(pre-doping) 기술은, 일반적으로 직접 접촉방식(DC, Direct Contact), 외부 단락방식(ESC, External Short Circuit), 전기적 방식(EC, Electric Charging) 등이 있으며, 코인형 소형 제품에 있어서는 직접 접촉방식이, 중대형의 제품에 있어서는 전기적 방식이 가장 보편적으로 적용된다. 하지만 상기 프리도핑 기술은 리튬이온커패시터 제조에 있어서 공정이 복잡해지는 원인 중 하나이다.The pre-doping technology of inserting lithium into the graphite cathode, which is the core process of lithium-ion capacitors, is generally direct contact (DC), external short circuit (ESC), or electrical ( EC, Electric Charging), and the direct contact method is applied to the coin-type small product, and the electric method is most commonly applied to the middle- and large-sized products. However, the pre-doping technique is one of the reasons that the process is complicated in manufacturing the lithium ion capacitor.

본 발명은 음이온 계면활성제를 이용하여 음극인 흑연의 표면 전하를 음이온을 띠는 미셀(micelle) 형태로 코팅하여 용매 내에서 균일하게 분산된 상태에서 양이온의 리튬이온(Li+) 콜로이드 용액을 첨가해주어 표면전위차에 의해 흑연의 표면에 리튬이온이 균일하게 흡착되는 형태의 프리도핑 공정을 제공하는 것을 목적으로 한다.The present invention is coated with a surface charge of graphite as a negative electrode using an anionic surfactant in the form of a micelle (micelle) having an anion, and a lithium ion (Li+) colloidal solution of a cation is added while being uniformly dispersed in a solvent. An object of the present invention is to provide a pre-doping process in which lithium ions are uniformly adsorbed on the surface of graphite by a potential difference.

본 발명은 상기의 기존의 리튬이온 커패시터의 음극의 프리도핑 공정을 단순화하여 비용적, 시간적, 공정적인 고효율을 제공하는 것을 다른 목적으로 한다.Another object of the present invention is to simplify the pre-doping process of the negative electrode of the existing lithium-ion capacitor to provide cost, time, and process high efficiency.

이러한 목적을 달성하기 위한 본 발명은, 증류수에 흑연과 음이온 계면활성제를 함께 혼합하고 초음파 분산을 통해 균일하게 분산시키고 흑연 표면에 음이온 계면활성제를 코팅하는 단계와, 증류수에 LiOH를 용해시켜 양이온의 리튬이온(Li+) 콜로이드 용액을 제조하는 단계와, 상기 음이온 계면활성제가 코팅된 흑연과 양이온의 리튬이온(Li+) 콜로이드 용액을 혼합하고 교반하여 표면전위차에 의해 리튬이온이 흡착된 흑연을 제조하는 단계로 이루어진다.The present invention for achieving this object, mixing graphite and anionic surfactants together in distilled water, uniformly dispersing them through ultrasonic dispersion and coating anionic surfactants on the graphite surface, and dissolving LiOH in distilled water to dissolve lithium in cations A step of preparing an ionic (Li+) colloidal solution and mixing and stirring the lithium ion (Li+) colloidal solution of graphite and cation coated with the anionic surfactant to prepare graphite with lithium ions adsorbed by a surface potential difference. Is done.

본 발명은 상기한 바와 같은 특징에 의해, 음이온 계면활성제를 음극 표면에 코팅하여 Li+ 이온과의 표면전위차에 의해서 흡착시키는 방법으로, 종래의 음극에 Li+ 이온을 단순하게 흡착시키는 방법보다 더욱 효율적이고 균일하게 프리도핑을 구현할 수 있고, 흡착량을 더욱 효과적으로 조절할 수 있다.The present invention is a method of adsorbing an anionic surfactant on the surface of an anode by a surface potential difference with Li+ ions by the characteristics as described above, more efficient and uniform than a method of simply adsorbing Li+ ions to a conventional cathode. Pre-doping can be implemented, and the adsorption amount can be more effectively controlled.

