KR102024185B1 - 소스 매처 - Google Patents

소스 매처 Download PDF

Info

Publication number
KR102024185B1
KR102024185B1 KR1020180003732A KR20180003732A KR102024185B1 KR 102024185 B1 KR102024185 B1 KR 102024185B1 KR 1020180003732 A KR1020180003732 A KR 1020180003732A KR 20180003732 A KR20180003732 A KR 20180003732A KR 102024185 B1 KR102024185 B1 KR 102024185B1
Authority
KR
South Korea
Prior art keywords
splitter
matcher
unit
high frequency
low frequency
Prior art date
Application number
KR1020180003732A
Other languages
English (en)
Other versions
KR20190085635A (ko
Inventor
정창석
임도식
박정익
황민주
Original Assignee
(주)이큐글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이큐글로벌 filed Critical (주)이큐글로벌
Priority to KR1020180003732A priority Critical patent/KR102024185B1/ko
Priority to CN201980007014.7A priority patent/CN111819655B/zh
Priority to PCT/KR2019/000440 priority patent/WO2019139395A1/ko
Publication of KR20190085635A publication Critical patent/KR20190085635A/ko
Application granted granted Critical
Publication of KR102024185B1 publication Critical patent/KR102024185B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Abstract

본 발명의 소스 매처는 챔버에 설치된 복수의 코일에 플라즈마 생성용 전력을 인가하는 RF 발진부; 상기 챔버, 상기 RF 발진부, 상기 코일 중 적어도 하나의 특성 임피던스(characteristic impedance)에 로드 임피던스(load impedance)를 맞추는 RF 매처부; 상기 RF 매처부의 출력 전력을 각 코일로 분배하는 스플리터부; 상기 RF 매처부 또는 상기 스플리터부의 정합 효율을 조정하는 조정부;를 포함할 수 있다.

Description

소스 매처{SOURCE MATCHER}
본 발명은 플라즈마 챔버의 임피던스 정합을 위한 소스 매처에 관한 것이다.
기판(wafer 또는 glass)에 대한 식각 공정은 포토레지스트(photoresist 또는 PR) 층의 구멍을 통해 기판의 최상단층을 선택적으로 제거하는 공정으로서, 식각 방식에 따라 식각액을 이용하는 습식 식각(wet etch)과 가스를 이용하는 건식 식각(dry etch)으로 대별될 수 있다.
건식 식각 방식 중 식각 수단으로서 플라즈마를 이용하는 경우에는 기판을 수용하는 챔버 내부에 가스를 주입하고, 높은 에너지의 고주파를 챔버에 인가함으로서 주입된 가스의 분자들을 고 에너지 준위로 여기시켜 플라즈마 상태로 형성시킨 후 기판 표면에 여기 된 이온입자들을 입사시켜 식각을 수행하게 된다.
챔버 내에 플라즈마가 정상적으로 생성되도록 하고, 챔버 내에 생성된 플라즈마의 밀도 등을 정확하게 제어하기 위해 소스단과 부하단 간의 임피던스를 매칭시킬 필요가 있다.
한국등록특허공보 제0771336호에는 다중 구조의 접지 방법을 사용하여 접지 성능이 개선된 임피던스 정합 장치가 나타나 있다.
한국등록특허공보 제0771336호
본 발명은 챔버, RF 발진부, 코일 간의 임피던스 정합 효율이 개선된 소스 매처를 제공하기 위한 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 소스 매처는 챔버에 설치된 복수의 코일에 플라즈마 생성용 전력을 인가하는 RF 발진부; 상기 챔버, 상기 RF 발진부, 상기 코일 중 적어도 하나의 특성 임피던스(characteristic impedance)에 로드 임피던스(load impedance)를 맞추는 RF 매처부; 상기 RF 매처부의 출력 전력을 각 코일로 분배하는 스플리터부; 상기 RF 매처부 또는 상기 스플리터부의 정합 효율을 조정하는 조정부;를 포함할 수 있다.
본 발명의 소스 매처는 RF 매처부 또는 스플리터부의 정합 효율을 조정하는 조정부를 통해 챔버, RF 발진부, 코일 간의 임피던스 정합 효율을 개선할 수 있다.
도 1은 본 발명의 소스 매처가 구비된 플라즈마 장치를 나타낸 개략도이다.
도 2는 본 발명이 RF 매처부를 나타낸 회로도이다.
도 3은 본 발명의 스플리터부를 나타낸 회로도이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
도 1은 본 발명의 소스 매처가 구비된 플라즈마 장치를 나타낸 개략도이다.
도 1의 플라즈마 장치는 플라즈마를 이용해서 기판, 웨이퍼 등의 가공물(10)을 가공(증착, 식각, 세척)할 수 있다.
소스 매처는 RF 발진부(110), RF 매처부(130), 스플리터부(150), 조정부(170)를 포함할 수 있다.
RF 발진부(110)는 챔버(30)에 설치된 복수의 코일(50)에 플라즈마 생성용 전력을 인가할 수 있다.
챔버(30) 내부에는 플라즈마에 의해 가공(증착, 식각, 세척)되는 가공물(10)이 수용될 수 있다. 일 예로, 플라즈마 생성용 전력이 인가된 코일(50)에 의해 챔버(30) 내부에는 유도 결합 플라즈마(Inductive coupling Plasma, ICP)가 형성될 수 있다.
챔버(30)에는 가공물(10)이 수용되는 수용 공간이 마련되며, 해당 수용 공간은 플라즈마 공정시 외부로부터 폐쇄될 수 있다.
아르곤(Ar) 가스와 같이 플라즈마를 활성화시키는데 적당한 반응 가스가 가스 채널 또는 가스판을 통하여 챔버(30) 내에 공급될 수 있다.
챔버(30)의 수용 공간에 연결된 펌프(PUMP)에 의해 챔버(30) 내부는 진공 상태가 될 수 있다.
챔버(30)의 상부는 덮개(31)로 덮여 밀봉될 수 있으며, 덮개(31)와 챔버(30)의 사이에는 오링이 개재될 수 있다. 덮개(31)는 석영 유리판을 포함하는 것이 바람직하며, 덮개(31)는 안테나 유니트와 챔버(30)의 수용 공간의 사이에 위치할 수 있다.
도시되지 않은 실시예로서 코일(50)은 챔버(30)의 내부 공간에 배치될 수도 있다.
챔버(30)의 수용 공간에는 가공물(10)을 지지하기 위해 척 유니트(90)가 마련될 수 있다.
척 유니트(90)는 챔버(30) 내에 마련되는 것으로, 챔버(30)에 수납된 가공물(10)을 지지할 수 있다. 척 유니트(90)에 지지된 가공 대상물이 플라즈마 처리되도록 척 유니트(90)는 코일(50)에 대면하게 설치되는 것이 좋다. 일 예로, 코일(50)이 챔버(30)의 상부에 마련될 때, 척 유니트(90)는 챔버(30)의 하부에 마련될 수 있다. 코일(50)과 함께 챔버(30)의 수용 공간에 플라즈마 분위기를 형성하기 위해 척 유니트(90)는 정전 척(electrostatic chuck)을 포함할 수 있다.
코일(50)은 RF 발진부(110)에 의해 플라즈마 생성용 전력이 인가되면 챔버(30)에 전자기장을 인가할 수 있다. 코일(50)에 의해 인가된 전자기장은 챔버(30) 내부에 플라즈마를 여기시킬 수 있다. 코일(50)은 챔버(30)에 대해 고정되거나 움직일 수 있다.
평면상으로 챔버(30)내 수용 공간의 각 영역에 존재하는 플라즈마의 밀도 등을 조절하기 위해 코일(50)은 복수로 마련될 수 있다. 각 코일(50)은 서로 다른 위치에 배치될 수 있다.
RF 매처부(130)는 챔버(30), RF 발진부(110), 코일(50) 중 적어도 하나의 특성 임피던스(characteristic impedance)에 로드 임피던스(load impedance)를 맞출 수 있다.
일 예로, RF 매처부(130)는 RF 발진부(110)에 연결되는 공통 케이블(109)의 특성 임피던스(characteristic impedance)에 로드 임피던스(load impedance)를 맞출 수 있다.
척 유니트(90)에는 RF 바이어스 전원을 인가하기 위한 바이어스 발진기, 바이어스 발진기에 연결되는 케이블의 특성 임피던스에 로드 임피던스를 맞추기 위한 바이어스 매처가 연결될 수 있다. 본 명세서에서 RF 매처부(130)는 코일(50)에 연결되는 것을 주로 설명하고 있으나, 바이어스 매처를 포함할 수도 있다.
본 발명의 플라즈마 장치는 척 유니트(90)에 가공물(10)이 안착된 상태에서 척 유니트(90)에 전력을 공급할 수 있다. 전력이 공급되면 가공물(10)은 정전력에 의해 척 유니트(90)에 고정될 수 있다.
척 유니트(90)에 가공물(10)이 고정되면 챔버(30) 상부의 가스 분사부를 통해 챔버(30) 내부로 소스 가스를 분사하고, 척 유니트(90)에는 바이어스 전력이 인가되며, 코일(50)에는 소스 전력이 인가될 수 있다. 식각 공정의 경우, 바이어스 전력 및 소스 전력에 해당하는 플라즈마 생성용 전력의 인가에 의해, 챔버(30) 내부에 강력한 산화력을 갖는 플라즈마가 형성될 수 있다. 이때, 플라즈마 중의 양이온들이 가공물(10)의 표면에 입사 및 충돌되어 가공물(10)이 식각될 수 있다.
RF 매처부(130)는 RF 발진부(110)에 미리 세팅되어진 특정 임피던스를 맞추기 위한 것으로, 인덕터(L) 및 가변 커패시터(C)를 포함할 수 있다.
RF 발진부(110)로부터 플라즈마 생성용 전력이 RF 매처부(130)로 입력되면, VI 센서(710)의 전류 검출단과 전압 검출단에서 감지된 상대적인 위상 차이가 전압차로 변화되어 조정부(170)에 전달될 수 있다.
조정부(170)는 전달된 전압치에 따라 RF 매처부(130)의 가변 커패시터의 임피던스가 특정한 값, 예를 들어 50Ω에 맞추어지도록 구동 모터(730)를 구동시켜 챔버(30) 내에서 플라즈마에 의한 각종 처리 공정이 적절하게 수행되도록 할 수 있다.
RF 매처부(130)의 가변 커패시터의 조절량 및 초기 설정값(pre-setting), RF 발진부(110)에서 발진되는 신호 등은 피엠씨(process module controller)로 통칭되는 컴퓨터에 전달되어 외부에서 모니터링될 수 있다.
RF 매처부(130)를 구성하는 각 소자 및 각 회로 간에 발생되는 잔류 편차(offset)와, 고주파 신호에서 발생되는 하모닉스(harmonics)에 의한 노이즈(noise), 그리고 플라즈마에 의해 기판이 식각되는 과정 중에 발생되는 미세한 임피던스 변화 등과 같은 내부적인 요인으로 VI 센서(710)가 무 감대(dead zone)에 빠져 반응하지 못하는 경우가 발생될 수 있다.
VI 센서(710)의 무 감대 현상은 가변 커패시터들이 특정한 임피던스를 가질 수 있도록 RF 매처부(130)가 모터 구동신호를 발진시키지 못하는 결과를 초래하므로, 전체 시스템이 불안정하게 되는 중요한 원인으로 작용할 수 있다.
VI 센서(710)의 무 감대 현상을 초래하는 잔류 편차, 노이즈, 플라즈마 공정 중 발생하는 미세 임피던스 변화를 줄이기 위해 본 발명의 소스 매처는 RF 매처부(130)뿐만 아니라 스플리터부(150)와 조정부(170)를 추가로 이용할 수 있다.
스플리터부(150)는 RF 매처부(130)의 출력 전력을 각 코일(50)로 분배할 수 있다. 이때, 스플리터부(150)에는 임피던스가 조절되는 가변 커패시터가 마련될 수 있다. 가변 커패시터가 마련된 스플리터부(150)는 RF 매처부(130)와 유사하게 임피던스 정합에 관여할 수 있다.
스플리터부(150)는 RF 매처부(130)와 대비하여 코일측 말단에 위치하는 요소이므로, 챔버(30) 내의 미세 임피던스 변화, RF 매처부(130)의 각 소자로 인해 발생된 잔류 편차, 노이즈를 신속 정확하게 줄일 수 있다.
조정부(170)는 RF 매처부(130) 또는 스플리터부(150)의 정합 효율을 조정할 수 있다.
조정부(170)는 RF 매처부(130)의 가변 커패시터 또는 스플리터부(150)의 가변 커패시터를 조절함으로써, 챔버(30), RF 발진부(110), 코일(50) 간의 임피던스를 정합시키는 동시에 임피던스 정합 효율을 조정할 수 있다.
본 발명에 따르면, RF 매처부(130)뿐만 아니라 스플리터부(150)에서도 임피던스 조절이 가능하므로, 임피던스 정합 효율이 정밀하게 조절될 수 있다.
도 2는 본 발명이 RF 매처부(130)를 나타낸 회로도이다.
챔버(30) 내에 가공물(10)을 가공하는 플라즈마가 정상적으로 생성되도록, RF 발진부(110)는 고주파 발진부(111) 및 저주파 발진부(113)를 포함할 수 있다.
고주파 발진부(111)는 10~17Mhz의 고주파 전력을 생성할 수 있다.
저주파 발진부(113)는 200~600KHz의 저주파 전력을 생성할 수 있다. 이때, 저주파 전력은 고주파 전력과 함께 코일(50)에 인가되는 플라즈마 생성용 전력에 해당될 수 있다.
고주파 발진부(111)와 저주파 발진부(113)에 대응하여, RF 매처부(130)는 고주파 매처부(131) 및 저주파 매처부(133)를 포함할 수 있다.
고주파 매처부(131)는 고주파 발진부(111)의 출력단에 연결되고, 고주파 전력에 대한 임피던스 정합을 수행할 수 있다. 고주파 매처부(131)는 10~17Mhz의 고주파 전력을 출력할 수 있다.
저주파 매처부(133)는 저주파 발진부(113)의 출력단에 연결되고, 저주파 전력에 대한 임피던스 정합을 수행할 수 있다. 저주파 매처부(133)는 200~600KHz의 저주파 전력을 출력할 수 있다.
고주파 전력과 저주파 전력이 함께 코일(50)에 인가되도록, 고주파 매처부(131)의 출력단과 저주파 매처부(133)의 출력단은 전기적으로 연결될 수 있다.
고주파 매처부(131)의 출력단, 저주파 매처부(133)의 출력단, 스플리터부(150)의 입력단은 동일한 공통 케이블에 연결될 수 있다.
고주파 매처부(131)로부터 출력된 고주파 전력과 저주파 매처부(133)로부터 출력된 저주파 전력이 중첩된 RF 전력이 공통 케이블(109)을 통해 스플리터부(150)로 입력될 수 있다.
고주파 매처부(131)에는 고주파 발진부(111)에 직렬 연결되는 제1 고주파 커패시터 C1, 제1 고주파 커패시터 C1에 병렬 연결되는 고주파 인덕터 L1, 고주파 인덕터 L1에 직렬 연결되는 제2 고주파 커패시터 C2가 마련될 수 있다.
저주파 매처부(133)에는 저주파 발진부(113)에 직렬 연결되는 제1 저주파 커패시터 C3, 제1 저주파 커패시터 C3에 병렬 연결되는 저주파 인덕터 L2, 저주파 인덕터 L2에 직렬 연결되는 제2 저주파 커패시터 C4가 마련될 수 있다.
RF 매처부(130)에 마련된 각 커패시터, 예를 들어 제1 고주파 커패시터 C1, 제2 고주파 커패시터 C2, 제1 저주파 커패시터 C3, 제2 저주파 커패시터 C4는 가변 커패시터를 포함할 수 있다. 조정부(170)는 각 가변 커패시터를 조절하여 임피던스를 정합할 수 있다.
도 3은 본 발명의 스플리터부(150)를 나타낸 회로도이다.
정합 효율을 조정하기 위해 조정부(170)에는 VI 센서(710)가 마련될 수 있다.
플라즈마 장치에는 코일(50)이 m개(여기서, m은 2 이상의 자연수이다) 마련될 수 있다. 일 예로, 도면에는 m=6, 즉 제1 코일(51), 제2 코일(52), 제3 코일(53), 제4 코일(54), 제5 코일(55), 제6 코일(56) 총 6개의 코일이 마련된다.
코일(50)의 개수에 맞춰 VI 센서(710) 역시 m개 마련될 수 있다. 일 예로, 도면에는 제1 VI 센서(711), 제2 VI 센서(712), 제3 VI 센서(713), 제4 VI 센서(714), 제5 VI 센서(715), 제6 VI 센서(716)가 마련된다.
스플리터부(150)는 m개의 스플리터를 포함할 수 있다. 일 예로, 도면에는 제1 스플리터(151), 제2 스플리터(152), 제3 스플리터(153), 제4 스플리터(154), 제5 스플리터(155), 제6 스필리터가 마련된다.
제n 스플리터의 출력단에 제n 코일이 연결될 수 있다(여기서, 1≤n≤m이고, n은 자연수이다),
일 예로, 제1 스플리터(151)의 출력단에 제1 코일(51)이 연결될 수 있다.
제2 스플리터(152)의 출력단에 제2 코일(52)이 연결될 수 있다.
제3 스플리터(153)의 출력단에 제3 코일(53)이 연결될 수 있다.
제4 스플리터(154)의 출력단에 제4 코일(54)이 연결될 수 있다.
제5 스플리터(155)의 출력단에 제5 코일(55)이 연결될 수 있다.
제6 스플리터(156)의 출력단에 제6 코일(56)이 연결될 수 있다.
제n VI 센서는 제n 스플리터의 출력단의 전력을 감지할 수 있다. 또는, 제n VI 센서는 제n 스플리터의 출력단에 전기적으로 연결된 전류 검출단과 전압 검출단에서 감지된 상대적인 위상 차이를 감지할 수 있다.
일 예로, 제1 VI 센서(711)는 제1 스플리터(151)의 출력단의 전력을 감지하거나, 상대적인 위상 차이를 감지할 수 있다.
제2 VI 센서(712)는 제2 스플리터(152)의 출력단의 전력을 감지하거나, 상대적인 위상 차이를 감지할 수 있다.
제3 VI 센서(713)는 제3 스플리터(153)의 출력단의 전력을 감지하거나, 상대적인 위상 차이를 감지할 수 있다.
제4 VI 센서(714)는 제4 스플리터(154)의 출력단의 전력을 감지하거나, 상대적인 위상 차이를 감지할 수 있다.
제5 VI 센서(715)는 제5 스플리터(155)의 출력단의 전력을 감지하거나, 상대적인 위상 차이를 감지할 수 있다.
제6 VI 센서(716)는 제6 스플리터(156)의 출력단의 전력을 감지하거나, 상대적인 위상 차이를 감지할 수 있다.
m개의 스플리터의 입력단에는 공통 케이블이 각각 연결될 수 있다.
각 코일마다 스플리터 및 VI 센서가 각각 형성되므로, 조정부(170)는 각 코일에 대한 임피던스 정합을 개별적으로 수행할 수 있다.
각 스플리터에는 공통 케이블(109)에 직렬로 연결된 제1 분기 커패시터 C5 및 분기 인덕터 L3, 제1 분기 커패시터 C5 또는 분기 인덕터 L3에 병렬로 연결된 제2 분기 커패시터 C6가 마련될 수 있다. 이때, 제2 분기 커패시터 C6는 조정부(170)에 의해 조절되는 가변 커패시터를 포함할 수 있다.
조정부(170)는 VI 센서의 감지 결과에 따라 RF 매처부(130)의 임피던스 및 스플리터부(150)의 임피던스를 조절할 수 있다. 구체적으로, 조정부(170)는 RF 매처부(130)에 마련된 가변 커패시터 및 스플리터부(150)에 마련된 가변 커패시터를 조절할 수 있다.
RF 매처부(130) 및 스플리터부(150)에는 핸들을 회전시켜 정전 용량(capacitance values)을 변경할 수 있는 가변 커패시터, 예를 들어 제1 고주파 커패시터 C1, 제2 고주파 커패시터 C2, 제1 저주파 커패시터 C3, 제2 저주파 커패시터 C4, 제2 분기 커패티서 C6가 마련될 수 있다.
조정부(170)는 VI 센서의 감지 결과에 따라 핸들을 회전시키는 구동 모터(730)를 포함할 수 있다. 조정부(170)는 VI 센서의 감지 결과를 토대로 산출된 회전수만큼 핸들을 회전시켜 가변 커패시터의 임피던스를 변화시킬 수 있다. 이때, 구동 모터(730) M은 각 가변 커패시터마다 마련될 수 있다.
조정부(170)는 RF 매처부의 가변 커패시터를 조절함으로써, 시스템 전체에 대한 임피던스 정합을 수행하거나, 스플리터부의 가변 커패시터를 조절함으로써 각 코일에 대한 임피던스 정합을 독립적으로 수행할 수 있다.
조정부(170)는 릴레이(750)를 포함할 수 있다. 이때, 릴레이(750)는 각 스플리터마다 설치될 수 있다. 구체적으로 릴레이(750)는 각 스플리터의 최종단에 설치될 수 있다.
릴레이(750)는 VI 센서의 감지 결과에 따라 각 스플리터와 각 코일 간의 전기적 연결을 온오프(on-off)시킬 수 있다. 릴레이(750)가 온되면, 각 스플리터와 각 코일은 전기적으로 연결되고, 릴레이(750)가 오프되면, 각 스플리터와 각 코일은 전기적으로 단절될 수 있다.
릴레이(750)가 오프되면 코일측의 로드 임피던스가 무한대로 증가되며, 무한대로 증가된 로드 임피던스를 이용해 잔류 편차, 노이즈 제거가 이루어질 수 있다.
릴레이(750)가 온된 경우 잔류 편차, 노이즈는 시간의 경과에 따라 다시 발생될 가능성이 높으므로, 릴레이(750)는 조정부(170)에 의해 주기적으로 온오프될 수 있다.
또한, 릴레이(750)로 인해 VI 센서의 오프셋 값의 설정이 쉬워지며, 비상 상황시 코일의 동작이 강제적으로 중단될 수 있다.
각종 잔류 편차, 노이즈 등을 줄이기 위해, RF 전력이 공통 케이블을 통하여 복수의 스플리터가 마련된 스플리터부(150)의 중심으로 인입될 수 있다. 이때, 각 스플리터는 스플리터부(150)의 중심을 기준으로 등각도로 배치될 수 있다.
스플리터부(150)에는 스플리터를 지지하는 판 형상의 몸체가 마련될 수 있다. 일 예로, 6개의 스플리터가 마련된 경우, 각 스플리터는 60도의 간격으로 동일 평면상, 예를 들어 xy평면 상에 배치되게 몸체에 설치될 수 있다.
몸체의 중심을 기준으로 등각도로 배치된 복수의 스플리터에 따르면, 서로 대면되는 스플리터 간에 발생되는 노이즈가 상쇄될 수 있다. 또한, 스플리터 측 임피던스의 불균형이 방지될 수 있다.
공통 케이블은 스플리터부(150)의 중심, 구체적으로 몸체의 중심에서 분기되어 각 스플리터에 연결될 수 있다.
각 스플리터, 각 스플리터에 마련된 가변 커패시터 C6 및 각 스플리터에 연결된 주변 회로(107)는 공통 케이블을 기준으로 축대칭으로 배열되고, 모두 등가 회로일 수 있다.
공통 케이블의 단부는 복수의 스플리터가 배치된 가상의 평면(도면에서는 xy 평면)에 수직하게 스플리터부(150)에 입력될 수 있다. 가상의 평면에 수직하게 입력된 공통 케이블의 단부는 도 3과 같이 평면상 점으로 표시될 수 있다.
공통 케이블은 각 스플리터 사이의 중심으로부터 각 스플리터를 향해 연장되는 지선(108)을 통해 분기될 수 있다. 해당 지선은 곧바로 스플리터에 연결되거나 각종 주변 회로를 거친 후 스플리터에 연결될 수 있다.
이때, 각 지선의 길이, 각 지선의 위치, 각 주변 회로의 위치 등이 제멋대로 설정되면, 지선, 주변 회로에 의해 로드 임피던스가 틀어질 수 있다. 본 실시예에 따르면, 지선, 스플리터, 가변 커패시터, 주변 회로가 공통 케이블을 기준으로 축대칭으로 배열될 수 있다.
이때, 각 스플리터는 모두 등가 회로일 수 있다. 각 지선은 모두 등가 회로일 수 있다. 각 가변 커패시터는 모두 등가 회로일 수 있다. 각 주변 회로는 모두 등가 회로일 수 있다. 이때, 등가 회로는 회로도 차원에서 뿐만 아니라, 지선의 길이 및 위치, 가변 커패시터의 위치 등의 기구적 차원에서도 모두 대칭적으로 동일한 것을 의미할 수 있다. 본 실시예에 따르면, 지선, 주변 회로로 인해 유발되는 노이즈를 상쇄시킬 수 있다.
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.
10...가공물 30...챔버
31...덮개 50...코일
51...제1 코일 52...제2 코일
53...제3 코일 54...제4 코일
55...제5 코일 56...제6 코일
90...척 유니트 107...주변 회로
108...지선 109...공통 케이블
110...RF 발진부 111...고주파 발진부
113...저주파 발진부 130...RF 매처부
131...고주파 매처부 133...저주파 매처부
150...스플리터부 151...제1 스플리터
152...제2 스플리터 153...제3 스플리터
154...제4 스플리터 155...제5 스플리터
156...제6 스플리터 170...조정부
710...VI 센서 711...제1 VI 센서
712...제2 VI 센서 713...제3 VI 센서
714...제4 VI 센서 715...제5 VI 센서
716...제6 VI 센서 730...구동 모터
750...릴레이

Claims (8)

  1. 챔버에 설치된 복수의 코일에 플라즈마 생성용 전력을 인가하는 RF 발진부;
    상기 챔버, 상기 RF 발진부, 상기 코일 중 적어도 하나의 특성 임피던스(characteristic impedance)에 로드 임피던스(load impedance)를 맞추는 RF 매처부;
    상기 RF 매처부의 출력 전력을 각 코일로 분배하는 복수의 스플리터를 구비한 스플리터부;
    상기 RF 매처부 또는 상기 스플리터부의 정합 효율을 조정하는 조정부;
    를 포함하며,
    상기 조정부는 VI 센서의 감지 결과에 따라 상기 RF 매처부의 임피던스 및 상기 스플리터부의 임피던스를 조절하고,
    상기 RF 매처부 및 상기 스플리터부에는 핸들을 회전시켜 정전 용량(capacitance values)을 변경할 수 있는 가변 커패시터가 마련되고,
    상기 조정부는 상기 VI 센서의 감지 결과에 따라 상기 핸들을 회전시키는 구동 모터를 포함하며,
    상기 구동 모터는 각 가변 커패시터마다 마련되고,
    상기 RF 전력이 공통 케이블을 통하여 복수의 상기 스플리터가 마련된 상기 스플리터부의 중심으로 인입되고,
    상기 각 스플리터는 상기 스플리터부의 중심을 기준으로 등각도로 배치되며,
    상기 공통 케이블은 상기 스플리터부의 중심에서 분기되어 각 스플리터에 연결되는 소스 매처.
  2. 제1항에 있어서,
    상기 RF 발진부는 고주파 발진부 및 저주파 발진부를 포함하고,
    상기 고주파 발진부는 10~17Mhz의 고주파 전력을 생성하며,
    상기 저주파 발진부는 200~600KHz의 저주파 전력을 생성하고,
    상기 RF 매처부는 고주파 매처부 및 저주파 매처부를 포함하며,
    상기 고주파 매처부는 상기 고주파 발진부의 출력단에 연결되고, 10~17Mhz의 고주파 전력을 출력하고,
    상기 저주파 매처부는 상기 저주파 발진부의 출력단에 연결되고, 200~600KHz의 저주파 전력을 출력하는 소스 매처.
  3. 제2항에 있어서,
    상기 고주파 매처부의 출력단과 상기 저주파 매처부의 출력단은 전기적으로 연결되고,
    상기 고주파 매처부의 출력단, 상기 저주파 매처부의 출력단, 상기 스플리터부의 입력단은 동일한 상기 공통 케이블에 연결되며,
    상기 고주파 매처부로부터 출력된 고주파 전력과 상기 저주파 매처부로부터 출력된 저주파 전력이 중첩된 RF 전력이 상기 공통 케이블을 통해 상기 스플리터부로 입력되는 소스 매처.
  4. 제3항에 있어서,
    상기 조정부에는 상기 VI 센서가 마련되고,
    상기 코일은 m개(여기서, m은 2 이상의 자연수이다) 마련되며,
    상기 VI 센서는 m개 마련되고,
    상기 스플리터부는 m개의 상기 스플리터를 포함하며,
    제n 스플리터의 출력단에 제n 코일이 연결되고(여기서, 1≤n≤m이고, n은 자연수이다),
    제n VI 센서는 제n 스플리터의 출력단의 전력을 감지하거나, 제n 스플리터의 출력단에 전기적으로 연결된 전류 검출단과 전압 검출단에서 감지된 상대적인 위상 차이를 감지하며,
    m개의 상기 스플리터의 입력단에는 상기 공통 케이블이 각각 연결되는 소스 매처.
  5. 삭제
  6. 제4항에 있어서,
    상기 조정부는 릴레이를 포함하고,
    상기 릴레이는 상기 각 스플리터마다 설치되며, 상기 VI 센서의 감지 결과에 따라 상기 각 스플리터와 상기 각 코일 간의 전기적 연결을 온오프(on-off)시키는 소스 매처.
  7. 삭제
  8. 제1항에 있어서,
    각 스플리터, 각 스플리터에 마련된 가변 커패시터 및 각 스플리터에 연결된 주변 회로는 상기 공통 케이블을 기준으로 축대칭으로 배열되고, 모두 등가 회로인 소스 매처.
KR1020180003732A 2018-01-11 2018-01-11 소스 매처 KR102024185B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020180003732A KR102024185B1 (ko) 2018-01-11 2018-01-11 소스 매처
CN201980007014.7A CN111819655B (zh) 2018-01-11 2019-01-11 源匹配器
PCT/KR2019/000440 WO2019139395A1 (ko) 2018-01-11 2019-01-11 소스 매처

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180003732A KR102024185B1 (ko) 2018-01-11 2018-01-11 소스 매처

Publications (2)

Publication Number Publication Date
KR20190085635A KR20190085635A (ko) 2019-07-19
KR102024185B1 true KR102024185B1 (ko) 2019-09-23

Family

ID=67218656

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180003732A KR102024185B1 (ko) 2018-01-11 2018-01-11 소스 매처

Country Status (3)

Country Link
KR (1) KR102024185B1 (ko)
CN (1) CN111819655B (ko)
WO (1) WO2019139395A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386814B1 (ko) * 2020-06-30 2022-04-15 인투코어테크놀로지 주식회사 플라즈마 생성 장치 및 그 제어 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934402B1 (ko) * 2009-09-07 2009-12-31 아리온테크 주식회사 알에프 스플리트 모니터링 시스템

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706138B2 (en) * 2001-08-16 2004-03-16 Applied Materials Inc. Adjustable dual frequency voltage dividing plasma reactor
US7879185B2 (en) * 2003-12-18 2011-02-01 Applied Materials, Inc. Dual frequency RF match
KR100771336B1 (ko) 2005-09-02 2007-10-29 학교법인 호서학원 알에프매처에 사용되는 임피던스 정합장치
JP4817923B2 (ja) * 2006-03-29 2011-11-16 三井造船株式会社 プラズマ生成装置及びプラズマ生成方法
JP4324205B2 (ja) * 2007-03-30 2009-09-02 三井造船株式会社 プラズマ生成装置およびプラズマ成膜装置
JP2013004172A (ja) * 2011-06-10 2013-01-07 Tokyo Electron Ltd 高周波電力分配装置およびそれを用いた基板処理装置
KR20140137964A (ko) * 2013-05-24 2014-12-03 엘아이지에이디피 주식회사 유도 결합 플라즈마 처리 장치 및 그 제어방법
US9263350B2 (en) * 2014-06-03 2016-02-16 Lam Research Corporation Multi-station plasma reactor with RF balancing
US9515633B1 (en) * 2016-01-11 2016-12-06 Lam Research Corporation Transformer coupled capacitive tuning circuit with fast impedance switching for plasma etch chambers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100934402B1 (ko) * 2009-09-07 2009-12-31 아리온테크 주식회사 알에프 스플리트 모니터링 시스템

Also Published As

Publication number Publication date
CN111819655B (zh) 2023-07-14
KR20190085635A (ko) 2019-07-19
WO2019139395A1 (ko) 2019-07-18
CN111819655A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
TWI552223B (zh) 電漿處理裝置
TWI614807B (zh) 電漿處理裝置
KR101027090B1 (ko) 임피던스 정합 장치
KR102038617B1 (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
JP6272808B2 (ja) 可変容量性チューナおよびフィードバック回路を有する物理的気相堆積
KR101700981B1 (ko) 멀티주파수 용량적으로 커플링된 플라즈마 에칭 챔버
JP6424024B2 (ja) プラズマ処理装置及びプラズマ処理方法
US10886105B2 (en) Impedance matching method, impedance matching device and plasma generating apparatus
US20150076112A1 (en) Method and Apparatus for Controlling Substrate DC-Bias and Ion Energy and Angular Distribution During Substrate Etching
US7771608B2 (en) Plasma processing method and apparatus
KR20170044010A (ko) 임피던스 매칭 회로 내에서 사용되는 균일도 제어 회로
KR101117375B1 (ko) 플라즈마도핑방법 및 플라즈마도핑장치
WO2012005881A2 (en) Methods and apparatus for radio frequency (rf) plasma processing
CN101656200A (zh) 多频等离子体刻蚀反应器
US20220208518A1 (en) Directly Driven Hybrid ICP-CCP Plasma Source
KR102024185B1 (ko) 소스 매처
KR102189323B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20210018178A (ko) 플라스마 처리 장치
CN107305830A (zh) 电容耦合等离子体处理装置与等离子体处理方法
KR20160129300A (ko) 유도결합형 플라즈마 발생장치용 안테나 및 그의 제어방법과 그를 포함하는 유도결합 플라즈마 발생장치
KR102467966B1 (ko) 하이브리드 플라즈마 발생 장치 및 하이브리드 플라즈마 발생 장치의 제어방법
KR100708313B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR20010076954A (ko) 고주파 정합장치
WO2023038838A1 (en) Hybrid frequency plasma source
KR20230087296A (ko) 하이브리드 매처, 및 그 하이브리드 매처를 포함한 rf 매칭 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant