KR102111081B1 - 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템 및 방법 - Google Patents

왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템 및 방법 Download PDF

Info

Publication number
KR102111081B1
KR102111081B1 KR1020187036552A KR20187036552A KR102111081B1 KR 102111081 B1 KR102111081 B1 KR 102111081B1 KR 1020187036552 A KR1020187036552 A KR 1020187036552A KR 20187036552 A KR20187036552 A KR 20187036552A KR 102111081 B1 KR102111081 B1 KR 102111081B1
Authority
KR
South Korea
Prior art keywords
combustion engine
determining
combustion chamber
heat emission
temperature
Prior art date
Application number
KR1020187036552A
Other languages
English (en)
Other versions
KR20190008348A (ko
Inventor
올라 스텐레에스
이반 안가리우스 웨스트
올라 옌슨
프레드릭 하스레스타드
모레노 카리오스 조르퀘스
Original Assignee
스카니아 씨브이 악티에볼라그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스카니아 씨브이 악티에볼라그 filed Critical 스카니아 씨브이 악티에볼라그
Publication of KR20190008348A publication Critical patent/KR20190008348A/ko
Application granted granted Critical
Publication of KR102111081B1 publication Critical patent/KR102111081B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • F02D2200/022Estimation of engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

본 개시는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법에 관한 것이다. 본 방법은 연소기관의 제1 세트의 동적 파라미터에 기초하여 적어도 하나의 연소실 내의 체적 편차와 관련된 모델을 제공하는 단계를 포함한다. 상기 모델은 열 변화에 의한, 질량 힘에 의한 및 압력에 의한 체적 편차를 포함한다. 상기 방법은 연소기관과 관련된 상기 제1 세트의 동적 파라미터를 결정하는 단계와, 상기 제공된 모델에 기초하여 그리고 상기 제1 세트의 결정된 동적 파라미터에 기초하여 상기 적어도 하나의 연소실 내 상기 체적 편차를 결정하는 단계를 추가로 포함한다. 본 방법은 연소기관용 수정 모델을 제공하는 단계를 추가로 포함한다. 상기 수정 모델은 상기 적어도 하나의 연소실 내의 상기 결정된 체적 편차에 기초한다. 본 방법은 상기 열 배출 평가를 개선할 수 있도록, 상기 수정 모델에 기초하여 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하는 단계를 추가로 포함한다.

Description

왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템 및 방법
본 개시는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템 및 방법에 관한 것이다. 본 개시는 또한 차량, 컴퓨터 프로그램 및 컴퓨터 프로그램 제품에도 관한 것이다.
차량에서 연소 엔진을 수정하기 위해 폐쇄형 루프 연소 제어(CLCC)가 사용된다. 이는 연소 엔진의 배기물을 감소시킬 가능성을 개선하고, 연소 엔진으로 공급되는 연료의 품질이 변하는 것과 같은 환경에서 연소 엔진의 효율을 유지하거나 개선하는 데에 특히 유용하다. CLCC에서 중요한 것은 열 배출 평가(HR)이다. HR을 수행하기 위해서는 연소 엔진과 관련된 파라미터 세트들에 대해 아는 것이 중요하다. 이들 파라미터들을 결정함에 있어서 실수 또는 불확정성이 일반적으로 HR의 불확실성 또는 실수를 야기하게 된다. 따라서 이들 파라미터들을 가능하면 정밀하게 알거나 결정하는 것이 중요하다. 다른 한편으로, 높은 정밀도로 모든 파라미터들을 아는 것은 매우 귀찮은 작업이고 지나치게 비용이 많이 들거나 어떤 경우에는 불가능할 수 있다. 따라서, 파라미터들을 결정할 때나 HR을 수행할 때 일부 가정을 하거나, 평균을 내거나, 단순화 하거나 이와 유사한 작업을 하는 것이 불가피하다. 일 예로, 연소 엔진 부품들이 그들의 사양에 따른 기하학적 형상을 가지는 것으로 가정한다. 제조 공차로 인해 개별 부품들이 그들의 사양으로부터 약간 편차를 가질 수 있는 것으로 알려져 있지만, 제조 공차 내에 속하는 개별 부품들의 실제 형상은 통상적으로 측정하지 않는다.
종종 연소실 실린더 내에서 피스톤의 위치에 따라서만 지정된 연소실의 체적이 시간에 따라 변하고, 크랭크 각도에 따라서만 지정된 기하학적 구조에서 실린더 내 피스톤의 위치가 변한다는 가정을 한다. 그러나 실험 분석을 통해 이 가정은 정당화될 수 없음이 밝혀졌다. 특히 트럭용 연소기관과 같이 대형 연소기관의 경우에는 더 정당화될 수 없음이 밝혀졌다. 지정된 트럭 연소기관에서, 실제 체적은 전술한 가정으로 계산된 체적에서 8% 이상 벗어나는 것으로 판명되었다. HR은 연소실 체적에 상당히 종속되기 때문에, 실제 체적을 매우 올바르게 결정하는 것이 유리하다.
본 개시의 목적은 왕복식 내연기관에서 열 배출 평가를 위한 더욱 정확한 방법을 제공하는 것이다. 본 발명의 다른 목적은 열 배출 평가를 위한 더욱 유리한 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 열 배출 평가를 위한 대안적인 방법을 제공하는 것이다.
본 개시의 추가적인 목적은 위 방법을 활용하는 시스템, 차량, 컴퓨터 프로그램 및 컴퓨터 프로그램 제품을 제공하는 것이다.
이들 목적들 중 적어도 하나는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법에 의해 달성된다. 본 방법은 연소기관의 제1 세트의 동적 파라미터에 기초하여 적어도 하나의 연소실 내의 체적 편차와 관련된 모델을 제공하는 단계를 포함한다. 상기 모델은 열 변화에 의한, 질량 힘에 의한 및 압력에 의한 체적 편차를 포함한다. 상기 방법은 연소기관과 관련된 상기 제1 세트의 동적 파라미터를 결정하는 단계와, 상기 제공된 모델에 기초하여 그리고 상기 제1 세트의 결정된 동적 파라미터에 기초하여 상기 적어도 하나의 연소실 내 상기 체적 편차를 결정하는 단계를 추가로 포함한다. 본 방법은 연소기관용 수정 모델(adaption model)을 제공하는 단계를 추가로 포함한다. 상기 수정 모델은 상기 적어도 하나의 연소실 내의 상기 결정된 체적 편차에 기초한다. 본 방법은 상기 열 배출 평가를 개선할 수 있도록, 상기 수정 모델에 기초하여 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하는 단계를 추가로 포함한다.
본 개시에서, 파라미터에 기초하는 또는 다른 무언가에 기초하는 모델을 언급할 때, "기초하는"(based on)이라는 용어는 그 모델이 그 파라미터 또는 그 무언가의 함수인 것으로 취급되어야 한다.
그러한 모델은 엔진 제어가 상기 적어도 하나의 연소실 내 이상 체적으로부터의 체적 편차에 적응될 수 있게 한다. 이는 엔진을 더 잘 제어할 수 있게 하며, 이에 따라 연료 소모를 줄이고 및/또는 배기가스의 성분을 최적화시킬 수 있게 한다. 또한, 이는 개별 부품들의 정확한 치수를 측정하지 않고서도 연소기관의 개별 제조 공차를 보상할 수 있게 한다. 따라서 시간-소모 및 노동-소모적인 측정을 할 필요가 없으면서도 더욱 정밀하게 제어할 수 있게 된다.
일 실시예에 따르면, 상기 적어도 하나의 연소실 내 체적 편차와 관련하여 상기 제공된 모델은 상기 왕복식 내연기관의 실린더 헤드의 변형에 의한 체적 편차도 포함한다. 이는 모델을 더 개량시키며, 이에 따라 더욱 정밀하게 제어할 수 있게 된다.
일 실시예에 따르면, 상기 열 배출 평가의 개선은 상기 열 배출 평가와 관련된 적어도 하나의 파라미터의 수정과 관련된다. 이는 이들 평가에 사용되는 모든 방법들을 다시 프로그램하지 않고서도 기존의 열 배출 평가를 개선시킬 수 있다.
일 실시예에 따르면, 상기 제1 세트의 동적 파라미터는, 크랭크 각도, 연소기관의 크랭크샤프트 회전 속도, 상기 크랭크샤프트 온도, 상기 크랭크샤프트에 연결된 적어도 하나의 커넥팅로드 온도, 상기 적어도 하나의 커넥팅로드에 연결된 적어도 하나의 피스톤 온도, 상기 연소기관 내 실린더 블록 온도, 상기 연소기관 내 실린더 헤드 온도, 상기 적어도 하나의 연소실 내부의 압력 중 적어도 하나의 양을 포함한다. 이는 실제 물리적인 물성에 기초한 모델을 제공할 수 있게 한다.
이하에서, 짧게 줄여 콘로드(conrod)라고 하는 것이 커넥팅로드를 대신하여 사용되는 경우도 있다. 콘로드와 커넥팅로드는 동일한 의미이다.
일 실시예에 따르면, 상기 수정 모델은 체적 편차가 적어도 하나의 제2 세트의 동적 파라미터와 어떻게 관련되어 있는지에 대한 관계를 포함한다.
일 실시예에 따르면, 상기 제2 세트의 동적 파라미터는, 상기 적어도 하나의 연소실 내부의 압력, 윤활제 및/또는 오일 온도와 같은 매체 및/또는 요소의 온도, 연소기관의 적어도 하나의 실린더 라이너 온도, 상기 크랭크샤프트 온도, 상기 적어도 하나의 커넥팅로드 온도, 상기 적어도 하나의 피스톤 온도, 크랭크 각도, 상기 크랭크샤프트의 회전 속도, 상기 적어도 하나의 연소실 내 가스 성분, 상기 연소기관의 실린더에 대한 흡기 밸브가 개방되어 있는지 아니면 폐쇄되어 있는지 여부, 상기 연소기관의 실린더에 대한 배기 밸브가 개방되어 있는지 아니면 폐쇄되어 있는지 여부 중 적어도 하나의 양을 포함한다. 이는 이해할 수 있는 수정을 용이하게 할 수 있게 한다.
일 실시예에 따르면, 상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 적어도 하나의 사전에 정해진 크랭크샤프트 각도 및/또는 적어도 하나의 크랭크샤프트 각도 인터벌에서 수행된다. 이는 수정 과정을 개선시킨다.
일 실시예에 따르면, 상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 적어도 하나의 연소실 내 가스의 열용량 비, 상기 연소기관에서의 압축비, 상기 적어도 하나의 연소실 내의 압력을 측정하기 위한 압력 센서같은 및/또는 상기 적어도 하나의 연소실 내 압력을 결정하는 데에 사용되는 노크/가속 센서같은 센서의 감도 중 적어도 하나의 양의 수정을 포함한다. 이는 용이하게 구현 가능한 수정을 제공한다.
일 실시예에 따르면, 상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 연소기관의 적어도 하나의 부품의 제조 공차에 대한 상기 적어도 하나의 양에 의해 보상하기 위해 및/또는 상기 연소기관의 적어도 하나의 부품의 마모에 대한 적어도 하나의 양에 의해 보상하기 위해 및/또는 연소기관에 공급되는 적어도 하나의 연료의 연료 품질에 대한 상기 적어도 하나의 양에 의해 보상하기 위해, 적어도 하나의 연소실 내 가스의 열용량 비 및/또는 상기 연소기관에서의 압축비 및/또는 센서의 감도와 같은 적어도 하나의 양의 수정을 포함한다. 이는 또한 용이하게 구현 가능한 수정을 제공한다.
일 실시예에 따르면, 상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 적어도 하나의 연소실 내에서의 적어도 하나의 최대 체적 편차의 수정을 포함한다. 이는 특히 양호한 수정을 제공한다.
일 실시예에 따르면, 본 방법이 실시간으로 수행된다. 이는 연소기관과 관련된 변화가 일어날 때마다 그에 반응할 수 있게 한다.
일 실시예에 따르면, 상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 연소기관에 대한 입자 물질 및/또는 NOx 추정 방법에서의 적어도 하나의 파라미터의 수정을 포함한다. 이는 특히 불요한 배기물을 감소시킬 수 있게 한다.
본 발명 목적들 중 적어도 하나는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템에 의해 달성된다. 이 시스템은 연소기관의 제1 세트의 동적 파라미터에 기초하여 적어도 하나의 연소실 내의 체적 편차와 관련된 모델을 제공하기 위한 수단을 포함한다. 상기 모델은 열 변화에 의한, 질량 힘에 의한 및 압력에 의한 체적 편차를 포함한다. 상기 시스템은 연소기관과 관련된 상기 제1 세트의 동적 파라미터를 결정하기 위한 수단을 추가로 포함한다. 상기 시스템은 상기 제공된 모델에 기초하여 그리고 상기 제1 세트의 결정된 동적 파라미터에 기초하여 상기 적어도 하나의 연소실 내 상기 체적 편차를 결정하기 위한 수단을 추가로 포함한다. 상기 시스템은 상기 적어도 하나의 연소실 내의 상기 결정된 체적 편차에 기초하는 연소기관용 수정 모델을 제공하기 위한 수단을 추가로 포함한다. 상기 시스템은  상기 열 배출 평가를 개선할 수 있도록, 상기 수정 모델에 기초하여 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 수단을 추가로 포함한다.
일 실시형태에 따르면, 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 열 배출 평가와 관련된 적어도 하나의 파라미터를 수정하기 위해 배치된다. 일 실시예에서, 상기 열 배출 평가를 개선하기 위해 상기 수정 모델에 기초하여 연소기관 제어 및/또는 연소기관의 진단 시스템을 수정하는 것은 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단이 상기 열 배출 평가와 관련된 적어도 하나의 파라미터를 수정하기 위해 배치되어 있는 것과 관련된다.
일 실시형태에 따르면, 상기 제1 세트의 동적 파라미터를 결정하기 위한 상기 수단은, 크랭크 각도를 결정하기 위한 수단, 상기 연소기관에 연결된 크랭크샤프트 회전 속도를 결정하기 위한 수단, 상기 크랭크샤프트 온도를 결정하기 위한 수단, 상기 크랭크샤프트에 연결된 적어도 하나의 커넥팅로드 온도를 결정하기 위한 수단, 상기 적어도 하나의 커넥팅로드에 연결된 적어도 하나의 피스톤 온도를 결정하기 위한 수단, 상기 연소기관 내 실린더 블록 온도를 결정하기 위한 수단, 상기 연소기관 내 실린더 헤드 온도를 결정하기 위한 수단, 상기 적어도 하나의 연소실 내부의 압력을 결정하기 위한 수단들 중 적어도 하나를 포함한다.
일 실시형태에 따르면, 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 적어도 하나의 사전에 정해진 크랭크샤프트 각도 및/또는 적어도 하나의 크랭크샤프트 각도 인터벌에서 상기 수정을 수행하게 배치되어 있다.
일 실시형태에 따르면, 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 적어도 하나의 연소실 내 가스의 열용량 비, 상기 연소기관에서의 압축비, 상기 적어도 하나의 연소실 내의 압력을 측정하기 위한 압력 센서같은 및/또는 상기 적어도 하나의 연소실 내 압력을 결정하는 데에 사용되는 노크/가속 센서같은 센서의 감도 중 적어도 하나의 수정을 수행하게 배치되어 있다.
일 실시형태에 따르면, 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 연소기관의 적어도 하나의 부품의 제조 공차에 대한 상기 적어도 하나의 양에 의해 보상하기 위해 및/또는 상기 연소기관의 적어도 하나의 부품의 마모에 대한 적어도 하나의 양에 의해 보상하기 위해 및/또는 연소기관에 공급되는 적어도 하나의 연료의 연료 품질에 대한 상기 적어도 하나의 양에 의해 보상하기 위해, 적어도 하나의 연소실 내 가스의 열용량 비 및/또는 상기 연소기관에서의 압축비 및/또는 센서의 감도와 같은 적어도 하나의 양을 수정하기 위한 수단을 포함한다.
일 실시형태에 따르면, 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 적어도 하나의 연소실 내 적어도 하나의 최대 체적 편차를 수정하기 위해 배치되어 있다.
일 실시형태에 따르면, 본 시스템은 상기 수정을 실시간으로 수행하게 배치된다.
일 실시형태에 따르면, 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 연소기관에 대한 입자 물질 및/또는 NOx 추정 방법의 적어도 하나의 파라미터를 수정하기 위해 배치된다.
본 발명 목적들 중 적어도 하나는 본 개시에 따른 시스템을 포함하는 차량에 의해서도 달성된다.
본 발명 목적들 중 적어도 하나는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 컴퓨터 프로그램에 의해서도 달성된다. 상기 컴퓨터 프로그램은 전자 제어 유닛 또는 전자 제어 유닛에 연결된 컴퓨터가 본 개시의 방법에 따른 단계를 수행하게 하는 프로그램 코드를 포함한다.
본 발명 목적들 중 적어도 하나는 컴퓨터 프로그램이 전자 제어 유닛 또는 전자 제어 유닛에 연결된 컴퓨터에서 실행될 때, 본 개시에 따른 방법 단계를 수행하는 프로그램 코드가 저장되어 있는 컴퓨터-판독 가능 매체를 포함하는 컴퓨터 프로그램 제품에 의해서도 달성된다.
시스템, 차량, 컴퓨터 프로그램 및 컴퓨터 프로그램 제품은 본 개시에 따른 방법의 대응 실시예들과 관련하여 기재되어 있는 이점들과 대응되는 이점들을 구비한다.
아래의 발명의 상세한 설명에 본 발명의 다른 이점들이 기재되어 있으며, 및/또는 본 발명을 수행할 때 통상의 기술자들에게 이러한 이점들이 일어날 것이다.
도 1은 본 발명의 일 실시형태에 따른 차량을 개략적으로 도시하는 도면이다.
도 2는 본 발명의 일 실시형태에 따른 시스템을 개략적으로 도시하는 도면이다.
도 3은 본 발명에 따른 방법의 일 실시예를 커버하는 흐름도를 개략적으로 도시하는 도면이다.
도 4는 본 개시와 관련되어 관찰될 수 있는 관계를 보여주는 도면이다.
도 5는 본 발명과 관련되어 사용될 수 있는 장치를 개략적으로 도시하는 도면이다.
본 발명 및 본 발명의 목적과 이점들을 더욱 상세하게 이해하기 위해, 첨부된 도면들과 함께 아래의 발명의 상세한 설명이 참고가 되어야 할 것이다. 다른 도면에서 동일한 도면부호는 동일한 부품을 지시한다.
도 1은 차량(100)의 측면도이다. 도시되어 있는 실시예에서, 차량은 트랙터 유닛(110)과 트레일러 유닛(112)을 포함한다. 차량(100)은 트럭 같은 중대형 차량일 수 있다. 일 실시예에서, 차량(100)에 트레일러 유닛이 연결되어 있지 않을 수 있다. 차량(100)은 왕복식 내연기관을 포함한다. 차량은 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템(299)을 포함한다. 이에 대해서는 도 2와 관련하여 더욱 상세하게 설명되어 있다. 시스템(299)은 트랙터 유닛(110) 내에 배치될 수 있다.
일 실시예에서, 차량(100)은 버스이다. 차량(100)은 왕복식 내연기관을 포함하는 임의의 종류의 차량일 수 있다. 왕복식 내연기관을 포함하는 차량의 다른 예시로는 보트, 승용차, 건설 차량 및 기관차가 있다.
본 명세서에서, "링크"(link)라는 용어는 광-전자 통신 라인 같은 물리적인 연결이나 예컨대 라디오 링크 또는 마이크로파 링크인 무선 연결 같은 비-물리적 연결일 수 있는 통신 링크를 말한다.
도 2는 왕복식 내연기관(298)에서 열 배출 평가를 개선하기 위한 시스템(299)의 일 실시형태를 개략적으로 도시하고 있다. 아래에서, 왕복식 및 내연이란 용어를 생략하여 사용하는 경우도 있다. 그러나 아래의 설명에서 연소기관은 왕복식 내연기관을 가리키는 것으로 이해되어야 한다.
상기 연소기관(298)은 실린더 블록(270) 및 실린더 헤드(280)를 포함한다. 상기 연소기관(298)은 연소실(260)을 구비하는 적어도 하나의 실린더(263)를 추가로 포함한다. 도시되어 있는 도면에는 하나의 실린더만을 상세하게 개략적으로 설명되어 있다. 그러나 연소기관(298)은 일반적으로 점선으로 표시되어 있는 바와 같이 둘 이상의 실린더를 포함하는 것으로 이해하여야 한다. 연소기관(298)은 둘, 셋, 넷, 다섯, 여섯, 여덟, 열, 열둘, 열여섯 또는 임의의 수량의 실린더를 포함할 수 있다. 실린더(263)와 연관되어 설명되는 모든 사항들은 다른 실린더들에도 적용될 수 있음에 주목해야 한다.
실린더(263) 내부에는 일 방향으로 앞뒤로 이동할 수 있는 피스톤(220)이 배치되어 있다. 피스톤(220)은 커넥팅로드(230)에 연결되어 있다. 커넥팅로드(230)는 크랭크샤프트(250)의 크랭크핀(240)에 연결되어 있다. 상기 크랭크샤프트(250)는 회전되게 배치되어 있다. 상기 크랭크샤프트(250)는, 각 커넥팅로드들 및 각 크랭크핀을 통해 피스톤들이 크랭크샤프트(250)에 연결되어 있음으로 인해 실린더들 내에서 피스톤의 움직임을 조정하게 배치되어 있다.
연소기관 내의 온도가 완벽하게 일정한 것으로 가정하고, 질량과 압력이 연소기관 부품의 기하학적 형상을 변경시키지 않는 것으로 가정하면, 연소실(260)의 체적은 피스톤(220)의 위치를 결정하는 크랭크샤프트(250)의 방위에 의해서만 영향을 받을 것이다. 이하에서 연소실(260)의 체적은 이상 체적(ideal volume)을 의미한다. 따라서 이상 체적은 크랭크샤프트(250)의 방위에만 의존한다. 그러나 실 상황에서 연소기관(298) 내 온도는 일정하지 않다. 따라서 온도 변화는 연소기관(298) 부품들의 형상에 영향을 줄 수 있다. 또한, 실 상황에서 질량과 압력은 연소기관(298) 부품들의 기하학적 형상에 영향을 미친다. 그 결과, 연소실(260) 체적은 크랭크샤프트(250) 방위보다 파라미터들에 더 의존하는 것이 일반적이다. 본 개시의 아래 부분에서, 연소실(260)의 실제 체적과 연소실(260)의 이상 체적 간의 차이는 체적 편차(volume deviation)로 표기된다.
상기 연소기관(298)은 실린더(263)에 대한 적어도 하나의 흡기 밸브(261)를 포함한다. 상기 연소기관(298)은 실린더(263)에 대한 적어도 하나의 배기 밸브(262)를 포함한다. 상기 실린더(263)는 실린더 라이너(264)를 포함한다. 본 명세서에서 하나의 흡기 밸브와 하나의 배기 밸브만을 기재하고 있다. 그러나 실린더(263)가 그러한 밸브들을 둘 이상 구비하고 있으며, 본 방법 및/또는 본 시스템은 실린더의 흡기 및/또는 배기 밸브들 수량에 맞춰 용이하게 수정될 수 있다. 특히 개방된 상태 또는 폐쇄된 상태는 흡기 또는 배기 밸브들의 개방된 상태 또는 폐쇄된 상태와 관련된다.
상기 연소기관(298)은 매체 운송 장치(290)를 포함한다. 상기 매체 운송 장치는 파이프, 튜브 등을 포함할 수 있다. 상기 매체는 연료, 윤활제, 오일 등의 매체일 수 있다. 매체 운송 장치(290)는 다른 매체에 대해 다른 매체 운송 장치를 포함할 수 있다(도면에는 도시되어 있지 않음). 매체 운송 장치(290)는 상기 매체를 연소실(260)과 같이 연소기관(298)의 특정 부품들에 공급하게 배치될 수 있다(도면에는 도시되어 있지 않음).
상기 시스템(299)은 연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 수단을 포함한다. 상기 연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 수단은 크랭크 각도를 결정하기 위한 수단(255)을 포함할 수 있다. 상기 수단(255)은 크랭크 각도 센서를 포함할 수 있다. 상기 센서는 광학 센서 및/또는 전기 센서 및/또는 촉각 센서일 수 있다. 크랭크 각도를 결정하는 방식은 당 업계에 주지되어 있다. 따라서 이에 대해서는 더 이상 설명하지 않는다.
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 크랭크샤프트(250)의 회전 속도를 결정하기 위한 수단을 포함할 수 있다. 상기 수단(255)은 크랭크샤프트(250)의 회전 속도를 결정하기 위한 수단을 포함할 수 있다. 일 실시예에서, 크랭크샤프트(250)의 회전 속도를 결정하기 위한 상기 수단은 단위 시간 당 크랭크샤프트가 얼마나 자주 회전하는지를 세게 배치될 수 있다. 이로부터 회전 속도가 산출될 수 있다.
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 크랭크샤프트(250)의 온도를 결정하기 위한 수단을 포함할 수 있다. 크랭크샤프트(250)의 온도를 결정하기 위한 상기 수단은 크랭크샤프트(250)에 있는 온도 센서일 수 있다(도시되어 있지 않음).
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 커넥팅로드(230)의 온도를 결정하기 위한 수단을 포함할 수 있다. 커넥팅로드(230)의 온도를 결정하기 위한 상기 수단은 커넥팅로드(230)에 있는 온도 센서일 수 있다(도시되어 있지 않음).
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 피스톤(220)의 온도를 결정하기 위한 수단을 포함할 수 있다. 피스톤(220)의 온도를 결정하기 위한 상기 수단은 피스톤(220)에 있는 온도 센서일 수 있다(도시되어 있지 않음).
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 실린더 블록(270)의 온도를 결정하기 위한 수단을 포함할 수 있다. 실린더 블록(270)의 온도를 결정하기 위한 상기 수단은 실린더 블록(270)에 있는 온도 센서일 수 있다(도시되어 있지 않음).
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 실린더 헤드(280)의 온도를 결정하기 위한 수단을 포함할 수 있다. 실린더 헤드(280)의 온도를 결정하기 위한 상기 수단은 실린더 헤드(280)에 있는 온도 센서일 수 있다(도시되어 있지 않음).
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 연소기관(298) 내의 적어도 하나의 매체 온도를 결정하기 위한 수단을 포함할 수 있다. 연소기관(298) 내의 적어도 하나의 매체 온도를 결정하기 위한 수단은 매체 운송 장치(290)에 있는 온도 센서 장치일 수 있다(도시되어 있지 않음). 일 실시예에서, 매체 운송 장치(290)에 있는 온도 센서 장치는 윤활제 및/또는 오일 온도 센서를 포함한다. 일 실시예에서, 매체 운송 장치(290)에 있는 온도 센서 장치는 연료 온도 센서를 포함한다.
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 연소기관(298) 내의 적어도 하나의 매체의 유량(mass flow)을 결정하기 위한 수단(295)을 포함할 수 있다. 연소기관(298) 내의 적어도 하나의 매체의 유량을 결정하기 위한 수단(295)은 매체 운송 장치(290)에 있는 유량 센서 장치일 수 있다(도시되어 있지 않음). 일 실시예에서, 매체 운송 장치(290)에 있는 유량 센서 장치는 윤활제 및/또는 오일의 유량을 결정하기 위해 배치되는 유량 센서를 포함한다. 일 실시예에서, 매체 운송 장치(290)에 있는 유량 센서 장치는 연료의 유량을 결정하기 위해 배치되는 유량 센서를 포함한다.
연소기관과 관련된 제1 세트의 동적 파라미터들을 결정하기 위한 상기 수단은 연소실(260) 내부의 압력을 결정하기 위한 수단(265)을 포함할 수 있다. 상기 수단(265)은 연소실(260)에 있는 압력 센서를 포함할 수 있다.
상기 시스템(299)은 제1 제어 유닛(200)을 포함한다. 상기 온도 센서(들) 모두는 측정된 온도를 제1 제어 유닛(200)에 송신하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 상기 온도 센서(들) 모두의 작동을 제어하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 링크(도시되어 있지 않음)를 통해 상기 온도 센서(들) 모두와 통신하게 배치된다. 상기 제1 제어 유닛(200)은 상기 온도 센서(들) 모두로부터 정보를 수신하게 배치된다.
크랭크 각도를 결정하기 위한 상기 수단(255)은 데이터를 제1 제어 유닛(200)에 송신하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 크랭크 각도를 결정하기 위한 상기 수단(255)의 작동을 제어하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 링크(L255)를 통해 크랭크 각도를 결정하기 위한 상기 수단(255)과 통신하게 배치된다. 상기 제1 제어 유닛(200)은 크랭크 각도를 결정하기 위한 상기 수단(255)으로부터 정보를 수신하게 배치된다. 상기 제1 제어 유닛(200)은 크랭크 각도를 결정하기 위한 상기 수단(255)으로부터 수신한 정보를 기초로 하여 크랭크 각도를 결정하게 배치될 수 있다.
크랭크샤프트(250)의 회전 속도를 결정하기 위한 상기 수단은 데이터를 제1 제어 유닛(200)에 송신하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 크랭크샤프트(250)의 회전 속도를 결정하기 위한 상기 수단(250)의 작동을 제어하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 링크(도시되어 있지 않음)를 통해 크랭크샤프트(250)의 회전 속도를 결정하기 위한 상기 수단(250)과 통신하게 배치된다. 상기 제1 제어 유닛(200)은 크랭크샤프트(250)의 회전 속도를 결정하기 위한 상기 수단(250)으로부터 정보를 수신하게 배치된다. 상기 제1 제어 유닛(200)은 크랭크샤프트(250)의 회전 속도를 결정하기 위한 상기 수단(250)으로부터 수신한 정보를 기초로 하여 크랭크샤프트(250)의 회전 속도를 결정하게 배치될 수 있다.
연소기관(298) 내 적어도 하나의 매체의 유량을 결정하기 위한 상기 수단(295)은 데이터를 제1 제어 유닛(200)에 송신하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 연소기관(298) 내 적어도 하나의 매체의 유량을 결정하기 위한 상기 수단(295)의 작동을 제어하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 링크(L295)를 통해 연소기관(298) 내 적어도 하나의 매체의 유량을 결정하기 위한 상기 수단(295)과 통신하게 배치된다. 상기 제1 제어 유닛(200)은 연소기관(298) 내 적어도 하나의 매체의 유량을 결정하기 위한 상기 수단(295)으로부터 정보를 수신하게 배치된다. 상기 제1 제어 유닛(200)은 연소기관(298) 내 적어도 하나의 매체의 유량을 결정하기 위한 상기 수단(295)으로부터 수신한 정보를 기초로 하여 연소기관(298) 내 적어도 하나의 매체의 유량을 결정하게 배치될 수 있다.
연소실(260) 내부의 압력을 결정하기 위한 상기 수단(265)은 데이터를 제1 제어 유닛(200)에 송신하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 연소실(260) 내부의 압력을 결정하기 위한 상기 수단(265)의 작동을 제어하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 링크(L265)를 통해 연소실(260) 내부의 압력을 결정하기 위한 상기 수단(265)과 통신하게 배치된다. 상기 제1 제어 유닛(200)은 연소실(260) 내부의 압력을 결정하기 위한 상기 수단(265)으로부터 정보를 수신하게 배치된다. 상기 제1 제어 유닛(200)은 연소실(260) 내부의 압력을 결정하기 위한 상기 수단(265)으로부터 수신한 정보를 기초로 하여 연소실(260) 내부의 압력을 결정하게 배치될 수 있다.
상기 제1 제어 유닛(200)은 연소기관의 부품들(220, 230, 240, 250, 264, 270, 280)의 온도를 결정하게 또는 연소기관의 적어도 일부의 물리적 모델에 기초 및/또는 연소기관의 부품들(220, 230, 240, 250, 264, 270, 280)의 측정된 온도 및/또는 측정된 온도에 기초 및/또는 매체의 측정된 유량에 기초하여 매체 온도를 결정하게 배치될 수 있다. 일 예시로, 크랭크샤프트(250)의 온도는 물리적 모델에 기초하고 그리고 크랭크샤프트(250)를 둘러싸는 오일 온도에 기초하여 결정될 수 있다. 물리적 모델(physical model)은 크랭크샤프트(250)의 온도일 수 있으며 둘러싸는 오일도 동일하다. 이는 크랭크샤프트에 대해 온도 센서를 사용할 필요가 없게 한다.
특히 실린더 내부의 모든 부품들 또는 일부 부품들에 있어서는, 온도를 직접적으로 측정하기기 어려운 경우가 종종 있다. 따라서, 피스톤(220), 커넥팅로드(230), 실린더 라이너(264) 및/또는 다른 부품들의 온도는 물리적 모델 및 전술한 다른 온도 센서들 및/또는 전술한 온도 센서들로부터 오는 측정된 온도에 기초하여 결정될 수 있다. 상기 물리적 모델은 연소기관(298)의 부품들 내에서의 열전달과 관련된 관계와 같은 열역학적 관계를 포함할 수 있다.
상기 제1 제어 유닛(200)은 상기 흡기 밸브(261)의 작동을 제어하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 링크(L261)를 통해 상기 흡기 밸브(261)와 통신하게 배치된다. 상기 제1 제어 유닛(200)은 상기 흡기 밸브(261)로부터 정보를 수신하게 배치될 수 있다.
상기 제1 제어 유닛(200)은 상기 배기 밸브(262)의 작동을 제어하게 배치될 수 있다. 상기 제1 제어 유닛(200)은 링크(L262)를 통해 상기 배기 밸브(262)와 통신하게 배치된다. 상기 제1 제어 유닛(200)은 상기 배기 밸브(262)로부터 정보를 수신하게 배치될 수 있다.
상기 제1 제어 유닛(200)은 제1 세트의 연소기관의 동적 파라미터들에 기초하여 연소실 내 체적 편차와 관련된 모델을 제공하게 배치될 수 있으며, 상기 모델은 열적 변화, 질량 및 압력에 의한 체적 편차들을 포함한다. 상기 모델에 대해서는 도 3과 관련하여 더 설명되어 있다. 상기 모델은 상기 제1 제어 유닛(200)의 메모리 내에 저장될 수 있다. 이에 대해서는 도 5와 관련하여 더 설명한다.
상기 제어 유닛은 연소실 내 체적 편차와 관련하여 제공된 상기 모델 및 상기 제1 세트의 결정된 동적 파라미터들에 기초하여 연소실 내 체적 편차를 결정하게 배치되어 있다. 이에 대해서는 도 3과 관련하여 더 설명한다.
상기 제1 제어 유닛(200)은 연소기관에 대한 수정 모델(adaption model)을 제공하게 배치될 수 있다. 여기서 상기 수정 모델은 연소실 내의 상기 결정된 체적 편차에 기초한다. 이에 대해서는 도 3과 관련하여 더 설명한다.
상기 제1 제어 유닛(200)은, 열 배출 평가가 개선되도록 상기 수정 모델에 기초하여 연소기관의 진단 시스템 및/또는 연소기관 제어를 수정하도록 배치될 수 있다. 상기 연소기관 제어 및/또는 진단 시스템은 상기 제1 제어 유닛(200)의 일부일 수 있다. 상기 제1 제어 유닛(200)은 열 배출 평가와 관련된 적어도 하나의 파라미터를 수정하기 위해 배치될 수 있다. 이에 대해서는 도 3과 관련하여 더 상세하게 설명한다.
제1 제어 유닛(200)은 적어도 하나의 결정된 크랭크샤프트 각도 및/또는 적어도 하나의 크랭크샤프트 각도 인터벌의 상기 수정을 수행하게 배치될 수 있다.
상기 제1 제어 유닛(200)은 적어도 하나의 품질(quality)을 수정하게 배치될 수 있다. 상기 적어도 하나의 품질은 실린더 내 가스의 열용량 비에 대한 값을 포함할 수 있다. 상기 적어도 하나의 품질은 상기 연소기관에서 압축비에 대한 값을 포함할 수 있다. 상기 적어도 하나의 품질은 연소실 내 압력을 측정하기 위한 압력 센서 같은 및/또는 연소실 내 압력을 결정하기 위해 사용되는 노크/가속 센서 같은 센서의 감도를 포함할 수 있다.
상기 제1 제어 유닛(200)은 연소기관(298)의 적어도 하나의 부품들(220, 230, 240, 250, 264, 270, 280)의 제조 공차에 대한 상기 적어도 하나의 양에 의한 보상을 위해 및/또는 연소기관(298)의 상기 적어도 하나의 부품들(220, 230, 240, 250, 264, 270, 280)의 마모에 대한 상기 적어도 하나의 양에 의한 보상을 위해 및/또는 연소기관(298)에 공급되는 적어도 하나의 연료의 품질에 대한 상기 적어도 하나의 양에 의한 보상을 위해 상기 수정을 수행하게 배치될 수 있다.
상기 제1 제어 유닛(200)은 연소실(260) 내 적어도 하나의 최대의 체적 편차를 수정하도록 배치될 수 있다.
상기 제1 제어 유닛(200)은 연소기관에 대한 입자 물질 및/또는 NOx 추정 방법을 수정하도록 배치될 수 있다. 수정과 관련해서는 도 3 내지 도 5와 관련하여 상세하게 설명한다.
제2 제어 유닛(205)은 링크(L205)를 통해 제1 제어 유닛(200)과 통신하게 배치되며, 제1 제어 유닛(200)에 탈부착이 가능하게 연결될 수 있다. 제2 제어 유닛(205)은 차량(100) 외부에 있는 제어 유닛일 수 있다. 제2 제어 유닛(205)은 본 발명에 따른 독창적인 방법 단계들을 수행하기에 적합할 수 있다. 제2 제어 유닛(205)은 본 발명에 따른 독창적인 방법 단계들을 수행하게 배치될 수 있다. 제2 제어 유닛(205)은 제1 제어 유닛(200) 특히 독창적인 방법을 수행하기 위한 소프트웨어를 크로스-로드하게 사용될 수 있다. 또는, 제2 제어 유닛(205)은 차량에 탑재되어 있는 내부 네트워크를 통해 제1 제어 유닛(200)과 통신하게 배치될 수 있다. 제2 제어 유닛(205)은 왕복식 내연기관에서 열 배출 평가를 개선하는 것과 같은 제1 제어 유닛(200)과 실질적으로 동일한 기능을 수행하기에 적합할 수 있다. 독창적인 방법은 제1 제어 유닛(200) 또는 제2 제어 유닛(205)에 의해 수행되거나 이들 모두에 의해 수행될 수 있다.
시스템(299)은 도 3과 관련하여 이하에서 설명되는 방법 단계들을 수행할 수 있다.
도 3은 본 발명에 따른 왕복식 연소기관에서 열 배출 평가를 개선하기 위한 방법(300)의 일 실시예에 대한 흐름도를 개략적으로 도시한 도면이다. 방법(300)은 연소기관 내 임의의 수량의 실린더에 대해 수행될 수 있다는 점을 이해하여야 한다. 따라서, 일 실시예에서 방법(300)은 연소기관 내 실린더들 하나에 대해서만 수행된다. 일 실시예에서, 방법(300)은 연소기관의 모든 실린더들에 대해 수행된다. 방법(300)은 단계 310에서 시작한다.
단계 310에서, 연소실 내 체적 편차에 관한 모델이 제공된다. 상기 모델에서 상기 연소실 내 체적 편차는 제1 세트의 연소기관의 동적 파라미터들에 기초한다. 상기 모델은 열적 변화, 질량 힘 및 압력에 의한 체적 편차를 포함한다. 여기서, 그리고 명세서 전체에서 동적 파라미터(dynamic parameter)라는 용어는 시간에 다라 일정하지 않은 파라미터와 관련이 있다. 일 실시예에서, 체적 편차에 관한 상기 모델은 연소엔진의 하나 또는 그 이상의 부품들의 열적 팽창을 포함한다. 일 실시예에서, 상기 모델은 연소엔진의 하나 또는 그 이상의 부품들에 작용하는 질량 힘을 포함한다. 일 실시예에서, 상기 모델은 연소엔진의 하나 또는 그 이상의 부품들에 작용하는 압력을 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 크랭크 각도(CAD)를 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 크랭크샤프트의 회전 속도를 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 크랭크샤프트의 온도를 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 커넥팅로드의 온도를 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 피스톤의 온도를 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 실린더 블록의 온도를 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 실린더 헤드의 온도를 포함한다. 상기 제1 세트의 동적 파라미터는, 일 실시예에서, 연소실 내부의 압력을 포함한다.
모델에 관한 더 상세한 설명을 단계 330과 관련하여 기재한다. 본 방법은 단계 320으로 이어진다.
단계 320에서, 연소기관과 관련된 제1 세트의 동적 파라미터들이 결정된다. 일 실시예에서, 상기 동적 파라미터들 중 적어도 하나가 결정된다. 일 실시예에서, 상기 동적 파라미터들 중 적어도 하나가 계산된다. 일 실시예에서, 크랭크 각도 센서를 사용하여 상기 크랭크 각도가 결정된다. 일 실시예에서, 크랭크 각도 센서를 사용하여 크랭크샤프트의 상기 회전 속도가 결정된다. 일 실시예에서, 연소기관의 부품에 있는 온도 센서에 의해 부품의 온도가 결정된다. 일 실시예에서, 연소기관 내의 적어도 하나의 온도 센서 및/또는 연소실로 공급되는 연료에 관한 적어도 하나의 유량 센서 및/또는 연소실에서 나오는 배기가스에 의해 그리고 상기 적어도 하나의 센서의 측정값이 연소기관의 상기 부품의 온도와 어떻게 관련되어 있는 지에 관한 물리적 모델에 기초하여 연소기관의 부품의 온도가 결정된다. 일 실시예에서, 연소실 내부의 상기 압력은 연소실 내의 압력 센서에 의해 결정된다. 상기 방법은 단계 330으로 이어진다.
단계 330에서, 상기 제공된 모델과 상기 제1 세트의 결정된 동적 파라미터들에 기초하여 연소실 내 체적 편차가 결정된다. 일 실시예에서, 단계 330은 단계 331 내지 단계 335 중 적어도 하나의 단계를 포함한다. 일 실시예에서, 단계 330은 단계 331 내지 단계 335 모두를 포함한다. 단계 331 내지 단계 335 중 어느 단계가 단계 330에 포함되는 경우, 이들 단계들은 도 3에 도시되어 있는 순서로 수행되는 것이 바람직하다.
단계 331에서, 연소기관의 제1 세트의 부품들의 기하학적 변화에 영향을 주는 온도가 결정된다. 상기 제1 세트의 부품들은 크랭크샤프트, 커넥팅로드, 피스톤, 실린더 블록, 실린더 헤드 중 적어도 하나를 포함할 수 있다. 적어도 하나의 제1 온도가 결정된다. 이는 첫 번째로 수행되는 것이 바람직하다. 상기 적어도 하나의 제1 온도는 제2 세트의 부품들 및/또는 연소기관 내의 매체 온도 중 적어도 하나의 온도와 관련될 수 있다. 상기 제2 세트는 제1 세트의 부품들 중의 부품을 포함할 수 있다. 상기 제2 세트는 윤활제, 오일, 냉각 유체 등과 같은 연소기관 내 매체 중의 일부를 포함할 수 있다. 상기 적어도 하나의 제1 온도를 결정한 후, 상기 제1 세트의 부품들의 온도가 결정된다. 제2 세트 내의 부품들이 제1 세트에 포함되는 경우, 이들 부품에 대한 온도는 이미 결정되어 있으므로 사용할 수 있다. 제1 세트의 부품들 중 일부가 제2 세트에 포함되지 않는 경우, 이 부품의 온도는 제2 세트 내의 부품들 및/또는 매체의 온도로부터 열역학 법칙과 같은 물리적 관계를 통해 결정될 수 있다.
상기 제1 세트의 부품들에 대해 온도에 의한 포지티브 또는 네거티브 팽창이 결정된다. 상기 포지티브 또는 네거티브 팽창은, 일 실시예에서, 기하학적 변화에 영향을 준 상기 온도에 대응한다. 바람직하기로는, 상기 팽창은 온도 변화에 따라 선형적으로 결정된다. 바람직하기로는, 단계 332는 단계 331 후에 수행된다.
단계 332에서, 질량 힘 및/또는 압력이 결정된다. 일 실시예에서, 단계 332는 연소기관의 제3 세트의 부품들의 위치를 결정하는 단계를 포함한다. 상기 제3 세트의 부품들은 제1 세트의 부품들과 관련하여 기재된 부품들 중의 부품을 포함할 수 있다. 단계 332는 상기 제3 세트의 부품들에 작용하는 힘을 결정하는 단계를 포함할 수 있다. 일 실시예에서, 상기 위치들 및/또는 상기 힘들은 2차원에서 결정된다. 일 실시예에서, 상기 2차원은 피스톤의 이동 방향 및 피스톤의 이동 방향과 직교하는 커넥팅로드의 이동 방향과 관련된다. 이하에서 상기 두 방향은 각각 z-방향 및 y-방향을 나타낸다. 이는, 2차원 계산이 3차원 계산보다 빠르게 수행될 수 있다는 이점을 구비한다. 바람직한 실시예에서, 크랭크샤프트의 종 방향으로의 힘 또는 위치는 결정되지 않는다. 연소기관의 가장 일반적인 디자인에서, 부품들이 그 방향으로 이동하지 않고, 다른 두 방향의 힘과 동일한 오더의 힘을 받지 않는다는 가정은 상당히 정당한 것이다.
일 실시예에서, 단계 332는 상기 결정된 힘에 의한 연소기관의 제4 세트의 부품들의 기하학적 형상에서 적어도 하나의 변화를 결정하는 단계를 포함한다. 상기 제4 세트의 부품들은 제1 세트의 부품들과 관련하여 기재한 부품들 중의 부품을 포함할 수 있다. 바람직한 실시예에서, 상기 제4 세트의 부품들은 적어도 커넥팅로드를 포함한다. 일 실시예에서, 상기 적어도 하나의 변화는 상기 제1 세트 내 부품들의 길이를 포함한다. 일 실시예에서, 연소기관 부품의 길이 변화는 연소기관 부품의 길이 방향으로의 힘 성분에 선형으로 비례하는 것으로 가정한다. 일 실시예에서, 연소기관 부품의 굽힘 변형은 굽힘 방향으로의 힘 성분에 선형으로 비례하는 것으로 가정한다. 바람직하기로는, 크랭크샤프트의 굽힘은 연소기관의 모든 실린더들에서의 힘에 기초하여 결정된다.
일 실시예에서, 단계 332는 연소기관의 베어링 내 제5 세트의 부품들의 위치를 결정하는 단계를 포함한다. 상기 제5 세트의 부품들은 제1 세트 부품들과 관련하여 기재되어 있는 부품들 중의 부품을 포함할 수 있다. 일 실시예에서, 상기 위치 결정은 2차원 히스테리시스로 모델링되며, 힘 밸런스는 베어링을 부착할 때 위치를 결정한다. 이렇게 함으로써 시간이 오래 걸릴 수 있는 상미분 방정식을 사용하지 않아도 된다.
일 실시예에서, 단계 332는 피스톤의 커넥팅로드에 대한 부착하는 y-방향에서의 변위를 결정하는 단계를 포함한다.
일 실시예에서, 단계 332는 z-방향에서 피스톤의 위치를 결정하는 단계를 포함한다. 상기 z-방향에서의 피스톤 위치의 결정은 단계332와 관련하여 위에 기재한 작업들 중의 작업에 기초할 수 있다. 바람직하기로는 단계 333은 단계 332 후에 수행된다.
단계 333에서, 실린더 헤드의 변형이 결정된다. 일 실시예에서, 단계 333은 적어도 하나의 제2 온도를 결정하는 단계를 포함한다. 상기 적어도 하나의 제2 온도는 측정될 수 있고 및/또는 계산될 수 있다. 상기 적어도 하나의 제2 온도는 연소기관 내의 제6 세트의 부품들 및/또는 매체 중 적어도 하나의 온도와 관련될 수 있다. 상기 제6 세트는 제1 세트와 관련하여 기재한 부품들 중의 부품을 포함할 수 있다. 상기 제6 세트는 윤활제, 오일, 냉각 유체 등과 같이 연소기관 내 매체들 중의 매체를 포함할 수 있다. 상기 적어도 하나의 제2 온도 중 어느 온도가 단계 331에서의 상기 적어도 하나의 제1 온도 중 어느 온도에 대응하는 경우, 그 대응 온도(들)를 사용하는 것이 바람직하다. 이는 동일한 온도를 2번 측정하지 않게 한다.
상기 적어도 하나의 제2 온도를 측정한 후, 실린더 헤드의 온도가 결정된다. 실린더 헤드의 온도는 제6 세트 내의 부품들 및/또는 매체의 오도로부터 열역학 법칙과 같은 물리적인 관계를 통해 결정될 수 있다.
일 실시예에서, 실린더 헤드의 기하학적 변화가 제1 기준 온도에 대비하여 실린더 헤드 온도의 편차에 선형으로 비례한다는 가정에 기초하여 실린더 헤드의 변형이 결정된다.
일 실시예에서, 실린더 헤드의 기하학적 변화가 연소실 내부의 압력 변화에  선형으로 비례한다는 가정에 기초하여 실린더 헤드의 변형이 결정된다.
상기 기하학적 변화는 실린더 헤드의 길이 및/또는 체적 변화와 관련될 수 있다. 단계 334는 단계 333 이후에 수행되는 것이 바람직하다.
단계 334에서, 연소실의 전체 체적 편차가 결정된다. 바람직한 실시예에서, 상기 전체 체적 편차는 단계 331, 단계 332 및 단계 333에서 결정된 편차들의 합이다. 단계 331-333 중 어느 단계가 수행되지 않은 경우, 전체 체적 편차는 단계 331-333 중 수행된 단계에서 결정된 편차들의 합으로 결정될 수 있다. 일 실시예에서, 상기 전체 체적 편차는 크랭크 각도에 따라 결정된다. 이것이 도 4에 묘사되어 있다. 단계 335는 단계 334 후에 수행되는 것이 바람직하다.
단계 335에서, 연소기관 부품들의 기하학적 형상의 제조 공차로 인한 최대 허용 편차로 단계 334가 반복된다. 일 실시예에서, 제조 공차로 인한 최대로 가능한 전체 체적 편차를 결정하기 위해, 단계 334가 반복된다. 일 실시예에서, 제조 공차로 인한 최소로 가능한 전체 체적 편차를 결정하기 위해, 단계 334가 반복된다. 이것이 도 4에 묘사되어 있다. 단계 335의 수행은 단계 334의 결정의 강인성(robustness)을 결정한다는 이점이 있다. 단계 335에서 결정된 값들은 예를 들어 연소기관의 제어 파라미터를 제한할 수 있도록, 연소기관에 대한 진단 방법 및/또는 연소기관을 보호하기 위한 방법에의 입력 데이터로서 특히 유용하다.
단계 334 또는 단계 335 후에 단계 330이 종료되는 것이 바람직하다. 단계 330 후에, 단계 340이 수행된다.
단계 340에서, 연소기관에 대한 수정 모델이 제공되며, 여기서 상기 수정 모델은 연소실 내에서 결정된 상기 체적 편차에 기초한다. 단계 340은 단계 341-343의 단계들 중 임의의 단계를 포함할 수 있다.
단계 341에서, 크랭크 각도의 제1 범위가 규정된다. 일 실시예에서, 상기 크랭크 각도의 제1 범위는 결정된 연소실의 체적 편차가 상당한 크랭크 각도 범위와 관련된다. 일 실시예에서, 상당한(significant)이란 용어는 연소실의 이상 체적에 대해 0.2%의 편차와 관련된다. 일 실시예에서, 상당한이란 용어는 연소실의 이상 체적에 대해 1%의 편차와 관련된다. 일 실시예에서, 상당한(significant)이란 용어는 연소실의 이상 체적에 대해 2%의 편차와 관련된다.
일 실시예에서, "상당한"이란 용어는 ]-50CAD, 50CAD[, 또는 ]-80CAD, 80CAD[, 또는 ]-30CAD, 40CAD[와 관련된다. CAD라는 용어는 크랭크 각도를 가리킨다. 제로의 크랭크 각도는 대응 피스톤이 상사점(TDC)에 있을 때 달성된다. 이들 범위는 냉 엔진(cold engine)에 특히 유용하다.
일 실시예에서, 상당한이란 용어는 ]-30CAD, 50CAD[, 또는 ]-80CAD, 80CAD[, 또는 ]-50CAD, 40CAD[와 관련된다. 이들 범위는 온 엔진(warm engine)에 특히 유용하다. 단계 341 후에 단계 342가 수행되는 것이 바람직하다.
단계 342에서, 체적 편차가 적어도 제2 세트의 동적 파라미터와 어떻게 관련되는지가 제공된다. 상기 관계는 단순 관계(simplified relation)일 수 있다. 상기 제2 세트의 동적 파라미터는, 연소실 내부의 압력, 윤활제 및/또는 오일 온도와 같은 매체 및/또는 요소의 온도, 연소기관의 실린더 라이너의 온도, 크랭크샤프트의 온도, 커넥팅로드의 온도, 피스톤 온도, 크랭크 각도, 크랭크샤프트 회전 속도, 실린더 내 가스 성분, 연소기관의 실린더에 대한 흡기 밸브의 개방 또는 폐쇄 여부, 연소기관의 실린더에 대한 배기 밸브의 개방 또는 폐쇄 여부들 중에서 적어도 하나를 포함할 수 있다.
일 실시예에서, 크랭크 각도의 제2 범위 내에서 체적 편차에 대한 단순 관계가 결정된다. 일 실시예에서, 상기 제2 범위는 상기 크랭크 각도의 제1 범위에 대응한다.
일 실시예에서, 상기 단순 관계는 체적 편차가 체적 편차의 최대값에 도달할 때까지 선형으로 증가하고, 상기 체적 편차의 최대값에 도달한 후에는 선형으로 감소하는 것을 포함한다.
일 실시예에서, 상기 단순 관계는 체적 편차가 체적 편차의 최대값에 도달할 때까지보다는 체적 편차의 제1 값에 도달할 때까지 선형으로 증가하고, 상기 체적 편차의 최대값에 도달한 후에는 선형으로 감소하는 것을 포함한다.
일 실시예에서, 상기 단순 관계는 체적 편차가 체적 편차의 로컬 최소값에서 시작하여 체적 편차의 로컬 최대값에서 정지하는 것을 포함한다.
일 실시예에서, 상기 단순 관계는 체적 편차가 연소실 내부의 압력과 사전에 정해진 기준 압력 사이의 차이에 비례하는 것을 포함한다.
일 실시예에서, 상기 단순 관계는 체적 편차가 윤활제 및/또는 오일의 온도 같은 연소기관의 부품 또는 매체의 온도, 실린더 블록의 온도 또는 커넥팅로드 온도에 비례하는 것을 포함한다.
일 실시예에서, 상기 단순 관계는 체적 편차가 엔진 부하에 비례하는 것을 포함한다.
일 실시예에서, 상기 단순 관계는 체적 편차가 크랭크샤프트 회전 속도의 제곱에 비례하는 것을 포함한다. 일 실시예에서, 상기 단순 관계는 체적 편차가 크랭크샤프트 회전 속도에 비례하는 것을 포함한다.
상기 단순 관계는 전술한 관계들 중 일부 모두 전술한 관계들 모두의 조합일 수 있다. 일반적으로 다른 연소기관은 다른 단순 관계를 필요로 하기 때문에, 선택된 관계는 연소기관의 특정 버전에 맞춰 수정되어야 한다는 점을 이해해야 한다. 좀 더 상세하게는, 전술한 관계에서 계수(coefficient)는 다른 버전의 연소기관들 사이에서 다른 것이 일반적이다. 단계 342 후에 단계 343이 수행되는 것이 바람직하다.
단계 343에서, 적어도 하나의 크랭크 각도 또는 크랭크 각도의 적어도 하나의 인터벌이 적응을 위해 결정된다. 상기 결정은 체적 편차에 대한 단순 관계와 관련되어 수행되는 것이 바람직하다. 이는 계산 시간을 상당히 줄여주게 된다. 그러나 원래 상기 결정은 단계 330에서 결정된 체적 편차와 관련되어 수행될 수도 있다는 점에 주목해야 한다.
일 실시예 a)에서, 상기 적어도 하나의 크랭크 각도는 최대 체적 편차가 예상되는 곳의 크랭크 각도이다. 여기서, 그리고 아래의 실시예에서, 예상된(expected)이란 용어는 단계 330에서 결정된 체적 편차에 기초한 예상 및/또는 상기 단순 관계와 관련된 예상과 관련된다.
일 실시예 b)에서, 상기 적어도 하나의 크랭크 각도는 상당한 연소 과정이 시작되기 전에 발생되는 것으로 예상되는 최대 체적 편차에 대응된다.
일 실시예 c)에서, 상기 크랭크 각도의 적어도 하나의 인터벌은 크랭크 각도의 상기 제1 규정된 범위 외의 하나의 인터벌 및 크랭크 각도의 상기 제1 규정된 범위 내의 하나의 인터벌을 포함한다.
일 실시예 d)에서, 상기 크랭크 각도의 적어도 하나의 인터벌은 크랭크 각도의 상기 제1 규정된 범위 외의 하나의 인터벌이다.
일 실시예 e)에서, 상기 적어도 하나의 크랭크 각도는 냉 연소기관에 비해 온 연소기관에 있어서 다른 체적 편차가 예상되는 곳의 크랭크 각도이다.
일 실시예에서, 상기 적어도 하나의 크랭크 각도 또는 크랭크 각도의 적어도 하나의 인터벌은 실시예 a) 내지 실시예 e) 중 어느 실시예들의 조합이다.
일 실시예에서, 단계들 341-343 중 어느 단계 또는 이들 단계들 중 일부 단계들 또는 모든 단계들의 조합은 상기 수정 모델을 제공한다. 특정 조합은 수정되어야 하는 파라미터들 등 및/또는 연소기관의 특정 버전 모두에 의존하게 된다는 점을 이해해야 한다. 이들 단계들 조합들의 일부 예시는 단계 350과 관련되어 논의되는 양(quantity)에 대해 특히 유용하다. 본 방법은 단계 350으로 이어진다.
단계 350에서, 연소기관 제어 및/또는 연소기관의 진단 시스템이 상기 수정 모델에 기초하여 수정된다. 상기 수정은 상기 열 배출 평가가 개선되도록 수행된다. 일 실시예에서, 열 배출 평가의 상기 개선은 상기 열 배출 평가에 관련된 적어도 하나의 파라미터의 수정과 관련이 있다.
단계 350은 단계들 351-355 중 어느 단계를 포함할 수 있다. 단계 351에서, 실린더 내 가스의 열용량 비에 대한 값이 수정된다. 상기 수정은 단계 343의 실시예 d)와 관련하여 설명된 바와 같은 상기 랭크 각도의 적어도 하나의 인터벌에서 수행되는 것이 바람직하다.
단계 352에서 적어도 하나의 센서의 감도가 수정된다. 일 실시예에서, 상기 센서는 연소실 내 압력을 결정하기 위한 압력 센서이다. 일 실시예에서, 상기 센서는 연소실 내 압력을 결정하기 위해 사용되는 노크/가속 센서이다. 상기 감도(sensitivity)는 연소실 내부 압력과 관련하여 상기 적어도 하나의 센서의 출력 값의 감도와 관련될 수 있다. 일 실시예에서, 상기 적어도 하나의 센서의 신호 강도가 수정된다. 상기 수정은 단계 343의 실시예 d)와 관련하여 설명된 바와 같은 상기 랭크 각도의 적어도 하나의 인터벌에서 수행되는 것이 바람직하다.
단계 353은 연소기관의 적어도 하나의 부품의 제조 공차에 대한 상기 적어도 하나의 양으로 보상하기 위해 적어도 하나의 양을 수정하는 단계를 포함할 수 있다. 단계 353은 연소기관의 적어도 하나의 부품의 마모에 대한 상기 적어도 하나의 양으로 보상하기 위해 적어도 하나의 양을 수정하는 단계를 포함할 수 있다. 연소기관에 공급되는 적어도 하나의 연료 품질에 대한 상기 적어도 하나의 양으로 보상하기 위해 적어도 하나의 양을 수정하는 단계를 포함할 수 있다. 이는 방법(300)을 수행할 때 연소기관의 상기 적어도 하나의 부품의 실제 정확한 기하학적 형상을 알 필요가 없다는 이점이 있다. 그 대신, 이상 기하학적 형상과 바람직하기로는 허용 가능한 제조 공차를 아는 것만으로 충분하다. 연소기관 제어 및/또는 연소기관의 진단 시스템을 상기 적어도 하나의 부품의 실제 기하학적 형상으로 수정하기 위해 상기 수정이 수행된다. 각 연소기관의 기하학적 형상은 서로 다르기 때문에, 이들이 동일한 버전의 연소기관에 속한다고 하더라도, 예를 들면 제조 공차로 인해 및/또는 마모로 인해, 본 방법은 연소기관의 부품들의 기하학적 형상을 실제로 측정할 필요가 없다. 각 개별 연소기관의 각 개별 부품에 대한 그러한 측정의 수행은 많은 노력을 필요로 하고, 많은 작업 시간을 필요로 함에 따라 연소기관에 대한 비용을 증가시킨다. 이에 따라 본 방법은 개별 연소기관의 개별 부품들의 기하학적 형상 변화를 측정하지 않고서도 기하학적 형상의 변화를 보상할 수 있다는 이점을 달성하게 된다.
상기 적어도 하나의 양은, 일 실시예에서, 실린더 내 가스의 열용량 비를 포함한다. 상기 적어도 하나의 양은, 일 실시예에서, 연소기관에서의 압축비를 포함한다. 상기 적어도 하나의 양은, 일 실시예에서, 연소실 내 압력을 측정하기 위한 압력 센서 및/또는 연소실 내 압력을 결정하는 데에 사용되는 노크/가속 센서와 같은 센서의 감도를 포함한다. 상기 수정은, 일 실시예에서, 단계 343의 실시예 a)-c)와 관련하여 설명된 바와 같은 상기 적어도 하나의 크랭크 각도 또는 크랭크 각도의 상기 적어도 하나의 인터벌에서 수행되는 것이 바람직하다. 상기 수정은, 일 실시예에서, 단계 343의 실시예 a)-c) 및 실시예 e)와 관련하여 설명된 바와 같은 상기 적어도 하나의 크랭크 각도 또는 크랭크 각도의 상기 적어도 하나의 인터벌에서 수행되는 것이 바람직하다.
일 실시예에서, 실린더 내 가스의 열용량 비의 값은 제조 공차 및/또는 마모를 보상하기 위해 수정된다. 열용량 비의 값은 단계 343의 실시예 a)-c)에 따라 또는 실시예 a)-c) 및 실시예 e)에 따라 변할 수 있다. 이러한 방식으로, 열용량 비의 값이 변함으로써 체적 편차가 보상된다.
일 실시예에서, 제조 공차 및/또는 마모를 보상하기 위해 센서의 감도가 수정된다. 센서의 감도는 단계 343의 실시예 a)-c)에 따라 또는 실시예 a)-c) 및 실시예 e)에 따라 변할 수 있다. 이러한 방식으로, 센서의 감도가 변함으로써 체적 편차가 보상된다.
단계 353은 연소실 내 적어도 하나의 최대 체적 편차를 수정하는 단계를 포함할 수 있다. 상기 수정은, 일 실시예에서, 단계 343의 실시예 a)-c)와 관련하여 설명된 바와 같은 상기 적어도 하나의 크랭크 각도 또는 크랭크 각도의 상기 적어도 하나의 인터벌에서 수행된다. 상기 수정은, 일 실시예에서, 단계 343의 실시예 a)-c) 및 실시예 e)와 관련하여 설명된 바와 같은 상기 적어도 하나의 크랭크 각도 또는 크랭크 각도의 상기 적어도 하나의 인터벌에서 수행된다. 일 실시예에서, 상기 연소실 내 적어도 하나의 최대 체적 편차는 연소실 내 압력에 따라 수정된다. 이러한 방식으로, 단계 353과 관련하여 기재한 바와 같이 마모 및/또는 제조 공차 및/또는 연료 품질이 보상될 수 있다.
단계 354에서 연소기관에서 압축비에 대한 값이 수정된다.
단계 355에서 연소기관에 대한 입자 물질 및/또는 NOx 추정 방법에서의 적어도 하나의 파라미터가 수정된다. 이는, 다른 양들 또는 값들의 수정과 관련하여 이전에 기재되어 있는 방식에 대응되는 방식으로 수행될 수 있다.
단계 350 후에 방법 300이 종료된다.
방법(300)의 특정 구현은 어떤 양이 특정 연소기관과 관련되어 있는지와 그 특정 연소기관에서 어떤 센서가 이용 가능한지에 따라 달라진다는 점에 주목해야 한다. 위에 기재되어 있는 발명의 설명은 수정이 어떻게 수행될 수 있는지에 대한 여러 실시예들을 제공하며 이에 따라 통상의 기술자는 발명의 특정 구현을 위해 가장 적당한 방식으로 이들 실시예들을 조합할 수 있다. 특히 방법(300)은 도 2와 관련되어 설명되어 있는 시스템(299)에서 실시될 수 있다는 점에 주목해야 한다. 좀 더 상세하게는, 단계들(300) 중 어느 단계는 시스템(299)의 하나 또는 그 이상의 부품들에서 수행될 수 있다.
방법(300)의 단계들은 다른 순서로 또는 병렬적으로도 수행될 수 있다. 다만 제한이 가해지는 경우는 하나의 단계가 그 입력으로 이전 단계의 출력을 필요로 하는 경우이다. 방법(300)의 하나 또는 그 이상의 단계들은 반복될 수 있다. 이러한 반복은 연속적으로 이루어질 수 있다. 상기 반복은 사전에 정해진 시간-인터벌로 수행될 수 있다. 상기 사전에 정해진 시간-인터벌은 다른 단계에 대해 다를 수 있다. 일 실시예에서, 상기 파라미터들 및 체적 편차의 결정을 포함하는 단계들은 모델의 제공을 포함하는 단계들보다 더 많이 수행된다. 일 실시예에서, 수정을 포함하는 상기 단계들은 모델의 제공을 포함하는 단계들보다 더 많이 수행된다. 이는 이 방법이 연소기관에서 실시간으로 수행될 때 특히 유용하다. 본 명세서에서 실시간(real-time)이란 용어는 연소기관 제어 및/또는 진단 시스템의 수정이 변경되는 것보다 더 빠르게 수행될 수 있다는 것과 관련된다. 이에 따라, 일 실시예에서, 수정은 엔진이 마모되는 것보다 빠르다. 일 실시예에서, 수정이 파트의 변경 및/또는 엔진이 재급유되는 것보다 빠르다. 이에 따라 수정 속도는 연소기관 제어 및/또는 진단 시스템의 적응 조절의 목적에 따라 달라질 수 있다.
도 4는 크랭크 각도(CAD)에 따른 상대 체적 편이 사이의 관계(400)를 도시하고 있다. 상기 관계는 본 개시와 관련되어 기재한 바와 같이 연소실 내 체적 편차와 관련된 모델의 출력(outcome)일 수 있다. 점선(410)은 위에 기재한 바와 같은 이상 체적을 나타낸다. 상기 이상 체적이 일정한 체적이 아니고 피스톤이 전후로 이동함에 따라 CAD에 따라 변하는 체적임을 알아야 한다. 그러나 체적 편차는 이상 체적과 관련되어 있기 때문에, 이상 체적은 항상 100%에 대응할 것이다. 즉, 이상 체적은 이상 체적으로부터 벗어나지 않는다.
실선(420)은 특정 버전의 연소기관의 기하학적 사양에 따른 체적 편차를 묘사한다. 도면에서 알 수 있듯이 편차는 TDC(들) 즉 CAD=0 근방에서 최고값을 구비한다. 일 실시예에서, 체적 편차는 5%를 상회한다. 그러나 일반적으로 각 연소기관이 완벽한 사양에 따라 정확하게 제조되는지 또는 연소기관 부품들에 제조 공차가 있는지는 알 수 없다. 상기 제조 공차는 허용 가능한 제조 공차와 관련된다.
파선-점선(430)은 제1 극단적인 제조 공차에 따른 체적 편차를 묘사한다. 이 제1 극단적인은 최소 체적 편차가 달성되는 방식으로 모든 제조 공차들이 더해진다는 사실과 관련된다. 도면으로부터 알 수 있듯이, 최소 체적 편차는 TDC 근방에서 3%를 상회한다.
파선(440)은 제2 극단적인 제조 공차에 따른 체적 편차를 묘사한다. 이 제2 극단적인은 최대 체적 편차가 달성되는 방식으로 모든 제조 공차들이 더해진다는 사실과 관련된다. 도면으로부터 알 수 있듯이, 최대 체적 편차는 TDC 근방에서 거의 8%이다.
도시되어 있는 도면은 특정 버전의 연소기관과 관련된다는 점에 주목해야 한다. 다른 버전의 연소기관은 이보다 더 높거나 낮은 체적 편차를 이룰 수 있다. 실험 결과는 일반적으로 트럭의 연소기관의 체적 편차가 승용차의 연소기관의 체적 편차보다 크다는 것을 보여주고 있다.
상기 라인들(430, 440)은 연소기관의 모든 파트들이 사전에 정해진 제조 공차 내에 속한다는 가정 하에서, 특정 버전의 연소기관 각각에서 실제로 가능한 체적 편차를 구획하고 있다. 따라서, 도 4의 관계는 연소기관에 대한 수정 모델을 제공하는 데에 및/또는 상기 수정 모델에 기초하여 연소기관 제어 및/또는 연소기관의 진단 시스템을 수정하는 데에 사용될 수 있다. 도 3과 관련하여 설명한 바와 같이, 상기 수정은 정확한 개별 제조 공차를 알지 못하는 상태에서, 각 연소기관이 개별 제조 공차에서 수정될 수 있다는 점에 주목해야 한다.
도 4는 연소기관의 특정 부하 및 특정 관계에 있는 상황을 도시하고 있음에 주목해야 한다. 특정 관계(specific relation)란 용어는 종종 냉 연소기관으로 불리는 바와 같이 연소기관이 막 시동되었는지 또는 종종 온 연소기관으로 불리는 바와 같이 연소기관이 통상적인 작동 온도 또는 작동 온도 범위에 도달하였는지 여부와 관련될 수 있다. 도 4에 도시되어 있는 것과 유사한 수치가 엔진 부하가 다른 경우 및/또는 특정 관계가 다른 경우에서는 다르게 보이는 것이 일반적이다.
유리하게는 본 발명은 내연기관을 시험/평가할 때 및/또는 소위 시험 벤치 및/또는 시험 셀에서 상기 내연기관의 제어를 하는 데에 사용될 수 있다.
도 5는 장치(500)의 일 버전을 나타내는 다이어그램이다. 도 2와 관련되어 설명되어 있는 제어 유닛들(200, 205)은, 일 버전에서, 장치(500)를 포함할 수 있다. 장치(500)는 비휘발성 메모리(520), 데이터 처리 유닛(510) 및 기록/판독 메모리(550)를 포함한다. 비휘발성 메모리(520)는 장치(500)의 기능을 제어하기 위한 컴퓨터 프로그램 예컨대 오퍼레이팅 시스템이 저장되어 있는 제1 메모리 요소(530)를 구비한다. 장치(500)는 버스 컨트롤러, 시리얼 통신 포트, I/O 수단, A/D 컨버터, 시간 및 날짜 입력 및 전송 유닛, 이벤트 카운터 및 인터럽션 컨트롤러(도시되어 있지 않음)를 추가로 포함한다. 비휘발성 메모리(520)는 제2 메모리 요소(540)도 구비한다.
컴퓨터 프로그램(P)은 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 루틴을 포함한다.
컴퓨터 프로그램(P)은 연소기관의 제1 세트의 동적 파라미터에 기초하여 연소실 내 체적 편차와 관련된 모델을 제공하기 위한 루틴을 포함할 수 있다. 여기서, 상기 모델은 열 변화, 질량 힘 및 압력에 의한 체적 편차를 포함한다. 이는 상기 제1 제어 유닛(200)에 의해 적어도 부분적으로 수행될 수 있다.
컴퓨터 프로그램(P)은 연소기관과 관련된 제1 세트의 동적 파라미터를 결정하기 위한 루틴을 포함할 수 있다. 이는 상기 제1 제어 유닛(200) 및 상기 수단(265, 295, 255) 및/또는 상기 온도 센서에 의해 적어도 부분적으로 수행될 수 있다. 컴퓨터 프로그램(P)은 크랭크 각도, 크랭크샤프트 회전 속도, 크랭크샤프트 온도, 커넥팅로드 온도, 피스톤 온도, 실린더 블록 온도, 실린더 헤드 온도 및/또는 연소실 내부의 압력을 결정하기 위한 루틴을 포함할 수 있다. 상기 결정된 동적 파라미터는 상기 비휘발성 메모리(520)에 저장될 수 있다.
컴퓨터 프로그램(P)은 상기 제공된 모델에 기초하여 그리고 상기 제1 세트의 결정된 동적 파라미터에 기초하여 연소실 내 체적 편차를 결정하기 위한 루틴을 포함할 수 있다. 이는 상기 제1 제어 유닛(200)에 의해 적어도 부분적으로 수행될 수 있다.
컴퓨터 프로그램(P)은 연소기관을 위한 수정 모델을 제공하기 위한 루틴을 포함할 수 있다. 여기서, 상기 수정 모델은 연소실 내 상기 결정된 체적 편차에 기초한다. 이는 상기 제1 제어 유닛(200)에 의해 적어도 부분적으로 수행될 수 있다.
컴퓨터 프로그램(P)은 상기 열 배출 평가를 개선시키기 위해, 상기 수정 모델에 기초하여 연소기관의 진단 시스템 및/또는 연소기관 제어를 수정하기 위한 루틴을 포함할 수 있다. 이는 상기 제1 제어 유닛(200)에 의해 적어도 부분적으로 수행될 수 있다.
컴퓨터 프로그램(P)은 실린더 내 가스의 열용량 비, 연소기관에서 압축비, 연소실 내 압력을 측정하기 위한 압력 센서 같은 및/또는 연소실 내 압력을 결정하는 데에 사용되는 노크/가속 센서 같은 센서의 감도를 수정하기 위한 루틴을 포함할 수 있다. 컴퓨터 프로그램은 연소기관용 입자 물질 및/또는 NOx 추정 모델 내의 적어도 하나의 파라미터를 수정하기 위한 루틴을 포함할 수 있다. 이는 상기 제1 제어 유닛(200)에 의해 적어도 부분적으로 수행될 수 있다.
컴퓨터 프로그램(P)은 메모리(560) 내에 및/또는 기록/판독 메모리(550) 내에 실행 가능한 형태 또는 압축된 형태로 저장될 수 있다.
데이터 처리 유닛(510)이 어느 기능을 수행한다고 기재되어 있다면, 이는 데이터 처리 유닛(510)이 메모리(560) 내에 저장되어 있는 프로그램의 어느 부분 또는 기록/판독 메모리(550) 내에 저장되어 있는 프로그램의 어느 부분을 수행하는 것을 의미한다.
데이터 처리 유닛(510)은 데이터 버스(515)를 통해 데이터 포트(599)와 통신할 수 있다. 비휘발성 메모리(520)는 데이터 버스(512)를 통해 데이터 처리 유닛(510)과 통신되는 것으로 의도된다. 별도의 메모리(560)는 메모리(520)는 데이터 버스(511)를 통해 데이터 처리 유닛(510)과 통신되는 것으로 의도된다. 기록/판독 메모리(550)는 데이터 버스(514)를 통해 데이터 처리 유닛(510)과 통신되게 배치되어 있다. 링크들(L205, L220, L240, L250, 및 L270)은 예를 들면 데이터 포트(599)에 연결될 수 있다(도 2 참조).
데이터가 데이터 포트(599) 상에 수신되면, 데이터는 제2 메모리 요소(540)에 일시적으로 저장될 수 있다. 수신된 입력 데이터가 일시적으로 저장되면, 데이터 처리 유닛(510)은 전술한 바와 같이 코드 실행을 수행하게 준비한다.
본 명세서에 기재되어 있는 방법들의 일부는 메모리(560) 및/또는 기록/판독 메모리(550) 내에 저장되어 있는 프로그램을 실행시키는 데이터 처리 유닛(510)을 사용하여 장치(500)에 의해 수행될 수 있다. 장치(500)가 프로그램을 실행하면, 본 명세서에 기재되어 있는 방법들이 실행된다.
도해적이고 설명의 목적으로 본 발명의 바람직한 실시형태들에 대해 기재하였다. 이는 본 발명을 기재되어 있는 형태들로 한정하거나 배타적으로 하기 위한 것이 아니다. 통상의 기술자라면 많은 변형과 변조가 이루어질 수 있음은 잘 알 것이다. 선택되어 기재되어 있는 실시형태들은 본 발명의 원리와 그 실제 적용을 가장 잘 설명하기 위한 것이므로, 이에 의해 통상의 기술자가 다양한 실시형태에서 본 발명을 이해하고 사용하고자 하는 용도에 적당하게 변형을 할 수 있을 것이다.
본 개시에 따른 시스템은 방법(300)과 관련하여 기재된 단계들 또는 동작들 중 어느 하나를 수행하게 배치될 수 있음에 특히 주목해야 한다. 본 개시에 따른 방법은 도 2와 관련하여 기재된 센서 융합 시스템(299)의 일 요소를 구성하는 동작들 중 어느 하나를 추가로 포함할 수 있다. 이와 동일한 사항이 컴퓨터 프로그램과 컴퓨터 프로그램 제품에도 적용된다.

Claims (26)

  1. 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법으로,
    - 연소기관의 제1 세트의 동적 파라미터에 기초하여 적어도 하나의 연소실 내의 체적 편차와 관련된 모델을 제공하는 단계(310)로, 상기 모델은 열 변화에 의한, 질량 힘에 의한 및 압력에 의한 체적 편차를 포함하는, 모델 제공 단계(310);
    - 연소기관과 관련된 상기 제1 세트의 동적 파라미터를 결정하는 단계(320);
    - 상기 제공된 모델에 기초하여 그리고 상기 제1 세트의 결정된 동적 파라미터에 기초하여 상기 적어도 하나의 연소실 내 상기 체적 편차를 결정하는 단계(330);
    - 상기 적어도 하나의 연소실 내의 상기 결정된 체적 편차에 기초하는 연소기관용 수정 모델을 제공하는 단계(340);
    - 상기 열 배출 평가를 개선할 수 있도록, 상기 수정 모델에 기초하여 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하는 단계(350);를 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  2. 제1항에 있어서,
    상기 적어도 하나의 연소실 내 체적 편차와 관련하여 상기 제공된 모델은 상기 왕복식 내연기관의 실린더 헤드의 변형에 의한 체적 편차도 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  3. 제1항에 있어서,
    상기 열 배출 평가의 개선은 상기 열 배출 평가와 관련된 적어도 하나의 파라미터의 수정과 관련되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  4. 제1항에 있어서,
    상기 제1 세트의 동적 파라미터는, 크랭크 각도, 연소기관의 크랭크샤프트 회전 속도, 상기 크랭크샤프트 온도, 상기 크랭크샤프트에 연결된 적어도 하나의 커넥팅로드 온도, 상기 적어도 하나의 커넥팅로드에 연결된 적어도 하나의 피스톤 온도, 상기 연소기관 내 실린더 블록 온도, 상기 연소기관 내 실린더 헤드 온도, 상기 적어도 하나의 연소실 내부의 압력 중 적어도 하나의 양을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  5. 제1항에 있어서,
    상기 수정 모델은 체적 편차가 적어도 하나의 제2 세트의 동적 파라미터와 어떻게 관련되어 있는지에 대한 관계를 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  6. 제5항에 있어서,
    상기 제2 세트의 동적 파라미터는, 상기 적어도 하나의 연소실 내부의 압력, 매체 및/또는 요소의 온도, 연소기관의 적어도 하나의 실린더 라이너 온도, 크랭크샤프트 온도, 적어도 하나의 커넥팅로드 온도, 적어도 하나의 피스톤 온도, 크랭크 각도, 크랭크샤프트의 회전 속도, 상기 적어도 하나의 연소실 내 가스 성분, 상기 연소기관의 실린더에 대한 흡기 밸브가 개방되어 있는지 아니면 폐쇄되어 있는지 여부, 상기 연소기관의 실린더에 대한 배기 밸브가 개방되어 있는지 아니면 폐쇄되어 있는지 여부 중 적어도 하나의 양을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  7. 제1항에 있어서,
    상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 적어도 하나의 사전에 정해진 크랭크샤프트 각도 및/또는 적어도 하나의 크랭크샤프트 각도 인터벌에서 수행되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  8. 제1항에 있어서,
    상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 적어도 하나의 연소실 내 가스의 열용량 비(351), 상기 연소기관에서의 압축비(354), 센서의 감도(352) 중 적어도 하나의 양의 수정을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  9. 제1항에 있어서,
    상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 연소기관의 적어도 하나의 부품의 제조 공차에 대한 적어도 하나의 양에 의해 보상하기 위해 및/또는 상기 연소기관의 적어도 하나의 부품의 마모에 대한 적어도 하나의 양에 의해 보상하기 위해 및/또는 연소기관에 공급되는 적어도 하나의 연료의 연료 품질에 대한 적어도 하나의 양에 의해 보상하기 위해, 적어도 하나의 연소실 내 가스의 열용량 비, 상기 연소기관에서의 압축비 및 센서의 감도 중 적어도 하나의 양의 수정을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  10. 제8항 또는 제9항에 있어서,
    상기 센서는 적어도 하나의 연소실 내 압력을 측정하기 위한 압력 센서 및/또는 적어도 하나의 연소실 내 압력을 결정하기 위한 노크/가속 센서인 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  11. 제1항에 있어서,
    상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 적어도 하나의 연소실 내에서의 적어도 하나의 최대 체적 편차의 수정(355)을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  12. 제1항에 있어서,
    상기 방법이 실시간으로 수행되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  13. 제1항에 있어서,
    상기 연소기관의 제어 및/또는 상기 연소기관의 상기 진단 시스템의 상기 수정은 상기 연소기관에 대한 입자 물질 및/또는 NOx 추정 방법에서의 적어도 하나의 파라미터의 수정을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 방법.
  14. 왕복식 내연기관(298)에서 열 배출 평가를 개선하기 위한 시스템(299)으로,
    - 연소기관(298)의 제1 세트의 동적 파라미터에 기초하여 적어도 하나의 연소실(260) 내의 체적 편차와 관련된 모델을 제공하기 위한 수단(200; 205)으로, 상기 모델은 열 변화에 의한, 질량 힘에 의한 및 압력에 의한 체적 편차를 포함하는, 모델 제공 수단(200; 205);
    - 연소기관(298)과 관련된 상기 제1 세트의 동적 파라미터를 결정하기 위한 수단(255, 265, 295);
    - 상기 제공된 모델에 기초하여 그리고 상기 제1 세트의 결정된 동적 파라미터에 기초하여 상기 적어도 하나의 연소실(260) 내 상기 체적 편차를 결정하기 위한 수단(200; 205);
    - 상기 적어도 하나의 연소실(260) 내의 상기 결정된 체적 편차에 기초하는 연소기관(298)용 수정 모델을 제공하기 위한 수단(200; 205);
    - 상기 열 배출 평가를 개선할 수 있도록, 상기 수정 모델에 기초하여 연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 수단(200; 205);을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  15. 제14항에 있어서,
    연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 열 배출 평가와 관련된 적어도 하나의 파라미터를 수정하기 위해 배치되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  16. 제14항 또는 제15항에 있어서,
    상기 제1 세트의 동적 파라미터를 결정하기 위한 상기 수단은, 크랭크 각도를 결정하기 위한 수단(255), 상기 연소기관에 연결된 크랭크샤프트 회전 속도를 결정하기 위한 수단, 상기 크랭크샤프트 온도를 결정하기 위한 수단, 상기 크랭크샤프트에 연결된 적어도 하나의 커넥팅로드 온도를 결정하기 위한 수단, 상기 적어도 하나의 커넥팅로드에 연결된 적어도 하나의 피스톤 온도를 결정하기 위한 수단, 상기 연소기관 내 실린더 블록 온도를 결정하기 위한 수단, 상기 연소기관 내 실린더 헤드 온도를 결정하기 위한 수단, 상기 적어도 하나의 연소실 내부의 압력을 결정하기 위한 수단(265)들 중 적어도 하나를 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  17. 제14항에 있어서,
    연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 적어도 하나의 사전에 정해진 크랭크샤프트 각도 및/또는 적어도 하나의 크랭크샤프트 각도 인터벌에서 상기 수정을 수행하게 배치되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  18. 제14항에 있어서,
    연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 적어도 하나의 연소실 내 가스의 열용량 비, 상기 연소기관에서의 압축비, 센서의 감도 중 적어도 하나의 수정을 수행하게 배치되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  19. 제14항에 있어서,
    연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 연소기관의 적어도 하나의 부품의 제조 공차에 대한 적어도 하나의 양에 의해 보상하기 위해 및/또는 상기 연소기관의 적어도 하나의 부품의 마모에 대한 적어도 하나의 양에 의해 보상하기 위해 및/또는 연소기관에 공급되는 적어도 하나의 연료의 연료 품질에 대한 적어도 하나의 양에 의해 보상하기 위해, 적어도 하나의 연소실 내 가스의 열용량, 상기 연소기관에서의 압축비 및 센서의 감도 중 적어도 하나의 양을 수정하기 위한 수단을 포함하는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  20. 제18항 또는 제19항에 있어서,
    상기 센서는 상기 적어도 하나의 연소실 내 압력을 측정하기 위한 압력 센서 및/또는 상기 적어도 하나의 연소실 내 압력을 결정하는 데에 사용되는 노크/가속 센서인 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  21. 제14항에 있어서,
    연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 적어도 하나의 연소실 내 적어도 하나의 최대 체적 편차를 수정하기 위해 배치되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  22. 제14항에 있어서,
    상기 시스템은 상기 수정을 실시간으로 수행하게 배치되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  23. 제14항에 있어서,
    연소기관의 제어 및/또는 연소기관의 진단 시스템을 수정하기 위한 상기 수단은 상기 연소기관에 대한 입자 물질 및/또는 NOx 추정 방법의 적어도 하나의 파라미터를 수정하기 위해 배치되는 것을 특징으로 하는 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템.
  24. 차량으로, 제14항에 따른 시스템을 포함하는 것을 특징으로 하는 차량.
  25. 프로그램 코드를 포함하는 컴퓨터 프로그램이 저장되어 있는 컴퓨터로 판독 가능한 매체로, 컴퓨터에서 상기 프로그램 코드가 실행될 때, 상기 컴퓨터가 제1항에 따른 방법을 실행하는 것을 특징으로 하는 컴퓨터로 판독 가능한 매체.
  26. 삭제
KR1020187036552A 2016-06-15 2017-06-07 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템 및 방법 KR102111081B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1650841-8 2016-06-15
SE1650841A SE540142C2 (en) 2016-06-15 2016-06-15 System and method for improving heat release evaluation at areciprocating internal combustion engine
PCT/SE2017/050602 WO2017217912A1 (en) 2016-06-15 2017-06-07 System and method for improving heat release evaluation at a reciprocating internal combustion engine

Publications (2)

Publication Number Publication Date
KR20190008348A KR20190008348A (ko) 2019-01-23
KR102111081B1 true KR102111081B1 (ko) 2020-05-15

Family

ID=60664470

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187036552A KR102111081B1 (ko) 2016-06-15 2017-06-07 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템 및 방법

Country Status (7)

Country Link
US (1) US20190257256A1 (ko)
EP (1) EP3472448A4 (ko)
KR (1) KR102111081B1 (ko)
CN (1) CN109312676A (ko)
BR (1) BR112018072700A2 (ko)
SE (1) SE540142C2 (ko)
WO (1) WO2017217912A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211783B4 (de) * 2018-07-16 2021-02-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
CN113283080B (zh) * 2021-05-25 2022-10-25 西安交通大学 一种快速压缩机燃烧室热补偿的方法
AT525949B1 (de) * 2022-02-22 2024-05-15 Avl List Gmbh Verfahren zum Bestimmen einer Konzentration eines Gases in einem Gaspfad einer Brennkraftmaschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110654A (ja) 1998-10-01 2000-04-18 Honda Motor Co Ltd 車載内燃エンジンの燃焼制御装置
US20060293829A1 (en) 2002-11-27 2006-12-28 Cornwell Richard Charles E Engine management
US20100004845A1 (en) 2007-02-07 2010-01-07 Per Tunestal Self tuning cylinder pressure based heat release computation
JP2010196556A (ja) 2009-02-24 2010-09-09 Denso Corp 発熱量算出装置、内燃機関の制御装置及びインジェクタの異常検出装置
WO2015195040A1 (en) 2014-06-17 2015-12-23 Scania Cv Ab Method and device for diagnosing performance of an internal combustion engine
US20160032853A1 (en) 2013-03-12 2016-02-04 Westport Power Inc. Fuel system diagnostics

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919688A (en) * 1958-06-04 1960-01-05 Gen Motors Corp Cylinder and piston assembly
US4633707A (en) * 1982-09-13 1987-01-06 Jodon Engineering Associates, Inc. Method and apparatus for measuring engine compression ratio, clearance volume and related cylinder parameters
US6994077B2 (en) * 2002-09-09 2006-02-07 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
JP4391774B2 (ja) * 2003-07-17 2009-12-24 トヨタ自動車株式会社 内燃機関の制御装置および内燃機関の制御方法
US7454286B2 (en) * 2006-12-20 2008-11-18 Delphi Technologies, Inc. Combustion control in an internal combustion engine
US7788017B2 (en) * 2006-12-27 2010-08-31 Denso Corporation Engine control, fuel property detection and determination apparatus, and method for the same
US8301356B2 (en) * 2008-10-06 2012-10-30 GM Global Technology Operations LLC Engine out NOx virtual sensor using cylinder pressure sensor
JP4793488B2 (ja) * 2009-03-11 2011-10-12 トヨタ自動車株式会社 内燃機関の制御装置
JP5510653B2 (ja) * 2010-06-07 2014-06-04 マツダ株式会社 多気筒エンジンの燃焼室容積調整方法
DE102011054217A1 (de) * 2011-10-06 2013-04-11 Dspace Digital Signal Processing And Control Engineering Gmbh Verfahren zum Echtzeittest eines Steuergeräts für einen Verbrennungsmotor mit einem Simulator
CN105127492B (zh) * 2015-09-07 2017-11-14 上海交通大学 直列发动机缸盖燃烧室在线补偿加工的方法
US11739701B2 (en) * 2018-11-08 2023-08-29 Marelli Europe S.P.A. Method to determine the mass of air trapped in each cylinder of an internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110654A (ja) 1998-10-01 2000-04-18 Honda Motor Co Ltd 車載内燃エンジンの燃焼制御装置
US20060293829A1 (en) 2002-11-27 2006-12-28 Cornwell Richard Charles E Engine management
US20100004845A1 (en) 2007-02-07 2010-01-07 Per Tunestal Self tuning cylinder pressure based heat release computation
JP2010196556A (ja) 2009-02-24 2010-09-09 Denso Corp 発熱量算出装置、内燃機関の制御装置及びインジェクタの異常検出装置
US20160032853A1 (en) 2013-03-12 2016-02-04 Westport Power Inc. Fuel system diagnostics
WO2015195040A1 (en) 2014-06-17 2015-12-23 Scania Cv Ab Method and device for diagnosing performance of an internal combustion engine

Also Published As

Publication number Publication date
US20190257256A1 (en) 2019-08-22
BR112018072700A2 (pt) 2019-02-19
WO2017217912A1 (en) 2017-12-21
EP3472448A1 (en) 2019-04-24
KR20190008348A (ko) 2019-01-23
EP3472448A4 (en) 2020-02-12
SE540142C2 (en) 2018-04-10
SE1650841A1 (en) 2017-12-16
CN109312676A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
KR102111081B1 (ko) 왕복식 내연기관에서 열 배출 평가를 개선하기 위한 시스템 및 방법
US7809489B2 (en) Method for determining the cylinder interior pressure of an internal combustion engine
JP4786129B2 (ja) 内燃機関のtdc決定方法
DE102007003245A1 (de) Verfahren zum Entwerfen eines Motorkomponenten-Temperaturschätzers
US10626808B2 (en) Controlling fuel injection in an internal combustion engine
US20170101941A1 (en) Method and device for diagnosing a variable setting of a compression ratio in a reciprocating internal combustion engine
Guardiola et al. Cylinder charge composition observation based on in-cylinder pressure measurement
CN104454209A (zh) 用于操作燃料喷射器的控制设备
Wick et al. Dynamic measurement of HCCI combustion with self-learning of experimental space limitations
Millo et al. Numerical simulation of the warm-up of a passenger car diesel engine equipped with an advanced cooling system
US11408359B2 (en) System for turbocharger performance monitoring and adaptation
Schlosser et al. Accelerated powertrain development through model based calibration
EP1731890A1 (en) Method and apparatus for calibrating the gain of a cylinder pressure sensor of an internal combustion engine
US20200332733A1 (en) System and method for estimating engine performance
Ganguly et al. Prediction and reduction of cylinder liner bore deformation for a two wheeler single cylinder gasoline engine
Cipollone et al. A fully transient model for advanced engine thermal management
CN108699993B (zh) 用于确定喷射燃料的时间点的方法和设备
JP4803099B2 (ja) 可変圧縮比エンジンのトルク推定装置
JP5402762B2 (ja) 内燃機関の制御装置
KR20190015384A (ko) 가변적인 압축비를 갖는 왕복 기관을 진단 및/또는 컨트롤하기 위한 방법과 시스템
Tsironas et al. Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor
Nain et al. Assessment of Engine Cooling System Performance Using 1-D/3-D Simulation Approach for Engine Transient Cycle
Mezher et al. Engine temperature management and control: Improvements and benefits linked to the replacement of map-controlled thermostat with a mechatronic part
Alkeilani Torque Accuracy Improvement Via Explicit Torque Feedback Control For Internal Combustion Spark Ignition Engines
CN106401770B (zh) 用于对传感器信号进行处理的方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right