도 1은 본 발명에 따른 표면전위차를 통해 프리도핑된 리튬이온 커패시터용 음극활물질 제조방법의 순서도이다.
도 2의 (a)는 증류수에 흑연과 음이온 계면활성제를 넣고 교반 및 초음파 분산하여 음이온 계면활성제가 흑연에 코팅된 상태, (b)는 증류수에 용해된 양이온의 리튬이온(Li+) 콜로이드 상태, (c)는 흑연에 리튬이온이 표면전위차에 의해서 흡착된 상태를 보여주는 모식도이다.
1 is a flow chart of a method for manufacturing a negative electrode active material for a lithium ion capacitor pre-doped through a surface potential difference according to the present invention.
2(a) is a state in which an anionic surfactant is coated on graphite by adding graphite and an anionic surfactant in distilled water and stirring and ultrasonic dispersion, and (b) is a lithium ion (Li+) colloidal state of a cation dissolved in distilled water, ( c) is a schematic diagram showing the state in which lithium ions are adsorbed to graphite due to the surface potential difference.

이하, 첨부 도면을 참조하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하지만, 이들이 갖는 특정 구조 및 기능은 하나의 구성예를 나타낸 것이므로 본 명세서에 기재된 실시예에만 한정되는 것은 아니다.Hereinafter, preferred embodiments according to the present invention will be described in more detail with reference to the accompanying drawings, but the specific structures and functions they have are shown as one structural example and are not limited to the embodiments described herein.

본 발명은 음이온 계면활성제를 이용하여 흑연 표면을 음이온을 띠는 미셀(micelle) 형태로 코팅하고, LiOH를 증류수에 용해시켜 양이온의 리튬이온(Li+) 콜로이드 용액 상태로 만든 후, 제조된 두 개의 용액을 혼합해 줌으로써 표면전위차에 의해서 흑연 표면에 리튬이온을 흡착시키는 프리도핑 방법을 제공한다.The present invention is coated with a surface of graphite by using an anionic surfactant in the form of micelles having an anion (micelle), and dissolved in LiOH in distilled water to make a lithium ion (Li+) colloidal solution of cations, and then prepared two solutions It provides a pre-doping method for adsorbing lithium ions on the graphite surface by mixing the surface potential difference by mixing.

음이온을 띠는 흑연 음극의 제조는 다음과 같다. 흑연 5∼20g을 증류수 500ml에 넣고 교반기(stirrer)로 10∼60분 동안 300rpm으로 교반하고, 초음파 분산 장치를 이용하여 10∼60분간 초음파 처리(sonication)를 실시하였다.The production of an anionic graphite anode is as follows. 5-20 g of graphite was added to 500 ml of distilled water and stirred at 300 rpm for 10-60 minutes with a stirrer, and ultrasonication was performed for 10-60 minutes using an ultrasonic dispersion device.

이 때, 초음파 분산 장치를 통해 흑연의 분산도 함께 꾀하였다. 분산 후 술포산(-SO3H)의 음이온 계면활성제(Emulphor STH, Mersolate, Aerosol, Igepon T, ABS, Nekal A, BX 등)를 0.3∼0.8mM 첨가하고 다시 교반기(stirrer)와 초음파 분산을 이용하여 균일하게 분산된 흑연 입자에 음이온 계면활성제를 균일하게 코팅하였다.At this time, the dispersion of graphite was also pursued through an ultrasonic dispersion device. After dispersion, 0.3~0.8mM of anionic surfactant (Emulphor STH, Mersolate, Aerosol, Igepon T, ABS, Nekal A, BX, etc.) of sulfonic acid (-SO 3 H) is added and again using a stirrer and ultrasonic dispersion Thus, anionic surfactants were uniformly coated on the uniformly dispersed graphite particles.

이 때, 상기 음이온 계면활성제는 임계미셀농도(CMC, Critical Micelle Concentration)를 넘지 않는 몰이어야 한다. 이와 같은 과정에서 흑연 표면이 음이온 계면활성제로 코팅되어 (-) 표면전하를 가지게 된다.At this time, the anionic surfactant should be a mole that does not exceed the critical micelle concentration (CMC, Critical Micelle Concentration). In this process, the graphite surface is coated with an anionic surfactant to have a negative surface charge.

양이온을 띠는 리튬 용액의 제조는 다음과 같다. 0.1∼1M의 LiOH 분말을 500ml 증류수에 넣고 교반기(stirrer)를 이용하여 300rpm에서 30분간 용해시켜 양이온의 리튬 콜로이드 용액을 제조하였다.The preparation of a cationically charged lithium solution is as follows. Lithium colloidal solution of cations was prepared by dissolving 0.1 to 1 M of LiOH powder in 500 ml of distilled water for 30 minutes at 300 rpm using a stirrer.

상기 제조된 각각 500ml의 음이온 계면활성제가 흡착된 흑연이 분산된 용액과 양이온 리튬 콜로이드 용액을 섞어 10∼30분간 300rpm에서 교반시켜 준다.Each of the prepared 500 ml of anionic surfactant-adsorbed graphite-dispersed solution and a cationic lithium colloidal solution are mixed and stirred at 300 rpm for 10 to 30 minutes.

여기서, 양의 표면전하를 갖는 흑연에 음의 표면전하를 갖는 리튬이온이 표면전위차로 흡착되어 안정적인 프리도핑이 일어난다. 일정시간 교반이 완료되면 필터링(filtering)을 통해 용매와 흑연을 분리시킨 뒤 80℃ 오븐에서 12시간 건조시켜 리튬이 프리도핑된 흑연을 제조할 수 있게 된다.Here, the lithium ion having a negative surface charge is adsorbed to the graphite having a positive surface charge due to the surface potential difference, and stable pre-doping occurs. After stirring for a certain period of time, the solvent and the graphite are separated through filtering, and then dried in an oven at 80° C. for 12 hours to prepare graphite pre-doped with lithium.

이상에서와 같은 기술적 구성에 의해 본 발명의 기술적 과제가 달성되는 것이며, 비록 한정된 실시예와 도면에 의해 설명되었으나 여기에 한정되지 않고 본 발명이 속하는 기술분야에서 통상의 기술자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능한 것임은 물론이다.The technical problem of the present invention is achieved by the technical configuration as described above, although it has been described with limited embodiments and drawings, it is not limited thereto, and the technical idea of the present invention by a person skilled in the art to which the present invention pertains Of course, various modifications and variations are possible within the equivalent scope of the claims to be described below.

Claims (1)

(A) 증류수에 흑연과 음이온 계면활성제를 함께 혼합하고 초음파 분산을 통해 균일하게 분산시키고 흑연 표면에 음이온 계면활성제를 코팅하는 단계;
(B) 증류수에 LiOH를 용해시켜 양이온의 리튬이온(Li+) 콜로이드 용액을 제조하는 단계;
(C) 상기 음이온 계면활성제가 코팅된 흑연과 양이온의 리튬이온(Li+) 콜로이드 용액을 혼합하고 교반하여 표면전위차에 의해 리튬이온이 흡착된 흑연을 제조하는 단계로 이루어지는 것을 특징으로 하는 리튬이온 커패시터용 음극활물질 제조방법.
(A) mixing graphite and anionic surfactant together in distilled water, uniformly dispersing through ultrasonic dispersion, and coating the anionic surfactant on the graphite surface;
(B) dissolving LiOH in distilled water to prepare a cation lithium ion (Li+) colloidal solution;
(C) for the lithium ion capacitor, characterized in that the mixture of the anionic surfactant-coated graphite and a cation of lithium ion (Li+) colloidal solution and stirred to prepare lithium-adsorbed graphite by surface potential difference. Cathode active material manufacturing method.
KR1020180162854A 2018-12-17 2018-12-17 Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor KR102138240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180162854A KR102138240B1 (en) 2018-12-17 2018-12-17 Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180162854A KR102138240B1 (en) 2018-12-17 2018-12-17 Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor

Publications (2)

Publication Number Publication Date
KR20200074453A KR20200074453A (en) 2020-06-25
KR102138240B1 true KR102138240B1 (en) 2020-07-27

Family

ID=71400306

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180162854A KR102138240B1 (en) 2018-12-17 2018-12-17 Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor

Country Status (1)

Country Link
KR (1) KR102138240B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450642B1 (en) * 2001-12-28 2004-10-01 브이케이 주식회사 Nano-sized spherical non-graphitizable carbons, the process of producing said carbons, and lithium secondary batteries comprising said carbons as anodal active materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515598B1 (en) * 2003-05-07 2005-09-20 학교법인 한양학원 Anode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries comprising the same
KR102014579B1 (en) * 2016-01-13 2019-08-26 연세대학교 산학협력단 Negative electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450642B1 (en) * 2001-12-28 2004-10-01 브이케이 주식회사 Nano-sized spherical non-graphitizable carbons, the process of producing said carbons, and lithium secondary batteries comprising said carbons as anodal active materials

Also Published As

Publication number Publication date
KR20200074453A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
Li et al. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li–S batteries
Huang et al. Fast Na‐Ion Intercalation in Zinc Vanadate for High‐Performance Na‐Ion Hybrid Capacitor
CN106098394B (en) Two-dimensional layer N doping Ti3C2" paper " nanocomposite and preparation method thereof and the method with the material preparation combination electrode
CN104979105B (en) A kind of nitrogen-doped porous carbon material, preparation method and applications
CN108711613B (en) Polyaniline/polyethylene glycol co-coated composite ternary cathode material and preparation and application thereof
CN110416549A (en) A kind of metal zinc load and its preparation method and application with uniform meso-hole structure coating
CN102324505A (en) Preparation method of graphene loaded with anatase type nano titanium dioxide and application thereof
KR101309029B1 (en) Method for Preparing 1-D Titanium Oxide Nanotubecluster-Graphite Anode Active Material for Lithium Rechargeable Batteries and Anode Active Mateiral Obtained by the Method
KR20180130946A (en) Manufacturing method of partially crystaline porous active carbon, supercapacitor using the active carbon and manufacturing method of the supercapacitor
CN104617280A (en) Adhesive-free graphene/silicon electrode for lithium ion battery and preparation method thereof
CN112850712A (en) Preparation method and application of MXene material
CN105655561A (en) Synthesis method of lithium manganese phosphate nanosheets
CN102376980A (en) Cell with carbon-free lithium iron phosphate as anode and manufacturing method thereof
CN107293723B (en) Binder-free Na3V2(PO4)3/C lithium ion battery composite anode and preparation method thereof
CN106450186B (en) A kind of preparation method, anode sizing agent and the application of lithium-ion battery anode material lithium manganese silicate/carbon composite
Zhan et al. Electrochemical deposition of highly porous reduced graphene oxide electrodes for Li-ion capacitors
CN103413917B (en) The preparation method of the lithium manganate cathode pole piece containing Graphene
CN105470464A (en) Preparation method of lithium ion battery negative electrode for reducing irreversible capacity loss
US20170256795A1 (en) Cathode material preparation method, cathode material and lithium-ion battery
CN111115618A (en) Graphene/carbon/tin oxide nano composite material and preparation method and application thereof
CN106745251A (en) A kind of preparation method and application for being suitable to the nanometer vanadic anhydride positive electrode of industrialized production
KR102138240B1 (en) Method of Manufacturing Pre-doped Anode Active Materials via Surface Potential Difference for Lithium Ion Capacitor
Qian et al. Electrochemical synthesis of Na 0.25 MnO 2@ ACC cathode and Zn@ K-ACC anode for flexible quasi-solid-state zinc-ion battery with superior performance
CN109449440B (en) Microporous ultrathin soft carbon nanosheet and preparation method and application thereof
CN114408976B (en) High-performance alpha-MnO 2 Al nano rod and preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant